运筹学第13章博弈论(20141202版)-课件

合集下载

博弈论PPT课件

博弈论PPT课件
有i si 0, i si 1 si Si
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)

《博弈论》课程课件

《博弈论》课程课件
20
(五)博弈模型的分类
博弈中最重要的两个因素是信息与顺序。
信息上可以分为完全信息和非完全信息。
在博弈的顺序上则可以分为静态与动态。
21
完全信息和非完全信息,完全和非完全判 断的标准就是如果有些信息只有一部分参 与者知道,并不是所有的信息都是公共信 息,那么博弈就是非完全信息博弈。 静态博弈和动态博弈,静态和动态的区别 并不在于时间上是否同时,而是在行动上 是否同时。如果参与者1在行动时,不知道 参与者2的行动,反之也一样,即为同时行 动。
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼底设防 成功,失败
失败,成功
失败,成功
3
例3 鸽派和鹰派
美 国 鸽派政策 苏联 鹰派政策
鸽派政策
鹰派政策
0,0
+1,–1
–1,+1
– ∞,– ∞
4
从上面的三个例子中,我们可以概括出一个博弈 所具有的共同特征:利益相冲突的参与者、参与 者总是根据对手可能采取的策略来采取相应的行 动----相互依存的策略和行动、参与者总是追求自 身利益最大化。根据这些共同特征我们就能给出 一个博弈的定义,只要符合这个定义,就可以将 其纳入到博弈论的研究范畴之中。





( 五 ) 博 弈 模 型 的 分 类
( 四 ) 博 弈 论 的 两 个 前 提 假 设
( 三 ) 纳 什 均 衡
( 二 ) 博 弈 表 达 的 科 学 式
( 一 ) 什 么 是 博 弈 论
一 、 理 论 准 备
1
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论最全完整-讲解PPT课件

博弈论最全完整-讲解PPT课件

王则柯、李杰编著,《博弈论教程》,中国人民大学 出版社,2004年版。
艾里克.拉斯缪森(Eric Rasmusen)著,《博弈与信 息:博弈论概论》,北京大学出版社,2003年版。
因内思·马可-斯达德勒,J.大卫·佩雷斯-卡斯特里罗著, 《信息经济学引论:激励与合约》,上海财经大学出版 社,2004年版。
常和博弈也是利益对抗程度最高的博弈。 非常和(变和)博弈蕴含双赢或多赢。
.
32
导论
四、主要参考文献
.
33
张维迎著,《博弈论与信息经济学》,上海三联书店、 上海人民出版社,1996年版。
Roger B. Myerson著:Game Theory(原文版、译文 版),中国经济出版社,2001年版。
是关于动态博弈进行过程之中面临决策 或者行动的参与人对于博弈进行迄今的 历史是否清楚的一种刻划。
如果在博弈进行过程中的每一时刻,面 临决策或者行动的参与人,对于博弈进 行到这个时刻为止所有参与人曾经采取 的决策或者行动完全清楚,则称为完美 信息博弈;否则位不完美信息。
.
30
零和博弈与非零和博弈
了解自己行动的限制和约束,然后以精心策划的方式 选择自己的行为,按照自己的标准做到最好。 • 博弈论对理性的行为又从新的角度赋予其新的含义— —与其他同样具有理性的决策者进行相互作用。 • 博弈论是关于相互作用情况下的理性行为的科学。
.
4
如何在博弈中获胜?
…… 真的能在博弈中(总是)获 胜吗?
对手和你一样聪明! 许多博弈相当复杂,博弈论并不
施锡铨编著,《博弈论》上海财大出版社,2000年版。
谢识予编著,《经济博弈论》,复旦大学出版社, 2002年版。
谢识予主编,《经济博弈论习题指南》,复旦大学出 版社,2003年版。

博弈论课件

博弈论课件

博弈论强调参与者之间的互动关系,通过数学模型和理论分析来研究 策略选择和均衡结果。
博弈论的发展历程
博弈论的起源可以追溯到20世纪初,当时数学家和经 济学家开始研究游戏中的策略和均衡。
1944年,冯·诺依曼和摩根斯坦合著的《博弈论与经济 行为》标志着博弈论的诞生。
随后,纳什、泽尔腾和哈萨尼等学者进一步发展了博弈 论,形成了现代博弈论的基础。
商业竞争与合作
商业竞争
博弈论可以用于分析商业竞争中的策略和行为,例如价格战、广告战等。通过 博弈论,企业可以更好地理解竞争对手的策略,制定出更有效的竞争策略。
商业合作
博弈论也可以用于分析商业合作中的策略和行为,例如供应链管理、合资企业 等。通过博弈论,企业可以更好地理解合作伙伴的需求和期望,制定出更有效 的合作策略。
贝叶斯纳什均衡
在不完全信息博弈中,如果所有参与 者都根据自己掌握的信息选择最优策 略,则所有参与者都能获得最大收益 。
静态博弈与动态博弈
01
静态博弈
02
动态博弈
所有参与者在同一时间点选择策略并获得收益。
参与者的选择有先后顺序,后选择的参与者可以观察到先选择的参与 者的策略和收益。
03
纳什均衡
纳什均衡的定义
博弈优化方法
线性规划
线性规划是一种数学优化方法, 用于找到在满足一组约束条件下 最大化或最小化目标函数的最优
解。
非线性规划
非线性规划是数学优化的一种方 法,用于找到一组变量的最优值 ,使得一个或多个目标函数达到
最优。
动态规划
动态规划是一种通过将问题分解 为相互重叠的子问题来解决问题 的方法,每个子问题的解被保存
博弈论课件
汇报人:
汇报时间:202X-01-04

博弈论完整版PPT课件

博弈论完整版PPT课件

ac 3
纳什均衡利润为:
Π1NE
Πቤተ መጻሕፍቲ ባይዱ
NE 2
(a c)2 9
.
31
q2 a-c
(a-c)/2 (a-c)/3
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
国外经济学教科书改写,加入大量博弈论内容
博弈论进入主流经济学,反映了:
经济学的研究对象越来越转向个体放弃了有些没有微观基础的假设
经济学的研究对象越来越转向人与人之间行为的相互影响和作用
经济学越来越重视对信息的研究
传统微观经济学的工具是数学(微积分、线性代数、统计学),而
博弈论是一种新的数学。以前只有陆军,现在有了空军,其差异
不完全信息
静态
纳什均衡
(纳什)
贝叶斯纳什均衡
(海萨尼)
.
动态
子博弈精练纳什均衡
(泽尔腾)
精练叶贝斯纳什均衡
(泽尔腾等)
9
博弈的分类
根据参与人是否合作
根据参与人的多少
根据博弈结果
根据行动的先后次序
两人博弈 多人博弈
静态博弈 动态博弈
合作博弈 非合作博弈
零和博弈 常和博弈 变和博弈
根据参与人对其他参与人的
4-阶理性:C相信R相信C相信R相信C是理性的,C会将R1从R的战略空间 中剔除, C不会选择C3;
5-阶理性:R相信C相信R相信C相信R相信C是理性的,R会将C3从C的战

运筹学博弈论 PPT

运筹学博弈论 PPT
性研究。
6. 2005年二位获诺奖的博弈论学者
Robert Aumann
Thomas Shelling
10.1.2 博弈及博弈论
博弈就是策略对抗,或策略有关键作用的游戏
博弈Game,博弈论Game Theory,Game即游戏、竞技 游戏和经济等决策竞争较量的共同特征:规则、结果、策
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦
囚徒困境
坦白是B的 占优战略
坦白
囚徒 B
抵赖
坦白
坦白是A的 囚徒A 占优战略
抵赖
占优策略(上策)均衡
占优策略(上策)通俗来说是:
• “我所做的是不管你做什么我所能做的最好的” • “你所做的是不管我做什么你所能做的最好的”
占优策略均衡指博弈中的所有参与者的占优策 略组合所构成的均衡。
囚徒困境( Prisoners’Dilemma )
运筹学博弈论
第一节 博弈论概述
一、博弈论的产生和发展
1. 博弈在中国 田忌赛马Байду номын сангаас弈
华容道博弈
从孙子兵法到三十六计 从田忌赛马到孙庞斗智 从运筹帷幄到韬光养晦 从曹刿论战到论持久战
2. 博弈论的开山之作
1943 年 , 冯 ·诺 依 曼 和 摩 根斯顿发表《博弈论和经 济行为》的一书,
标志着博弈论作为一门独立科学的开始, 也标志着新古典经济学进入了一个新的发 展阶段。
10.2.2 重复剔除的占优战略均衡
首先找出某一博弈参与人的严格劣战略,将它剔除 掉,重新构造一个不包括已剔除战略的新的博弈; 然后继续剔除这个新的博弈中某一参与人的严格劣 战略;重复进行这一过程,直到剩下唯一的参与人 战略组合为止。这个唯一剩下的参与人战略组合, 就是这个博弈的均衡解,称为“重复剔除的占优战 略均衡”(iterated dominance equilibrium).

运筹学十三章ppt课件

运筹学十三章ppt课件
值MinAi[maxj(bij)]; 5.该最小后悔值对应的方案即为最优方案。
.

仍以例13-4为例,根据后悔值决策准则 进行决策。
根据表13-12的收益矩阵,选取各自然状 态下的最大收益值分别为:
1状态:maxAi(ai1)=a31=17; 2状态:maxAi(ai2)=a12=13; 3状态:maxAi(ai3)=a23=4。
13 -4 1/3 15+1/3 13+1/3 (-4)=8
7 4 1/3 8+1/3 7+1/3 4= 6.34
12 -6 1/3 17+1/3 12+1/3 (-6)=7.7
maxAi[Ej(aij)]=8
A1
.
分析
从表13-14可见,根据等概率决策准则, 最优方案为扩建工厂的方案,这样预期 利润为8万元。
.
电视机厂,2009年产品更新方案:
A1:彻底改型 A2:只改机芯,不改外壳 A3:只改外壳,不改机芯 问:如何决策?
.
收益矩阵
事件 高
方案
S1
A1
20
A2
9
A3
6


S2 S3(万元)
1
-6
8
0
5
4
.
第二节 决策树法
在讲决策准则时使用的是矩阵式的决策 表,这种决策表有信息集中、一目了然 的优点,但对于比较复杂的问题就难以 表述了,这时可采用决策树法。决策树 法是循着人们解题的逻辑思路,将问题 表述为一种树状结构,如下图所示
x:货币值 u(x):效用值
求效用曲线方法:对比提问法
.
对比提问法: 设计两种方案 A1, A2 A1:无风险可得一笔金额 X2 A2:以概率P得一笔金额 X3 ,以概率(1-P)损失 一笔金额 X1 X1<X2<X3, u(xi )表示金额xi 的效用值。

管理运筹学课件第13章-对策论

管理运筹学课件第13章-对策论
管理运筹学课件第13章对策论
• 对策论基本概念 • 矩阵对策 • 连续对策 • 合作对策 • 非合作对策 • 对策论在实际问题中应用
01
对策论基本概念
对策论定义与特点
定义
对策论,又称博弈论,是研究决策过 程中理性决策者之间冲突与合作的数 学理论。
特点
对策论注重分析决策者之间的相互作 用和影响,以及决策结果的均衡性和 稳定性。
供应链管理
在供应链管理中,对策论可用于 协调供应商、制造商、销售商之 间的利益关系,优化供应链整体 效益。
金融市场投资决策
对策论可用于分析金融市场中的 投资决策问题,如股票交易、期 货交易等,帮助投资者制定最优 的投资策略。
军事领域应用案例
作战计划制定
01
对策论可用于分析敌我双方的作战能力和策略选择,帮助军事
指挥官制定最优的作战计划。
武器系统研发
02
在武器系统研发中,对策论可用于分析不同武器系统的性能优
劣和作战效能,为武器系统研发提供决策支持。
军事演习评估
03
对策论可用于评估军事演习的效果和参演部队的作战能力,为
军事训练提供改进建议。
社会领域应用案例
社会治安综合治理
对策论可用于分析社会治安问题中的各方利益关系和行为选择,提 出综合治理的策略和措施。
微分对策的求解方法
包括最大值原理、动态规划等方法。
连续对策求解方法
01
02
03
迭代法
通过不断迭代更新参与者 的策略,直到达到某个均 衡条件为止。
数值解法
利用数值计算的方法求解 连续对策的均衡解,如有 限差分法、有限元法等。
解析法
在某些特殊情况下,可以 通过解析的方法求解连续 对策的均衡解,如线性二 次型微分对策等。

博弈论最全完整-讲解课件

博弈论最全完整-讲解课件
(zero-sum game and non-zero-sum game)
• 如果一个博弈在所有各种对局下全体参与人之 得益总和总是保持为零,这个博弈就叫零和博 弈;
• 相反,如果一个博弈在所有各种对局下全体参 与人之得益总和不总是保持为零,这个博弈就 叫非零和博弈。
• 零和博弈是利益对抗程度最高的博弈。
• 即使决策或行动有先后,但只要局中人在决策 时都还不知道对手的决策或者行动是什么,也 算是静态博弈
学习交流PPT
28
完全信息博弈与不完全信息博弈
(games of complete information and games of incomplete information)
• 按照大家是否清楚对局情况下每个局中人 的得益。
供万无一失的应对办法。
学习交流PPT
5
例1:无谓竞争(The GPA Rat Race)
• 你所注册的一门课程按照比例来给分:无论卷 面分数是多少,只有40%的人能够得优秀,40 %的人能得良好。
• 所有学生达成一个协议,大家都不要太用功, 如何?想法不错,但无法实施!稍加努力即可 胜过他人,诱惑大矣。
• 某些博弈中,由于偶然的外因可以对策略贴标 签,或者参与者之间拥有某些共同的知识体验, 导致了焦点的存在。
• 没有某个这样的暗示,默契的合作就完全不可 能。
学习交流PPT
9
例3:为什么教授如此苛刻?
• 许多教授强硬地规定,不进行补考,不允许迟 交作业或论文。
• 教授们为何如此苛刻?
• 如果允许某种迟交,而且教授又不能辨别真伪, 那么学生就总是会迟交。
• 王则柯、李杰编著,《博弈论教程》,中国人民大学 出版社,2004年版。

博弈论课件

博弈论课件

脚的看牌人、看棋人,企业的顾问等。
对参与人的决策来说,最重要的是
必须有可供选择的行动集(策略集)和
一个很好定义 的支付函数。
自然被当作虚拟参与人。
清华诚志
10
(2)策略(strategies ):博弈中有两种策略
概念,一种为纯策略(pure strategy ), 简称策略, 指参与人在博弈中可以选择采用的行动(actions or moves)方案,是参与人在给定信息结构的情况 下的行动规则,它规定参与人在什么时候的什么情
囚徒困境反映了个人理性和集体理性的矛盾。如果 A和B都选择抵赖,各判刑1年,显然比都选择坦 白各判刑8年好得多。当然,A和B可以在被警察 抓到之前订立一个"攻守同盟",但是这可能不会有 用,因为它不构成纳什均衡,没有人有积极性遵守 这个协定,显然最好的策略是双方都抵赖.
清华诚志
5
囚徒困境的意义
“囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。他们两人都是 在坦白与抵赖策略上首先想到自己,这样他 们必然要服长的刑期。只有当他们都首先替 对方着想时,或者相互合谋(串供)时,才可 以得到最短时间的监禁的结果。
清华诚志
26
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的思想, 每个个体都是理性的,所以必须了解竞争对手的思 想。商业关系被认为是一种相互作用。但博弈论并 不是疗法,并不是处方,它并不告诉你该付多少钱 买东西,这是计算机或者字典的任务。博弈论只是 提供一些关系的例证,一些有用的解决问题的方法。 这种思维方法也许是企业家应该学习的。对于经济 学家,也许需要学习它的理论模型,它的实验方式 。

博弈论最全完整-讲解课件

博弈论最全完整-讲解课件

• 王则柯、李杰编著,《博弈论教程》,中国人民大学 出版社,2004年版。
• 艾里克.拉斯缪森(Eric Rasmusen)著,《博弈与信 息:博弈论概论》,北京大学出版社,2003年版。
• 因内思·马可-斯达德勒,J.大卫·佩雷斯-卡斯特里罗著, 《信息经济学引论:激励与合约》,上海财经大学出版 社,2004年版。
学习交流PPT
17
约翰· 海萨尼 1920年 生于美 国
约翰·纳什 1928年生于美国
莱因哈 德·泽尔 腾, 1930 年生于 德国
学习交流PPT
18
1996年诺贝尔经济学奖获得者
英国人詹姆斯·莫里斯 (James A. Mirrlees)和 美国人威廉-维克瑞(William Vickrey)
托马斯·谢林
学习交流PPT
24
导论
三、博弈论的基本类型
学习交流PPT
25
合作博弈与非合作博弈
• 合作博弈(cooperative game) 达成有约束力的协议(binding
agreement),强调团体理性,强调效率、公 正、公平 • 非合作博弈(non-cooperative game)
强调个人理性,其结果可能有效率,也可能 无效率。
三位美国学者乔治-阿克尔洛夫(George A. Akerlof)、迈克尔-斯彭斯(A. Michael Spence)和约瑟夫-斯蒂格利茨(Joseph E. Stiglitz)
获奖理由:在“对充满不对称信息市场进行分 析”领域做出了重要贡献。
学习交流PPT
21
迈克尔·斯彭斯 1948年生于美国的 新泽西,1972年获 美国哈佛大学博士 头衔,现兼任美国 哈佛和斯坦福两所
• 也就是说,需要的是对这样的情况下该选什么 的预期的收敛。这一使得参与者能够成功合作 的共同预期的策略被称为焦点。心有灵犀一点 通。

博弈论课件

博弈论课件

扩展一:不完全信息博弈
不完全信息博弈的定义
01
在博弈中,参与人对于其他参与人的类型、偏好、战略空间等
信息不完全了解。
不完全信息博弈的分类
02
根据信息不完全的程度,可以分为完全信息不完全博弈和完全
非完美信息博弈。
不完全信息博弈的求解方法
03
包括贝叶斯纳什均衡、精炼贝叶斯纳什均衡、完美贝叶斯纳什
均衡等。
选举策略
博弈论可以用来分析选举中的投票行为和策略,研究候选人如何 制定竞选策略以最大化胜选机会。
政策制定
博弈论可以用来研究政策制定过程中的利益冲突和协调,分析政策 制定者如何平衡不同利益群体的需求。
国际关系
博弈论可以用来研究国际关系中的冲突和合作,分析国家如何通过 外交政策和军事手段来维护自身利益。
纯策略纳什均衡和混合策略纳什均衡 。
特点
纳什均衡是一种稳定的状态,任何参 与者单方面改变自己的策略都不会获 得更好的收益。
优势策略与劣势策略
优势策略
无论其他参与者如何选择策略, 该策略都能为参与者带来更高的
收益。
劣势策略
无论其他参与者如何选择策略,该 策略都能为参与者带来更低的收益 。
特点
在优势策略下,参与者没有理由改 变自己的策略;在劣势策略下,参 与者应该尽快改变自己的策略。
价格战的负面影响
价格战不仅会导致企业利润下降,还可能引发市场恶性竞争,破坏市场秩序。此外,价格战还可能导致产品质量 下降,损害消费者利益。
案例二:国际政治中的博弈策略
国际政治中的博弈策略
在国际政治中,各国之间往往存在着复杂的博弈关系。为了维护自身利益,各 国会采取不同的博弈策略,如通过外交手段、经济制裁、军事威胁等方式来达 到自己的目的。

博弈论PPT课件

博弈论PPT课件

2020/3/24
6
博弈论的发展
80年代后,克瑞普斯(kreps)和威尔 逊(wilson)则对不完全信息动态博弈 的研究作出了突出的贡献,并提出了更 高级的均衡概念:“贝叶斯精炼纳什均 衡”或称“完美贝叶斯均衡”。
严格地说,博弈论并不是经济学的一个 分支。它是一种方法,实际上,它属于 数学范畴。
2020/3/24
7
博弈论与经济学
– 博弈论在经济学领域应用最广泛,最成功; 博弈论的许多成果是借助于经济学的例子来 发展引申的。
– 经济学家对博弈论的贡献也越来越大,特别 是在动态分析和不完全信息引入博弈后。
– 最根本性的原因是经济学和博弈论的研究模 式是一样的,都强调个人理性,即追求给定 条件下效用最大化。
大程度上相信A会开发,而A是否开发依赖 于A在多大程度上认为需求是大的。假定A 认为高需求的概率为0.5,且B知道A的这个 “先验”信仰,B将选择不开发。这是因为, 如果B开发,A高需求的“信仰”不会向下 调整,A将选择开发,B利润为-3000万。
2020/3/24
14
博弈论的基本概念
参与人(player)也叫局中人,指的是 一个博弈中的决策主体。
2020/3/24
2
博弈论的研究对象
研究决策主体的行为发生直接相互作用 时候的决策以及这种决策的均衡问题。
博弈论与传统经济学有关决策理论区别
– 后者涉及的个人决策,是在给定价格参数和收入的 条件下,追求效用最大化的决策;个人效用只依赖 于自己的选择,而不依赖于他人的选择 。
– 而博弈论看来,个人效用不仅依赖于自己的选择, 而且依赖于他人的选择;个人的最优选择是其他人 选择的函数。
– 比如B的决策要在A之前作出,但B在决策之 前通过市场调研对需求有了确切的了解,而 A却没有。那么,B应该如何决策呢?
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2 引例 斗鸡博弈(懦夫博弈)
进 大将军
退
大英雄

退
-3, -3
2, 0
0, 2
0, 0
第1节 博弈论概论│什么是博弈论
1.1.2 引例 斗鸡博弈(懦夫博弈)ቤተ መጻሕፍቲ ባይዱ
独木桥
冷战期间美苏抢占地盘,一方抢占一块地盘,另一方就占另一块。 夫妻吵架,一方厉害,另一方就出去躲躲。
第1节 博弈论概论│什么是博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例 囚徒困境与苏美争霸
美国
不扩军备战 扩军备战
不扩军备战 (10, 10) (100, -100)
前苏联
在苏美争霸博弈中,美国和前苏联都处于“囚徒困境”中。
扩军备战 (-100, 100)
(0,0)
第1节 博弈论概论│什么是博弈论
1.1.2 引例
智猪博弈
第1节 博弈论概论│什么是博弈论
1.1.3 博弈论的概念 博弈论(game theory):研究利益存在冲突的决策主体在相互依赖的条件下,如何选择适
当的策略实施以获得最大利益的思想和方法。 1 研究对象不是客观规律,而是带有主动性的人的活动。
2 最优不是绝对的,而是现有主客观条件下的理想结果。
第1节 博弈论概论│什么是博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例
囚徒困境是图克(Tucker)1950年提出的,该博弈是博弈论最经典、著名的博弈。该
博弈本身讲的是一个法律刑侦或犯罪学方面的问题,但可以扩展到许多经济问题,以及
各种社会问题。
坦白
囚徒 B
不坦白
囚徒 A
坦白 不坦白
-5, -5 -10, -1
1, -10 -2, -2
博弈论(game theory)为解决这些问题提供了有力工具。
第1节 博弈论概论│什么是博弈论
1.1.1 博弈论的意义
要想在现代社会做一个有文化的人,你必须对 博弈论有一个大致了解。
保罗.萨缪尔森
第1节 博弈论概论│什么是博弈论
1.1.2 引例 孙膑与庞涓吃饼
一天鬼谷子想试孙膑与庞涓的智力,鬼谷子拿出5个饼,放在桌上,让他们两人取去吃。鬼谷子说: 每人一次最多拿两个饼,并且拿的饼全部吃完后才能再拿。鬼谷子说完后,庞涓赶忙拿了2个饼, 而孙膑从容地拿1个饼吃起来,庞涓未吃完两个饼,孙膑已经吃完1个饼,孙膑第二次拿了2个饼, 此时桌上已经没有饼了,最后,孙膑吃了三个饼,而庞涓吃了两个饼。在这则典故当中其实隐藏 着一条生存法则。
猪圈中有一头大猪和一头小猪,在猪圈的一端设有一个按钮,每按一下,位于猪圈另一端的食槽中 就会有10单位的猪食进槽,但每按一下按钮会耗去相当于2单位猪食的成本。如果大猪先到食槽, 则大猪吃到9单位食物,小猪仅能吃到1单位食物;如果两猪同时到食槽,则大猪吃7单位,小猪吃 3单位食物;如果小猪先到,大猪吃6单位而小猪吃4单位食物。给出这个博弈的支付矩阵。
精品
运筹学第13章博弈论 (20141202版)
第13章 博弈论
• 博弈论概论 • 纳什均衡 • 子博弈精炼纳什均衡 • 贝叶斯纳什均衡 • 精练贝叶斯纳什均衡
第1节 博弈论概论
1 什么是博弈论
第1节 博弈论概论│什么是博弈论
1.1.1 博弈论的意义
一个人的行为总是受到他人行为的影响。人们在追逐自己利益时,难免要与他人发生利益冲突或 矛盾。如何克服和解决人们之间的利益冲突?如何才能实现一种既能让每个人都实现自己的利益, 又能让每个人都不妨碍和伤害他人利益的互利互惠的和谐局面?
第1节 博弈论概论│什么是博弈论
1.1.2 引例 “智猪博弈—搭便车”
大猪
按 等待
小猪 按
5, 1
9, -1
等待
4, 4 0, 0
第1节 博弈论概论│什么是博弈论
1.1.2 引例 股市博弈
在股票市场上,大户是大猪,他们要进行技术分析,收集信息、预测股价走势,但大量散户就是小 猪。他们不会花成本去进行技术分析,而是跟着大户的投资战略进行股票买卖,即所谓“散户跟大 户”的现象。
第1节 博弈论概论│什么是博弈论
1.1.2 引例 海滩选址博弈
海洋
海滩
0
B
C
A
200码
两个竞争者Y和C销售软饮料 日光裕者均匀分布在海滩上 Y和C价格相等 消费者从较近的售点购买饮料
第1节 博弈论概论│什么是博弈论
1.1.2 引例 海滩选址博弈
在中国的大城市里,你会发现一个有意思的现象,当你在街边看到一个肯德基后,相距不太远的距 离你会发现一个麦当劳
第1节 博弈论概论│什么是博弈论
1.1.2 引例 为什么中小企业不会花钱去开发新产品?
在技术创新市场上,大企业是大猪,它们投入大量资金进行技术创新,开发新产品,而中小企业是 小猪,不会进行大规模技术创新,而是等待大企业的新产品形成新的市场后生产模仿大企业的新产 品的产品去销售。
第1节 博弈论概论│什么是博弈论
1.1.2 引例 石头、剪子、布
博弈方 1
石头 剪子 布
石头
0, 0 -1, 1 1,-1
博弈方2 剪子
1, -1
0, 0
-1,1

-1,1 1,-1 0,0
第1节 博弈论概论│什么是博弈论
1.1.2 引例 利益与道德的博弈
有一群猴子被关在笼子里。在笼子里的上方有一条绳子,绳 子拴着一个香蕉,绳子的另一头连着一个水箱。猴子们发现 了香蕉,有个猴子跳上去够这个香蕉,当猴子够到时,与香 蕉相连的绳子带动了水箱,于是一盆水倒进了笼子。尽管够 到香蕉的猴子吃到了香蕉,但其他猴子被淋湿了。吃到香蕉 的猴子是少数,而其余的大多数猴子都被淋湿。经过一段时 间,有一伙猴子自觉地行动起来,当有猴子去抓香蕉时,它 们便揍那个猴子。久而久之,猴子们内部形成了道德约束, 再也没有猴子敢去取香蕉了。
第1节 博弈论概论│什么是博弈论
1.1.2 引例 商业竞争策略:广告战
可口 可乐
做广告 不做广告
做广告
10, 5
百事可乐 不做广告
15, 0
6, 8
10, 2
两个公司互相竞争,两个公司的广告互相影响,即一公司的广告较被顾客接受则会夺取对方的部分收入。但 若双方同时期发布同等数量的广告,双方收入都增加很少而成本增加。但若不提高广告数量,生意又会被对 方夺走。两个公司可以有二选择:1.互相达成协议,减少广告的开支。(合作) 2.增加广告开支,压倒对方。 (背叛) 在现实中,要两个互相竞争的公司达成合作协议是较为困难的,多数都会陷入囚徒困境中。
相关文档
最新文档