212指数函数及其性质1
数学必修一浙江省高中新课程作业本答案
数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.,12,2.1 1 2集合间的基本关系,{-1},{1},{-1,1}.5. .6.①③⑤.= ,{1},{2},{1,2}},B∈A.=b=1.1 1 3集合的基本运算(一)或x≥5}.∪B={-8,-7,-4,4,9}..11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)或x≤1}.或或x≤2}.={2,3,5,7},B={2,4,6,8}.,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4 }.=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6 綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂UB,与条件A∩綂UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一),且x≠-3}.略.(2) 2 1函数的概念(二)且x≠-1}.5.[0,+∞)..,-13,-12,.(1)y|y≠25.(2)[-2,+∞).9.(0,1].∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)略.8.x1234y9.略. 2 2函数的表示法(二)略.(x)=2x(-1≤x<0),-2x+2(0≤x≤1).(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.=(0<x≤20),(20<x≤40),(40<x≤60),(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与最大(小)值(一)略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得最大值840元,即定价为18元时,日均利润最大.1 3 2奇偶性答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b<0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×1 3=,f=5×+×=,f=5×+1×+×6 5=.(2)f(x)=(0≤x≤5),(5<x≤6),(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.2 1 1指数与指数幂的运算(二)且x≠.原式=52-1+116+18+110=14380.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)由8a=23a=14=2-2,得a=-23,所以f(27)=27-23= 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33..2 1 2指数函数及其性质(一).(1,0).>图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有最大值当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a <1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二),或y<-1}.<略.+a-m>an+a-n.2 1 2指数函数及其性质(三)向右平移12个单位.6.(-∞,0).7.由已知得x≤,由于所以x≥,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k ≠0)满足f(x)+f(y)=f(x+y).,57.2.2对数函数2 2 1对数与对数运算(一)所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x ≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=.略..11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.,4)..2 2 2对数函数及其性质(一)分钟.5.①②③..≤x≤.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0<x+a<a,得-a<x<0;②当0<a<1时,x+a>a,得x>0.:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)4<<.<logba<.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<.(1)定义域为{x|x≠1},值域为R.(2)a=2.2 2 2对数函数及其性质(三),(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.∈0,3+.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习8.提示:先求出h=10.15.(1)-1.(2)1.∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga<1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有最大值1+c;当x=2时,y有最小值2+c2.=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2 +1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点如:f(a)f(b)≤函数的零点为-1,1,2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一),2 5].提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 125<0,f(-0 75)=0 078125>0,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298<0,∴x2∈(-0 625,-0 5625),由|+|<,故x2=是原方程的近似解,同理可得x3=1 5625.3 1 2用二分法求方程的近似解(二)画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a>134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解.3 2函数模型及其应用3.2.1几类不同增长的函数模型(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+=550(个).(2)p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+%)x.(2)10年后该城市人口总数为y=100×(1+%)10=100×≈(万). (3)设x年后该城市人口将达到120万人,即100×(1+%)x=120,x==(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c,33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1. (第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例汽车在5h内行驶的路程为360km.;越大.7.(1)1 5m/s.(2).从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=(万只),所以f(2)·g(2)=(万只),故第二年养鸡场的个数是26个,全县养鸡万只.(2)由f(n)·g(n)=-45n-942+1254,得当n=2时,[f(n)·g(n)]max=.故第二年的养鸡规模最大,共养鸡万只.单元练习,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,],第三次为[1,],第四次为[,],第五次为[,],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0<m≤1时有公共解,∴0<m≤1.17.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得最大值100;当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100,∴当t=300时,h(t)取得区间[200,300]上的最大值.综上,由100>可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益最大.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg). 综合练习(一)且x≠2}.略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)和(5,5)..19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞). (2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a<x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)(x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=当S>5时,y=5×利润函数为y=-S22+),+12(S>5,S∈N*).当0≤S≤5时,y=-122+,∵S∈N*,∴当S=5时,y有最大值10 75万元;当S>5时,∵y=+12单调递减,∴当S=6时,y有最大值10 50万元.综上所述,年产量为500盒时工厂所得利润最大.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x<4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)=-(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·(6-x)=12(x-6)2.∴f(x)=12x2(0≤x≤2),-(x-3)2+3(2<x<4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取最大值为3.。
指数函数知识点归纳
指数函数知识点归纳一、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。
需要注意的是,指数函数的底数\(a\)必须满足\(a > 0\)且\(a ≠ 1\)。
当\(a = 1\)时,\(y = 1^x = 1\),是一个常函数,不是指数函数;当\(a < 0\)时,比如\(a =-2\),那么当\(x =\frac{1}{2}\)时,\((-2)^{\frac{1}{2}}\)在实数范围内无意义。
二、指数函数的图像当\(a > 1\)时,指数函数\(y = a^x\)的图像是上升的,经过点\((0, 1)\)。
因为\(a > 1\),所以当\(x\)的值越来越大时,\(y\)的值增长得越来越快。
当\(0 < a < 1\)时,指数函数\(y = a^x\)的图像是下降的,同样经过点\((0, 1)\)。
此时,当\(x\)的值越来越大时,\(y\)的值越来越趋近于\(0\)。
例如,\(y = 2^x\)和\(y =(\frac{1}{2})^x\)的图像就分别呈现出上升和下降的趋势。
三、指数函数的性质1、定义域:\(R\)(即实数集)2、值域:\((0, +∞)\)这是因为对于任何实数\(x\),\(a^x\)的值总是大于\(0\)的。
3、过定点:\((0, 1)\)无论\(a\)的值是多少,当\(x = 0\)时,\(a^0 = 1\)。
4、单调性:当\(a > 1\)时,函数在\(R\)上单调递增;当\(0 < a < 1\)时,函数在\(R\)上单调递减。
四、指数运算的性质1、\(a^m × a^n = a^{m + n}\)例如:\(2^3 × 2^2 = 2^{3 + 2} = 2^5\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))比如:\(\frac{3^5}{3^2} = 3^{5 2} = 3^3\)3、\((a^m)^n = a^{mn}\)举例:\((2^2)^3 = 2^{2×3} = 2^6\)4、\(a^0 = 1\)(\(a ≠ 0\))任何非零数的\(0\)次幂都等于\(1\)。
指数函数的定义与性质
指数函数的定义与性质指数函数是数学中常见的一类函数,它具有独特的定义和性质。
本文将围绕指数函数的定义、增减性、奇偶性以及图像特点展开论述,从而全面了解指数函数的本质。
定义:指数函数是形如f(x) = a^x的函数,其中a为正实数且不等于1,x 为实数。
指数函数的定义要求底数a必须为正实数,并且不等于1,这样才能确保指数函数有意义且满足一定的性质。
增减性:对于指数函数f(x) = a^x,当底数a大于1时,指数函数呈现出增长趋势;当底数a介于0和1之间时,指数函数呈现出下降趋势。
具体而言,当x1 < x2时,若a > 1,则有a^x1 < a^x2,即指数函数的函数值随着自变量的增加而增加;若 0 < a < 1,则有a^x1 > a^x2,即指数函数的函数值随着自变量的增加而减少。
奇偶性:指数函数可分为两种情况讨论奇偶性:1. 当底数a为正实数时,指数函数f(x) = a^x是奇函数。
这是因为对于任意x,有a^(-x) = 1/a^x,即关于y轴对称,即f(-x) = f(x)。
2. 当底数a为负实数时,指数函数f(x) = a^x是偶函数。
这是因为对于任意x,有a^(-x) = 1/a^x,即关于原点对称,即f(-x) = f(x)。
图像特点:指数函数的图像特点与底数a的大小关系密切相关。
当底数a大于1时,指数函数的图像上升非常迅速,且在x轴的右侧逐渐无限接近于x轴正半轴。
当底数a介于0和1之间时,指数函数的图像下降非常迅速,且在x轴的右侧逐渐无限接近于x轴正半轴。
综上所述,指数函数是一类具有特殊定义和性质的函数。
它具有增减性、奇偶性以及特殊的图像特点。
了解指数函数的定义与性质对于解决数学中的相关问题,如指数方程和指数不等式等,具有重要意义。
高一数学(§212 指数函数及其性质)导学案
§2.1.2 指数函数及其性质(1)学习目标1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备(预习教材P 54~ P 57,找出疑惑之处) 复习1:零指数、负指数、分数指数幂怎样定义的? (1)0a = ;(2)na-= ;(3)mna = ;m na -= .其中*0,,,1a m n N n >∈>复习2:有理指数幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = . 二、新课导学 ※ 学习探究探究一:指数函数模型思想及指数函数概念实例: A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么?B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:反思:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?探究二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? 回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列函数图象:1()2x y =, 2x y =讨论:(1)函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或13后呢?新知:根据图象归纳指数函数的性质.a >1 0<a <1图 象性质(1)定义域: (2)值域 (3)过定点 (4)单调性(4)单调性※例1函数()x f x a =(0,1a a >≠且)的图象过点(2,)π,求(0)f ,(1)f -,(1)f 的值.小结:①确定指数函数重要要素是 ;② 待定系数法. 例2比较下列各组中两个值的大小:(1)0.60.52,2; (2)2 1.50.9,0.9-- ; (3)0.5 2.12.1,0.5 ; (4)231-与.小结:利用单调性比大小;或间接利用中间数.※ 动手试试练1. 已知下列不等式,试比较m 、n 的大小:(1)22()()33m n >; (2) 1.1 1.1m n <.练2. 比较大小:(1)0.70.90.80.8,0.8, 1.2a b c ===;(2)01, 2.50.4,-0.22-, 1.62.5.练3. 已知下列不等式,比较,m n 的大小.(1)33m n <; (2)0.60.6m n >; (3)(1)m n a a a >> ;(4) (01)m n a a a <<<. 三、总结提升 ※ 学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法. ※ 知识拓展因为(01)x y a a a =>≠,且的定义域是R , 所以()(01)f x y a a a =>≠,且的定义域与()f x 的定义域相同. 而()(01)x y a a a ϕ=>≠,且的定义域,由()y t ϕ=的定义域确定.学习评价1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ). A. 1 B. 2 C. 1或2 D. 任意值2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ). A. (0,1) B. (0,2) C. (2,1) D. (2,2)3. 指数函数①()xf x m =,②()xg x n =满足不等式 01m n <<<,则它们的图象是( ).4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 .课后作业1. 求函数y =1151x x--的定义域.2.求函数112x y -=的定义域,值域3.解不等式221()22x -≤4.如果224,(0,1)x xx a a a a -+>>≠且,求x 的取值范围。
【高一】高一年级数学练习册答案:第二章基本初等函数
【高一】高一年级数学练习册答案:第二章基本初等函数【导语】进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,逍遥右脑为大家整理了《高一年级数学练习册答案:第二章基本初等函数》希望大家能谨记呦!!2.1指数函数211指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2021.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.211指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)・a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.211指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.47288,00885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.212指数函数及其性质(一)1.D.2.C.3.B.4.AB.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有*小值0;当x=4时,y有*大值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得x>4;当0212指数函数及其性质(二)1.A.2.A.3.D.4.(1).(4)>.5.x,y.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.212指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人).10.指数函数y=ax满足f(x)・f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数221对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-310.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.221对数与对数运算(二)1.C.2.A.3.A.4.03980.5.2lo*-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.221对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.25.10.a=log34+log37=log328∈(3,4).11.1.222对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga・x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.222对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log2047.logbab0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0222对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.-1,0,1,2,3,4,5,6.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.23幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.258.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-117.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有*大值1+c;当x=2时,y有*小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当020.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)。
指数函数及其性质
指数函数及其性质
指数函数是数学中的一种常见函数形式,可以表示为f(x) = a^x,其中a是一个正实数且不为1,x是任意实数。
指数函数的性质如下:
1. 定义域:指数函数的定义域是全部实数集。
2. 值域:当a>1时,指数函数的值域是(0, +∞),即正数集;当0<a<1时,指数函数的值域是(0, 1),即(0,1)开区间。
3. 增减性:当a>1时,指数函数是递增的;当0<a<1时,指数函数是递减的。
4. 对称轴:指数函数没有对称轴。
5. 对称性:指数函数不具有对称性。
6. 极限性质:当x趋于正无穷大时,指数函数的极限是正无穷大;当x趋于负无穷大时,指数函数的极限是0。
7. 交叉性:当a>1时,指数函数与x轴交于点(0,1);当0<a<1时,指数函数与y轴交于点(0,1)。
8. 垂直渐近线:指数函数没有垂直渐近线。
9. 水平渐近线:指数函数没有水平渐近线。
10. 切线性质:指数函数在任意一点的切线都与该点对应的指数函数图像相切。
总结起来,指数函数具有增减性、无对称性、极限性质和交叉性等基本性质。
指数函数在实际问题中经常用于描述增长或衰减的规律,具有重要的应用价值。
【数学】212指数函数及其性质精品PPT课件
函数性质
y=1
(0,1) x
0
x
a>1
0<a<1
1.定义域为R,值域为(0,+).
2.当x=0时,y=1
3.在R上是增函数 3.在R上是减函数
4.非奇非偶函数
在第一象限内,按逆时针方向旋
转,底数a越来越大
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
分析:
设该物质经过x年后的剩留量为y
若设该物质原有量为1 则经过一年剩留量为: y 1 0.84%
经过二年剩留量为: y 1 0.84% 0.84% 0.842 经过三年剩留量为: y 1 0.84% 0.84% 0.84% 0.843
……
即经过x年后的剩留量是 y 0.84x
问题探究
∴ 1又.7∵2.,5x<=11..37>30
∴0.81.3>0.61.3
比较指数幂大小的方法:
①同底异指:构造函数法(一个), 利用函数的单调性, 若底数是参变量要注意分类讨论。
②异底同指:构造函数法(多个),利用函数图象在y轴左 右两侧的特点。
③异底异指:寻求中间量
课堂小结
y
函数图象
1.指数函数的概念 2.指数函数的图像和性质 3.指数函数性质的简单应用
第二章 基本初等函数(Ⅰ) 2.1.2 指数函数及其性质
导入新课
问题1 某种细胞分裂时,由1个分裂成2个,2个分裂成4 个,…,一个这样的细胞分裂x次以后,得到的细胞个数y与x 有怎样的关系?
第1次: 2个
………… ……
第2次:4个 第3次:8个
指数函数及其性质(含知识点、例题、练习、测试)
指数函数及其性质 知识点一 指数函数及图像性质1.指数函数概念:定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R ,a 是底数.2. 指数函数的图象和性质:作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =图像性质总结 底数 a >1 0<a <1图象性质 函数的定义域为R ,值域为(0,+∞)函数图象过定点(0,1),即x =0时,y =1 当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1; 当x <0时,恒有y >1 函数在定义域R 上为增函数 函数在定义域R 上为减函数题型一 指数函数求值【例1】已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.题型二 比较大小【例2】比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1题型三 指数函数性质【例3】求下列函数的定义域与值域:(1)442x y -= (2)||2()3x y =【过关练习】1、 函数2(33)x y a a a =-+是指数函数,则a 的值为 .2、 比较大小:0.70.90.80.8,0.8, 1.2a b c ===; 01, 2.50.4,-0.22-, 1.62.5.思考探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域问题?知识点二 指数函数应用1. 指数函数的应用模型(应用题)2. 指数形式的函数定义域、值域题型 函数综合【例1】 2017年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍? → 变式:多少年后产值能达到120亿?【例2】指数函数与函数性质综合1、已知函数[]2,1,2329∈+•-=x y xx ,求这个函数的值域;2、求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.【过关练习】1、 一片树林中现有木材30000m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 32. ① 求函数y =的定义域和值域.② 求下列函数的定义域、值域:21x y =+; y =110.4x y -=.【补救练习】 1、已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( )2、比较下列各组数的大小: 13222()0.45--与() ; 0.760.75333-()与().【巩固练习】1、函数f (x )=2|x -1|的图象是( )2、下列函数中值域为正实数的是( )A .y =-5xB .y =⎝⎛⎭⎫131-x C .y =⎝⎛⎭⎫12x -1 D .y =1-2x 【拔高练习】1、当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)2、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.【补救练习】 B ><【巩固练习】B B 【拔高练习】 C 24。
高中数学中的指数函数定义与性质总结
高中数学中的指数函数定义与性质总结指数函数是高中数学中的一个基础知识点,其定义与性质是学习指数函数的重要基础。
本文将对指数函数的定义、性质进行总结,以便帮助读者更好地理解和掌握该知识点。
一、指数函数的定义指数函数是以常数e为底数,x为自变量的一个函数,通常用符号$y=e^{x}$表示。
其中,e是自然对数的底数,表达式e≈2.71828,是一个无理数。
指数函数y=e^x的定义域为实数集合,值域为正实数集合,其函数图像为一条从左上向右上弯曲的曲线。
当x=0时,指数函数的值为1,当x>0时,y=e^x是递增的;当x<0时,y=e^x是递减的。
二、指数函数的性质1.指数函数的导数、微分指数函数的导数、微分公式分别为:$(e^x)'=e^x$$dy/dx=e^x$这意味着指数函数在任意一点上的斜率都等于该点上的函数值,这一性质使指数函数在数学和自然科学中具有广泛的应用。
2.指数函数的对数函数指数函数和对数函数是互逆的。
如果y=e^x,则x=log_{e}y。
其中,log_{e}y是以e为底数的对数函数。
3.指数函数的幂函数与幂指函数幂函数是指数函数的特殊形式,表示为y=a^x,其中a是一个正实数。
幂指函数是以指数函数为底数的幂函数,表示为y=(e^x)^a,其中a是一个实数。
4.指数函数的图像指数函数的图像是一条从左上向右上弯曲的曲线。
当x=0时,函数图像的纵坐标为1;当x>0时,函数图像在x轴的右侧逐渐上升;当x<0时,函数图像在x轴的左侧逐渐下降。
5.指数函数的性质指数函数具有以下基本性质:(1)y=e^x是递增函数。
(2)指数函数的值域是正实数集合。
(3)当x=0时,y=e^x的值为1。
(4)指数函数曲线经过点(0,1),函数图像在y轴的截距为1。
(5)对于任意正实数a,有a^x=e^{xlna},其中a是幂指函数的底数,lna为以e为底数的对数。
三、总结指数函数是以常数e为底数,x为自变量的一个函数。
2.1.2《指数函数及其性质》(导学案)
2.1.2《指数函数及其性质》(导学案)江门市新会陈瑞祺中学数学科讲学稿年级:高一内容:2.1.2《指数函数及其性质》课型:新课执笔人:陈鹏审核人:谭安民、吴军武时间:2021年9月7日班级姓名________【学习目标】1.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图像,2.根据图像探索并概括指数函数的性质. 3、让学生感受指数函数的图象美。
【重点】指数函数的概念,增强数形结合的思想。
【难点】指数函数的性质【使用方法与学法指导】1、先精读一遍教材P54―P58内容,用红笔进行勾画;再针对预习案二次阅读教材,并回答问题,时间不超过15分钟;2、找出自己的疑惑和需要讨论的问题,随时记录在课本或导学案上,准备课上讨论质疑;3、预习后,A层同学结合探究案进行探究、尝试应用,B层同学力争完成探究点的研究,C层同学力争完成预习案。
预习案一、预习自学1.阅读课本P54,填空:定义:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为思考:为什么要规定a?0,且a?1呢?2.填表后画出函数y?2x的图象 x ?2?1 0 1 2 y?2x3.填表后画出函数y?()x的图象 1y?()x 212x ?2 ?1 0 1 2二、我的疑惑探究案探究点一:1 用心去倾注.用脑去思考. 用行动去演绎你的数学人生江门市新会陈瑞祺中学数学科讲学稿1.函数y?(a2?3a?3)ax是指数函数,求a的值2.学习课本P56例63. (用列表描点法)在同一直角坐标系中画出下列函数的图象(1)y?3 (2)y?31xy?()的图象为例,观察这一对函数的图象,可总结出如下 4.以函数y?2与2xx?x性质:定义域为,值域为;当x?0时,y?1,即图象过定点;探究点二:指数函数的性质:请进一步归纳总结出指数函数y?ax(a?0,a?1)的图象和性质: 0〈a<1 a>1 图象定义域值域性质 12 总结(1)函数y?2x和y?()x,y?3x和y?3?x的图象的关系(2)底数对图象的影响探究点三:课堂互动,合作研讨:1.指出下列函数哪些是指数函数:(1)y?x (2)y??4x (3) y?(?4)x (4)y?x (5) y?2x (6)y??x42x2 用心去倾注.用脑去思考. 用行动去演绎你的数学人生江门市新会陈瑞祺中学数学科讲学稿x2.已知指数函数f(x)?a的图象经过点(-1,3),(1)求a的值. (2)求f(1),f(?3)的值.探究点四:探究应用,自我提高(a?0,且a?1). 1.已知函数f(x)?a(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.例练结合x例1 已知指数函数f(x)=a(a>0, 且a≠1)的图象过点(3, 27),求f(0),f(1),f(-3)的值.例2 比较下列各题中两个值的大小:(1)1.72.5,1.73 (2)0.8?0.12?3x,0.8?0.2 ( 3 ) 1.70.3 与0.93.113 ???2?4?2?4 练习:()12.40.6,2.40.2;(2)??,??;?3??3?(3)0.95,0.94;(4)40.540.8例3 求下列函数的定义域 1 (1)y?0.4x?1(2)y?35x?1(3)y练习:求下列函数中自变量x的取值范围: x?x(1)y?2;(2)y?3;x1?? (3)y?3x?9;(4)y?1????2??2x?1(4)y?4x?2x?1?13 用心去倾注.用脑去思考. 用行动去演绎你的数学人生江门市新会陈瑞祺中学数学科讲学稿例4 解不等式: (1)2x?4x?1(2)a3x?1?a2x?4(a?0,a?1)练习:已知y1?a3x?1,y2?a2x(a?0,a?1),x为何值时,y1?y2?课堂小结(1)指数函数的概念、图像以及性质(注意分a?1和0?a?1两种情况);(2)利用图像以及性质来解决一些简单的指数函数应用。
指数函数性质
指数函数性质指数函数是高中数学重要的一部分,通过它我们可以研究各种实际问题。
本文将从定义、性质和应用三个方面详细介绍指数函数。
一、定义指数函数是以底数为常数的正实数为自变量,以指数为变量的函数。
一般形式为:y=a^x (a>0且a≠1)。
其中,a称为底数,x为指数,a^x用读作“a的x次幂”或“a的x次方”,y称为幂函数。
二、性质1、定义域和值域:当底数a>1时,定义域为全体实数,值域为(0,+∞);当底数0<a<1时,定义域为全体实数,值域为(0,1);当底数a=1时,定义域为全体实数,值域为{1}。
2、奇偶性:当底数a>1时,指数函数y=a^x为增函数;当底数0<a<1时,指数函数y=a^x为减函数。
3、(a^n)^m=a^(n*m):指数乘法法则。
将指数函数的底数相同的指数相乘,等于该底数不变,指数相乘的结果。
4、a^n/a^m=a^(n-m):指数除法法则。
将指数函数的底数相同的指数相除,等于该底数不变,指数相减的结果。
三、应用1、生物衰变问题:指数函数在生物学领域有广泛的应用。
例如,放射性物质的衰变就可以用指数函数进行描述。
假设原有一定量的放射性物质A,它在一定时间内会进行自发性的核反应而衰变成另一种物质B。
设放射性物质A的衰变速率为r,则在时间t后剩余的放射性物质A的量可以用指数函数表示:A(t) = A(0) * e^(-rt)其中,A(0)为初始量,e为自然对数的底数。
2、财富增长问题:指数函数在经济学中也有广泛的应用。
例如,投资问题就可以用指数函数进行分析。
假设有人每年以固定的利率r向银行存款,设初始存款为A(0),则经过n年后的存款金额A(n)可以用指数函数表示:A(n) = A(0) * (1+r)^n3、人口增长问题:指数函数在人口学中有重要的应用。
在研究人口增长的过程时,指数函数可以用来描述人口数量的变化。
假设某地的人口数量为P(0),出生率为b,死亡率为d,则经过t年后的人口数量P(t)可以用指数函数表示:P(t) = P(0) * (1+b-d)^t总结:指数函数作为一种特殊的非线性函数,在数学中具有重要的地位。
指数函数的定义和性质
指数函数的定义和性质在数学中,指数函数是一种基本的函数之一。
它的应用非常广泛,包括在金融、科学、工程和计算机科学等领域。
指数函数的定义和性质是数学学科中非常重要的一部分,本文将着重介绍指数函数的定义和性质,以帮助读者更好地理解这一重要概念。
一、指数函数的定义指数函数的定义非常简单,它是以自然常数e为底数的幂函数。
即:f(x) = e^x其中,e是自然常数,它的值约为2.71828。
根据这个定义,我们可以得到一些指数函数的基本性质。
二、指数函数的性质1. 增长速度指数函数是一个无限增长的函数。
随着x的增大,e的x次方也会越来越大。
这意味着,指数函数的增长速度非常快,远远快于其他函数,比如多项式函数和三角函数。
2. 渐近线指数函数的图像会与y = 0轴有一个渐近线。
这条线是指数函数的图像在x轴右侧逼近y = 0而趋近于它时所形成的。
3. 对称轴指数函数的对称轴为y = 0轴。
这是因为当x为正数时,e的x 次方和e的-x次方是关于y = 0轴对称的,即f(x) = f(-x)。
4. 交点指数函数和y = 1直线有一个交点,这个交点的坐标为(0,1)。
这个交点是由于e的0次方为1引起的。
5. 常函数关系指数函数和指数函数之间还存在常函数的关系。
换句话说,如果f(x) = e^x,那么g(x) = ln(x)就是f(x)的反函数。
这意味着,指数函数和对数函数是相互关联的。
6. 求导指数函数的求导结果还是自身。
换句话说,如果f(x) = e^x,那么f'(x) = e^x。
这个性质在微积分中是非常有用的。
三、应用指数函数有很多应用,包括用于描述人口增长率、财务计算、化学反应速率等方面。
这些应用需要对指数函数的性质有深入的理解,并能够使用指数函数进行数学建模。
例如,在人口学中,指数函数可以描述人口的增长率。
假设某个国家的人口现在为P0,每年的增长率为r,那么在t年后,该国的人口大小为:P(t) = P0 * e^(rt)这个方程式体现了指数函数的性质,即随着时间的增加,该国的人口会迅速增加。
数学必修一浙江省高中新课程作业本答案解析
数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6.10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x<3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n ∈Z.7.{-2}.8.{x|x>6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4}.11.a=4,b=2.提示:∵A∩綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂 UB,与条件A∩綂 UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x<0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(0<x≤20),2.4(20<x≤40),3.6(40<x≤60),4.8(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与最大(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(0<x<a),312a2,5364a2.7.12.8.8a2+15.9.(0,1].10.2500m2.11.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得最大值840元,即定价为18元时,日均利润最大.1 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b <0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f12<f(-1)<f-72.16.f(x)=-x2-2x-3.17.T(h)=19-6h(0≤h≤11),-47(h>11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×1 3=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(5<x≤6),6.5x-28.6(6<x≤7).22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2x(x∈N).5.(1)2.(2)5.6.8a7.7.原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).8.0.9.2011.10.原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.2 1 1指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)x∈R|x≠0,且x≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.4 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33.11.23.2 1 2指数函数及其性质(一)1.D.2.C.3.B.4.A B.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有最大值6.10.a=1.11.当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a <1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.(2)<.(3)>.(4)>.5.{x|x≠0},{y|y>0,或y<-1}.6.x<0.7.56-0.12>1=π0>0.90.98.8.(1)a=0.5.(2)-4<x≤0.9.x2>x4>x3>x1.10.(1)f(x)=1(x≥0),2x(x<0).(2)略.11.am+a-m>an+a-n.2 1 2指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)x≤0.08,由于0.51.91=0.2667,所以x≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815×(1+2%)3≈865(人). 10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k≠0)满足f(x)+f(y)=f(x+y).11.34,57.2.2对数函数2 2 1对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4) 2.9.(1)x=z2y,所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)1.C.2.A.3.A.4.0 3980.5.2logay-logax-3logaz.6.4.7.原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.2 5.10.a=log34+log37=log328∈(3,4).11.1.2 2 2对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤x≤2.8.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0<x+a<a,得-a<x<0;②当0<a<1时,x+a>a,得x>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log20 4<log30.4<log40.4.7.logbab<logba<logab.8.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<1.11.(1)定义域为{x|x≠1},值域为R.(2)a=2.2 2 2对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x 对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(x)=x2.8.图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.10.x∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.x>1.13.④.14.25 8.提示:先求出h=10.15.(1)-1.(2)1.16.x∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga <1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有最大值1+c;当x=2时,y有最小值2+c2.19.y=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2+1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点1.A.2.A.3.C.4.如:f(a)f(b)≤0.5.4,254.6.3.7.函数的零点为-1,1, 2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一)1.B.2.B.3.C.4.[2,2 5].5.7.6.x3-3.7.1.8.提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.9.1 4375.10.1 4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 125<0,f(-0 75)=0 078125>0,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298<0,∴x2∈(-0 625,-0 5625),由|-0.625+0.5625|<0.1,故x2=-0.5625是原方程的近似解,同理可得x3=1 5625.3 1 2用二分法求方程的近似解(二)1.D.2.B.3.C.4.1.5.1.6.2 6.7.a>1.8.画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.10.m=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a >134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解.3 2函数模型及其应用3.2.1几类不同增长的函数模型1.D.2.B.3.B.4.1700.5.80.6.5.7.(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+60-510.02=550(个).(2)p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1 .012≈15(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=1.3.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润1.3万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c,33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥9.1月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1.(第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例1.C.2.B.3.C.4.2400.5.汽车在5h内行驶的路程为360km.6.10;越大.7.(1)1 5m/s.(2)100.8.从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=1.2(万只),所以f(2)·g(2)=31.2(万只),故第二年养鸡场的个数是26个,全县养鸡31.2万只.[f(n)·g(n)](2)由f(n)·g(n)=-45n-942+1254,得当n=2时,max=31.2.故第二年的养鸡规模最大,共养鸡31.2万只. 单元练习1.A.2.C.3.B.4.C.5.D.6.C.7.A.8.C.9.A.10.D.11.±6.12.y=x2.13.-3.14.y3,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,5.5],第三次为[1,3.25],第四次为[2.125,3.25],第五次为[2.125,2.6875],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0<m≤1时有公共解,∴0<m ≤1.17.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤27.6,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤6.2,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得最大值100;当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100,∴当t=300时,h(t)取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益最大.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg). 综合练习(一)1.D.2.D.3.D.4.A.5.B.6.D.7.D.8.D.9.B.10.B.11.{x|x≤5且x≠2}.12.1.13.4.14.0.15.10.16.0.8125.17.4.18.{-6,-5,-4,-3,-2,-1,0}.19.(1)略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)1.B.2.B.3.D.4.A.5.A.6.C.7.A.8.A.9.B.10.B.11.log20.3<20.3.12.-2.13.-4.14.8.15.P=12t5730(t>0).16.2.17.(1,1)和(5,5).18.-2.19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞).(2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a <x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)( x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=5S-S22-0.5-0.25S=-S22+4.75S-0.5,当S>5时,y=5×5-522-0.5-0.25S=12-0.25S,WORD格式整理分享∴利润函数为y=-S22+4.75S-0.5(0≤S≤5,S∈N*),-0.25S+12(S>5,S∈N*).当0≤S≤5时,y=-12(S-4.75)2+10.78125,∵S∈N*,∴当S=5时,y有最大值10 75万元;当S>5时,∵y=-0.25S+12单调递减,∴当S=6时,y有最大值10 50万元.综上所述,年产量为500盒时工厂所得利润最大.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x<4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)= -(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·(6-x)=12(x-6)2.∴f(x)=12x2(0≤x≤2),-(x-3)2+3(2<x<4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取最大值为3.专业资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆ 0<a<1时,图象 1
自左至右逐渐下降
0
x
0
x
向上无限伸展,向下与x 轴无限接近
当 x > 0 时,y > 1. a>1
当
x
<
0
时,.
0<
y
y
<
1
图象
(0,1)
y=1
0<a<1
y
y=1
(0,1)
定义域 值域 定点 奇偶性 单调性 函数值 分布
O
x
O
x
当Rx < 0 时,y > 1;
(0当, +x >∞0) 时, 0< y < 1。
(0,1)
非奇非偶函数
在R上是增函数
在R上是减函数
>1 (x>0)
ax =1 (x=0)
<1 (x>0)
ax =1 (x=0)
<1 (x<0)
>1 (x<0)
例题讲解
例2 已知指数函数f(x)的图象经过点(3,π),
求f(0)、f(1)、f(-3)的值.
分析:指数函数的图象经过点 3, ,
有 f 3 ,
பைடு நூலகம்
1
即 a3
于是有
f
x
,解得 x
3
a 3
想一
想
思考:确定一个指数函数
所以:
需要什么条件?
f
0
π0
1,f
1
1
π3
3
π ,f
3
π 1
1
.
π
课堂练习
2.如图所示,当0<a<1时,函数y=ax和y=(a-1)x2
的图象只可能是( )
y
y
y
y
x
x
x
x
A
B
C
D
情景引入
截取
次数 1次 2次 3次 4次
x次
y (1)x 2
木棰 1 尺 1 尺 1 尺 1 尺
剩余 2
4
8
16
(1)x尺 2
情景引入
y 2x y (1)x
2
思考: 以上两个函数有何共同特征?
(1)均为幂的形式 ; (2)底数是一个正的常数 ; (3)自变量x在指数位置.
y ax
指数函数的概念
情景引入
引题1:某种细胞分裂时,由1个分裂成2个,2 个分裂成4个…… 1个这样的细胞分裂x次后, 得到的细胞个数y与x的关系式是什么?
情景引入
分裂
次数 1次 2次 3次 4次
x次
……
y 2x
细胞 2个 4个 8个 16个
总数
21
22
23
24
2x
情景引入
引题2:一把长为1的尺子第一次截去它的一半, 第二次截去剩余部分的一半,第三次截去第 二次剩余部分的一半,依次截下去,问截的 次数x与剩下的尺子长度y之间的关系.
数 y=3-x … 27 9 3 1 1/3 1/9 1/27 …
图 象
y (1)x 2
y (1)x 3
y
若不用描点法,这
特
两个函数的图象又该如
征
何作出呢?
1
y=1
X O
y 1 x 2
y
y 1 x 3
1
y 3x
y 2x
底数互为倒 数的两个指 数函数图象:
关于y轴对称
0
1
x
y
y
y 1 x
y2 a x
(a 1)
y 1 x 3
y
y 3x y 2x
y ax
(0 a 1)
1 1
0
x
0
1
1
0x
x
● 图象共同特征:
◆图象可向左、右两方无限伸展
y
◆图象都在x 轴上方
y
◆都经过坐标为(0,1)的点
y ax
(a 1)
y ax
(0 a 1)
1
◆ a>1时,图象 自左至右逐渐上升
函数y = ax(a0,且a 1)叫做指数 函数,其中x是自变量 .
思考:为何规定a>0且a≠1?
当a0时,ax有些会没有意义;
如:(2)
1 2
,
0
1 2
当a=1时,函数值y恒等于1,没有研究价值.
例题讲解
例1 下列函数是否是指数函数
(1)
y
1.073x
;
(2)
p
(
1
t
) 5730
;
2
(3) y 3x ; (4) y x 1;
(5) y 4x3; (6) y bx ;
(7) y (4)x; (8) y 4x;
(9)
y
(2a
1) x
a
1 2
且a
1
指数函数的图像
用描点法画出指数函数
y=2x,y=3x 和 y (1)x , y (1)x
2
3
的图象。
用描点法作函数 y 2x 和y 3x的图象.
x … -3 -2 -1 0 1 2 3 …
函 y=2x … 1/8 1/4 1/2 1 2 4 8 … 数 y=3x … 1/27 1/9 1/3 1 3 9 27 …
图
yy 3x
象
y 2x
特
征
1
o -3 -2 -1 1 2 3
x
用描点法作函数y (1)x 和y (1)x的图象.
2
3
x … -3 -2 -1 0 1 2 3 …
函
y=2-x … 8 4 2 1 1/2 1/4 1/8 …