镍基高温合金材料研究进展汇总-共7页

合集下载

GH4169镍基高温合金动态力学性能研究共3篇

GH4169镍基高温合金动态力学性能研究共3篇

GH4169镍基高温合金动态力学性能研究共3篇GH4169镍基高温合金动态力学性能研究1GH4169镍基高温合金动态力学性能研究随着工程技术的不断发展和进步,材料性能的要求也越来越高。

特别是在高温、高压等恶劣的工作环境下,对材料的性能要求更加严格。

GH4169镍基高温合金出现在这样的背景下,其以高温强度、耐腐蚀性和高温氧化性能优异而被广泛应用于航空航天、海洋、船舶等领域。

然而,准确评估合金在实际工况下的力学性能是保障其应用的重要前提。

动态力学性能是指材料在受外力作用下的变形和断裂行为。

本文结合GH4169镍基高温合金,研究其动态力学性能及其影响因素。

1. 合金动态拉伸性能研究采用万能材料试验机,通过快速载荷的动态拉伸试验,研究了GH4169镍基高温合金在不同温度下的动态拉伸性能。

结果表明,在高速拉伸过程中,合金呈现出韧性断裂模式。

与静态拉伸相比,合金的屈服强度、抗拉强度和断后延伸率均有所提高。

2. 动态冲击性能研究采用万能冲击试验机,研究了GH4169镍基高温合金在不同条件下的动态冲击性能。

结果表明,合金在快速载荷下,呈现出脆性断裂模式。

同时,温度、应变速率等参数对其动态冲击性能也有着显著的影响。

3. 多参数复合作用下GH4169镍基高温合金动态性能研究在实际应用中,GH4169镍基高温合金所受到的载荷通常是多种因素的综合作用。

本研究以高速冲击为主要载荷,同时考虑温度、应变速率、预处理等因素,在试验中对合金的多参数复合作用下的动态力学性能进行了研究。

结果表明,在高速冲击负载下,合金的屈服强度、抗拉强度和断后延伸率都有所提高,但其断裂模式由韧性断裂转变为脆性断裂。

4. 动态力学性能影响因素分析针对GH4169镍基高温合金动态力学性能的研究,本研究分析了其影响因素。

实验结果表明,动态冲击载荷、温度、应变速率等参数对合金的动态力学性能有着显著的影响。

此外,合金的预处理方式也会影响其力学性能。

总体来说,GH4169镍基高温合金具有很好的高温强度、耐腐蚀性和高温氧化性能,在工程应用中具有广泛的应用。

镍基高温合金增材制造研究进展

镍基高温合金增材制造研究进展

第 2 期第 1-15 页材料工程Vol.52Feb. 2024Journal of Materials EngineeringNo.2pp.1-15第 52 卷2024 年 2 月镍基高温合金增材制造研究进展Advances in additive manufacturing of nickel -based high -temperature alloys祝国梁1,2*,罗桦1,贺戬1,田雨生1,卫东雨1,谭庆彪1,孔德成1(1 上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室,上海 200240;2 上海交通大学金属基复合材料国家重点实验室,上海 200240)ZHU Guoliang 1,2*,LUO Hua 1,HE Jian 1,TIAN Yusheng 1,WEI Dongyu 1,TAN Qingbiao 1,KONG Decheng 1(1 Shanghai Key Laboratory of Advanced High Temperature Materials and Precision Forming ,School of Materials Science and Engineering ,Shanghai Jiao Tong University ,Shanghai 200240,China ;2 StateKey Laboratory of Metal Matrix Composites ,ShanghaiJiao Tong University ,Shanghai 200240,China )摘要:镍基高温合金因其优异的高温强度及耐腐蚀、抗氧化性能而备受关注,被广泛应用于航空航天等领域。

本文对增材制造镍基高温合金的制备方法、常见牌号以及合金的组织与性能进行了综述,总结了当前存在的问题,提出了未来值得探索的研究领域。

金属增材制造技术制备的镍基高温合金具有良好性能,能实现复杂构件精密成形,且制备过程中材料浪费少,有望成为未来航空航天等领域中镍基高温合金构件的重要制备工艺。

镍基高温合金材料的蠕变性能研究

镍基高温合金材料的蠕变性能研究

镍基高温合金材料的蠕变性能研究蠕变是材料在高温下受到持续载荷引起的塑性变形现象。

对于镍基高温合金材料而言,蠕变性能是评价其抗高温变形和延长使用寿命的重要指标。

本文旨在探讨镍基高温合金材料的蠕变性能,并进行相应的研究。

一、引言镍基高温合金材料是一类具有优异高温性能和耐热腐蚀性能的材料,被广泛应用于航空航天、能源、化工等领域。

然而,在高温环境下,镍基高温合金材料长时间持续受到应力载荷的作用,会发生蠕变现象,导致材料性能下降甚至失效,因此研究镍基高温合金材料的蠕变性能具有重要意义。

二、蠕变机制蠕变是材料在高温下受到应力作用导致的塑性变形,其机制主要包括晶体滑移、晶体自扩散和晶体再结合等过程。

晶体滑移是指晶体中原子沿着晶格面产生位错滑移,从而引起材料的塑性变形。

晶体自扩散是指晶体内部的原子在热激活下从一处扩散到另一处,以消除应力集中,促进材料的变形。

晶体再结合是指塑性变形过程中,一些位错会因为碰撞而合并,从而减少其数量。

三、蠕变实验为了研究镍基高温合金材料的蠕变性能,通常会进行蠕变实验。

蠕变实验一般分为恒应力蠕变实验和恒应变蠕变实验两种。

恒应力蠕变实验是在一定温度下施加恒定应力,测量材料的蠕变应变随时间的变化。

恒应变蠕变实验是在一定应变速率下施加应变,测量材料的蠕变应力随时间的变化。

四、影响蠕变性能的因素镍基高温合金材料的蠕变性能受到多种因素的影响,包括温度、应力、应变速率、合金化元素等。

温度是影响蠕变性能最重要的因素,一般情况下,随着温度的升高,蠕变应变增加。

应力是引起蠕变的主要驱动力,较高的应力会加剧蠕变现象。

应变速率是指应变的施加速度,较高的应变速率会导致更明显的蠕变现象。

合金化元素可以通过调整合金的成分和微观结构来改善蠕变性能。

五、蠕变寿命预测蠕变寿命预测是研究镍基高温合金材料蠕变性能的重要内容。

通过分析蠕变实验数据并建立相应的蠕变寿命模型,可以预测材料在实际使用中的抗蠕变寿命。

常用的蠕变寿命模型包括应力指数模型、应变指数模型和损伤力学模型等。

镍基单晶高温合金研究进展

镍基单晶高温合金研究进展
镍基单晶高温合金的研究进展
-1-
目录
1 引言 ........................................................................................................................... 3 2 镍基单晶高温合金的背景及意义 ........................................................................... 4
针对不同的应用温度范围及材料的性价比,已有多种高温合金材料被研制并得 到广泛应用,Ni 基高温合金适用于可以提供卓越的抗高温(800℃以上)蠕变、疲劳 性能,Ti 基高温合金具有密度低的优势,但抗氧化能力差,主要应用于 700℃的工作 环境,高强度、抗蠕变的铁素体刚则具有低廉的价格,广泛应用于高温蒸汽(565℃) 发电装置,而碳化硅等陶瓷材料由于韧性及延展性较差,一般不能应用于以上工作 环境。
-4-
2.2 单晶高温合金的发展历程
单晶高温合金是先进航空发动机的关键材料,多年来各国十分重视镍基单晶合 金的研制和开发,采用镍基单晶高温合金制造涡轮叶片已成为当前先进航空发动机 的标志之一。F119、GE90、EJ200、M88-2、P2000 等先进航空发动机无一例外地选 用了单晶合金作为叶片材料。与多晶高温合金相比,单晶合金的主要优势在于:1)高 的初熔温度容许合金进行充分的固溶处理,从而获得高的蠕变强度;2)没有易成为 裂纹起始位置的晶界;3)由于<001>晶体取向的低弹性模量而具有高的热疲劳抗力。 单晶高温合金也将是今后相当长时期内先进航空发动机的关键材料,20 世纪 70 年代 以来,国际上对其他高温材料也一直在进行研究,如:定向共晶合金、难熔金属基 合金、金属间化合物基合金、陶瓷材料。但目前都因某些关键问题未获解决还不能 顺利付诸实际应用。迄今还没有一类材料能像镍基单晶高温合金这样具有良好的综 合性能。在今后相当长时期内,单晶合金仍将是航空发动机的关键材料。图 1 是镍 基高温合金发展的基本趋势。

镍基高温合金材料的研究进展

镍基高温合金材料的研究进展

镍基高温合金材料的研究进展一、本文概述镍基高温合金材料作为一种重要的金属材料,以其出色的高温性能、良好的抗氧化性和优异的力学性能,在航空航天、能源、化工等领域具有广泛的应用。

随着科技的快速发展,对镍基高温合金材料的性能要求日益提高,其研究进展也备受关注。

本文旨在全面综述镍基高温合金材料的最新研究进展,包括其成分设计、制备工艺、组织结构、性能优化以及应用领域等方面,以期为未来镍基高温合金材料的进一步发展提供理论支持和指导。

本文首先介绍了镍基高温合金材料的基本概念和特性,概述了其在不同领域的应用现状。

随后,重点分析了镍基高温合金材料的成分设计原理,包括合金元素的选取与配比,以及如何通过成分调控优化材料的性能。

在制备工艺方面,本文介绍了近年来出现的新型制备技术,如粉末冶金、定向凝固、热等静压等,并探讨了这些技术对材料性能的影响。

本文还深入探讨了镍基高温合金材料的组织结构特点,包括相组成、晶粒大小、位错结构等,并分析了这些结构因素对材料性能的影响机制。

在性能优化方面,本文总结了通过热处理、表面处理、复合强化等手段提高镍基高温合金材料性能的研究进展。

本文展望了镍基高温合金材料在未来的发展趋势和应用前景,特别是在新一代航空航天发动机、核能发电、高温传感器等领域的应用潜力。

通过本文的综述,旨在为相关领域的研究人员和企业提供有益的参考和借鉴,推动镍基高温合金材料的进一步发展和应用。

二、镍基高温合金的基础知识镍基高温合金,也称为镍基超合金,是一种在高温环境下具有优异性能的特殊金属材料。

它们主要由镍元素组成,并添加了各种合金元素,如铬、铝、钛、钽、钨、钼等,以优化其热稳定性、强度、抗氧化性、抗蠕变性和耐腐蚀性。

镍基高温合金的这些特性使其在航空航天、能源、石油化工等领域具有广泛的应用。

镍基高温合金之所以能够在高温环境下保持优异的性能,主要得益于其微观结构的特殊性质。

这些合金在固溶处理和时效处理后,会形成一系列复杂的金属间化合物,如γ'、γ''和γ'″等,这些化合物在基体中弥散分布,起到了强化基体的作用。

镍基单晶高温合金研究进展

镍基单晶高温合金研究进展

镍基单晶高温合金研究进展独立为一个领域的镍基单晶高温合金(Ni-Based Single-Crystal Superalloys)研究起步于20世纪50年代,主要目标是在高温、高压、高速等极端环境下保持优异的力学性能。

如今,这一领域已经取得了显著的进展,推动了航空航天、能源等关键工业的发展。

受制于晶体缺陷(如位错、晶界和第二相)对材料力学性能的影响,研究者最初承认了单晶材料在抗蠕变强度、抗腐蚀和抗氧化性方面的潜力,这让镍基单晶高温合金的研究开始受到关注。

随着应用需求和制造技术的进步,研究者开始探索新的冶金设计原理,克服制约合金性能提升的关键元素/组织的影响。

在材料选择方面,硬化元素(如铝、钛),刚性和解析强化元素(如钨、镍)以及一些其他元素(如镍、镍酮等)已经得到广泛采用。

而在微观组织设计上,利用多元素固溶强化,普遍采用的'γ/γ'二相组织设计以及精细的嵌套共析组织设计已经取得了显著的力学性能提升。

尤其是近年来在第二相强化机制理解的深入,使得研究者在了解和控制合金中不同的位错-第二相相互作用,以及在指导强化相布局优化方面取得了突破性进展。

另一方面,制备工艺也是影响镍基单晶高温合金性能的重要因素。

如今,过渡金属基单晶合金的制备工艺已经实现了工业化。

其中辐射区熔技术和定向凝固技术居于主导地位,使得合金中的第二相尺寸、形状和分布得到了有效控制,同时也保证了合金的组织均匀。

此外,结构设计也在镍基单晶高温合金的性能提升方面起到了重要作用。

近年来,材料科学家已经从多尺度、多视角对合金微观组织进行了深入研究,提出了多个有效的结构优化方案。

如对合金中强化相的尺寸、形状、分布以及取向等进行优化,引入双强化设计,实现第二相强化与固溶强化的协同增强等。

综上所述,随着理论研究、工艺技术和实际应用的深入,镍基单晶高温合金的设计和制备技术发展迅速,性能也得到了显著提升。

不过,目前镍基单晶高温合金的研究仍面临严峻的挑战,如如何进一步提高合金的使用温度,如何改善合金的持久性以及如何实现复合强化设计等。

K465镍基高温合金的研究

K465镍基高温合金的研究

K465镍基高温合金的研究K465镍基高温合金是一种具有优异高温强度和抗腐蚀性能的合金材料,它在航空、航天、能源等领域得到广泛应用。

本文旨在探讨K465镍基高温合金的研究现状和应用,以期为相关领域的研究和实践提供有益的参考。

K465镍基高温合金主要由镍、铬、钴、铝、钛等元素组成,具有优异的抗氧化性和抗腐蚀性能,可在高温下保持较高的强度和稳定性。

其制备方法主要包括真空熔炼、定向凝固和粉末冶金等,这些方法都为合金的制备和加工提供了良好的保障。

随着科技的不断进步,K465镍基高温合金的研究也取得了长足的进展。

国内外研究者从合金成分、制备工艺、微观组织等方面进行了广泛而深入的研究。

例如,研究者通过优化合金成分,成功提高了K465合金的高温强度和抗腐蚀性能;采用新型制备工艺,如定向凝固和粉末冶金等,实现了合金的高温稳定性和抗氧化性的有效提升。

K465镍基高温合金的研究方法主要包括实验设计、材料制备、性能测试、微观分析等。

实验设计应考虑合金成分、制备工艺、热处理制度等因素;材料制备主要采用真空熔炼、定向凝固、粉末冶金等方法;性能测试包括力学性能、抗氧化性、抗腐蚀性能等测试;微观分析则涉及显微组织观察、相变过程研究等。

通过实验研究,发现K465镍基高温合金在高温下具有良好的力学性能和抗腐蚀性能。

合金的抗氧化性能也得到了显著提升,这主要归功于制备工艺的优化和合金成分的改进。

本文对K465镍基高温合金的研究现状进行了详细探讨,总结了目前的研究成果及其应用前景。

结果表明,K465合金在航空、航天、能源等领域的应用潜力巨大。

然而,为了更好地发挥其优势,仍需在以下几个方面进行深入研究:进一步优化合金成分,以提高K465镍基高温合金的综合性能;探索新型制备工艺,如3D打印技术等,实现合金材料的低成本、高效制备;深入研究K465合金在极端条件下的服役行为,为其实践应用提供更为可靠的依据;加强与多学科的交叉融合,将K465镍基高温合金的研究与应用拓展到更多领域。

镍基高温合金的技术进展

镍基高温合金的技术进展

镍基高温合金的技术进展作者:姚进军高联科邓斌来源:《新材料产业》2015年第12期镍基高温合金的工作温度一般是800~1 000℃,其化学性质良好,尤其是具有高温抗氧化和抗腐蚀性,另外还有良好的抗疲劳性。

镍基高温合金应用领域也比较广泛,其中主要是在航空航天领域和国防领域应用,例如航空发动机、导弹等[1]。

这些领域的应用都对镍基高温合金的纯净度要求较高,在加工和生产镍基合金的过程中极易产生杂质,影响材料的纯净度,进而可能影响材料的抗腐蚀性能,同时大大降低了相关部件的使用寿命,对其适用范围也造成了一定的限制。

一、镍基高温合金的发展历程镍基高温合金无疑是高温合金领域中重要的一部分,这主要是基于其良好的特性。

镍基高温合金在20世纪40年代初期被发现并研究成功,当时是在喷气式飞机对合金性能提出了更高要求的情况下而进行研制的。

1945年,英国成为第1个生产出镍基合金 Nimomic75(Ni22Cr-1.5Ti)的国家,之后英国根据发展需要提高镍基高温合金蠕变强度,在原有基础上添加适量的铝元素,进而研制出新型的镍基合金Nimomic84(Ni22Cr-4.5Ti)[2]。

在之后的一段时间里,美国和苏联相继研制成功类似合金,我国在20世纪50年代相继研制出几种类似功能的合金。

从镍基高温合金的发展历程可以看出,其主要有2个发展方向:第一是对镍基合金元素构成的重新组合,使其更好地发挥出性能;第二是镍基高温合金生产工艺的革新,不断利用最新技术和设备对其进行研制。

在20世纪50年代时期,科学家经过不断的研制,发现了真空熔炼技术,这一技术的诞生和发展为镍基高温合金的发展创造了技术上的条件;20世纪60年代,发达国家研制出的熔模精密铸造工艺,制造了一大批具有良好高温强度的铸造合金;之后的几年内,相继制造出了性能更好、更稳定的单晶高温合金,甚至在这段时间里还研制出了粉末冶金高温合金;而航空航天技术的发展,对高温合金提出了更高要求(抗热腐蚀性能较好和组织稳定)[3-4]。

镍基高温合金的发展综述

镍基高温合金的发展综述

镍基高温合金的发展综述1. 介绍镍基高温合金是一类在高温环境下具有优异性能的关键结构材料。

本文将全面、详细、完整且深入地探讨镍基高温合金的发展历程、特点、应用领域等相关内容。

2. 发展历程2.1 第一代镍基高温合金•由于20世纪40年代至50年代初钴基高温合金的应用限制,镍基高温合金得到迅速发展。

•第一代镍基高温合金主要在航空发动机领域得到应用,如涡轮叶片、燃烧室零部件等。

2.2 第二代镍基高温合金•第二代镍基高温合金在组织结构和配合元素方面进行了改进,提高了合金的性能。

•新的合金设计原则和制备工艺使得合金具有更好的高温强度、耐氧化性和抗蠕变性能。

•第二代镍基高温合金主要应用于航空航天、能源以及化工领域。

2.3 第三代镍基高温合金•第三代镍基高温合金通过引入奇异金属、微合金元素和稀土元素等进行改进,进一步提高合金性能。

•镍基单⽚晶高温合金、镍基镍二基体高温合金等新型合金在高温强度、耐腐蚀性和疲劳寿命等方面取得重要突破。

•第三代镍基高温合金在航空、汽车、石化等行业中得到广泛应用。

3. 特点3.1 高温强度•镍基高温合金具有优异的高温强度,能够在高温下保持较好的力学性能。

•合金中的强化相和固溶体相可以有效提高合金的抗拉强度和屈服强度。

3.2 耐氧化性•镍基高温合金具有出色的耐氧化性能,能够在高温下长时间稳定地抵抗氧化反应。

•氧化层的形成和增长能够减缓合金的氧化速率,提高合金的使用寿命。

3.3 抗蠕变性•镍基高温合金能够在高温下抵抗蠕变现象的发生,保持较好的形变能力和稳定性。

•合金中的蠕变阻滞相能够有效抑制晶间滑移和晶粒边界滑移,提高合金的抗蠕变能力。

3.4 耐腐蚀性•镍基高温合金具有优良的耐腐蚀性能,能够在酸碱等腐蚀介质中长时间稳定地使用。

•合金中的合金化元素和稀土元素能够提高合金的耐腐蚀性,延长合金的使用寿命。

4. 应用领域4.1 航空航天领域•镍基高温合金在航空发动机、航空轴承等关键部位的应用得到广泛推广。

[材料论文]Inconel_718镍基高温合金分析与研究_午虎特种合金技术部

[材料论文]Inconel_718镍基高温合金分析与研究_午虎特种合金技术部

【材料论文】Inconel 718镍基高温合金分析与研究-午虎特种合金技术部一、Inconel 718 概述Inconel 718合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。

该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。

供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。

可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。

1.1 Inconel 718 材料牌号Inconel 7181.2 Inconel 718 相近牌号Inconel 718(美国),NC19FeNb(法国)1.3 Inconel 718 材料的技术标准GJB 2612-1996 《焊接用高温合金冷拉丝材规范》HB 6702-1993 《WZ8系列用Inconel 718合金棒材》GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》GJB 1952 《航空用高温合金冷轧薄板规范》GJB 1953《航空发动机转动件用高温合金热轧棒材规范》GJB 2612 《焊接用高温合金冷拉丝材规范》GJB 3317《航空用高温合金热轧板材规范》GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》GJB 3020 《航空用高温合金环坯规范》GJB 3167 《冷镦用高温合金冷拉丝材规范》GJB 3318 《航空用高温合金冷轧带材规范》GJB 2611《航空用高温合金冷拉棒材规范》YB/T5247 《焊接用高温合金冷拉丝》YB/T5249 《冷镦用高温合金冷拉丝》YB/T5245 《普通承力件用高温合金热轧和锻制棒材》GB/T14993《转动部件用高温合金热轧棒材》GB/T14994 《高温合金冷拉棒材》GB/T14995 《高温合金热轧板》GB/T14996 《高温合金冷轧薄板》GB/T14997 《高温合金锻制圆饼》GB/T14998 《高温合金坯件毛坏》GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》HB 5199《航空用高温合金冷轧薄板》HB 5198 《航空叶片用变形高温合金棒材》HB 5189 《航空叶片用变形高温合金棒材》HB 6072 《WZ8系列用Inconel 718合金棒材》1.4 Inconel 718 化学成分该合金的化学成分分为3类:标准成分、优质成分、高纯成分,见表1-1。

镍基单晶高温合金高温低应力蠕变过程中典型变形机制研究进展

镍基单晶高温合金高温低应力蠕变过程中典型变形机制研究进展

镍基单晶高温合金高温低应力蠕变过程中典型变形机制研究进展杜云玲;牛建平【摘要】以镍基单晶高温合金高温低应力蠕变变形为主,简要介绍了蠕变过程中几个典型变形机制的研究进展,并分析合金蠕变过程研究中存在的问题。

%Giving priority to the deformation of high-temperature low-stress creep of Ni-based single crystal superalloys,several related typical deformation mechanisms were reviewed and the existing problems during creep were analyzed.【期刊名称】《沈阳大学学报》【年(卷),期】2016(028)006【总页数】7页(P431-437)【关键词】镍基单晶高温合金;高温低应力蠕变;筏化;位错;TCP相【作者】杜云玲;牛建平【作者单位】沈阳大学机械工程学院,辽宁沈阳 110044;沈阳大学机械工程学院,辽宁沈阳 110044【正文语种】中文【中图分类】TG146镍基高温合金(Ni-based Superalloys)由于具有优异的蠕变和疲劳抗力、良好的塑性和断裂韧性、良好的抗氧化和抗热腐蚀性,以及高温组织稳定性,广泛用于制作涡轮发动机等先进动力推进系统热端部件[1-4].高性能发动机的重要标志是具有高的推力和推重比,而要实现这些指标就需要不断地提高涡轮前进气口的温度,最大程度地提高燃机的效率.实现这一目标的关键在于持续提高发动机相应高温合金部件的承温能力,尤其是高压涡轮叶片和低压涡轮叶片的承温能力[4].在实际服役过程中,涡轮叶片处于高温、高应力等复杂恶劣的环境中,尤其是高压涡轮叶片承受着更高的温度和由于高速旋转造成的高离心应力.在这些外部条件的共同作用下,即使合金所受的应力水平远低于其屈服强度,叶片也会发生蠕变塑性累积,最终导致叶片断裂失效,因此蠕变行为是评价合金可靠性最重要的方面.航空发动机涡轮叶片在实际服役过程中各部位所受的温度和应力分布如图1和图2所示[5].从图1可以看出,尽管涡轮叶片已经拥有复杂高效的冷却通道以及热障涂层,涡轮叶片的大部分位置仍将面临较高的温度,而图2则显示,叶片经受高温的部分所受的应力相对较低(相对于低温部分).为此,各国研究者对镍基单晶高温合金的高温低应力蠕变行为进行了广泛的研究.本文以镍基单晶高温合金的高温低应力蠕变行为为主线,主要从蠕变过程中几个典型的现象出发,简要介绍单晶合金的蠕变行为研究进展. 蠕变是指试验材料在低于屈服极限的恒定应力(载荷)下发生持续塑性变形的累积,它具有一定的时间依赖性.涡轮叶片在实际服役时,大部分时间处于巡航状态,因此合金的变形以蠕变塑性累积为主.合金的蠕变性能与合金晶体的取向息息相关.一般而言,具有〈111〉取向的合金蠕变性能最高,〈011〉最低,而具有〈001〉方向的合金蠕变寿命与〈111〉相当或稍低;然而,具有〈001〉方向合金的疲劳性能显著优于具有〈111〉和〈011〉方向的合金,所以涡轮叶片在设计和实际使用过程中都尽可能使其受力沿[001] 方向,因而研究[001]取向的镍基单晶高温合金具有非常重要的实际意义.镍基单晶高温合金在高温低应力条件下的蠕变机制主要有以下几个方面.(1) 在高温、错配内应力和外加应力的综合作用下,γ/γ′两相结构发生的筏化(Rafting)现象;(2) 蠕变过程中界面位错网格的形成及其作用;(3) 位错切割γ′相的形式及其对合金蠕变行为的影响;(4) 拓扑密排(Topologically Closed Packed,TCP)相的析出.以上提到的这几种变形机制基本上构成了单晶高温合金的整个蠕变过程.1.1 镍基单晶高温合金蠕变过程中的筏化现象筏化现象是镍基单晶高温合金高温低应力蠕变过程中最为常见的现象.γ′相形筏源于应力梯度导致的合金元素定向扩散,即在应力梯度作用下,γ′相形成元素Al、Ti、Ta等和γ相形成元素Cr、Mo等沿相反方向扩散,致使γ′相沿特定方向生长并互相连接,最终导致γ′相形筏.因为γ′相形筏过程主要受固相扩散控制,故其形筏动力学呈非线性特征[6].Tien等[7]首先研究了[001]取向的镍基单晶高温合金外加应力方向与筏化方向的关系,发现γ′形筏不仅能改变γ′形貌,而且能显著影响γ/γ′界面位错网形成及合金元素在该界面的分布,故对合金力学性能具有重要影响.随后Fredholm 等[8]总结前人的观察结果后认为,对于[001]取向的镍基单晶高温合金,根据γ′相的筏状特征可将筏化现象主要分为筏化方向与外加应力垂直的N-型筏化,以及筏化方向与外加应力平行的P-型筏化.Pollock等[9]进一步研究了镍基单晶高温合金蠕变过程中的筏化现象,认为γ/γ′两相之间弹性应力场(错配度)对合金的筏化方向有决定作用,错配度为负值时,在拉伸条件下γ′相发生N-型筏化,在压缩条件下γ′相发生P-型筏化;而当错配度为正值时,情形刚好相反.研究表明,合金的错配度随着温度的变化而变化,也就是说合金在蠕变时发生的筏化类型与蠕变温度下的错配度的值和外加应力方向息息相关.Murakumo等[10]在研究γ′相体积分数不同的TMS-75镍基单晶高温合金的蠕变行为时发现,体积分数为80%的合金在蠕变断裂后,γ′相筏化方向与以上结论完全相反,认为此现象源于γ和γ′两相基体与析出相角色的互换,换句话说,在γ′析出相体积分数为80%时,其在合金中为“基体”,而体积分数为20%的γ相为“析出相”,从这个观点上看蠕变后的结果与先前的结论仍然一致.Nathal等[11]在研究CMSX-4合金高温蠕变性能时指出,γ′相形筏改变了γ与γ′相连接方式,使γ基体由包围着γ′变为镶嵌在γ′中,即发生拓扑倒置现象(Topological inversion),从而失去变形能力而易于断裂,故γ′相形筏不程度地降低合金蠕变强度.尽管蠕变中后期形成的筏型组织封闭了位错运动的横向通道,增加蠕变抗力,但形筏毕竟是γ′相粗化的结果,所以大多情况下对合金蠕变性能具有不利影响.筏化结构的出现对单晶高温合金来说难以避免,理论上错配度δ(通常定义δ=2(aγ ′-aγ)/(aγ ′+aγ),其中aγ和aγ ′分别为γ和γ′相的晶格常数)越接近于0,合金的两相结构越稳定,筏化过程越慢.如前所述,合金的错配度随温度的变化而变化,因此在实际设计时应尽量使合金高温时的错配度接近于零,从而延缓镍基单晶高温合金在高温时的筏化速率,提高合金的蠕变寿命.1.2 镍基单晶高温合金蠕变过程中位错的运动在镍基单晶高温合金的蠕变初期阶段,大量不同滑移系的a/2〈101〉{111}位错启动,领先的螺位错段在水平基体通道内不同的{111}平面发生交滑移,并在γ/γ′两相界面留下60°混合位错[12-13].由于在蠕变之初γ基体内位错的数量很少,因此大量的位错可以在基体内快速的萌生和增殖,在宏观蠕变曲线上表现为具有较高的蠕变速率,塑性应变累积迅速增加.Zhang等[13]认为,虽然60°位错的位错线方向主要沿〈110〉方向,并不是最佳的〈100〉错配方向,但这些界面位错仍然能够部分释放错配应力;随着蠕变的进行(蠕变初期阶段的末期),γ基体内的位错密度迅速增加,位错开始在γ/γ′界面塞积,位错的运动逐渐变得困难,蠕变曲线上表现为应变速率迅速降低,基体中不同滑移系的界面位错在温度、外加应力、错配应力以及位错之间应力场的相互作用下开始发生反应,形成界面位错网格[12-17].Lasalmonie等[14]利用透射电镜较早地研究了界面位错的性质,认为界面位错网格中的位错都具有刃型位错的特征,同时认为这些位错都源自于基体中的a/2〈101〉位错环(Dislocation loop).Lahrman和Field等[15]使用汇聚束电子衍射和X射线衍射重新研究了界面位错的性质,随后Field等[17]认为界面位错网格不可能源于基体中的位错环,界面位错网格的形成不需要位错长程攀移或者Orowan绕过,并提出了一种新的位错网格形成模型,即基体不同滑移系位错相互反应机制,如图3所示[17].这一模型比较合理的解释了实验中所观察到的处于演化过程中和蠕变断裂后的位错网格形态,因此被广泛接受.大部分研究者认为界面位错网格的密集程度与γ/γ′两相界面的错配度有关,错配度越大,位错网格越密集,因为密集的界面位错网格可以有效地释放错配应力.Zhang等[18]首先提出致密位错网格可以有效阻碍基体位错切入γ′析出相,延长稳态蠕变阶段,Harada课题组根据这一理论设计出一系列的镍基单晶高温合金,将位错网格从理论研究推向实际应用.但是需要指出的是,形成致密位错网格需要合金具有较负的错配度,而错配度绝对值越大合金筏化进程越快,因此如何协调延缓筏化过程,同时使合金具有致密的位错网格仍需要进一步研究. 1.3 超位错切割γ′析出相的方式成对的a/2〈101〉位错夹着反相畴界(Anti-phase domain boundary,APB)(称之为a〈101〉超位错)切割γ′析出相是镍基单晶高温合金高温低应力蠕变条件下最为常见的一种切割方式.这种位错一般认为是由相同{111}滑移面上柏氏矢量相同的两根a/2〈101〉位错在γ/γ′界面结合而成,如图4所示[19].当切入γ′析出相时,两根a/2〈101〉位错之间会产生一定的间距,这一间距取决于合金γ′析出相中的APB 能,一般情况下由于γ′析出相的APB能很高,所以两根a/2〈101〉位错之间的间距很小.实际上由于界面位错网格的阻碍作用和高的APB能,在合金的稳态蠕变过程中,与基体位错数量相比,切入γ′析出相的a〈101〉超位错数量很少,因此合金在稳态蠕变阶段的塑性应变累积并不显著.在合金蠕变变形的第三阶段,由于蠕变试样发生颈缩,合金所受的应力显著增加,在这一条件下相当数量的a〈101〉超位错切入γ′析出相,大大加速合金的塑性变形.虽然这种切割方式最为常见,但这种类型的位错在蠕变过程中所起的作用仍然并不清楚.镍基单晶高温合金在高温低应力蠕变过程中另一种重要的位错是a〈010〉超位错.该位错由Louchet等[20]在研究CMSX-4单晶高温合金的高温低应力蠕变时首先观察到,但是并没有将其与蠕变塑性变形联系起来;Eggeler等[21]利用透射电镜对CMSX-6单晶高温合金中a〈010〉超位错的类型及其形成过程进行了分析,认为这种类型的超位错是由两个柏氏矢量不同的a/2〈011〉基体位错在γ/γ′两相界面相遇并反应而形成的,在切入γ′析出相后由于其位于{001}面上,所以难以运动,只能以滑移和攀移相结合的方式运动,但他们并没有对位错核心进行深入分析;随后Dlouhy等[22]对蠕变过程产生的a〈010〉超位错进行了计算模拟,证实了Eggeler等的结论,但是依然没能说明位错核心是否致密;接着Srinivasan等[23]使用高分辨电镜(High resolution transmission electron microscope,HRTEM)证明a〈010〉超位错的位错核心并不致密,而是由两个不同柏氏矢量的分位错所组成,它们通过滑移和攀移两种过程的复合在γ′析出相中缓慢运动,其中攀移控制着合金的蠕变速率,并认为这一切割机制与稳态蠕变过程中合金可以保持较低的蠕变速率有关.实际上在很多单晶高温合金中都观察到了这种类型的超位错,如CMSX-4[20,23]、CMSX-6[21]和TMS-138[24]等,因此认为这种切割机制是一种基本的切割机制.以上两种类型的超位错切割γ′相是镍基单晶高温合金高温低应力蠕变时最基本的切割机制,对合金的塑性应变累积以及稳态蠕变速率均有重要影响.然而,到目前为止,超位错切割γ′析出相与合金蠕变性能退化之间的定量关系仍未建立.实际上,由于温度和应力的综合作用,镍基单晶高温合金中切割γ′相的位错类型可能不止以上两种类型,而位错之间的反应也不仅限于形成位错网格.因此,这一方面的研究工作仍然是今后研究的重点.1.4 TCP相的析出由于镍基单晶高温合金中含有大量的W、Cr、Mo和Re等合金元素,在高温低应力蠕变过程中,一些富含这些元素,且具有复杂晶体结构的金属间化合物会析出,这些金属间化合物一般称之为拓扑密排相(TCP相,如σ、μ、P和R相等)[25-27].TCP 相的晶体结构中只存在四面体间隙,原子高度密排,并且只允许配位数为12、14、15及16的四种Ksaper多面体存在,其化学式一般为AxBy,且A和B元素均为过渡族金属元素.常见TCP相的晶体学参数如表1所示[25].镍基单晶高温合金在高温蠕变的过程中,如果合金中的Cr、Mo、Re含量较高,就有析出σ相的趋势,且在第三、四代镍基单晶合金中析出的σ相通常具有较高含量的Re.σ相一般呈针片状析出,硬而脆.σ相的析出一方面削弱难熔元素的固溶强化效果,另一方面破坏γ/γ′两相组织的连续性,同时成为裂纹萌生的主要位置,导致合金的塑性和寿命降低,因此通常被认为是有害相.μ相一般呈针状、棒状、片状或颗粒状析出,通常认为W和Mo是μ相形成的决定性元素,在μ相中占有较大的比例.由于形貌及数量的差异,μ相对合金力学性能的影响也不尽相同[28].P相与σ相的晶体结构有着特殊的关系,并且化学成分也相似,所以P相与σ相经常在镍基单晶高温合金中共存,甚至可以相互转变[25].R相只有在少数镍基单晶合金的文献中提到[29],相关的信息鲜有报道.随着镍基单晶高温合金中难熔元素含量的增加,大量的TCP相在高温蠕变过程中析出,TCP相的析出消耗大量的合金元素,造成合金基体局部贫乏这些强化元素,从而降低基体合金的强度;另外,在蠕变的过程中位错难以切割TCP相,会在TCP/γ′相界面塞积,产生应力集中,造成两相界面开裂[26].因此,为了抑制TCP相的析出,Ru元素被引入高温合金体系中.近些年对TCP相的研究主要围绕Ru对TCP相析出的影响开展.Caron[30]指出,添加Ru可以提高TCP相析出的临界Md值,所以含Ru合金在长期热暴露下不易析出TCP相.Sato等[29]认为Ru增加了Re和W在γ相中的固溶度,从而降低了TCP相析出的概率;而Yeh等[26]发现添加Ru不但可以大幅度提高合金组织稳定性而且有助于合金蠕变过程中保持筏形组织的连续性;虽然在含Ru 合金中会出现TCP相,但数量较少,并且TCP相的生长也受到了很大的限制,相比于无Ru合金,含Ru合金的力学性能显著提高.目前,虽然众多研究者对Ru抑制TCP相的析出行为进行了广泛的研究,但是Ru的具体作用机理仍不清楚.例如,Ru的添加抑制TCP相的析出是因为下列四种情况的哪一种有待证实.(1) 改变了合金强化元素在枝晶干和枝晶间的分配系数,同时降低了其他元素的扩散速率;(2) 降低了TCP相的形核率;(3) 降低了TCP相的长大速率;(4) 外加应力的影响等.TCP相在合金中形核、长大的速度很快,一般在稳态蠕变阶段初期就已经开始析出,温度越高其析出速度越快.一般认为,尺寸较小或者颗粒状的TCP相对合金的高温蠕变性能影响不大,而粗大或者针片状的TCP相由于显著降低了γ、γ′两相组织的连续性,且难以被运动的位错切割,容易成为微裂纹的发源地,从而降低合金的高温蠕变性能.TCP相的析出过程比较复杂,且各相之间往往伴随着共生现象[25].因此,需要更详细的工作来描述TCP相析出与合金高温蠕变性能之间的定量关系.镍基单晶高温合金的蠕变过程非常复杂,上述几种变形机制可能在同一个蠕变过程中同时出现、相互影响.在高温低应力蠕变的初期,基体中的位错开始运动,同时筏化结构逐渐演化形成,对基体中的位错运动起到一定的阻碍作用,从而导致大量的位错在γ/γ′界面堆积、反应,形成位错网格;位错网格的形成可以显著阻碍超位错切割筏化的γ′相,对合金保持较高的稳态蠕变阶段起到重要的作用.实际上,TCP相的析出过程从蠕变的初期就已经开始进行,随着蠕变的进行其逐渐长大,由于TCP相的析出导致γ/γ′筏化结构被隔断,同时位错难以切入TCP相,因此在TCP/γ相界面容易产生微裂纹,导致合金最终断裂失效.因此,合金蠕变是一个复杂的,各种因素变形机制相互影响的过程.镍基单晶高温合金的蠕变性能作为衡量合金使役性能最重要的方式已经得到广泛研究,对高温低应力蠕变过程中几种主要的变形机制有较为深刻的认识,并取得了重要进展.虽然本文分开叙述这几种变形机制的研究进展,但在实际的变形过程中各机制彼此相互影响、相互关联,共同组成了复杂的蠕变过程.从合金研发和应用角度来看,今后对镍基单晶高温合金高温蠕变性能的研究主要集中在以下几个方面:(1) 建立镍基单晶高温合金筏化与蠕变性能退化的关联.通过研究高温合金γ′相筏化的热力学和动力学机制,探索延缓γ′相筏化的手段,建立合金筏化程度与蠕变性能的内在关联.(2) 研究不同类型的位错在高温低应力蠕变过程中的作用.探索位错与γ′相、TCP相以及孔洞等的微观交互作用机制,为提高合金的高温蠕变性能提供理论基础. (3) 探索抑制TCP相析出的方法.TCP相的析出损害合金的力学性能,在目前研究的基础上继续探索能有效抑制TCP相,并同时提高合金高温强度的新方法.[ 1 ] 孙晓峰,金涛,周亦胄,等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012,31(12):1-11. (SUN X F,JIN T,ZHOU Y Z,et al. Research progress of nickel-base single crystal superalloys[J]. Rare Metals Letters, 2012,31(12):1-11.)[ 2 ] 李清华,赵志力. 真空冶金现状及发展前景[J]. 沈阳大学学报, 2003,15(2):35-37. (LI Q H, ZHAO Z L. The present situation and the prospect of vaccum metallurgy[J]. Journal of Shenyang University, 2003,15(2):35-37.)[ 3 ] 牛建平. 镍基高温合金的脱氮与脱硫[J]. 沈阳大学学报, 2003,15(2):5-8. (NIUJ P. Denitrogenation and desulphurization during VIM refining Ni-base superalloy[J]. Journal of Shenyang University, 2003,15(2):5-8.)[ 4 ] REED R C. The superalloys fundamentals and applications[M]. Cambridge: Cambridge University Press, 2006.[ 5 ] DYE D, MA A, REED R C. Numerical modelling of creep deformation in a CMSX-4 single crystal superalloy turbine blade[C]. Superalloy, 2008:911-919.[ 6 ] PEARSON D D,LEMKEY F D,KEAR B H. Stress coarsening of γ′ and its influence on creep properties of a single crystal superalloy[C]. Superalloys, 1980:513-520.[ 7 ] TIEN J K,COPLY S M. The effect of orientation and sense of applied uniaxial stress on the morphology of coherent gamma prime precipitates in stress annealed nickel-ase superalloy crystal[J]. Metallurgical & Materials Transactions B, 1971,2(2):543-553.[ 8 ] FREDHOLM A,STRUDEL J L. On the creep resistance of some nickel base single crystals[C]. Superalloys, 1984:211-220.[ 9 ] POLLOCK T M,ARGON A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipates[J]. Acta Metallurgica et Materialia, 1994,42(6):1859-1874.【相关文献】[10] MURAKUMO T,KOBAYASHI T,KOIZUMI Y,et al. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction[J]. Acta Materialia, 2004,52(12):3737-3744.[11] NATHAL M V,MACKAY R A,MINER R V. Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy[J]. Metallurgical & Materials Transactions A, 1989,20(1):133-141.[12] POLLOCK T M,ARGON A S. Creep resistance of CMSX- nickel base superalloy single crystals[J]. Acta Metallurgica et Materialia, 1992,40(1):1-30.[13] ZHANG J X,HARADA H,KOIZUMI Y,et al. The effect of lattice misfit on the dislocation motion in superalloys during hight-emperature low-stress creep[J]. Acta Materialia, 2005,53(1):4623-4633.[14] LASALMONIE A,STRUDEL J L. Interfacial dislocation networks around γ′ precipitates in nickel-base alloys[J]. Philosophical Magazine A, 1975,32(32):937-949.[15] LAHRMAN D F,FIELD R D,DAROLIA R, et al. Investigation of techniques for measuring lattice mismatch in a rhenium containing nickel base superalloy[J]. Acta Metallurgica, 1988,36(5):1309-1320.[16] WANG X G,LIU J L,JIN T,et al. Dislocations motion during high-temperature low-stress creep in Ru-free and Ru-containing single-crystal superalloys[J]. Materials and Design, 2015,67:543-551.[17] FIELD R D,POLLOCK T M,MURPHY W H. The development of g/g′ interfacial dislocation networks during creep in Ni-base superalloys[C]. Superalloys, 1992:557-566.[18] ZHANG J X,MURAKUMO T,KOIZUMI Y,et al. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloys[J]. Metallurgical and Materials Transactions A, 2002,33(12):3741-4376.[19] ZHANG J X,MURAKUMO T,KOIZUMI Y,et al. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloys[J]. Acta Materialia, 2003,51(17):5073-5081.[20] LOUCHET F,IGNAT M. TEM analysis of square-shaped dislocation configurations in the γ′ phase of a Ni-based superalloy[J]. Acta Metallurgica, 1986,34(8):1681-1685. [21] EGGELER G,DLOUHY A. On the formation of 〈010〉-dislocations in the γ′-phase of superalloy single crystals during high temperature low stress creep[J]. Acta Materialia, 1997,45(10):4251-4262.[22] DLOUHY A,SCHUBLIN R,EGGELER G. Transmission electron microscopy contrast simulations of superdislocations in the L12 ordered structure[J]. Scripta Materialia, 1998,39(9):1325-1332.[23] SRINIVASAN R,EGGELER G F. MILLS M J. γ′-cutting as rate-controlling recovery process during high-temperature and low-stress creep of superalloy single crystals[J]. Acta Materialia, 2000,48(20):4867-4878.[24] ZHANG J X,HARADA H,KOIZUMI Y. New configuration of a[001] superdislocation formed during high-temperature creep in the γ′ phase of a single-crystal superalloy TMS-138[J]. Journal of Materials Research, 2006,21(3):647-654.[25] RAE C M F,REED R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys[J]. Acta Materialia, 2001,49(19):4113-4125.[26] YEH A,RAE C,TIN S,et al. High temperature creep of Ru-bearing Ni-base single crystal superalloys[C]. Superalloys, 2004:677-685.[27] HAN Y F,MA W Y,DONG Z Q,et al. Effect of ruthenium on microstructure and stress rupture properties of a single crystal nickel-base superalloy[C]. Superalloys, 2008:91-97. [28] 成魁宇. 几种含Re单晶高温合金中μ相的析出行为及其影响.[D]. 沈阳:中国科学院金属研究所, 2009. (CHENG K Y. Precipitation behavior of μ phase in several Re single crystal superalloys and its effect[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009.)[29] SATO A,HARADA H,YOKOKAWA T,et al. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scripta Materialia, 2006,54(9):1679-1684.[30] CARON P. Hi gh γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications[C]. Superalloys, 2000:737-746.。

镍基高温合金的技术进展

镍基高温合金的技术进展

镍基高温合金的技术进展通过整理的镍基高温合金的技术进展相关文档,希望对大家有所帮助,谢谢观看!镍基高温合金的工作温度一般是800~1 000℃,其化学性质良好,尤其是具有高温抗氧化和抗腐蚀性,另外还有良好的抗疲劳性。

镍基高温合金应用领域也比较广泛,其中主要是在航空航天领域和国防领域应用,例如航空发动机、导弹等[1]。

这些领域的应用都对镍基高温合金的纯净度要求较高,在加工和生产镍基合金的过程中极易产生杂质,影响材料的纯净度,进而可能影响材料的抗腐蚀性能,同时大大降低了相关部件的使用寿命,对其适用范围也造成了一定的限制。

一、镍基高温合金的发展历程镍基高温合金无疑是高温合金领域中重要的一部分,这主要是基于其良好的特性。

镍基高温合金在20世纪40年代初期被发现并研究成功,当时是在喷气式飞机对合金性能提出了更高要求的情况下而进行研制的。

1945年,英国成为第1个生产出镍基合金Nimomic75(Ni22Cr-1.5Ti)的国家,之后英国根据发展需要提高镍基高温合金蠕变强度,在原有基础上添加适量的铝元素,进而研制出新型的镍基合金Nimomic84(Ni22Cr-4.5Ti)[2]。

在之后的一段时间里,美国和苏联相继研制成功类似合金,我国在20世纪50年代相继研制出几种类似功能的合金。

从镍基高温合金的发展历程可以看出,其主要有2个发展方向:第一是对镍基合金元素构成的重新组合,使其更好地发挥出性能;第二是镍基高温合金生产工艺的革新,不断利用最新技术和设备对其进行研制。

在20世纪50年代时期,科学家经过不断的研制,发现了真空熔炼技术,这一技术的诞生和发展为镍基高温合金的发展创造了技术上的条件;20世纪60年代,发达国家研制出的熔模精密铸造工艺,制造了一大批具有良好高温强度的铸造合金;之后的几年内,相继制造出了性能更好、更稳定的单晶高温合金,甚至在这段时间里还研制出了粉末冶金高温合金;而航空航天技术的发展,对高温合金提出了更高要求(抗热腐蚀性能较好和组织稳定)[3-4]。

镍基高温合金的氧化行为研究进展

镍基高温合金的氧化行为研究进展

现代冶金Modern Metallurgy第49卷第1期2021年2月Vol. 49 No. 1Feb. 2021镍基高温合金的氧化行为研究进展王伟娟#,喻 聪1,潘 斌2,汤梦秋#,王 珏1(1.南京工程学院材料科学与工程学院,江苏南京211167; 2.江阴鑫宝利金属制品有限公司,江苏江阴214426)摘要:概述了镍基高温合金的氧化行为及主要研究方法。

目前最广泛使用的氧化行为研究方法为静态增重法、静 态减重法和循环氧化法。

该类合金的氧化动力学曲线主要遵循抛物线规律,偶见直线规律、立方规律和对数规律。

氧化产物一般为分层结构,对于高Cr/Al 比的镍基合金,其外氧化层以CrCh 'NiCLNiCrC !、TiC>2为主,内氧化层多为AI 2O 3 ;外氧化层形貌多样,当存在结合强度较低的复合结构氧化膜时,高温条件下会出现表层氧化膜剥落, 导致加速氧化。

镍基合金的氧化行为主要受元素扩散控制,合金元素含量及其与氧的结合力是决定氧化行为的本质因素。

关键词:镍基高温合金;氧化层;元素扩散;内、外氧化中图分类号:TG146. 1十5引言镍基高温合金由于具有良好的热强性、抗高温 氧化能力而广泛应用于航空、动力、石油化工等领 域&随着热端部件服役温度的不断升高,对镍基合金的抗氧化性能要求也逐渐提高,因此对镍基合金氧化行为的研究方法及基本规律进行综述与概括具 有重要的现实意义&目前,国内、外都有关于高温合金氧化行为的报道'勺,采用的研究方法包括静态增 重法、静态减重法、循环氧化法等,对不同合金的氧 化形貌、氧化产物、氧化动力学进行研究,并进一步总结了合金成分对氧化性能与行为的影响,通过理 论分析构建了氧化模型&本文主要综述了镍基高温合金氧化行为的主要研究方法、氧化动力学曲线特 点、氧化产物、典型的氧化形貌和氧化模型及其基本理论等方面,为高温合金氧化行为的研究提供理论 指导&1氧化行为的研究方法国内、外学者对高温合金的氧化行为进行了广泛研究,研究方法具有一定的相似性&基本思路为:首先,根据高温合金的检测标准(国内为航空工业标准HD525E-2000)设计高温氧化实验,并利用高温 氧化的动力学曲线来探究其氧化机制;然后,利用X射线衍射(XRD )来鉴定高温氧化产物、利用扫描电 镜(SEM )和能谱仪(EDS )等方法来分析其高温氧化膜的表面形貌、截面的形貌特征以及成分,并在实 验数据的基础上分析其氧化规律&试验流程图如图1所示&图1氧化行为研究流程图「q 样品切割][合金试样的前期处理T 表面处理(打磨、抛光、超声波清洗)|冷尺寸与质量测量]T 抗氧化性能评定][高温氧化实验}T 氧化动力学曲选)卄氧化膜鉴定]冷氧化产物鉴定与分析|4表面分析]—1 -44X777? 4*1± I[氧化机理模型]X r 截面分析J▼[氧化性能总结]目前,高温合金氧化行为的主要研究方法包括静态增重法、静态减重法、循环氧化法等&收稿日期:2020-08-02基金项目:江阴市科技创新专项资金资助项目(JY0602A010*********PB );江苏省产业前瞻与关键核心技术-竞争项目(DE2019027)作者简介:王伟娟(1998-),女,本科生。

镍基高温合金

镍基高温合金

镍基高温合金(w a s p a l o y 加工工艺)(总8页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March镍基高温合金(如In718、Waspaloy等)具有热稳定性好、高温强度和硬度高、耐腐蚀、抗磨损等特点,是典型的难加工材料,常用于制作涡轮盘等发动机关键部件。

由于涡轮盘是航空发动机的关键部件之一,在应力、温度和恶劣的工作环境条件下容易产生疲劳失效,因此涡轮盘材料及制造技术是研制高性能航空发动机的关键。

由于涡轮盘上的异形孔由若干圆弧和直线组成,形状复杂,加工时要求各组成段位置准确、过渡圆滑而不产生加工转折痕迹,表面粗糙度符合工艺要求,因此该高温合金异形孔的加工是涡轮盘加工的难点。

目前,航空发动机制造商均采用电火花加工方法加工镍铬耐热合金异形孔,但是电火花加工过程中产生的热影响层难以用普通的磨削、研磨方法去除,往往需要用磨料射流等特殊工艺去除该变质层,加工效率低,生产成本高。

因此,对高效低成本的镍基高温合金异形孔加工方法的研究越来越受到人们的高度重视。

本文通过钻削、铣削与磨削工艺的不同组合、选用新型涂层刀具及适当的加工参数加工镍基高温合金异形孔的工艺试验,讨论了用铣削和磨削加工方法代替电火花方法加工镍基高温合金异形孔的可行性。

2 工艺试验与分析1.试验条件切削试验在加工中心上进行,被加工异形孔的形状和尺寸见图1:异形孔的截面由6段圆弧和2段直线组成,孔深10mm。

试验中分别采用以下工艺:①钻削Ø6mm圆孔→铣削异形孔;②钻削Ø6mm圆孔→磨削异形孔;③钻削Ø6mm圆孔→铣削异形孔→磨削异形孔。

三种不同工艺过程的加工条件、工艺参数见表1。

钻削↓磨削磨削188333直径Ø4mm、长6mm的圆柱形氧化铝砂轮(铬刚玉),等级RA120,柄部直径Ø3mm钻削↓铣削↓磨削钻削Ø6mm硬质合金涂层钻头2258-铣削铣磨孔1Ø4mm多层(TiAlN,TiCN,TiN)PVD涂层球形铣刀,2刃,刃长25mm,铣刀总长100mm,柄部直径Ø6mm,直柄52333铣磨孔2104666磨削直径Ø4mm、长6mm的圆柱形氧化铝砂轮(铬刚玉),等级RA120,柄部直径Ø3mm188333工件材料:In718镍基高温合金冷却液:浓度为9%的乳化液,压力30Bar图1 异形孔的截面形状与尺寸图2 采用不同工艺获得的异形孔表面粗糙度1.分别采用工具显微镜和图像采集系统测量铣刀和砂轮的磨损,记录磨损形貌。

镍基高温合金的发展综述

镍基高温合金的发展综述

镍基高温合金的发展综述镍基高温合金是一种具有优异高温性能和抗腐蚀能力的金属材料,被广泛应用于航天、航空、汽车等领域。

自20世纪初以来,随着科学技术的发展,镍基高温合金不断得到改进和优化,成为高温合金中最重要的系列之一。

镍基高温合金的制作工艺主要包括以下步骤:原材料选择:高温合金的原材料主要是镍、钴、铬等金属元素,以及其他必要的微量元素和合金元素。

这些原材料的纯度和质量对高温合金的性能有着至关重要的影响。

熔炼工艺:高温合金的熔炼工艺一般采用真空感应熔炼或电弧熔炼,以将原材料熔化并充分混合。

在熔炼过程中,要严格控制熔炼温度和时间,以确保合金的成分和组织结构的稳定性。

热处理工艺:热处理工艺是高温合金制作过程中的重要环节,通过控制加热和冷却速度,以达到调整合金组织结构和性能的目的。

热处理工艺包括预处理、固溶处理和时效处理等步骤。

镍基高温合金具有以下性能特点:抗高温:高温合金能够在高温环境下保持优良的力学性能和抗蠕变性能,因此被广泛应用于高温度环境下的结构件和发动机部件。

抗腐蚀:高温合金具有较好的抗腐蚀性能,能够在各种腐蚀环境中保持稳定。

抗氧化:高温合金具有较好的抗氧化性能,能够在高温环境下防止氧化和烧蚀。

不易变形:高温合金具有较好的热稳定性和组织稳定性,能够在高温环境下保持形状和尺寸的稳定性。

镍基高温合金被广泛应用于以下领域:航天领域:高温合金在航天领域中主要用于制造航空发动机、火箭发动机、航天器结构件等关键部件。

例如,NASA的太空梭所使用的发动机零部件就是由镍基高温合金制成的。

航空领域:高温合金在航空领域中主要用于制造飞机发动机、航空发动机等关键部件。

例如,波音777的发动机零部件就是由镍基高温合金制成的。

汽车领域:高温合金在汽车领域中主要用于制造汽车发动机、涡轮增压器等关键部件。

例如,宝马、奔驰等高端汽车品牌的发动机零部件就是由镍基高温合金制成的。

随着科学技术的不断进步,镍基高温合金的未来发展将面临更多机遇和挑战。

镍基高温合金的发展综述

镍基高温合金的发展综述

镍基高温合金的发展综述镍基高温合金是一种具有优异高温性能的材料,广泛应用于航空、航天、能源等领域。

本文将对镍基高温合金的发展历程、应用领域、研究进展等方面进行综述。

一、发展历程20世纪50年代初,美国GE公司首次研制出镍基高温合金,用于航空发动机叶片的制造。

此后,随着航空、航天、能源等领域的快速发展,对高温材料的需求越来越大,镍基高温合金也得到了广泛应用。

经过多年的发展,镍基高温合金已经成为高温材料领域的重要代表之一。

二、应用领域1.航空领域航空发动机是镍基高温合金的主要应用领域之一。

航空发动机叶片、涡轮盘、燃烧室等部件都需要使用镍基高温合金。

随着航空业的快速发展,对高温材料的需求也越来越大,镍基高温合金的应用前景非常广阔。

2.航天领域航天器在进入大气层时,需要承受极高的温度和压力,因此需要使用高温材料。

镍基高温合金具有优异的高温性能,被广泛应用于航天器的制造中。

3.能源领域能源领域也是镍基高温合金的重要应用领域之一。

燃气轮机、核电站等能源设备都需要使用高温材料,镍基高温合金具有优异的高温性能,被广泛应用于能源设备的制造中。

三、研究进展1.合金设计合金设计是镍基高温合金研究的重要方向之一。

通过合金设计,可以调控合金的组织结构和化学成分,从而提高合金的高温性能。

2.制备工艺制备工艺也是镍基高温合金研究的重要方向之一。

目前,常用的制备工艺包括熔融法、粉末冶金法、等离子喷涂法等。

随着制备工艺的不断改进,镍基高温合金的性能也得到了不断提高。

3.高温氧化行为高温氧化行为是镍基高温合金研究的重要方向之一。

高温氧化会导致合金表面的氧化层增厚,从而影响合金的高温性能。

因此,研究高温氧化行为对于提高镍基高温合金的高温性能具有重要意义。

四、总结镍基高温合金是一种具有优异高温性能的材料,广泛应用于航空、航天、能源等领域。

随着科技的不断发展,镍基高温合金的研究也在不断深入,其应用前景也越来越广阔。

激光增材制造镍基高温合金研究进展

激光增材制造镍基高温合金研究进展

激光增材制造镍基高温合金研究进展一、本文概述随着科技的快速发展,激光增材制造(LAM)作为一种先进的制造技术,已经在航空、能源、医疗等领域展现出广阔的应用前景。

镍基高温合金作为一种重要的高温结构材料,其优良的力学性能、高温抗氧化性和抗腐蚀性使其成为航空航天、能源发电等领域的关键材料。

激光增材制造镍基高温合金的研究对于提升我国高端制造业的竞争力具有重要意义。

本文将对激光增材制造镍基高温合金的研究进展进行全面的概述,分析当前激光增材制造技术在镍基高温合金制备中的应用现状,探讨其存在的挑战与问题,并展望未来的发展趋势。

文章首先将对激光增材制造技术的原理、特点及其在镍基高温合金制备中的优势进行简要介绍随后,重点综述近年来国内外在激光增材制造镍基高温合金方面的研究成果,包括材料设计、工艺优化、性能表征等方面结合当前研究的不足,对激光增材制造镍基高温合金的未来研究方向进行展望,以期为相关领域的科研人员提供有益的参考和启示。

二、激光增材制造镍基高温合金的基本原理能量输入与粉末熔化:激光增材制造过程中,高能激光束被聚焦在金属粉末床上,粉末吸收激光能量并迅速加热至熔点以上。

熔化的粉末在激光束移开后迅速凝固,形成一层薄薄的金属层。

这个过程反复进行,层层叠加,最终形成所需的复杂结构。

熔池动力学:熔池的形成和动力学对最终构件的质量至关重要。

熔池的大小、形状和稳定性受到激光功率、扫描速度、粉末层厚度等因素的影响。

理解熔池动力学对于优化工艺参数、控制晶粒生长和提高力学性能具有重要意义。

微观结构控制:激光增材制造过程中的快速加热和冷却导致了复杂的微观结构形成。

镍基高温合金中常见的微观结构包括柱状晶等轴晶和树枝晶等。

这些微观结构对合金的力学性能、耐热性和耐腐蚀性有着显著影响。

通过控制工艺参数,可以在一定程度上调控这些微观结构。

固态相变与热处理:在激光增材制造过程中,镍基高温合金可能经历多种固态相变,这些相变会影响合金的性能。

后续的热处理工艺如固溶处理和时效处理,可以进一步优化合金的微观结构和性能。

镍基合金研究报告

镍基合金研究报告

镍基合金研究报告镍基合金是一种重要的高温合金,具有优异的高温力学性能和良好的耐腐蚀性能,因此被广泛应用于航空、航天、能源等领域。

随着工业技术的发展,镍基合金的应用领域也在不断扩大。

本文将对镍基合金的研究进展、应用现状和未来发展进行综述。

二、镍基合金的研究进展1. 合金设计镍基合金的设计是镍基合金研究的核心,其目的是在保证高温力学性能和耐腐蚀性能的前提下,尽可能地降低成本。

合金设计的关键在于合金元素的选择和比例,目前常用的元素有铬、钼、钨、铝、钛、铌、镧等。

2. 合金制备合金制备是镍基合金研究的另一个重要方面,其目的是制备出高质量、高纯度的镍基合金。

目前常用的制备方法有真空感应熔炼、真空电弧熔炼、高频感应熔炼、等离子喷涂等。

3. 合金组织与性能镍基合金的组织和性能是研究的重点之一。

合金的组织包括晶粒尺寸、相组成、相分布等。

而合金的性能包括高温力学性能、耐腐蚀性能等。

目前,研究者们通过对合金组织和性能的分析,不断优化合金设计和制备方法,以提高镍基合金的性能。

三、镍基合金的应用现状1. 航空航天领域镍基合金在航空航天领域具有广泛的应用。

例如,用于制造高温部件,如涡轮叶片、燃气轮机叶盘、涡轮盘等。

此外,镍基合金还用于制造航空发动机的燃烧室、燃烧器、喷嘴等。

2. 能源领域镍基合金在能源领域也有广泛的应用。

例如,用于制造核反应堆的燃料罐、管道、泵等部件。

此外,镍基合金还用于制造石油化工设备、火电站锅炉等。

3. 其他领域镍基合金还在其他领域得到了应用,例如,用于制造汽车排气系统、医疗器械、电子元器件等。

四、镍基合金的未来发展1. 合金设计随着材料科学技术的发展,人们对镍基合金的设计也有了更高的要求。

未来,合金设计将继续追求更高的性能指标,如更高的高温强度、更好的耐蚀性能等。

2. 合金制备未来,合金制备将更加注重精细化制备和多元化制备。

例如,采用先进的合金制备技术,如等离子喷涂、快速凝固等,以制备出更高质量、更具特色的镍基合金。

镍基高温合金用钎料研究进展

镍基高温合金用钎料研究进展
Progress of brazing filler materials used for nickel base superalloy
Xu Xinxing1,Dong Honggang1,Chen Jingyang2 %1. Dalian University ofTechnology,Dalian 116023,China; 2. Science and Technology on Advanced High Temperature
Structural Materials Laborato?,Beijing Institute of Aeronautical Materials,Beijing 100095,China)
6 ( 8 / " 2 : This paper described
the important role of
部件焊接在 。如在 航 空 航 天 领 域 , 髙发动机
的工作效率,
用 结 构 [7],或是对蜂窝
、发 动 机 机 匣 等 部 件 进 行 焊 接 ,
了(
的 、 连 接 结 构 ,达 到 重 和
结构的目
的[8_9]。 在 镍 基 髙 温 合 金 的 焊 接 中 ,由 其 成 分 复
杂 ,焊接性较差,容 易 出 现 热 裂 纹 、晶间 和气孔等
50%

作 “航空发
2
^ DM/ ^ ( P 009)
Байду номын сангаас
2 叶 片 材 料 5 0 o 单晶合金
o 0o
I960 1980 2000
年份
50o 姻 麒
o 0o
一 圈

3
oc
#
«
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镍基高温合金材料研究进展姓名:李义锋1 镍基高温合金材料概述高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。

高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。

因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。

在整个高温合金领域中,镍基高温合金占有特殊重要的地位。

与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。

现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。

镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。

镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。

因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。

镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。

它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。

除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。

添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。

镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。

随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

2 镍基高温合金的发展历程镍基高温合金在整个高温合金领域占有特殊重要的地位,它的开发和使用始于20世纪30年代末期,是在喷气式飞机的出现对高温合金的性能提出更高要求的背景下发展起来的。

英国于1941年首先生产出镍基合金Nimonic75(Ni--20Cr-0.4Ti),为了提高蠕变强度又添加铝,研制出Ni-monic80(Ni--20Cr--2.5Ti一1.3Al)。

美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基高温合金。

镍基高温合金的发展包括两个方面:合金成分的改进和生产工艺的革新。

50年代初,真空熔炼技术的发展为炼制含高铝和钛的镍基合金创造了条件;50年代后期,采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金;60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金;为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。

在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。

镍基高温合金的发展趋势如图l所示。

图1 镍基高温合金的发展趋势镍基高温合金的发展趋势是耐高温能力更强的单晶高温合金。

单晶高温合金由于其优异的高温力学I生能得到了广泛应用。

至今,单晶高温合金已经发展到第四代。

使用温度接近合金熔点80-90%的第三代镍基单晶高温合金代表了上个世纪末高温合金发展的最高水平。

目前,更加优良的第四代单晶的研制已经取得了初步进展[3]。

2019年后出现了第四代单晶高温合金,例如MC-NG,EPM-102和TMS-162,它们的特征是都添加了钌元素[4]。

一个现代单晶涡轮叶片的成本是等重量的微合金钢的数百倍,不仅反映出构成单晶高温合金元素}向贵重或稀缺,更显示出所用工艺的先进程度。

3 镍基高温合金的性能研究(一)力学性能20世纪70年代,B.H.Kean等做持久实验时发现,以挤压比16:1挤压In-100合金,在1040℃的实验温度下得到1330%的延伸率,并认为这与合金中析出的第二相粒子控制晶粒长大有关。

粉末高温合金由于其细晶组织而较易得到超塑性,如In-l00、In-713、U-700等镍基高温合金可以通过粉末冶金的方法获得超塑性,其延伸率可以达到1000%[5]。

利用快速凝固法也可以实现高温合金晶粒的微细化,从而得到组织超塑性现象。

毛雪平等[6]在500~600℃高温条件下对镍基合金C276进行了拉伸力学试验,并分析了温度对弹性模量、屈服应力、断裂强度以及延伸率的影响,发现镍基合金C276在高温下具有屈服流变现象和良好的塑性。

(二)氧化行为在高温条件下,抗氧化性靠Al2O3。

和Cr2O2。

保护膜提供,因此镍基合金必须含有这两种元素之一或两者都有,尤其是当强度不是合金主要要求时,要特别注意合金的抗高温氧化性能和热腐蚀性能,高温合金的氧化性能随合金元素含量的不同而千差万别,尽管高温合金的高温氧化行为很复杂,但通常仍以氧化动力学和氧化膜的组成变化来表征高温合金的抗氧化能力。

赵越等[7]在研究K447在700~950℃的恒温氧化行为时发现其氧化动力学符合抛物线规律:在900℃以下为完全抗氧化级,在900~950℃为抗氧化级,而且K447氧化膜分为3层,外层是疏松的Cr2O3。

和TiO2。

的混合物,并含有少量的NiO及NiCr2O4尖晶石;中间层是Cr2O3;内氧化物层是Al2O3。

并含有少量TiN,随着温度的升高,表面氧化物的颗粒变大,导致表面层疏松,氧化反应加速进行。

(三)疲劳行为在实际应用中,各种零部件在承受着高温、高应力的作用时,尤其在启动、加速或减速过程中,快速加热或冷却引起的各种瞬间热应力和机械应力叠加在一起,致使其局部区域发生塑性变形而产生疲劳影响零件寿命,故要研究其高温疲劳行为。

何卫锋等在研究激光冲击工艺对GH742镍基高温合金疲劳性能的影响时发现,激光冲击强化能延长镍基高温合金抗拉疲劳寿命316倍以上,延长振动疲劳寿命214倍,强化后残余压应力影响层深度达110mm。

郭晓光等在研究铸造镍基高温合金K435室温旋转弯曲疲劳行为时发现,在应力比R= -1,转速为5000r/min(8313Hz)和实验室静态空气介质环境下,K435合金室温旋转弯曲疲劳极限为220MPa,裂纹主要萌生在试样表面或近表面缺陷处,断口主要由裂纹萌生区、裂纹稳态扩展区和瞬间断裂区组成。

黄志伟等在研究铸造镍基高温合金M963的高温低周疲劳行为时发现,由于高温氧化作用在相同的总应变幅下,M963合金在低应变速率下具有较短的寿命;因为该合金的强度高、延性低,形变以弹性为主,M963合金具有较低的塑性应变幅和较低的过渡疲劳寿命。

于慧臣等[8]朝在研究一种定向凝固镍基高温合金的高温低周疲劳行为时发现,由于合金在不同温度范围内具有不同的微观变形机制,温度对合金的变形有明显影响,在760℃以下合金呈现循环硬化,而在850℃和980℃时则表现为循环软化。

(四)高温蠕变行为当温度T≥(0.3~0.5)Tm时,材料在恒定载荷的持续作用下,发生与时间相关的塑性变形。

实际上是因为在高温下原子热运动加剧,使位错从障碍中解放出来从而引起蠕变。

水丽等在对一种镍基单晶合金的拉伸蠕变特征进行分析时发现,在980~1020℃、200~280MPa条件下蠕变曲线均由初始、稳态及加速蠕变阶段组成;在拉伸蠕变期间γ′强化相由初始的立方体形态演化为与应力轴垂直的N-型筏形状;初始阶段位错在基体的八面体滑移系中运动;稳态阶段不同柏氏矢量的位错相遇,发生反应形成位错网;蠕变末期,应力集中致使大量位错在位错网破损处切人筏状7相是合金发生蠕变断裂的主要原因。

李楠等在研究热处理对一种镍基单晶高温合金高温蠕变性能的影响时发现,尺寸为0.4 m左右、规则排列的立方γ′相具有较好的高温蠕变性能,而较小的γ′相和较大的γ′相均不利于合金在高温下的蠕变性能,二次时效处理对提高合金高温蠕变强度的作用不大,筏形组织的完善程度影响合金高温下的蠕变性能,二次γ′相不利于提高合金高温蠕变性能。

4 镍基高温合金的强化研究(一)热处理热处理对合金第二相粒子γ′相的形成、形态和稳定性有重要影响,探索合适的热处理制度对控制和稳定合金的微观组织、提高合金的高温性能有着积极的意义。

经过长期反复研究证实,时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒,形成一些体积很小的溶质原子富集区。

在时效处理前进行固溶处理时,必须严格控制加热温度,以便使溶质原子能最大限度地固溶到固溶体中,同时又不致使合金熔化。

在进行人工时效处理时,必须严格控制加热温度和保温时间,才能得到比较理想的强化效果;生产中有时采用分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间。

(二)表面处理由于镍基高温合金成分十分复杂,含有铬、铝等活泼元素,高温合金零件表面在氧化或热腐蚀环境中表现为表面化学不稳定,同时经机械加工而制成的零件表面留下加工硬化或残余应力等表面缺陷,这对高温合金零件的化学性能和力学性能都带来十分不利的影响。

为了消除这些影响,常采用表面防护、喷丸处理、表面晶粒细化以及表面改性等措施。

喷丸强化是工业上常用的提高疲劳性能的表面改性工艺技术。

高玉魁等发现喷丸强化可以延长DD6单晶高温合金在高温下的疲劳寿命,而且随着温度升高,疲劳寿命增益系数下降。

在实际应用中发现喷丸处理对材料强化效果不佳,对合金疲劳性能改善甚微,现急需一种效果更好的强化方法来取代喷丸,随着高能脉冲激光器制造水平的提高而发展起来的激光冲击强化技术无疑是一种理想的替代方式,通过强激光诱导的冲击波在金属表层引入残余压应力,从而抑制疲劳裂纹的萌生和发展,是一种新型的金属表面强化技术。

(三)合金元素镍基高温合金能溶解较多的合金元素,如Cr、W、Mo、Co、Si、Fe、A1、Ti、B、Nb、Ta、Hf等。

这些合金元素加入到基体中可以产生合金强化效应,影响镍基高温合金的性能,改善合金的组织。

在镍基合金中添加微量稀土元素,能提高合金的热加工性能和抗氧化性能。

周永军等I- 在研究稀土对镍基高温合金性能影响的电子理论中发现,稀土与杂质硫相互吸引,其结果是分散和固定部分杂质,可以改善合金高温性能。

最近的研究发现,加入碳可以净化合金液,改善合金的抗腐蚀性能,并且可以减少再结晶的几率,碳的微量加入还有利于降低合金缩孔含量。

相关文档
最新文档