光刻胶知识

合集下载

光刻胶知识简介

光刻胶知识简介

光刻胶知识简介光刻胶知识简介:一.光刻胶的定义(photoresist)又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。

感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。

经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。

二.光刻胶的分类光刻胶的技术复杂,品种较多。

根据其化学反应机理和显影原理,可分负性胶和正性胶两类。

光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。

利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。

基于感光树脂的化学结构,光刻胶可以分为三种类型。

①光聚合型采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。

②光分解型采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶.③光交联型采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链及链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。

柯达公司的产品KPR胶即属此类。

三.光刻胶的化学性质a、传统光刻胶:正胶和负胶。

光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给及光刻胶的机械及化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。

负性光刻胶。

树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。

从而变得不溶于显影液。

负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易及氮气反应而抑制交联。

光刻胶知识简介

光刻胶知识简介

光刻胶知识简介光刻胶知识简介:一.光刻胶的定义(photoresist)又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。

感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。

经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。

二.光刻胶的分类光刻胶的技术复杂,品种较多。

根据其化学反应机理和显影原理,可分负性胶和正性胶两类。

光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。

利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。

基于感光树脂的化学结构,光刻胶可以分为三种类型。

①光聚合型采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。

②光分解型采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶.③光交联型采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链与链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。

柯达公司的产品KPR胶即属此类。

三.光刻胶的化学性质a、传统光刻胶:正胶和负胶。

光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给与光刻胶的机械与化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。

负性光刻胶。

树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。

从而变得不溶于显影液。

负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易与氮气反应而抑制交联。

光刻胶的种类有哪些各有何特点

光刻胶的种类有哪些各有何特点

光刻胶的种类有哪些各有何特点光刻胶是微电子加工过程中的关键材料之一,它起到了良好的光刻功能,使得微电子芯片制造过程得以顺利进行。

而不同种类的光刻胶,由于其化学成分和性能特点的不同,也会在微电子芯片制造的过程中遇到不同的问题。

本文将重点介绍光刻胶的种类及其特点。

一、光刻胶的种类1. 正型光刻胶(Positive photoresist)正型光刻胶在微细加工过程中,通过光暴露后生成可溶性膜丝,再通过显影去除未暴露部分的胶膜,形成图形,并在这部分形成图形的区域进行加工工艺。

正型光刻胶多数采用溶液显影方式,显影后形成的结构具有边缘清晰,分辨率高的特点,特别适用于制作细微结构。

2. 反型光刻胶(Negative photoresist)反型光刻胶与正型光刻胶相反,是在曝光未受光照射的区域形成可溶性膜丝,在显影之后去除已曝光部分的胶膜,形成所需加工的图形构件。

反型光刻胶则主要用于一些特殊用途,如用于蚀刻和电子束光刻加工中。

3. 混合型光刻胶(Hybrid photoresist)混合型光刻胶则是前两者的混合物,拥有两种光刻胶的优点,是相对理想的光刻胶。

其中,许多混合型光刻胶概念在电子束光刻加工中得到了广泛应用,可以同时满足其高分辨率需求和较长的品质寿命。

二、光刻胶的特点1. 分辨率(Resolution)光刻胶最重要的物理特性之一就是分辨率。

分辨率定义为影像的最小宽度,从图形的一个纹理结构的特征尺度来说就是边缘渐进的斜率之变化。

分辨率决定了影像造成的图形在纵横向尺寸上的限制程度,越高的分辨率使得制作更小、更紧凑的结构成为了可能。

2. 漏光(Tolerance)漏光可以被视为光刻胶性能的指标之一,意味着胶上的图形逐渐被严格建立的边界包围。

开发过程还能够承受某些胶的倾向吸收不同程度的对比度。

这样的不一致的吸收能力称为装备项,而且如果不恰当的使用就会阻碍漏光的控制,从而严重损害影像质量。

3. 敏感度(Sensitivity)光刻胶的敏感度也是一个不容忽视的特性。

krf、arf光刻胶光栓效应

krf、arf光刻胶光栓效应

krf、arf光刻胶光栓效应一、引言在半导体制造工艺中,光刻技术是一项至关重要的工艺。

而在光刻技术中,光刻胶的光栓效应是一个十分重要的现象。

本文将主要讨论krf、arf光刻胶光栓效应的相关知识和研究进展。

二、光刻胶的基本原理光刻胶是一种将图案投射到硅片上的关键材料。

其基本原理为,在光刻机中,通过紫外光源照射光刻胶,使得光刻胶的化学性质发生变化,从而形成需要的图案。

而光栓效应则是指在这个过程中,由于光的反射和衍射效应,导致光刻胶在一定厚度处形成透光的光栓,影响光刻胶的薄膜厚度,从而影响了图案的质量和精度。

三、krf、arf光刻胶光栓效应的研究现状1. krf、arf光刻胶的定义krf光刻胶指的是使用波长为248纳米的紫外光进行曝光的光刻胶,而arf光刻胶则指的是使用波长为193纳米的紫外光进行曝光的光刻胶。

这两种光刻胶在光栓效应方面有着一定的区别。

2. krf、arf光刻胶光栓效应的差异研究表明,krf光刻胶的光栓效应相对较小,而arf光刻胶的光栓效应则相对较大。

这是由于不同波长的紫外光在光刻胶中的穿透深度不同所导致的。

而这一差异的存在也为制程工艺的优化提供了挑战。

3. krf、arf光刻胶光栓效应的影响光栓效应的存在对图案的分辨率、线宽偏差等都有着一定影响,尤其是在微纳米加工中更加明显。

因此研究人员需要充分了解krf、arf光刻胶光栓效应及其对制程的影响,以便于找到解决方案和优化工艺。

四、未来研究方向1. 深入研究krf、arf光刻胶光栓效应的机理对于krf、arf光刻胶光栓效应的机理,科研人员仍有很多未知的领域需要深入研究。

只有对其机理有了更深刻的了解,才能更好地解决其带来的问题。

2. 寻找更好的光刻胶材料目前,为了减小光栓效应的影响,科研人员也在努力寻找更好的光刻胶材料,以减小或者消除光栓效应的影响,提高光刻的精度。

3. 工艺优化除了研究光刻胶材料之外,科研人员还需要对工艺进行持续优化,以降低光栓效应的影响,提高制程的稳定性和可靠性。

光刻工艺知识点总结

光刻工艺知识点总结

光刻工艺知识点总结光刻工艺是半导体制造工艺中的重要环节,通过光刻技术可以实现微米级甚至纳米级的精密图案转移至半导体芯片上,是芯片制造中最关键的工艺之一。

光刻工艺的基本原理是利用光学原理将图案投射到光刻胶上,然后通过化学蚀刻将图案转移到芯片表面。

下面将对光刻工艺的知识点进行详细总结。

一、光刻工艺的基本原理1. 光刻胶光刻胶是光刻工艺的核心材料,主要由树脂和溶剂组成。

树脂的种类和分子结构直接影响着光刻胶的分辨率和对光的敏感度,而溶剂的选择和比例则会影响着光刻胶的黏度、流动性和干燥速度。

光刻胶的选择要根据不同的工艺要求,如分辨率、坚固度、湿膜厚度等。

2. 掩模掩模是用来投射光刻图案的模板,通常是通过电子束刻蚀或光刻工艺制备的。

掩模上有所需的图形样式,光在通过掩模时会形成所需的图案。

3. 曝光曝光是将掩模上的图案投射到光刻胶表面的过程。

曝光机通过紫外线光源产生紫外线,通过透镜将掩模上的图案投射到光刻胶表面,形成图案的暗部和亮部。

4. 显影显影是通过化学溶液将光刻胶上的图案显现出来的过程。

曝光后,光刻胶在图案暗部和亮部会有不同的化学反应,显影溶液可以去除未暴露的光刻胶,留下所需的图案。

5. 蚀刻蚀刻是将图案转移到硅片上的过程,通过化学腐蚀的方式去除光刻胶未遮盖的部分,使得图案转移到硅片表面。

二、光刻工艺中的关键技术1. 分辨率分辨率是指光刻工艺能够实现的最小图案尺寸,通常用实际图案中两个相邻细线或空隙的宽度之和来表示。

分辨率受到光刻机、光刻胶和曝光技术等多个因素的影响,是衡量光刻工艺性能的重要指标。

2. 等效焦距等效焦距是光刻机的重要参数,指的是曝光光学系统的有效焦距,影响光刻图案在光刻胶表面的清晰度和分辨率。

3. 曝光剂量曝光剂量是指单位面积上接收的光能量,通常用mJ/cm^2或μC/cm^2来表示。

曝光剂量的选择对分辨率和光刻胶的副反应有重要影响。

4. 曝光对位精度曝光对位精度是指光刻胶上已存在的图案和新的曝光对位的精度,是保证多层曝光图案对位一致的重要因素。

光刻胶的成分

光刻胶的成分

光刻胶的成分
光刻胶是一种重要的材料,广泛应用于电子、光电子、半导体等领域。

它的成分主要包括以下几个方面:
1. 光敏剂:光刻胶的主要成分之一,能够吸收特定波长的光线,从而引发化学反应。

光敏剂的种类很多,常见的有二氧化钛、二苯乙烯、环氧化合物等。

2. 树脂:光刻胶的主要成分之一,负责固化和形成光刻胶膜。

树脂的种类很多,常见的有环氧树脂、丙烯酸树脂、聚酰亚胺树脂等。

3. 溶剂:用于稀释光刻胶,使其达到适合加工的粘度。

常见的溶剂有丙酮、甲醇、甲苯等。

4. 其他添加剂:光刻胶中还可以添加一些辅助成分,如增塑剂、消泡剂、抗氧化剂等,以提高其性能或稳定性。

综上所述,光刻胶的成分涉及到光敏剂、树脂、溶剂以及其他添加剂等多个方面,不同的成分组合和比例会影响光刻胶的性能和应用范围。

- 1 -。

光刻胶基本介绍

光刻胶基本介绍

The introduction of Photoresist and Application光刻胶基本介绍主要内容CONTENT☐一,光刻胶基础知识☐二,光刻胶的种类☐三,光刻胶的应用领域☐四,光刻胶的特点☐五,光刻胶的可靠性测试内容☐六,光刻胶的来料要求一、光刻胶基础知识☐光刻胶是一种具有感光性的化学品(混合物)树脂(Resin):10-40% by weight感光剂(PAC)或光致产酸剂(PAG):1-6% by weight溶剂(Solvent):50-90% by weight添加剂(Additive):1-3% by weight单体(Monomer):10-20% by weight二、光刻胶的种类☐依照化学反应和显影原理分类一、正性光刻胶形成的图形与掩膜版相同;二、负性光刻胶形成的图形与掩膜版相反。

SubstratePhotoresistCoating Maskh u TransferEtchStripExposure DevelopPositive Negative☐按照感光树脂的化学结构分类一、光聚合型:1)采用烯类单体,在光作用下生成自由基,进一步引发单体聚合,最后生成聚合物。

2)采用环氧树脂,阳离子开环,引发环氧交联反应,最后生成聚合物。

二、光分解型,采用含有叠氮醌类化合物的材料,其经光照后,发生光分解反应,可以制成正性胶;☐按照曝光波长类一、紫外光刻胶(300~450nm);I-line:365nm;H-line:405nm;G-line:436nm;Broad Band (g+h+i)二、深紫外光刻胶(160~280nm);KrF:248nm;ArF:193nm;F2:157nm;三、极紫外光刻胶(EUV,13.5nm);四、电子束光刻胶、离子束光刻胶、X射线光刻胶等。

不同曝光波长的光刻胶,其适用的光刻极限分辨率不同,通常来说,在使用工艺方法一致的情况下,波长越小,加工分辨率越佳。

光刻胶

光刻胶

抗蚀性(Anti-etching; Etching resistance)即光刻胶材料在刻蚀过程中的抵抗力。在图形从光刻胶转 移到晶片的过程中,光刻胶材料必须能够抵抗高能和高温(>150℃)而不改变其原有特性 。在后续的刻蚀工序 中保护衬底表面。耐热稳定性、抗刻蚀能力和抗离子轰击能力 。在湿法刻蚀中,印有电路图形的光刻胶需要连 同硅片一同置入化学刻蚀液中,进行很多次的湿法腐蚀。只有光刻胶具有很强的抗蚀性,才能保证刻蚀液按照所 希望的选择比刻蚀出曝光所得图形,更好体现器件性能。在干法刻蚀中,例如集成电路工艺中在进行阱区和源漏 区离子注入时,需要有较好的保护电路图形的能力,否则光刻胶会因为在注入环境中挥发而影响到注入腔的真空 度。此时注入的离子将不会起到其在电路制造工艺中应起到的作用,器件的电路性能受阻 。
1890年。德国人格林(Green)和格罗斯(Gross)等人将重氮化的混合物制成感光材料。取得了第一个重氮 感光材料的专利。不久,德国的卡勒(Kalle)公司推出了重氮印相纸,从而使重氮感光材料商品化,并逐渐代 替了铁印相技术。
工作原理
辐射线
光学
纳米压印技术
光刻胶类型及应用制程
紫外光刻胶
紫外光刻胶适用于g线(436 nm)与i线(365 nm)光刻技术。
2.紫外压印光刻胶:使用透明的模板,将预先制作好的带有微图形特征的硬模版压入常温下液态光刻胶中, 用紫外光将光刻胶固化后抬起模板,从而将模板上的微特征转移到光刻胶上。按照光引发反应机理,可分为自由 基聚合和阳离子聚合两大体系 。光刻胶材料主要有甲基丙烯酸酯体系、有机硅改性的丙烯酸或甲基丙烯酸酯体 系、乙烯基醚体系、环氧树脂体系等。
1.
热压印与紫外压印原理示意图纳米压印技术是通过压模来制作微纳特征的一种图形转移技术,其最明显的优 势是高产能、高分辨率、低成本,主要工艺流程:模板制作、硅衬底滴胶、压印、曝光、脱模、离子刻蚀,图像 精度可以达到5 nm。使用的光刻胶种类主要分为两种:

光刻胶主要技术参数

光刻胶主要技术参数

光刻胶主要技术参数
光刻胶是一种用于微电子加工中的重要材料,主要用于制作各种尺寸和形状的微小结构。

光刻胶主要技术参数包括:
1. 光刻胶的感光度。

感光度是光刻胶接受光线的能力。

与光线强度和曝光时间等因素有关。

敏感度高的光刻胶能够快速反应,减少加工时间,同时提高了微小结构的生产效率。

2. 光刻胶的分辨率。

分辨率是指光刻胶在制造过程中的能力达到所需的精度水平。

在微电子制造中,需要高精度的结构以充分利用微小的空间和增加半导体芯片的稳定性。

因此,高分辨率光刻胶能够减少加工误差,提供更精细的结构。

3. 光刻胶的粘度。

光刻胶的粘度直接影响其在微加工过程中的表现。

过高的粘度可能导致光刻胶无法均匀分布,从而影响微小结构的生产效率;而过低的粘度可能会导致过多的杂质和残留物,损害半导体芯片的性能。

4. 光刻胶的化学稳定性。

光刻胶需要通过化学处理才能完成微小结构加工,因此光刻胶的化学稳定性对于相应的制造工艺至关重要。

高质量和高稳定性的光刻胶可以在加工过程中保持稳定的性能,并提供卓
越的微小结构。

总的来说,光刻胶的主要技术参数包括其感光度、分辨率、粘度和化学稳定性等重要指标。

通过在这些方面进行优化和改进,可以生产出高质量的微小结构,同时提高生产效率,并为制造出更先进的微电子设备奠定基础。

光刻胶是什么材料

光刻胶是什么材料

光刻胶是什么材料光刻胶是一种在半导体工艺中广泛应用的材料,它在集成电路制造中扮演着非常重要的角色。

光刻胶是一种光敏材料,它能够在受到紫外光照射后发生化学变化,从而形成所需的图案。

下面我们将详细介绍光刻胶的组成、工作原理以及在半导体制造中的应用。

首先,我们来了解一下光刻胶的组成。

光刻胶通常由聚合物、溶剂和光敏剂组成。

其中,聚合物是光刻胶的主体,它确定了光刻胶的力学性能和化学稳定性。

溶剂的作用是溶解聚合物和光敏剂,使光刻胶具有一定的黏度和流动性。

光敏剂是光刻胶的关键成分,它能够吸收紫外光并引发化学反应,从而使光刻胶发生凝固或溶解的变化。

其次,让我们来了解光刻胶的工作原理。

在光刻工艺中,光刻胶首先被涂覆在半导体晶圆表面,然后通过紫外光刻蚀机或激光器照射所需的图案。

在照射过程中,光敏剂吸收紫外光并发生化学反应,使光刻胶在受光区域发生物理或化学变化,形成所需的图案。

接着,经过显影、清洗等工艺步骤,最终形成了半导体器件所需的图案结构。

最后,让我们来看一下光刻胶在半导体制造中的应用。

光刻胶在半导体工艺中扮演着非常重要的角色,它被广泛应用于半导体器件的制造过程中。

通过光刻工艺,可以实现微米级甚至纳米级的精密图案制作,从而实现集成电路器件的微细加工和制造。

光刻胶的选择和使用对半导体器件的性能和可靠性有着重要的影响,因此在半导体工艺中需要严格控制光刻胶的配方、涂覆工艺和光刻参数,以确保器件的质量和稳定性。

综上所述,光刻胶作为一种在半导体工艺中广泛应用的材料,具有重要的意义。

它的组成、工作原理和在半导体制造中的应用都是非常值得深入研究和了解的。

只有深入理解光刻胶的特性和工艺,才能更好地应用于半导体器件的制造和加工中,从而推动半导体工艺的发展和进步。

第8章 光刻胶

第8章 光刻胶
势 能
S3 T1 S1 S2
EA(S1) = 16Kcal
S0
88Kcal
72Kcal EA(S0) = 38Kcal RN 与 N2 的间距
Microelectronic Fabrication & MEMS Technology
14
感光分子吸收λ= 365 nm 的光能( 72 Kcal )后 ,电子从基 态 S0 跃迁到第一激发态 S1 ,激活能由 EA(S0) = 38 Kcal 降为 EA(S1) = 16 Kcal ,反应速度加快。 感光分子吸收λ= 300 nm 的光能(88 Kcal)后,电子跃迁 到第二激发态 S2 ,此态的谷底势能恰好与 S1 态当 RN - N2 分解 时的势能相当,且 S2 与 S1 态的曲线在图左侧有相交之处,因此 电子可从 S2 态跃迁到 S1 态并立即反应。所以用λ= 300 nm 的光
比度大于 1。
通常正胶的对比度要高于负胶。
Microelectronic Fabrication & MEMS Technology 8
光进入光刻胶后,其强度按下式衰减
I ( z ) I 0 e z
式中,α为光刻胶的光吸收系数。设 TR 为光刻胶的厚度,则可 定义光刻胶的 光吸收率 为
T I I ( z ) d z 0 1 e A 0 1 TR
第 8 章 光刻胶
光刻胶也称为 光致抗蚀剂(Photoresist,P. R.)。
8.1 光刻胶的类型
一、光刻胶的类型
凡是在能量束(光束、电子束、离子束等)的照射下,以
交联反应为主的光刻胶称为 负性光刻胶,简称 负胶。
凡是在能量束(光束、电子束、离子束等)的照射下,以

第二章-3(光刻胶)

第二章-3(光刻胶)

16
深紫外光刻胶——化学放大胶
DQN在短波长是感光效果不佳 深紫外光源强度较小,光能量不够。 深紫外光刻需要采用化学放大胶。 化学放大胶一般包括三个部分:基质树脂、有机 溶剂、酸性发生剂(Photo acid generator, PAG)。 电子束光或光照,PAG在光子冲击下分解,这种 分解进一步催化更多PAG分解,一个光子可诱发 上千个分解反应。从而提高光刻胶的灵敏度。 特点:高灵敏度,强的抗干法腐蚀能力;易被空 气污染,在空气中性能不稳定, 灵敏度: 1~5mC/cm2
2
光刻胶的类型
光刻胶通常具有溶解 负性光刻胶 ——曝光区在显影液中不溶解
3
光刻胶的断链和交联
光刻胶本身或与其它化合物化合,称为交联。 如果光刻胶的主要是产生交联。交联后,分子 更坚固,有更高的密度,并降低了分子在常用 溶剂的溶解能力。(负性胶) 反之,若聚合物分裂成短链,分子则更易溶解, 称为断链。 (正性胶)
23
光刻胶涂敷的工艺流程(3)
显影:需要设定合适的显影时间。显影时间不 够,曝光区的光刻胶可能还没有完全溶解;显 影时间过长,则转移的图形可能过大。几乎所 有的正性胶都用碱性显影液,如用水稀释的5‰ 的KOH或NaOH作为显影剂。 硬烘:也称坚膜,高温烘烤使光刻胶硬化,主 要针对后续的需要光刻胶作掩模的高能工艺, 如离子注入和等离子刻蚀。
17
电子束光刻胶——PMMA
PMMA (polymethyl methacrylate) 聚甲基丙烯酸 酯: 优点:分辨率高,附着力强,工艺简单成熟; 缺点:灵敏度低,抗干法腐蚀能力差。
在深紫外光照下,聚合体结合链断开,变得易溶解。 对220nm光波最敏感,对波长高于240nm的光完全不 敏感。 灵敏度低:100~500 mC/cm2,要求曝光剂量大于 250mJ/cm2 18

光刻胶概念一览表

光刻胶概念一览表

光刻胶概念一览表光刻胶概念一览表随着微电子、半导体、光电子和其他高新技术的发展,对光刻胶的需求越来越大。

然而,对于光刻胶这一概念,很多人并不太了解。

下面,我们将介绍一些与光刻胶相关的概念,以便更好地了解和使用光刻胶。

1、光刻胶的定义光刻胶是一种通过光刻技术,将图案或图像的形状转移到半导体材料表面的重要材料之一。

光刻胶可用于制备微型电子元件、机械装置和图案。

2、光刻胶的分类按照用途的不同,光刻胶可以分为以下几类:(1)正胶:用于沟槽、线、阵列等结构的制备。

(2)反胶:用于制备负图案,主要是负形结构。

(3)双层胶:由覆盖在基础上的正胶和底部的反胶组成,用于加深沟槽和减小线宽度。

3、光刻胶的制备过程光刻胶的制备大致可以分为三个步骤:(1)底层制备:这一步骤包括淀粉和玻璃等基础结构的制备。

(2)胶层覆盖:在基础结构上覆盖光刻胶。

(3)曝光和蚀刻:曝光胶层并进行蚀刻,从而将光刻胶中的图形转移到基础结构表面。

4、光刻胶的性能指标(1)分辨率:指的是光刻胶加工后的线宽度。

(2)感光度:光刻胶吸收和转化光辐射的能力。

(3)显影性能:显影液在胶层表面停留时间和显影效果的好坏。

5、光刻胶的应用领域(1)微电子:在集成电路制造中,光刻胶可用于制造各种微型电子元件。

(2)半导体:光刻胶是制造高精度半导体元件的重要材料之一。

(3)光学:光刻胶可以用于制造微型透镜和其他光电子器件。

综上所述,光刻胶是现代高科技制造中不可或缺的材料。

通过对光刻胶相关的概念、分类、制备过程、性能指标和应用领域的介绍,希望读者能够更好地了解和使用光刻胶。

光刻胶

光刻胶

````4. 光刻胶光刻胶主要由树脂(Resin)、感光剂(Sensitizer)、溶剂(Solvent)及添加剂(Additive)等不同的材料按一定比例配制而成。

其中树脂是粘合剂(Binder),感光剂是一种光活性(Photoactivity)极强的化合物,它在光刻胶内的含量与树脂相当,两者同时溶解在溶剂中,以液态形式保存,以便于使用。

4.1 光刻胶的分类⑴负胶1.特点·曝光部分会产生交联(Cross Linking),使其结构加强而不溶于现像液;·而未曝光部分溶于现像液;·经曝光、现像时,会有膨润现像,导致图形转移不良,故负胶一般不用于特征尺寸小于3um的制作中。

2.分类(按感光性树脂的化学结构分类)常用的负胶主要有以下两类:·聚肉桂酸酯类光刻胶这类光刻胶的特点,是在感光性树脂分子的侧链上带有肉桂酸基感光性官能团。

如聚乙烯醇肉桂酸酯(KPR胶)、聚乙烯氧乙基肉桂酸酯(OSR胶)等。

·聚烃类—双叠氮类光刻胶这种光刻胶又叫环化橡胶系光刻胶。

它由聚烃类树脂(主要是环化橡胶)、双叠氮型交联剂、增感剂和溶剂配制而成。

3.感光机理①肉桂酸酯类光刻胶KPR胶和OSR胶的感光性树脂分子结构如下:在紫外线作用下,它们侧链上的肉桂酰官能团里的炭-炭双键发生二聚反应,引起聚合物分子间的交联,转变为不溶于现像液的物质。

KPR胶的光化学交联反应式如下:这类光刻胶中的高分子聚合物,不仅能在紫外线作用下发生交联,而且在一定温度以上也会发生交联,从而在现像时留下底膜,所以要严格控制前烘的温度与时间。

②聚烃类—双叠氮类光刻胶这类光刻胶的光化学反应机理与前者不同,在紫外线作用下,环化橡胶分子中双键本身不能交联,必须有作为交联剂的双叠氮化合物参加才能发生交联反应。

交联剂在紫外线作用下产生双自由基,它和聚烃类树脂相作用,在聚合物分子之间形成桥键,变为三维结构的不溶性物质。

其光化学反应工程如下:首先,双叠氮交联剂按以下方式进行光化学分解反应:双叠氮交联剂分解后生成的双氮烯自由基极易与环化橡胶分子发生双键交联(加成)和炭氢取代反应,机理如下:⑵正胶1.特点·本身难溶于现像液,曝光后会离解成一种溶于现像液的结构;·解像度高,耐Dry Etch性强等。

光刻胶类型

光刻胶类型

光刻胶类型1. 介绍光刻胶是一种在半导体制造过程中广泛使用的材料,用于制作微细结构的光刻工艺。

光刻胶通过光刻曝光和化学反应来定义微细结构的形状和尺寸。

根据不同的需求,有多种不同类型的光刻胶可供选择。

本文将从技术性角度对常见的光刻胶类型进行详细介绍。

2. 正常光刻胶正常光刻胶,也被称为传统光刻胶,广泛用于传统的光刻工艺。

它由光敏化剂和基体聚合物组成,将基体聚合物暴露于紫外光下,通过光敏化剂的作用使其发生化学反应,形成所需的微细结构。

正常光刻胶通常具有较高的分辨率和进程控制能力,但耗时较长。

2.1 特点•分辨率高:正常光刻胶能够实现亚微米级的结构分辨率。

•良好的进程控制:正常光刻胶具有较好的进程控制性能,适用于高精度制造。

•耗时较长:正常光刻胶涉及多个步骤,时间成本较高。

2.2 应用正常光刻胶广泛应用于集成电路、光学器件、微电子机械系统等各类微纳加工过程中。

3. 紫外固化光刻胶紫外固化光刻胶是一种新型的光刻胶材料,相比于传统光刻胶,它具有更快的固化速度和更高的耐热性。

紫外固化光刻胶是一种可重复使用的光刻胶,它由光聚合性物质组成,在紫外光的照射下,光聚合性物质会快速发生化学反应,实现光刻工艺。

3.1 特点•快速固化:紫外固化光刻胶的固化速度较快,适用于快节奏的制造过程。

•高耐热性:紫外固化光刻胶在高温环境下具有较好的稳定性。

•可重复使用:紫外固化光刻胶可以通过反复曝光和固化使用。

3.2 应用紫外固化光刻胶广泛应用于三维打印、快速原型制造、生物芯片制造等领域。

4. 离子束光刻胶离子束光刻胶是一种高精度、高分辨率的光刻胶,它使用离子束曝光的方式定义微细结构。

离子束光刻胶具有非常高的分辨率和控制性能,常用于制造特殊要求的微细结构。

4.1 特点•高分辨率:离子束光刻胶可以实现亚纳米级的结构分辨率。

•高控制性:离子束光刻胶具有较好的控制性能,可以精确控制结构尺寸和形状。

•昂贵的设备要求:离子束光刻胶需要昂贵的离子束光刻设备。

光刻胶知识

光刻胶知识

感谢所有的原文作者,这里我只是略作整理,希望能对新手有所帮助。

光刻工艺光刻工艺是半导体制造中最为重要的工艺步骤之一。

主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。

光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。

光刻机是生产线上最贵的机台,5~15百万美元/台。

主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。

其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。

光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。

光刻工艺过程一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。

1、硅片清洗烘干(Cleaning and Pre-Baking)方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护)目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。

2、涂底(Priming)方法:a、气相成底膜的热板涂底。

HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;b、旋转涂底。

缺点:颗粒污染、涂底不均匀、HMDS 用量大。

目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。

3、旋转涂胶(Spin-on PR Coating)方法:a、静态涂胶(Static)。

硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%);b、动态(Dynamic)。

低速旋转(500rpm_rotation per minute)、滴胶、加速旋转(3000rpm)、甩胶、挥发溶剂。

光刻胶用途

光刻胶用途

光刻胶用途光刻胶是一种高分子化合物,主要用于微电子制造中的光刻工艺。

在微电子制造中,光刻胶的应用非常广泛,可以用来制造芯片、光学器件、MEMS(微机电系统)等微型器件。

本文将详细介绍光刻胶的用途及其在微电子制造中的重要性。

一、光刻胶的基本原理光刻胶是一种聚合物,它的分子结构具有高度的可控性和可调性。

在光刻过程中,光刻胶被涂覆在待加工的基片上,然后通过光刻机将光线照射在光刻胶上,使其发生化学反应。

这种化学反应会使光刻胶的分子链发生断裂,形成一定的图形。

然后,通过化学腐蚀或物理蚀刻等方法将光刻胶的未反应部分去除,就可以得到所需的微型器件。

二、光刻胶在微电子制造中的应用1.制造芯片在芯片制造中,光刻胶主要用于制造芯片的电路图案。

在芯片制造的过程中,需要将电路图案转移到硅片上。

这个过程需要使用光刻胶。

在制造芯片时,光刻胶的分子链被光线逐渐切断,形成所需的芯片电路图案。

这个过程需要非常高的精度和稳定性,因此光刻胶的质量和性能对于芯片制造非常关键。

2.制造光学器件在光学器件的制造中,光刻胶主要用于制造光学器件的光学图案。

在光学器件制造的过程中,需要将光学图案转移到光学器件上。

这个过程需要使用光刻胶。

在制造光学器件时,光刻胶的分子链被光线逐渐切断,形成所需的光学图案。

这个过程需要非常高的精度和稳定性,因此光刻胶的质量和性能对于光学器件制造非常关键。

3.制造MEMS在MEMS的制造中,光刻胶主要用于制造MEMS的结构图案。

在MEMS制造的过程中,需要将结构图案转移到MEMS上。

这个过程需要使用光刻胶。

在制造MEMS时,光刻胶的分子链被光线逐渐切断,形成所需的结构图案。

这个过程需要非常高的精度和稳定性,因此光刻胶的质量和性能对于MEMS制造非常关键。

三、光刻胶的优点和局限性1.优点(1)高精度:光刻胶可以制造非常高精度的微型器件,可以达到亚微米的级别。

(2)高可控性:光刻胶的分子结构非常可控,可以根据不同的需求进行设计。

光刻胶知识

光刻胶知识

第8章光刻胶光刻胶也称为光致抗蚀剂(Photoresist,P. R.)。

8.1 光刻胶的类型一、光刻胶的类型凡是在能量束(光束、电子束、离子束等)的照射下,以交联反应为主的光刻胶称为负性光刻胶,简称负胶。

凡是在能量束(光束、电子束、离子束等)的照射下,以降解反应为主的光刻胶称为正性光刻胶,简称正胶。

1、灵敏度灵敏度的定义单位面积上入射的使光刻胶全部发生反应的最小光能量或最小电荷量(对电子束胶),称为光刻胶的灵敏度,记为S ,也就是前面提到过的D 100 。

S 越小,则灵敏度越高。

通常负胶的灵敏度高于正胶。

灵敏度太低会影响生产效率,所以通常希望光刻胶有较高的灵敏度。

但灵敏度太高会影响分辨率。

8.2 光刻胶的特性2、分辨率下面讨论分辨率与灵敏度的关系。

当入射电子数为N 时,由于随机涨落,实际入射的电子数在范围内。

为保证出现最低剂量时不少于规定剂量的90%,也即。

由此可得。

因此对于小尺寸曝光区,必须满足N N ±%10≤N N 100min =N min min min min ()S L N qN q q L S S===光刻工艺中影响分辨率的因素有:光源、曝光方式和光刻胶本身(包括灵敏度、对比度、颗粒的大小、显影时的溶胀、电子散射等)。

通常正胶的分辨率要高于负胶。

式中,Lmin为最小尺寸,即分辨率。

可见,若灵敏度越高(即S越小),则L min就越大,分辨率就越差。

例如,负性电子束光刻胶COP 的S= 0.3×10 -6C/cm2,则其Lmin= 0.073μm。

若其灵敏度提高到S = 0.03×10 -6C/cm2 ,则其Lmin 将增大到0.23μm。

minminN q qLS S==3、对比度对比度是图中对数坐标下对比度曲线的斜率,表示光刻胶区分掩模上亮区和暗区的能力的大小,即对剂量变化的敏感程度。

灵敏度曲线越陡,D 0 与D 100 的间距就越小,则就越大,这样有助于得到清晰的图形轮廓和高的分辨率。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光刻胶知识简介
光刻胶知识简介:
一.光刻胶的定义(photoresist)
又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。

感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。

经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。

二.光刻胶的分类
光刻胶的技术复杂,品种较多。

根据其化学反应机理和显影原理,可分负性胶和正性胶两类。

光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。

利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。

基于感光树脂的化学结构,光刻胶可以分为三种类型。

①光聚合型
采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。

②光分解型
采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶.
③光交联型
采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链与链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。

柯达公司的产品KPR胶即属此类。

三.光刻胶的化学性质
a、传统光刻胶:正胶和负胶。

光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给与光刻胶的机械与化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。

负性光刻胶。

树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。

从而变得不溶于显影液。

负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易与氮气反应而抑制交联。

正性光刻胶。

树脂是一种叫做线性酚醛树脂的酚醛甲醛,提供光刻胶的粘附性、化学抗蚀性,当没有溶解抑制剂存在时,线性酚醛树脂会溶解在显影液中;感光剂是光敏化合物(PAC,Photo Active Compound),最常见的是重氮萘醌(DNQ),在曝光前,DNQ是一种强烈的溶解抑制剂,降低树脂的溶解速度。

在紫外曝光后,DNQ在光刻胶中化学分解,成为溶解度增强剂,大幅提高显影液中的溶解度因子至100或者更高。

这种曝光反应会在DNQ中产生羧酸,它在显影液中溶解度很高。

正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率。

b、化学放大光刻胶(CAR,Chemical Amplified Resist)。

树脂是具有化学基团保护(t-BOC)的聚乙烯(PHS)。

有保护团的树脂不溶于水;感光剂是光酸产生剂(PAG,Photo Acid Generator),光刻胶曝光后,在曝光区的PAG发生光化学反应会产生一种酸。

该酸在曝光后热烘(PEB,P ost Exposure Baking)时,作为化学催化剂将树脂上的保护基团移走,从而使曝光区域的光刻胶由原来不溶于水转变为高度溶于以水为主要成分的显影液。

化学放大光刻胶曝光速度非常快,大约是DNQ线性酚醛树脂光刻胶的10倍;对短波长光源具有很好的光学敏感性;提供陡直侧墙,具有高的对比度;具有0.25μm及其以下尺寸的高分辨率。

四.光刻胶的技术参数
a、分辨率(resolution) 区别硅片表面相邻图形特征的能力。

一般用关键尺寸(CD,Critical Dimension)来衡量分辨率。

形成的关键尺寸越小,光刻胶的分辨率越好。

b、对比度(Contrast)。

指光刻胶从曝光区到非曝光区过渡的陡度。

对比度越好,形成图形的侧壁越陡峭,分辨率越好。

c、敏感度(Sensitivity)。

光刻胶上产生一个良好的图形所需一定波长光的最小能量值(或最小曝光量)。

单位:毫焦/平方厘米或mJ/cm2。

光刻胶的敏感性对于波长更短的深紫外光(DUV)、极深紫外光(EUV)等尤为重要。

d、粘滞性/黏度(Viscosity)。

衡量光刻胶流动特性的参数。

粘滞性随着光刻胶中的溶剂的减少而增加;高的粘滞性会产生厚的光刻胶;越小的粘滞性,就有越均匀的光刻胶厚度。

光刻胶的比重(SG,Specific Gravity)是衡量光刻胶的密度的指标。

它与光刻胶中的固体含量有关。

较大的比重意味着光刻胶中含有更多的固体,粘滞性更高、流动性更差。

粘度的单位:泊(poise),光刻胶一般用厘泊(cps,厘泊为1%泊)来度量。

百分泊即厘泊为绝对粘滞率;运动粘滞率定义为:运动粘滞率=绝对粘滞率/比重。

单位:百分斯托克斯(cs)=cps/SG。

e、粘附性(Adherence)。

表征光刻胶粘着于衬底的强度。

光刻胶的粘附性不足会导致硅片表面的图形变形。

光刻胶的粘附性必须经受住后续工艺(刻蚀、离子注入等)。

f、抗蚀性(Anti-etching)。

光刻胶必须保持它的粘附性,在后续的刻蚀工序中保护衬底表面。

耐热稳定性、抗刻蚀能力和抗离子轰击能力。

g、表面张力(Surface Tension)。

液体中将表面分子拉向液体主体内的分子间吸引力。

光刻胶应该具有比较小的表面张力,使光刻胶具有良好的流动性和覆盖。

h、存储和传送(Storage and Transmission)。

能量(光和热)可以激活光刻胶。

应该存储在密闭、低温、不透光的盒中。

同时必须规定光刻胶的闲置期限和存贮温度环境。

一旦超过存储时间或较高的温度范围,负胶会发生交联,正胶会发生感光延迟。

五.光刻胶的应用领域
模拟半导体(Analog Semiconductors)
发光二极管(Light-Emitting Diodes LEDs)
微机电系统(MEMS)
太阳能光伏(Solar PV)
微流道和生物芯片(Microfluidics & Biochips)
光电子器件/光子器件(Optoelectronics/Photonics)
封装(Packaging)
六.光刻胶的发展趋势
中国的微电子和平板显示产业发展迅速,带动了光刻胶材料与高纯试剂供应商等产业链中的相关配套企业的建立和发展。

特别是2009年LED(发光二极管)的迅猛发展,更加有力地推动了光刻胶产业的发展。

中国的光刻胶产业市场在原有分立器件、IC、LCD(液晶显示器)的基础上,又加入了LED,再加上光伏的潜在市场,到2010年中国的光刻胶市场将超过20亿元,将占国际光刻胶市场比例的10%以上。

从国内相关产业对光刻胶的需求量来看,目前主要还是以紫外光刻胶的用量为主,其中的中小规模(5μm以上技术)及大规模集成电路(5μm、2~3μm、0.8~1.2μm技术)企业、分立器件生产企业对于紫外负型光刻胶的需求总量将分别达到100吨/年~150吨/年;用于集成电路、液晶显示的紫外正性光刻胶及用于LED的紫外正负性光刻胶的需求总量在700吨/年~800吨/年之间。

但是超大规模集成电路深紫外248nm(0.18-0.13um技术)与193nm(90nm、65nm 及45nm的技术)光刻胶随着Intel大连等数条大尺寸线的建立,需求量也与日俱增。

七.光刻胶的研究方向
① 从工艺的角度去考虑。

普通的光刻胶在成像过程中,由于存在一定的衍射、反射和散射,降低了光刻胶图形的对比度,从而降低了图形的分辨率。

随着曝光加工特征尺寸的缩小,入射光的反射和散射对提高图形分辨率的影响也越来越大。

为了提高曝光系统分辨率的性能,人们正在研究在曝光光刻胶的表面覆盖抗反射涂层的新型光刻胶技术 [11]。

该技术的引入,可明显减小光刻胶表面对入射光的反射和散射,从而改善光刻胶的分辨率性能,但由此将引起工艺复杂性和光刻成本的增加。

② 依附于曝光系统而变。

伴随着新一代曝光技术(NGL)的研究与发展,为了更好的满足其所能实现光刻分辨率的同时,光刻胶也相应发展。

先进曝光技术对光刻胶的性能要求也越来越高。

相关文档
最新文档