土木工程专业英语(路桥方向)最新版本

合集下载

土木工程专业英语(路桥方向)李嘉主编

土木工程专业英语(路桥方向)李嘉主编

Lesson 1 土木工程中的各种业务土木工程是一个意味着工程师必须要经过专门的大学教育的职业。

许多政府管辖部门还有(一套)认证程序,这一程序要求工科毕业生在他们能积极地开始(从事)他们的事业之前,通过(认证)考试, 这种考试类似于律师职业里的律师考试一样。

大学里, 工科课程中着重强调数学、物理, 和化学,尤其在开始的二到三年。

在工科所有分支中,数学非常重要, 因此它被着重地强调。

今天, 数学包括统计学中的课程主要涉及集合, 分类, 和使用数字数据, 或信息。

统计数学的一个重要方面是概率, 它涉及当有改变问题的结果的不同的因素, 或变量时,可能会发生什么。

例如,在承担桥梁的建设之前, 运用统计研究来预计未来桥梁期望承受的交通量. 在桥梁的设计中,(各种)变量如作用在基础上的水压, 碰撞, 不同的风力的作用, 以及许多其它因素必须考虑。

由于在解决这些问题涉及大量的计算, 现在几乎所有工科课程中都包括计算机编程。

当然,计算机能比人类以更快的速度和准确性解决许多问题。

但如果不给计算机清楚和准确指令和信息,换句话说,一个好程序,它也是无用的。

虽然,在工科课程中,对技术科目着重强调,但当前的趋势还是要求学生学习社会科学和语言艺术的课程。

工程和社会间的关系变得更加紧密; 因此,再一次充分说明, 工程师负责(承担)的工程在许多不同和重要的方面影响社会,这些方面是他们所知道的。

并且,工程师需要一种很肯定(自信)语言表达方式来准备报告,这个报告要清楚明了,且在多数情况下, 是令人信服的。

参与研究的工程师要能为科学出版物详细描述他们的发现。

最后两年的工科课程计划包括学生专业领域的学科。

为准备使学生成为一名土木工程师, 这些专业课程可能会涉及诸如大地测量、土力学,或水力学。

学生在大学中的最后一年前常常就开始了频繁的工程师招聘。

近年来,许多不同的公司和政府机构为争夺工程师而竞争。

在今天这个重视科学技术的社会,受过技术训练的人当然是受欢迎的。

专业英语【土木项目工程(路桥方向)】

专业英语【土木项目工程(路桥方向)】

专业英语English article in Civil Engineering (土木工程专业英语课文)Lesson1Careers in Civil EngineeringEngineering is a profession, which means that an engineer must have a specialized university education. Many government jurisdictions also have licensing procedures which require engineering graduates to pass an examination, similar to the bar examination for a lawyer, before they can actively start on their careers.specialized专门的, 专科的 jurisdiction管辖权,权限 license许可(证),执照 bar 律师业土木工程是一个意味着工程师必须要经过专门的大学教育的职业。

许多政府管辖部门还有(一套)认证程序,这一程序要求工科毕业生在他们能积极地开始(从事)他们的事业之前,通过(认证)考试, 这种考试类似于律师职业里的律师考试一样。

In the university, mathematics, physics, and chemistry are heavily emphasized throughout the engineering curriculum, but particularly in the first two or three years. Mathematics is very important in all branches of engineering, so it is greatly stressed. Today, mathematics includes courses in statistics, which deals with gathering, classifying, and using numerical data, or pieces of information.mathematics n.数学 curriculum n.课程 branch n. (学科)分科 stress 强调 courses n.课程,路线statistics n. 统计学,统计 deal with涉及,处理An important aspect of statistical mathematics is probability, which deals with what may happen when there are different factors, or variables, that can change the results of a problem. Before the construction of a bridge is undertaken, for example, a statistical study is made of the amount of traffic (which) the bridge will be expected to handle. In the design of the bridge, variables such as water pressure on the foundation, impact, the effects of different wind forces, and many other factors must be considered handleundertake vt.承担 amount of traffic n.交通量 impact碰撞,冲击 Variable 变量大学里, 工科课程中着重强调数学、物理, 和化学,尤其在开始的二到三年。

专业英语(土木工程路桥方向)李嘉第三版翻译中英对照

专业英语(土木工程路桥方向)李嘉第三版翻译中英对照

Lesson 7 Transportation Systems交通运输系统Transportation system in a developed nation consists of a network of modes that have evolved over many years. The system consists of vehicles, guideways, terminal facilities and control systems: these operate according to established procedures and schedules in the air, on land, and on water. The system also requires interaction with the user, the operator and the environment. The systems that are in place reflect the multitude of decisions made by shippers, carriers, government, individual travelers, and affected nonusers concerning the investment in or the use of transportation. The transportation system that has evolved has produced a variety of modes that complement each other.在发达国家,交通运输系统由网状结构组成的模式已经发展了好多年。

这个系统由交通工具、轨道、站场设施和控制系统组成。

这些依照空中、陆上和水上已制定的程序和计划运转。

这个系统也需要和用户、司机和环境互动。

土木工程专业英语词汇(整理版)

土木工程专业英语词汇(整理版)

土木工程专业英语词汇(整理版)第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics41 水力学 hydraulics42 流体力学 fluid mechanics精品文库43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical83 文献literature84 国际标准刊号ISSN International Standard Serial Number精品文库85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基9.viscous damping 粘滞阻尼10.shear modulus 剪切模量精品文库11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会精品文库四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降27.deformation 变形28.casing 套管精品文库29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theory 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢 - 混凝土复合结构 steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构 statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics精品文库41 水力学 hydraulics42 流体力学 fluid mechanics43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 扭矩 torque53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 沉降settlement62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub-discipline82 期刊 journal periodical精品文库83 文献literature84 国际标准刊号ISSN International Standard Serial Number85 国际标准书号ISBN International Standard Book Number86 卷 volume87 期 number88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 工程索引EI Engineering Index99 科学引文索引SCI Science Citation Index100 科学技术会议论文集索引ISTP Index to Science and Tec hnology Proceedings101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 美国土木工程师协会ASCE American Society of Civil Engineers109 联邦公路总署FHWA Federal Highway Administration110 国际标准组织ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification Code第二部分:岩土工程专业词汇1.geotechnical engineering 岩土工程2.foundation engineering 基础工程3.soil earth 土4.soil mechanics 土力学5.cyclic loading 周期荷载6.unloading 卸载7.reloading 再加载8.viscoelastic foundation 粘弹性地基精品文库9.viscous damping 粘滞阻尼10.shear modulus 剪切模量11.soil dynamics 土动力学12.stress path 应力路径13.numerical geotechanics 数值岩土力学二.土的分类1.residual soil 残积土 groundwater level 地下水位2.groundwater 地下水 groundwater table 地下水位3.clay minerals 粘土矿物4.secondary minerals 次生矿物ndslides 滑坡6.bore hole columnar section 钻孔柱状图7.engineering geologic investigation 工程地质勘察8.boulder 漂石9.cobble 卵石10.gravel 砂石11.gravelly sand 砾砂12.coarse sand 粗砂13.medium sand 中砂14.fine sand 细砂15.silty sand 粉土16.clayey soil 粘性土17.clay 粘土18.silty clay 粉质粘土19.silt 粉土20.sandy silt 砂质粉土21.clayey silt 粘质粉土22.saturated soil 饱和土23.unsaturated soil 非饱和土24.fill (soil) 填土25.overconsolidated soil 超固结土26.normally consolidated soil 正常固结土27.underconsolidated soil 欠固结土28.zonal soil 区域性土29.soft clay 软粘土30.expansive (swelling) soil 膨胀土31.peat 泥炭32.loess 黄土33.frozen soil 冻土24.degree of saturation 饱和度25.dry unit weight 干重度26.moist unit weight 湿重度精品文库45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会四.渗透性和渗流1.Darcy’s law 达西定律2.piping 管涌3.flowing soil 流土4.sand boiling 砂沸5.flow net 流网6.seepage 渗透(流)7.leakage 渗流8.seepage pressure 渗透压力9.permeability 渗透性10.seepage force 渗透力11.hydraulic gradient 水力梯度12.coefficient of permeability 渗透系数五.地基应力和变形1.soft soil 软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力3.effective stress 有效应力4.total stress 总应力5.field vane shear strength 十字板抗剪强度6.low activity 低活性7.sensitivity 灵敏度8.triaxial test 三轴试验9.foundation design 基础设计10.recompaction 再压缩11.bearing capacity 承载力12.soil mass 土体13.contact stress (pressure)接触应力(压力)14.concentrated load 集中荷载15.a semi-infinite elastic solid 半无限弹性体16.homogeneous 均质17.isotropic 各向同性18.strip footing 条基19.square spread footing 方形独立基础20.underlying soil (stratum strata)下卧层(土)21.dead load =sustained load 恒载持续荷载22.live load 活载23.short –term transient load 短期瞬时荷载24.long-term transient load 长期荷载25.reduced load 折算荷载26.settlement 沉降精品文库27.deformation 变形28.casing 套管29.dike=dyke 堤(防)30.clay fraction 粘粒粒组31.physical properties 物理性质32.subgrade 路基33.well-graded soil 级配良好土34.poorly-graded soil 级配不良土35.normal stresses 正应力36.shear stresses 剪应力37.principal plane 主平面38.major (intermediate minor) principal stress 最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件40.FEM=finite element method 有限元法41.limit equilibrium method 极限平衡法42.pore water pressure 孔隙水压力43.preconsolidation pressure 先期固结压力44.modulus of compressibility 压缩模量45.coefficent of compressibility 压缩系数pression index 压缩指数47.swelling index 回弹指数48.geostatic stress 自重应力49.additional stress 附加应力50.total stress 总应力51.final settlement 最终沉降52.slip line 滑动线六.基坑开挖与降水1 excavation 开挖(挖方)2 dewatering (基坑)降水3 failure of foundation 基坑失稳4 bracing of foundation pit 基坑围护5 bottom heave=basal heave (基坑)底隆起6 retaining wall 挡土墙7 pore-pressure distribution 孔压分布8 dewatering method 降低地下水位法9 well point system 井点系统(轻型)10 deep well point 深井点11 vacuum well point 真空井点12 braced cuts 支撑围护13 braced excavation 支撑开挖14 braced sheeting 支撑挡板七.深基础--deep foundation1.pile foundation 桩基础1)cast –in-place 灌注桩diving casting cast-in-place pile 沉管灌注桩bored pile 钻孔桩special-shaped cast-in-place pile 机控异型灌注桩piles set into rock 嵌岩灌注桩rammed bulb pile 夯扩桩2)belled pier foundation 钻孔墩基础drilled-pier foundation 钻孔扩底墩under-reamed bored pier3)precast concrete pile 预制混凝土桩4)steel pile 钢桩steel pipe pile 钢管桩steel sheet pile 钢板桩5)prestressed concrete pile 预应力混凝土桩prestressed concrete pipe pile 预应力混凝土管桩2.caisson foundation 沉井(箱)3.diaphragm wall 地下连续墙截水墙4.friction pile 摩擦桩5.end-bearing pile 端承桩6.shaft 竖井;桩身7.wave equation analysis 波动方程分析8.pile caps 承台(桩帽)9.bearing capacity of single pile 单桩承载力teral pile load test 单桩横向载荷试验11.ultimate lateral resistance of single pile 单桩横向极限承载力12.static load test of pile 单桩竖向静荷载试验13.vertical allowable load capacity 单桩竖向容许承载力14.low pile cap 低桩承台15.high-rise pile cap 高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力17.silent piling 静力压桩18.uplift pile 抗拔桩19.anti-slide pile 抗滑桩20.pile groups 群桩21.efficiency factor of pile groups 群桩效率系数(η)22.efficiency of pile groups 群桩效应23.dynamic pile testing 桩基动测技术24.final set 最后贯入度25.dynamic load test of pile 桩动荷载试验26.pile integrity test 桩的完整性试验27.pile head=butt 桩头28.pile tip=pile point=pile toe 桩端(头)29.pile spacing 桩距30.pile plan 桩位布置图31.arrangement of piles =pile layout 桩的布置32.group action 群桩作用33.end bearing=tip resistance 桩端阻34.skin(side) friction=shaft resistance 桩侧阻35.pile cushion 桩垫36.pile driving(by vibration) (振动)打桩37.pile pulling test 拔桩试验38.pile shoe 桩靴39.pile noise 打桩噪音40.pile rig 打桩机九.固结 consolidation1.Terzzaghi’s consolidation theory 太沙基固结理论2.Barraon’s consolidation theory 巴隆固结理论3.Biot’s consolidation theory 比奥固结理论4.over consolidation ration (OCR)超固结比5.overconsolidation soil 超固结土6.excess pore water pressure 超孔压力7.multi-dimensional consolidation 多维固结8.one-dimensional consolidation 一维固结9.primary consolidation 主固结10.secondary consolidation 次固结11.degree of consolidation 固结度12.consolidation test 固结试验13.consolidation curve 固结曲线14.time factor Tv 时间因子15.coefficient of consolidation 固结系数16.preconsolidation pressure 前期固结压力17.principle of effective stress 有效应力原理18.consolidation under K0 condition K0 固结十.抗剪强度 shear strength1.undrained shear strength 不排水抗剪强度2.residual strength 残余强度3.long-term strength 长期强度4.peak strength 峰值强度5.shear strain rate 剪切应变速率6.dilatation 剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法 8.total stress approach of shear strength 抗剪强度总应力法9.Mohr-Coulomb theory 莫尔-库仑理论10.angle of internal friction 内摩擦角11.cohesion 粘聚力12.failure criterion 破坏准则13.vane strength 十字板抗剪强度14.unconfined compression 无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线16.effective stress strength parameter 有效应力强度参数十一.本构模型--constitutive model1.elastic model 弹性模型2.nonlinear elastic model 非线性弹性模型3.elastoplastic model 弹塑性模型4.viscoelastic model 粘弹性模型5.boundary surface model 边界面模型6.Du ncan-Chang model 邓肯-张模型7.rigid plastic model 刚塑性模型8.cap model 盖帽模型9.work softening 加工软化10.work hardening 加工硬化11.Cambridge model 剑桥模型12.ideal elastoplastic model 理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则14.yield surface 屈服面15.elastic half-space foundation model 弹性半空间地基模型16.elastic modulus 弹性模量17.Winkler foundation model 文克尔地基模型十二.地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏2.general shear failure 整体剪切破化3.local shear failure 局部剪切破坏4.state of limit equilibrium 极限平衡状态5.critical edge pressure 临塑荷载6.stability of foundation soil 地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力十三.土压力--earth pressure1.active earth pressure 主动土压力2.passive earth pressure 被动土压力3.earth pressure at rest 静止土压力4.Coulomb’s earth pressure theory 库仑土压力理论5.Rankine’s earth pressure theo ry 朗金土压力理论十四.土坡稳定分析--slope stability analysis1.angle of repose 休止角2.Bishop method 毕肖普法3.safety factor of slope 边坡稳定安全系数4.Fellenius method of slices 费纽伦斯条分法5.Swedish circle method 瑞典圆弧滑动法6.slices method 条分法十五.挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性2.foundation wall 基础墙3.counter retaining wall 扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙6.gravity retaining wall 重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙8.anchored sheet pile wall 锚定板板桩墙十六.板桩结构物--sheet pile structure1.steel sheet pile 钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩3.steel piles 钢桩4.wooden sheet pile 木板桩5.timber piles 木桩十七.浅基础--shallow foundation1.box foundation 箱型基础2.mat(raft) foundation 片筏基础3.strip foundation 条形基础4.spread footing 扩展基础pensated foundation 补偿性基础6.bearing stratum 持力层7.rigid foundation 刚性基础8.flexible foundation 柔性基础9.emxxxxbedded depth of foundation 基础埋置深度 foundation pressure 基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析十八.土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度2.wave velocity method 波速法3.material damping 材料阻尼4.geometric damping 几何阻尼5.damping ratio 阻尼比6.initial liquefaction 初始液化7.natural period of soil site 地基固有周期8.dynamic shear modulus of soils 动剪切模量9.dynamic ma二十.地基基础抗震1.earthquake engineering 地震工程2.soil dynamics 土动力学3.duration of earthquake 地震持续时间4.earthquake response spectrum 地震反应谱5.earthquake intensity 地震烈度6.earthquake magnitude 震级7.seismic predominant period 地震卓越周期8.maximum acceleration of earthquake 地震最大加速度二十一.室内土工实验1.high pressure consolidation test 高压固结试验2.consolidation under K0 condition K0 固结试验3.falling head permeability 变水头试验4.constant head permeability 常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD)paction test 击实试验9.consolidated quick direct shear test 固结快剪试验10.quick direct shear test 快剪试验11.consolidated drained direct shear test 慢剪试验12.sieve analysis 筛分析13.geotechnical model test 土工模型试验14.centrifugal model test 离心模型试验15.direct shear apparatus 直剪仪16.direct shear test 直剪试验17.direct simple shear test 直接单剪试验18.dynamic triaxial test 三轴试验19.dynamic simple shear 动单剪20.free(resonance)vibration column test 自(共)振柱试验二十二.原位测试1.standard penetration test (SPT)标准贯入试验2.surface wave test (SWT) 表面波试验3.dynamic penetration test(DPT) 动力触探试验4.static cone penetration (SPT) 静力触探试验5.plate loading test 静力荷载试验teral load test of pile 单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验8.cross-hole test 跨孔试验9.screw plate test 螺旋板载荷试验10.pressuremeter test 旁压试验11.light sounding 轻便触探试验12.deep settlement measurement 深层沉降观测13.vane shear test 十字板剪切试验14.field permeability test 现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测16.in-situ soil test 原位试验。

土木工程桥梁专业英语

土木工程桥梁专业英语

Beam bridge
• a bridge that utilizes girders as the means of supporting the deck • the most commonly built and utilized bridge • the most simplified form • No moments are transferred throughout the support
Arch Bridge
One or more arches Masonry, reinforced concrete or steel deck arch bridge(上承式拱桥) through arch bridge(下承式拱桥) Spans can be longer than beam or truss
Thank you
History of Bridge Development
Akashi Kaikyō Bridge 1988-1998 the longest central span in the world (1991m)
Types of Bridges
1. 2. 3. 4. 5. Beam bridge Arch Bridge Moveable bridge Cable-Stayed Bridge Suspension Bridge
BRIDGES
History of Bridge Development
1. 2. 3. 4. 5. 6. 7. Clapper Bridge Roman Arch Bridge Zhaozhou Bridge Covered Bridge Tower Bridge Brooklyn Bridge Akashi Kaikyō Bridge

专业英语(土木工程-路桥方向)李嘉-第三版-翻译-中英对照

专业英语(土木工程-路桥方向)李嘉-第三版-翻译-中英对照

Lesson 7 Transportation Systems交通运输系统Transportation system in a developed nation consists of a network of modes that have evolved over many years. The system consists of vehicles, guideways, terminal facilities and control systems: these operate according to established procedures and schedules in the air, on land, and on water. The system also requires interaction with the user, the operator and the environment. The systems that are in place reflect the multitude of decisions made by shippers, carriers, government, individual travelers, and affected nonusers concerning the investment in or the use of transportation. The transportation system that has evolved has produced a variety of modes that complement each other.在发达国家,交通运输系统由网状结构组成的模式已经发展了好多年。

这个系统由交通工具、轨道、站场设施和控制系统组成。

这些依照空中、陆上和水上已制定的程序和计划运转。

这个系统也需要和用户、司机和环境互动。

土木工程专业英语完整版本

土木工程专业英语完整版本

土木工程专业英语完整版本土木工程专业英语导言:随着社会的不断发展,经济的高速发展,人们对于城市环境、公共基础设施的要求也越来越高,越来越重视土木工程的建设。

作为一项基础学科,土木工程具有非常重要的战略地位。

在这篇文章中,我们将对土木工程的一些专业术语做出详细的介绍,以适应当前土木工程行业的需要。

一、桥梁工程1. Arch Bridge:拱桥,是一种采用拱形构件支撑路面的桥梁,可以承受悬臂力,是最早的桥梁之一。

2. Cantilever Bridge:悬臂桥,是一种建立在两个支点之间的桥梁,可以悬挂于谷底或江河之上。

3. Suspension Bridge:悬索桥,是一种吊在两座高塔上的桥梁。

使用加长的支撑索来支撑桥面,两端吊挂钢缆,构成一致的结构。

4. Cable-stayed Bridge:斜拉桥,是一种基于斜拉索的自锚式桥梁,使用钻石型的斜拉索分担承载力。

5. Truss Bridge:桁架桥,由许多三角形连结构成的。

桁架可以使用金属、木材或者混凝土来制造。

二、隧道工程1. Tunneling:隧道施工,用于采取措施,在地下构筑建筑物、隧道、气井、沙井、其中包括机泵、圈梁机、卡盘夹具、支撑材料和安全系统等。

2. Tunnel Boring Machine (TBM):隧道掘进机,是在地下开挖的大型钻掘机器,俗称“挖洞机”。

主要用于隧道、井巷、水利工程等的掘进作业。

3. Casing:套管,是为了增加井壁的稳定性、防止塌陷,而将管子垂直放置或包裹在内的构造物。

4. Grouting:灌浆,是使用压力将浆液注入混凝土或者岩石之中,以提高其强度,也用于修复已损坏的部件。

5. Shaft:竖井,是需要通往地面、地下、水位面或下一地层的隧道、工作井、沙井等的基础结构。

三、建筑工程1. Foundation:基础,是建筑物架构中的底部结构,提供支持和稳定。

包括基础地基、浇筑地基等2. Beam:梁,是用于承载楼板的水平结构,通常由钢筋混凝土、钢或木材制成。

《专业英语》[土木工程专业(路桥方向)教学大纲

《专业英语》[土木工程专业(路桥方向)教学大纲

专业英语在土木工程专业(路桥方向)教学大纲中的重要性专业英语是指在特定领域内使用的英语专业术语和表达方式。

对于土木工程专业(路桥方向)的学生而言,掌握专业英语是非常重要的。

因为土木工程是一个与国家建设和城市化进程密切相关的重要技术领域,需要大量的专业技术人才。

而在国际化的今天,掌握专业英语不仅可以加深对专业知识的理解和掌握,还可以拓宽国际交流的视野,提高学生的国际竞争力。

在土木工程专业(路桥方向)的教学大纲中,专业英语的教学通常主要涉及以下几个方面:1. 专业术语和表达方式的学习2. 英语论文写作3. 口语表达能力培养4. 听力和阅读能力提升专业英语的学习需要学生掌握大量的专业术语和表达方式。

土木工程专业(路桥方向)涉及到很多特定的工程名词和技术术语,学生需要通过专业英语的学习,掌握这些专业术语的正确用法和表达方式,以便在今后的学习和工作中能够准确地表达和交流。

对于土木工程专业(路桥方向)的学生来说,英语论文写作是一个非常重要的能力。

在国际学术交流中,英文论文是学术界交流的主要方式之一。

学生需要通过专业英语的学习,提升自己的英文写作能力,以便能够更好地参与国际学术交流。

口语表达能力和听力能力也是专业英语教学中需要重点培养的能力。

在国际交流中,良好的口语表达能力和听力能力可以帮助学生更好地与外国专家和同行交流,获取最新的学术信息和研究成果。

专业英语在土木工程专业(路桥方向)的教学大纲中具有重要地位。

通过专业英语的学习,学生可以更好地掌握专业知识,提高自己的国际竞争力,并为今后的学术研究和工作奠定良好的基础。

个人观点:专业英语对于土木工程专业(路桥方向)的学生来说,是非常重要的。

在今后的学习和工作中,掌握专业英语将会成为一个重要的竞争优势。

学生应该充分重视专业英语的学习,不断提升自己的专业英语能力,以便更好地为国家的建设和城市化进程做出贡献。

土木工程专业(路桥方向)的学生需要通过专业英语的学习,掌握大量的专业术语和表达方式。

土木工程专业英语——桥梁PPT课件

土木工程专业英语——桥梁PPT课件

3/5/2020
10
Loads
Civil Engineering English(CTGU) Chapter 8 Bridge Engineering Section A Bridges
4-1
The forces that act on bridge structural members are produced by three kinds of loads: the dead load, the live load, and the occasional load. Dead load refers to the weight of the bridge itself - is usually the greatest load. Live load refers to traffic that moves across the bridges as well as normal environmental factors such as changes in temperature, precipitation, and winds.
3/5/2020
12
Loads
Civil Engineering English(CTGU) Chapter 8 Bridge Engineering Section A Bridges
4-3
It has been greatly improved by the use of advanced mathematics,
3/5/2020
7
Material
Civil Engineering English(CTGU) Chapter 8 Bridge Engineering Section A Bridges

Lesson 07 Bridge(土木工程专业英语)PPT课件

Lesson 07 Bridge(土木工程专业英语)PPT课件
土木工程专业英语
1
Lesson 7 Bridge 桥梁
New words and phrases:
valley 山谷 obstacle 障碍 aqueduct 沟渠;水道 pedestrian 行人 barge 游艇 isolated 孤立的;隔离的 log 圆木 vine 藤蔓 slant 倾斜 swift 迅速 subsoil 地基;地下
藤条被系在要跨越的溪流和峡谷两边的树木或岩石上。一根 或几根藤条被用来行走。其他的藤条被挂在几英尺高处用来供手 抓。
土木工程专业英语
6
Bridge
Although vine bridges are usually unstable, some built by the Incas were strong and stable enough to be used by the invading Spanish soldiers and their horses.
许多高架渠桥梁承担起了沟渠和驳船交通,这些桥梁大多数 修建于19世纪的欧洲;其中至少有一座,在纽约的肯尼迪机场, 是用来在公路上方运送滑行的飞机。
土木工程专业英语
3
aqueduct bridges
土木工程专业英语
4
Bridge
The first bridges built by man probably resembled those still being constructed by primitive peoples in isolated regions.
到目前为止,大多数桥梁是被设计用来承担汽车和铁路交通, 但是也有一些是只用作行人通行。
A number of aqueduct bridges, mostly erected in Europe in the 19th century, carry canals and their barge traffic;and at least one bridge, at New York City’s Kennedy AirPort, serves to carry taxying aircraft over a highway.

专业英语(土木工程-路桥方向)李嘉-第三版--翻译excel版可排序-你懂得

专业英语(土木工程-路桥方向)李嘉-第三版--翻译excel版可排序-你懂得

1、土木工程中的各种业务Engineering is a profession, which means that an engineer must have a specialized university education. Many government jurisdictions also have licensing procedures which require engineering graduates to pass an examination, similar to the examination for a lawyer, before they can actively start on their careers.In the university, mathematics, physics, and chemistry are heavily emphasized throughout the engineering curriculum, but particularly in the first two or three years. Mathematic is very important in all branches of engineering, so it is greatly stressed. Today, mathematics includes courses in statistics, which deals with gathering, classifying, and using numerical data, or pieces of information. An important aspect of statistical mathematics is probability, which deals with what may happen when there are different factors, or variables, that can change the results of a problem. Before the construction of a bridge is undertaken, for example, a statistical study is made of the amount of traffic the bridge will be expected to handle. In the design of the bridge, variable such as water pressure on the foundation, impact,the effects of different wind forces, and many other factors must be considered.Because a great deal of calculation is involved in solving these problems, computer programming is now included in almost all engineering curricula. Computer, of course, can solve many problems involving calculations with greater speed and accuracy than a human being can. But computers are useless unless they are given clear and accurate instructions and information—in other words, a good program.In spite of the heavy emphasis on technical subjects in the engineering curriculum, a current trend is to require students to take courses in the social science and the language arts.We have already discussed the relationship between engineering and society ; it is sufficient, therefore, to say again that the work performed by an engineer affects society in many different and important ways that he or she should aware of. An engineer also needs a sufficient command of language to be able to prepare reports that are clear and, in many cases, persuasive. An engineer engaged in research will need to be able to write up his or herfindings for scientific publications.The last two years of an engineering program include subjects within the student’s field of specialization. For the student who is preparing to become a civil engineer, these specialized courses may deal with such subjects as geodetic surveying, soil mechanics, or hydraulics. Active recruiting for engineers often begins before the student’s last year in the university. Many different corporation and government agencies have competed for the services of engineers in recent years. In the science-oriented society of today, people who have technical training are, of course, in demand. Young engineers may choose to go into environmental or sanitary engineering, for example, where environmental concerns have created many openings; or they may choose construction firms that specialized in highway work; or they may prefer to work with one of the government agencies that deal with water resource.Indeed, the choice is large and varied.When the young engineer has finally started actual practice, the theoretical knowledge acquired in the university must be applied. He or she will probably be assigned at the beginning to work with a team of engineers. Thus, on-the-job training can be acquired that will demonstrate his or her ability to translate theory into practice to the supervisors.The civil engineering may work in research, design, construction supervision, maintenance, or even in sales or management. Each of these areas involves different duties, different emphases, and different uses of engineer’s and also the development and testing of newstructural materials.Research is one of the most important aspects of scientific and engineering practice. A researcher usually works as a member of a team with other scientists and engineers. He or she is often employed in a laboratory that is financed by government or industry. Areas of research connected with civil engineering include soil mechanics and soil stabilization techniques, and also the development and testing of new structural materials.Civil engineering projects are almost always unique; that is,each has its own problems anddesign features. Therefore, careful study is given to each project even before design work begins. The study includes a survey both of topography and subsoil features of the proposed site. It also includes a consideration of possible alternatives, such as a concrete gravity dam or an earth-fill embankment dam. The economic factors involved in each of the possible alternatives must also be weighed.Today , a study usually includes a consideration of the environmental impact of the project. Many engineers, usually working as a team that includes surveyors, specialists in soil mechanics, and experts in design and construction, are involved in making these feasibilitystudies.Construction is a complicated process on almost all engineering projects. It involves scheduling the work and utilizing the equipment and the materials so that costs are kept as low as possible. Safety factor must also be taken into account, since construction can be very dangerous. Many civil engineers therefore specialize in the construction phase.Much of the work of civil engineers is carried on outdoors, often in rugged and difficult terrain or under dangerous conditions. Surveying is an outdoor occupation, for example, and dams are often built in wild river valleys or gorges. Bridges, tunnels, and skyscrapers under construction can also be dangerous places to work. In addition, the wor must also progress under all kinds of weather conditions.The prospective civil engineer should be aware of the physical demands that will be made on him or her .2、现代建筑与建筑材料Many great buildings built in the earlier ages are still in existence and in use. Among them are the Pantheon and the Colosseum in Rome, Hagia Sophia in Istanbul; the Gothic churches of France and England, and the Renaissance cathedrals, with their great domes, like the Duomo in Florence and St. Peter's in Rome. They are massive structures with thick stone walls that counteract the thrust of their great weight. Thrust is the pressure exerted by eachpart of a structure on its other parts.These great buildings were not the product of knowledge of mathematics and physics. They were constructed instead on the basis of experience and observation, often as the result of trial and error. One of the reasons they have survived is because of the great strength that was built into them-strength greater than necessary in most cases. But the engineers of earlier times also had their failure. In Rome, for example, most of the people lived in insulae, great tenement blocks that were often ten stories high. Many of them were poorly constructed andsometimes collapsed with considerable loss or life.Today, however, the engineer has the advantage not only of empirical information, but also of scientific data that permit him to make careful calculations in advance. When a modem engineer plans a structure, he takes into account the total weight of all its component materials. This is known as the dead load, which is the weight of the structure itself, He must also consider the live load, the weight of all the people, cars, furniture, machines, and so on that the structure will support when it is in use. In structures such as bridges that will handle fast automobile traffic, he must consider the impact, the force at which the live load will be exerted on the structure, He must also determine the safety factor, that is, an additionalcapability to make the structure stronger than the combination of the three other factors.The modern engineer must also understand the different stresses to which the materials in a structure are subject. These include the forces of compression and tension. In compression the material is pressed or pushed together; in tension the material is pulled apart or stretched, like a rubber band. In the Fig.2.1 the top surface is concave,or bent inward,and the material in it is in compression. The bottom surface is convex ,or bent outward,and the material in it is in tension. When a saw cuts easily through a piece of wood,the wood is in tension,but when the saw begins to bind,the wood is in compression because the fibers in it are being pushed together.In additin to tension and compression, another force is at work, namely shear, which wedefined as the tendency of a material to fracture along the lines of stress. The shear might occur in a vertical plane, but it also might run along the horizontal axis of the beam, the neutral plane, where there is neither tension nor compression.Altogether, three forces can act on a structure: vertical-those that act up or down; horizontal-those that act sideways; and those that act upon it with a rotating or turning motion. Forces that act at an angle are a combination of horizontal and vertical forces. Since the structures designed by civil engineers are intended to be stationary or stable, these forces must be kept in balance. The vertical forces, for example, must be equal to each other. If a beam supports a load above, the beam itself must have sufficient strength to counterbalance that weight. The horizontal forces must also equal each other so that there is not too much thrust either to the right or to the left. And forces that might pull the structure around must be countered with forces that pull in the opposite direction.One of the most spectacular engineering failures of modern times, the collapse of the Tacoma Narrows Bridge in 1940, was the result of not considering the last of these factors carefully enough. When strong gusts of wind, up to sixty-five kilometers an hour, struck the bridge during a storm, they set up waves along the roadway of the bridge and also a lateral motion that caused the roadway to fall. Fortunately, engineers learn from mistakes, so it is now common practice to test scale models of bridges in wind tunnels for aerodynamic resistance. The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar-like substance or some other binding agent. The Greeks and Romans sometimes used iron rods or clamps to strengthen their buildings. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also used a natural cement called pozzolana, made from volcanic ash, that became as hard asstone under water.Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon, had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile strength; that is, it does not lose its strength when it is under a calculated degree of tension, a force which, as we have seen, tends to pull apart many materials. New alloys have further increased the strength of steel and eliminated some of its problems, such as fatigue, which isa tendency for it to weaken as a result of continual changes in stress.Modern cement, called Portland cement, was invented in 1824. It is a mixture of limestone and clay, which is heated and then ground into a powder. It is mixed at or near the construction site with sand, aggregate (small stones, crushed rock, or gravel), and water to make concrete. Different proportions of the ingredients produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into all kinds of shapes. And whereas steel has great tensile strength, concrete has greatstrength under compression. Thus, the two substances complement each other.They also complement each other in another way: they have almost the same rate of contraction and expansion. They therefore can work together in situations where both compression and tension are factors. Steel rods are embedded in concrete to make reinforced concrete in concrete beams or structures where tension will develop. Concrete and steel also form such a strong bond-the force that unites them-that the steel cannot slip within the concrete. Still another advantage is that steel does not rust in concrete. Acid corrodes steel, whereas concrete has an alkaline chemical reaction, the opposite of acid.Prestressed concrete is an improved form of reinforcement. Steel rods are bent into theshapes to give them the necessary degree of tensile strength. They are then used to prestress concrete, usually by pretensioning or posttensioning method. Prestressed concrete has made it possible to develop buildings with unusual shapes, like some of the modern sports arenas, with large spaces unbroken by any obstructing supports. The uses for this relatively new structural method are constantly being developed.The current tendency is to develop lighter materials. Aluminum, for example, weight much less than steel but has many of the same properties. Aluminum beams have already been uesed for bridge construction and for the framework of a few buildings.Attempts are also being made to produce concrete with more strength and durability, and with a lighter weight. One system that helps cut concrete weight to some extent uses polymers, which are long chainlike compounds used in plastics, as part of the mixture.3、公路测量Highway surveys susally involve measuring and computing horizontal and vertical angles,vertical heights(elevations)and horizontal distances.The surveys are then used to prepare base map 底图,工作草图s with contour lines(that is,lines on a map connecting points that have the same elevation)and longitudinal cross-sections.Highway surveying techniques have been revolutionized due to the rapid development of electronic equipment and computer.Surveying techniques can be grouped into three general categories:groundsurveys,remote sensing and computer graphics.Ground surveys are the basic location technique for highways.The total station is used for measuring angles in both vertical and horizontal planes,distances and changes in elevation through the use of trigonometric level 水准仪s;the level 水准仪 is used for measuring changes in elevation only.A summary of survey equipment follows.A total station is both an electronic theodolite and electronic distance-measuringdevice(EDM).The total station enables one to determine angles and distances from the instrument to other points.Angles and distances may be used to calculate the actual positions(coordinates and elevations).The standard theodolite consists of a telescope with vertical and horizontal cross hairs,a graduated are or vernier for reading vertical angles and a guaduated circular plate for reading horizontal angles,whereas the electronic theodolite provides a digital readout of those angles.These readouts are continuous,so angles can be checked at any time.The telescope on both instruments is mounted so that it can rotate vertically about a horizontal axis.With the standard theodolite,two vertical arms support the telescope on its horizontal axis,with the graduated are attached to one of the arms.The arms are attached to a circular plate,which can rotate horizontally with reference to the graduated circular plate,thereby providing a meansfor measuring horizontal angles.An EDM device consists mainly of a transmitter located at one end of the distance to be mea sured and a reflector at the other end.The transmitter sends a light beam or a low-power laser pulse which is reflected back to the transmitter.The difference in phase between the transmitted and reflected pulses is measured electronically and used to determine the distance between the transmitter and the reflector.This equipment can measure distances up to about 1,000 meters in average atmospheric conditions.Special features permit the operator to change the display from slope to horrizontal distance automatically.Units can also be changed from meters to feet.The total station offers these solutions because of internal instantaneousThe essential parts of a level 水准仪 are the telescope,with vertical and horizontal crosshairs,a level 水准仪 bar,a spindle and a level 水准仪ing head.The level 水准仪 bar on which the telescope is mounted is rigidly fixed to the spindle.The level 水准仪 tube is attached to the telescope or the level 水准仪 bar so that it is parallel to the telescope.The spindle is fitted into the level 水准仪ing head in such a way that allows the level 水准仪 to rotate about the spindle as an aixs,with the level 水准仪ing head attached to a tripod.The level 水准仪 also carries a bubble that indicates whether the level 水准仪 is properly centered.The centering of the bubble is done by using the level 水准仪ing screws provided.Tapes can be used for direct measurement of horizontal distance.They are available in several materials,but the types used for engineering work are usually made of steel or a woven nonmetallic or metallic material.They are available in both U.S. and metric units. Remote sensing is the measurement of distances and elevation by using devices lacated above the earth,such as airplanes or orbiting satellites using Global Positioning Satellite Systems(GPS).The most commonly used remote sensing method is photogrammetry 摄影测量法,which utilizes aerial photography.photogrammetry 摄影测量法 is the science of obtaining accurate and reliable information through measurements and interpretation of photographs,displaying this information in digital form and/or map form.This process is fast and economical for large projects but can be very expensive for small projects.The break-even size for which photogrammetry 摄影测量法 can be used varies between 30 and 100 acres,depending on the circumstances of the specific project.The successful use of themethod depends on the type of terrain.Difficulties will arise when it is used for terrain with Areas of thick forest,such as tropical rain forests,that completely cover the ground surface;——Areas that contain deep canyons or tall buildings ,which may conceal the ground surface on the photographs;——Areas that photograph as uniform shades,such as plains and some deserts.The most common uses of photogrammetry 摄影测量法 in highway engineering are the idenification of suitable locations for highways,refered to as corridor study,and the preparation of base map 底图,工作草图s with contours of 2- or 5-ft intervals.In both of these uses, the first task is to obtain the aerial photographs of the area if none is available. The photographs are taken from airplanes with the axis of the camera at a near vertical position.The axis should be exactly vertical,but this position is usually difficult to obtain because the motion of the aircraft may cause some tilting of the camera up to a maximum of about 5º,although on average this value is about 1°.Photographs taken this way are defined as vertical aerial photographs and are used for highway mapping.In some cases,however,the axis of the camera may be intentionally tilted so that a greater area will be covered by a single photograph.Photographs of this type are known as oblique photographs and are not used formapping.It is also necessary to select a set of points on the ground that can be easily identified on the photographs as control points.These control points are used to bring the photo-coverage area to ground coordinates through the aerotriangulation process.This process involves point transfer from photo to photo,creating a control"mesh"over the area.The information on the aerial photogarphs is then used to convert these photographs intomaps.The instruments used for this process are known as stereoscope(立体镜,立体照相镜)s or stereoplotters,and they vary from a simple mirror stereoscope(立体镜,立体照相镜) to more complex types such as the softcopy stereoplotter.All of these instruments use the principle of stereoscopy,which is the ability to see objects in three dimensions when these objects are viewed by both eyes.When a set of stereopairs is properly placed under a stereoscope(立体镜,立体照相镜),so that an object on the left photograph is viewed by the left eye and the same object on the right photograph is viewed by the right eye,the observer perceives the object in three dimensions and therefore sees the area in the photograph as if it were in three dimensions,Using the newer SoftCopy Workstations,a technician wears a pair of special glasses to view stereo imagery.Computer graphics,when sued for highway location,is usually the combination of photogrammetry 摄影测量法 and computer techniques,With the use of mapping software,line styles and feature tables,objects and photographic features can be recorded digitally and stored in a computer file.This file can then either be plotted out in map form orsent on to the design unit.A typical work-station is controlled by system software that covers four main areas of design work:preparatory work(project setup);photo orientations and aerotriangulation;data transfer;plotting and storage.The software for preparatory work is used for the input of control point coordinates,input of camera calibration data,and the selection of the needed image files.The aerotriangulation software is automatically locating fiducial marks(interior orientation),the removal of bad parallax 平行视差平行视差(relative orientation),scaling and level 水准仪ing theimages(absolute orientation)and the creation of a control mesh.The data transfer programs store and check all data in digital form in a MicroStation file for use by designers.The fourtharea is that of file storage and plotting.4、预应力混凝土Concrete is strong in compression , but weak in tesion : its tensile strengh varies from 8 to 14 percent of its compressive strength . Due to such a low tensile capacity , flexural cracks develop at early stages of loading . In order to reduce or prevent such cracks from developing , a concentric or eccentric force is imposed in the longitudinal direction of the structural element . This force prevents the cracks from developing by eliminating or considerably reducing the tensile stresses at the critical midspan and support sections at service load, thereby raising the bending , shear , and torsional capacities of the sections . The sections are then able to behave elastically , and almost the full capacity of the concrete in compressioncan be efficiently utilized across the entire depth of the concrete sections when all loads act Such an imposed longitudinal force is called a prestressing force , i.e. , a compressive forcethat prestresses the sections along the span of the structual element prior to the application of the transverse gravity dead and live loads or transient horizontal live loads . The type of prestressing force involved , together with its magnitude , are determined mainly on the basis of the type of system to be constructed and the span length and slenderness desired . Since the prestressing force is applied longitudinally along or parallel to the axis of the member ,the prestressing principle involved is commonly known as linear prestressing .Circular prestressing , used in liquid containmeng tanks , pipes , and pressure reactor vessels , essentially follows the same basic principles as does linear prestressing . The circumferential hoop . or “hugging” stress on the cylindrical or spherical structure , neutralizes the tensile stresses at the outer fibers of the curvilinear surface caused by the internal contained pressure .Fig.4.1 liiustrates, in a basic fashion, the prestressing action in both type of structural systemsand the resuling stress response. In a), individual concrete blocks act together as a beam due to the large compressive prestressing force P. Although it might appear that the blocks will slip and vertically simulate shear slip failure, in fact they will not because of the longitudinal force P. Similarly, the wooden staves in c) might appear to be capable of separating as a result of the high internal radial pressure exerted on them. But again, because of the compressive prestress imposed by the metal bands as a form of circular prestressing, they will remain in place.From the preceding discussion , it is plain that permanent stresses in the prestressed structural member are created before the full dead and live loads are applied in order to eliminate or considerably reduce the net tensile stresses ca used by these loads . With reinforced concrete , it is assumed that the tensile strength of the concrete is negligible and disregarded . This is because the tensile forces resulting from the bending moments are resisted by the bond created in the reinforcement process . Cracking and deflection are therefore essentially irrecoverable in reinforced concrete once the member has reached its limit state at serviceload .The reinforcement in the reinforced concrete member does not exert any force of its own on the member , contrary to the action of prestressing steel . The steel required to produce the prestressing force in the prestressed member actively preloads the member , permitting a relatively high controlled recovery of cracking and deflection . Once the flexural tensile strength of the concrete is exceeded , the prestressed member starts to act like a reinforcedconcrete element .Prestressed members are shallower in depth than their reinforced concrete counterparts for the same span and loading conditions . In general , the depth of a prestressed concrete member is usually about 65 to 80 percent of the depth of the equivalent reinforced concrete member . Hence , the prestressed member requires less concrete , and about 20 to 35 percent of the amount of reinforcement. Unfortunately , this saving in material weight is balanced by the higher cost of the higher quality materials needed in prestressing . Also, regardless of the system used , prestressing operations themselves result in an added cost : formwork is more complex , since the geometry of prestressed sections is usually composed of flangedsections with thin webs .In spite of these additional costs, if a large enough number of precast units are manufactured, the difference between at least the initial costs of prestressed and reinforced concrete systems is usually not very large. And the indirect long-term savings are quite substantial, because less maintenance is needed, a longer working life is possible due to better quality control of the concrete, and lighter foundations are achieved due to the smaller cumulative weight of thesuperstructure.Once the bean span of reinforced concrete exceeds 70 to 90 feet (21.3 to 27.4 m), the dead weight of the beam becomes excessive, resulting in heavier membersand,consequently,greater long-term deflection and cracking. Thus,for larger spans,prestressed concrete becomes mandatory since arches are expensive to construct and do not perform as well due to the severe long-term shrinkage and creep they undergo.Very large spans such as segmental bridges or cable-stayed bridges can only be constructed through the use ofprestressing .Linear prestressing continued to develop in Europe and in France, in particular through the ingenuity of Eugene Freyssinet, who proposed in 1926-28 methods to overcome prestress losses through the use of high-strength and high-ductility steels. In 1940, he introduced the now well-known and well-accepted Freyssinet system.。

专业英语(土木工程_路桥方向)李嘉_第三版_翻译_中英对照

专业英语(土木工程_路桥方向)李嘉_第三版_翻译_中英对照

Lesson 7 Transportation Systems交通运输系统Transportation system in a developed nation consists of a network of modes that have evolved over many years. The system consists of vehicles, guideways, terminal facilities and control systems: these operate according to established procedures and schedules in the air, on land, and on water. The system also requires interaction with the user, the operator and the environment. The systems that are in place reflect the multitude of decisions made by shippers, carriers, government, individual travelers, and affected nonusers concerning the investment in or the use of transportation. The transportation system that has evolved has produced a variety of modes that complement each other.在发达国家,交通运输系统由网状结构组成的模式已经发展了好多年。

这个系统由交通工具、轨道、站场设施和控制系统组成。

这些依照空中、陆上和水上已制定的程序和计划运转。

这个系统也需要和用户、司机和环境互动。

专业英语(土木工程 路桥方向)李嘉 第三版词汇

专业英语(土木工程 路桥方向)李嘉 第三版词汇

第一章jurisdiction 管辖权,权限government 政府行政区bar 法庭,律师的职业curriculum 课程表,课程,学习probability 概率论,可能性impact 冲击力,影响geodetic 大地测量学的hydraulics 水力学recruit 招聘orient 定向,定位science-Orient 注重科学的supervision 管理,监控maintenance 维修,保养construction 施工,建设topographic 地形学的subsoil 下(亚)层土,地基下层土alternative 比较方案,交替的,比较的consultant 顾问,咨询者architectural 建筑学的rugged 崎岖的,艰难的terrain 地域,地带,领域gorge 峡谷engineering graduate工科毕业生wind force 风力scientific publication 科学刊物civil engineer 土木工程师geodetic surveying 大地测量学的soil mechanics 土力学on-the-job在现场的,在职的civil engineering (project)土木工程soil stabilization 土壤稳定structural materials 建筑材料earth -fill embankment dam 填土坝feasibility study 可行性研究launching pads 发射台rocket storage failities 火箭库construction phase 施工阶段第二章counteract 抵抗,平衡thrust 推,推力insula 群屋,公寓tenement 出租的房子,经济公寓concave 凹的,凹面convex 凸的,凸面shear 剪切,剪力rotate 旋转,转动gust 阵风roadway 车行道,路面masonry 圬工,砌筑mortar 砂浆bitumen 沥青tarlike 焦油般的clamp 夹子 夹钳cement 水泥,粘结blade 刀刃aggregate 集料,聚集ingredient 成分,配料versatile 多用途的,多方面适应的alkaline 碱性的arena 表演场polymer 聚合物trial and error 反复试验dead load 恒载live load 活载impact 冲击力,影响safety factor 安全系数neutral plane 中性面rotating or turning moment旋转力矩,扭转力矩wind tunnel(test) 风洞实验binding agent 粘结料 结合料volcanic ash 火山灰tensile strength 抗拉强度fatigue 疲劳Portland cement 波特兰水泥construction site 施工现场,建筑工地reinforced concrete 钢筋混凝土prestressed concrete 预应力混凝土pretensioning method 先(后)张法第三章elevation 海拔coordinate 坐标vernier 游标graduated 有刻度的readout 数字显示装置mount 安装,固定在……上transmitter 发射器reflector 反射器pulse 脉冲instantaneous 瞬间的spindle 轴level 水准仪tripod 三脚架tape 量尺photogrammetry 摄影测量法acre 英亩canyon 峡谷corridor 通道,走廊tilt 倾斜,翘起oblique 斜的aerotriangulation 空中三角测量stereoscope 立体镜,立体照相镜calibration 校准parallax 平行视差horizontal(vertucal) angles 水平角horizontal distances 平距base map 底图,工作草图contour line 等高线longitudinal cross-section 纵断面ground survey 地面测量remmote sensing 遥感技术location technique 定位技术the total station 全站仪trigonometric level 三角高程electronic theodolite 电子经纬仪electronic distance-measuring device 电子测距仪cross hairs 十字准线graduated arc 弧形刻度板atmospheric condition 大气条件level bar 水准尺leveling head 校平头level tube 水准管leveling screw 校平螺钉metric units 公制单位Global Positioning Satellite Systems 全球定位系统aerial photography 航拍照片,空中照相break-even 收支平衡的,经济的thick forest 茂密森林deep canyon 大峡谷highway engineering 公路工程control point 控制点three dimensions 三维,立体highway location 公路定线preparatory work 准备工作fiducial mark 坐标点,基准标点第四章flexural 弯曲的eccentric 偏心轮torsional 扭转的,扭力的transverse 横向,横断transient 瞬间,瞬态hoop 箍筋,箍住spherical 球形的deflection 变形,挠度irrecroverable 不能恢复的formwork 模板,支模flange 翼缘,镶边superstructure 上部结构,上层建筑mandatory 必须遵循的,命令的compensate 补偿,赔偿ingenuity 独创性,机灵compressive strength 抗压强度structural element 结构构件critical section 临界截面service load 使用荷载prestressing force 预应力linear prestressing 线形预应力circular prestressing 环形预应力circumferential hoop 环形箍筋stress response 应力响应,应力特性net tensile stress 净拉应力bending moment 弯矩thin-web(beam) 薄腹working life 使用寿命long-term shrinkage 长期收缩long-term creep 长期徐变segmental bridges 分段施工桥梁cable-stayed bridges 斜拉桥high-strength steel 高强钢partial prestressing 部分预应力第五章philosophy 原理,哲学,宗旨dimension 尺寸,尺度,定尺寸conduct 行为,操守,引导,管理,传导preliminary 预备的,初步的encounter 遭遇,遇到,相遇gross 总的,显著的,总额twist 扭转,编织intensity 强度,密度intuition 直觉,直观comparison 比较,对照in accordance with 与……一致buckling 压曲,弯折margin 空白,边缘serviceability 有用性,适用性likelihood 似然,可能woekmanship 手艺,技艺nonelastic 非弹性的nonlinear 非线性的vicinity 附近unduly 过度地,不适当地code 规范,法则,(代)码specification 规范,详述,规格,说明书preliminary planning 初步规划internal(gross) force 内力twisting moment 扭矩stress intensity 应力强度field(model) test 现场(模型)试验allowable stress 允许应力yield point 屈服点brittle fracture 脆裂margin of safety 安全系数tensile yielding 抗拉屈服allowable -stress approach 允许应力法ultimate strength 极限强度load(operation) factor 荷载系数capacity-reduction factor 承载能力折减系数elastic-plastic displacement 弹塑性位移point of collapse 破坏点in the vicinity of M 在M附近,靠近第六章client 委托人,业主,客户employer 发包人,雇主contractor 承包人,立契约者stipulate 规定unit 单元,单位工程furnish 供应,装备breakdown 分类细账grub 除根,挖草伐根reimburse 偿还,赔偿supervision 监督audit 审计,查账payroll 工资表provision 准备金proposal 项目建议书,方案miscellaneous 混杂的,各种各样的tabulate 制成表forfeit 罚金workmanship 手艺,工艺revise 修订collateral 抵押品,担保品binding agreement 有约束力的协议carry out 执行civil engineering contracts 土木工程合同unit price basis 单价制highway construction 公路建设lump-sum 结构开挖and the like 诸如此类force-account 计工时agreed-on 双方共同协定的cost-plus 成本加费用freight bill 运费清单prequalified contractor 通过了资格预审的承包人proposal guarantee 项目建议书担保formal contract 正式合同pertaining to 与……有关surety bond 担保金bid bond 押标金,投标保证金performance bonds 履约保证金lien bond 留置金retention money 保留金entitled to 有权享有express agreement 明文协议competent persons 称职人员competitive tendering 公开招标invitation to tender 招标。

土木工程英语(全面完整版)

土木工程英语(全面完整版)

专业英语的结构特点及其翻译
① 顺译法:依照英语原文顺序依次译出 In the course of designing a structure, you have to take into consideration what kind of load the above mentioned structure will be subjected to, where on the structure the said load will do what is expected and whether the load on the structure is put into position all of a sudden or applied by degree. 结构设计时,你必须考虑到设计的结构受到什么样 的荷载,这一荷载在结构的什么位置起(预计 的)作用,以及这一荷载是突然施加,还是逐 渐加到结构指定位置的。
glossary
• 100 major words
• 土木工程专业常用英语词汇
第一节 一般术语
• 1. 工程结构 building and civil engineering structures 房屋建筑和土木工程的建筑物、构筑物及其相关组成部分 的总称。 2. 房屋建筑工程 building engineering 一般称建筑工程。 3. 土木工程 civil engineering 除房屋建筑外,为新建、改建或扩建各类工程的建筑物、 构筑物和相关配套设施等所进行的勘察、规划、设计、施 工、安装和维护等各项技术工作和完成的工程实体。 4. 公路工程 highway engineering 5. 铁路工程 railway engineering 6. 港口与航道工程 port ( harbor ) and waterway engineering 7. 建筑物(构筑物) construction works 房屋建筑或土木工程中的单项工程实体。 8. 地基 foundation soil • 9. 木结构 timber structure 10. 工业建筑 industrial building;民用建筑 civil building; civil architecture

最新土木工程专业英语(桥梁方向)精品课件

最新土木工程专业英语(桥梁方向)精品课件

周次 1 2 3 4 5 6 7
课程安排 引言,语法特点,词汇特点,常用符号公式表达 科技文章翻译技巧
Unit 1 Reinforced Concrete Bridges 钢筋混凝土桥 Unit 2 Prestressed Concrete Bridges 预应力混凝土桥 Unit 3 Segmental Concrete Bridges 节段施工的混凝土桥(1) Unit 3 Segmental Concrete Bridges 节段施工的混凝土桥(2) Unit 4 Steel-Concrete Composite I-Girder Bridges 钢-砼组合板梁桥
第十五页,共42页。
2.1 Grammar Features
(3) 省略句使用(shǐyòng()精频炼) 繁 省略成分:状语从句中的主语、全部或部分谓语;定语从句中的关系代词 (dàicí)which和that、从句中的助词等;还常用介词短语替代从句。
1) If it is possible, the closed-loop control approach should be used in this system.
(3) 省略句使用频繁 (4) It句型和祈使句使用频繁 (5) 复杂长句使用频繁 (6) 后置形容词短语作定语多
第八页,共42页。
2.1 Grammar Features
(1) 广泛(guǎngfàn)使用被(客动观性语)态
主体(zhǔtǐ)多为客观的事物、现象和过程,在叙述推理过程中切忌加进作者个人 的主观臆断;
The arch bridge shown in Fig.1 is a fixed arch.
图1中表示(biǎoshì)的拱是无铰拱。

土木工程专业英语完整版本

土木工程专业英语完整版本
他们还要确定合适的材料组合,包括钢材、混凝土、塑料、石头、 沥青、砖、铝及其它建筑材
Most structural engineer work for apartment or public construction and factory constructions.
大多数结构工程师从事公寓建筑、公共建筑和厂房建筑工作。
这些工程师要分析支撑结构和影响结构性能的土壤及岩石的性能。 They evaluate and work to minimize the potential settlement of buildings and other structures, which stems from the pressure of their weight on the earth. 他们评估并采取措施使建筑物和其他结构的重量对地面的压力引 起的潜在的沉降最小化。
工程师们设计并维护港口、水电坝、河流设施,控制水流量,控 制并治理不同的水资源,他们建造坝、水库并把水渠分布到耕地。
Contents
Those engaged in environmental engineering design systems to sanitize water and air, they provide safety drinking water for people and control pollution of water supplies, they help to build water and wastewater treatment plants, dump sites to eliminate hazardous or toxic wastes and prevent pollution of surrounding land.

Civil Engineering - 土木工程专业英语

Civil Engineering - 土木工程专业英语

1 Civil EngineeringCivil engineering,the oldest of the engineering specialties,is the planning, design,construction,and management of the built environment.This environment includes all structures built according to scientific principles,from irrigation and drainage systems to rocket-launching facilities.Civil engineers build roads,bridges,tunnels,dams,harbors,power plants,water and sewage systems,hospitals,schools,mass transit and other public facilities essential to modern society and large population concentrations.They also build privately owned facilities such as airports,railroads,pipelines,skyscrapers,and other large structures designed for industrial,commercial,or residential use.In addition,civil engineers plan,design,and build complete cities and towns,and more recently have been planning and designing space platforms to house self-contained communities.The word civil derives form the Latin for citizen.In 1782,Englishman John Smitton used the term to differentiate his nonmilitary engineering work from that of the military engineers who predominated at the time,Since then,the term civil engineering has often been used to refer to engineers who build Public facilities,although the field is much broader.Scope.Because it is so broad,civil engineering is subdivided into a number of technical specialties.Depending on the type of project,the skills of many kinds of civil engineer specialists may be needed.When a project begins,the site is surveyed and mapped by civil engineers who locate utility placement-water,sewer,and power lines.Geotechnical specialists perform soil experiments to determine if the earth can bear the weight of the project. Environmental specialists study the project’s impact on the local area:the potential for air and groundwater pollution,the project’s impact on local animal and plant life,and how the project can be designed to meet government requirements aimed at protecting the environment. Transportation specialists determine what kind of facilities are needed to ease the burden on local roads and other transportation networks that will result from the completed project.Meanwhile,structural specialists use preliminary data to make detailed designs,plans,and specifications for the project.Supervising and coordinating the work of these civil engineer specialists,from beginning to end of the project,are the construction management specialists. Based on information supplied by the other specialists,construction management civil engineers estimate quantities and costs of materials and labor, schedule all work,order materials and equipment for the job,hire contractors and subcontractors,and perform other supervisory work to ensure the project is completed on time and as specified.Throughout any given project,civil engineers make extensive use of computers.Computers are used to design the project’s various elements(computer-aided design,or CAD)and to manage it.Computers are a necessity for the modern civil engineer because they permit the engineer to efficiently handle the large quantities of data needed in determining the best way to construct a project.Structural engineering. In this specialty,civil engineers plan and design structures of all types,including bridges,dams,power plants,supports for equipment,special structures for offshore projects,the United States space program,transmission towers,giant astronomical and radio1telescopes,and many other kinds of projects.Using computers,structural engineers determine the force a structure must resist:its own weight,wind and hurricane forces,temperature changes that expand or contract construction materials,and earthquakes.They also determine the combination of appropriate materials:steel,concrete,plastic,stone,asphalt,brick,aluminum,or other construction materials.Water resources engineering.Civil engineers in this specialty deal with all aspects of the physical control of water.Their projects help prevent floods,supply water for cities and for irrigation,manage and control rivers and water runoff,and maintain beaches and other waterfront facilities.In addition,they design and maintain harbors,canals,and locks,build huge hydroelectric dams and smaller dams and water impoundments of all kinds,help design offshore structures,and determine the location of structures affecting navigation.Geotechnical engineering.Civil engineers who specialize in this field analyze the properties of soils and rocks that support structures and affect structural behavior.They evaluate and work to minimize the potential settlement of buildings and other structures that stems from the pressure of their weight on the earth.These engineers also evaluate and determine how to strengthen the stability of slopes and fills and how to protect structures against earthquakes and the effects of groundwater.Environmental engineering.In this branch of engineering,civil engineers design,build,and supervise systems to provide safe drinking water and to prevent and control pollution of water supplies,both on the surface and underground.They also design,build,and supervise projects to control or eliminate pollution of the land and air.These engineers build water and wastewater treatment Plants,and design air scrubbers and other devices to minimize or eliminate air pollution caused by industrial processes,incineration,or other smoke-producing activities.They also work to control toxic and hazardous wastes through the construction of special dump sites or the neutralizing of toxic and hazardous substances.In addition,the engineers design and manage sanitary landfills to prevent pollution of surrounding land.Transportation engineering.Civil engineers working in this specialty build facilities to ensure safe and efficient movement of both people and goods.They specialize in designing and maintaining all types of transportation facilities,highways and streets,mass transit systems,railroads and airfields,ports and harbors.Transportation engineers apply technological knowledge as well as consideration of the economic,political,and social factors in designing each project.They work closely with urban planners,since the quality of the community is directly related to the quality of the transportation system.Pipeline engineering.In this branch of civil engineering,engineers build pipelines and related facilities which transport liquids,gases,or solids ranging from coal slurries(mixed coal and water)and semiliquid wastes,to water,oil,and various types of highly combustible and noncombustible gases. The engineers determine pipeline design,the economic and environmental impact of a project on regions it must traverse,the type of materials to be used-steel,concrete,plastic,or combinations of various materials-installation techniques,methods for testing pipeline strength,and controls for maintaining proper pressure and rate of flow of materials being transported.When hazardous materials are being carried,safety is a major consideration as well.Construction engineering.Civil engineers in this field oversee the construction of project from2beginning to end.Sometimes called project engineers,they apply both technical and managerial skills, including knowledge of construction methods,planning,organizing,financing,and operating construction projects.They coordinate the activities of virtually everyone engaged in the work:the surveyors;workers who lay out and construct the temporary roads and ramps,excavate for the foundation,build the forms and pour the concrete; and workers who build the steel framework. these engineers also make regular progress reports to the owners of the structure.Community and urban planning. Those engaged in this area of civil engineering may plan and develop communities within a city,or entire cities.Such planning involves far more than engineering consideration;environmental,social,and economic factors in the use and development of land and natural resources are also key elements.Those civil engineers coordinate planning of public works along with private development. They evaluate the kinds of facilities needed, including streets and highways, public transportation systems.airports,port facilities,water-supply and wastewater-disposal systems,public buildings,parks,and recreational and other facilities to ensure social and economic as well as environmental well-being.Photo-grametry,surveying,and mapping.The civil engineers in this specialty precisely measure the Earth’s surface to obtain reliable information for locating and designing engineering projects.This practice often involves high-technology methods such as satellite and aerial surveying,and computer-processing of photographic imagery.Radio signals from satellites,scans by laser and sonic beams,are converted to maps to provide far more accurate measurements for boring tunnels,building highways and dams,plotting flood control and irrigation projects,locating subsurface geologic formations that may affect a construction project,and a host of other building uses.Other specialties.Two additional civil engineering specialties that are not entirely within the scope of civil engineering but are essential to the discipline are engineering management and engineering teaching.Engineering management.Many civil engineers choose careers that eventually lead to management.Others are able to start their careers in management positions.The civil engineer-manager combines technical knowledge with an ability to organize and coordinate worker power, materials,machinery,and money.These engineers may work in government-municipal,county,state,or federal;in the U.S.Army Corps of Engineers as military or civilian management engineers; or in semiautonomous regional or city authorities or similar organizations.They may also manage private engineering firms ranging in size from a few employees to hundreds.Engineering teaching.The civil engineer who chooses a teaching career usually teaches both graduate and undergraduate students in technical specialties.Many teaching civil engineers engage in basic research that eventually leads to technical innovations in construction materials and methods.Many also serve as consultants on engineering projects,or on technical boards and commissions associated with major projects.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lesson 1 土木工程中的各种业务土木工程是一个意味着工程师必须要经过专门的大学教育的职业。

许多政府管辖部门还有(一套)认证程序,这一程序要求工科毕业生在他们能积极地开始(从事)他们的事业之前,通过(认证)考试, 这种考试类似于律师职业里的律师考试一样。

大学里, 工科课程中着重强调数学、物理, 和化学,尤其在开始的二到三年。

在工科所有分支中,数学非常重要, 因此它被着重地强调。

今天, 数学包括统计学中的课程主要涉及集合, 分类, 和使用数字数据, 或信息。

统计数学的一个重要方面是概率, 它涉及当有改变问题的结果的不同的因素, 或变量时,可能会发生什么。

例如,在承担桥梁的建设之前, 运用统计研究来预计未来桥梁期望承受的交通量. 在桥梁的设计中,(各种)变量如作用在基础上的水压, 碰撞, 不同的风力的作用, 以及许多其它因素必须考虑。

由于在解决这些问题涉及大量的计算, 现在几乎所有工科课程中都包括计算机编程。

当然,计算机能比人类以更快的速度和准确性解决许多问题。

但如果不给计算机清楚和准确指令和信息,换句话说,一个好程序,它也是无用的。

虽然,在工科课程中,对技术科目着重强调,但当前的趋势还是要求学生学习社会科学和语言艺术的课程。

工程和社会间的关系变得更加紧密; 因此,再一次充分说明, 工程师负责(承担)的工程在许多不同和重要的方面影响社会,这些方面是他们所知道的。

并且,工程师需要一种很肯定(自信)语言表达方式来准备报告,这个报告要清楚明了,且在多数情况下, 是令人信服的。

参与研究的工程师要能为科学出版物详细描述他们的发现。

最后两年的工科课程计划包括学生专业领域的学科。

为准备使学生成为一名土木工程师, 这些专业课程可能会涉及诸如大地测量、土力学,或水力学。

学生在大学中的最后一年前常常就开始了频繁的工程师招聘。

近年来,许多不同的公司和政府机构为争夺工程师而竞争。

在今天这个重视科学技术的社会,受过技术训练的人当然是受欢迎的。

年轻工程师也许选择进入环境或卫生工程领域工作, 例如, 在环境问题方面创造的许多机会; 或他们也许选择专门的高速公路工程的建筑公司; 或他们也许喜欢与政府机构当中处理水资源的机构之一共事。

的确, 选择很多且多样。

当年轻工程师最后开始了真正的实践, 必须要运用到大学中学到的理论知识。

最初,他或她可能会被分配到与工程队合作。

从而, 他们会得到在职的培训,这个培训将向管理人员证明他们将理论转化为实践的能力。

土木工程师可能在研究、设计、施工管理、养护或者甚至销售或管理单位工作。

每一个工作领域都涉及不同的职责,不同的着重点以及运用不同的工程理论和经验。

研究是科学和工程实践的当中最重要的一个方面。

研究员通常作为一个团队的成员与其它科学家和工程师一起合作。

他或她经常受雇于政府或企业提供经费的实验室。

与土木工程相关的研究领域包括土力学和土壤加固技术, 并且还包括新结构材料的开发和实验。

土木工程项目几乎是唯一(独一)的; 就是说,每个工程有它自己的难题和设计特点。

所以, 在设计工作开始以前,要仔细的研究每个项目。

研究包括勘测工程位置的地形和地基特点。

它还包括考虑可能的比选方案, 譬如一个混凝土重力式坝或填土的土石坝。

经济因素与在每个可能的比选方案有关,也必须斟酌。

今天, 研究通常包括项目的环境影响的考虑。

许多工程师, 通常在一起工作组成一个团队,这个团队包括测量员、土力学方面的专家和设计施工方面的专家,来参与制定这些可行性研究。

许多土木工程师在设计领域工作,他们中的许多人是这个行业的佼佼者。

正如我们所见,土木工程师研究许多不同的结构, 因此工程师专门研究一类结构是通常的做法(一般的惯例)。

在建筑设计中, 工程师经常作为建筑或结构公司的顾问。

水坝、桥梁、给水系统, 和其它大项目通常;聘用几位系统工程师(总工程师),他们的工作是协助负责整个项目。

在许多情况下, 也需要(涉及)其它学科的工程师。

例如,在水坝项目中, 电子和机械工程师负责发电站及其设备的设计。

在其它情况下, 土木工程师被分配到其它领域的项目上工作; 例如,在空间项目中, 需要土木工程师设计和施工诸如发射台和火箭存贮设施这样的结构。

在几乎所有土木工程项目中,施工是复杂的过程。

它包括项目的进度安排和设备的使用以及材料,以便使得造价尽可能降低。

必须考虑安全因素,因为施工很危险。

许多土木工程师因此专门研究施工阶段。

Lesson 2 Modern Building and Structural(现代建筑与建筑材料)许多古代修建的大型建筑物现仍存在着,而且仍在使用。

其中有罗马的万神庙和大圆形竞技场,伊斯坦布尔的圣索非亚教堂,法国和英国的哥特式教堂,和带有巨大的穹窿顶的文艺复兴式教堂,象佛罗伦萨的大教堂和罗马的圣彼得大教堂。

它们都是些厚石墙的庞大建筑。

这种厚石墙能抵抗建筑物本身巨大重量所形成的推力。

推力是建筑物各部分作用于其它部分的压力。

这些大型建筑物并非数学和物理知识的结晶。

它们都是依据经验和观察而建造起来的,往往是反复试验出来的结果。

它们能留存下来的原因之一是因为它们建造得强度很大——多数情况下超出所需要的强度。

可是古代的工程师也失败过。

例如在罗马,大部分人民都住在公寓中,这种公寓通常是一排排的有十层高的公寓大楼。

其中有许多建造得很差,并且有时会倒塌,使许多人丧生。

但是,现在的工程师具备许多有利条件,不仅有经验资料,而且有科学数据供他预先做详细计算。

一个现代工程师当他设计一座建筑物时,他要考虑这座建筑物所有组成材料的总重量,这就是所谓的静荷载,即建筑物自身的重量。

他还必须考虑动荷载,即在建筑物投入使用时它要承受的人,车辆,设备、机器等等的重量。

对于象桥梁这种需要承担高速汽车交通的构筑物,他必须考虑到冲力,即动荷载将借以作用于结构物的那种力。

他还必须确定出安全系数,即附加的承载能力,以使建筑物的承载能力比上述三个因素结合起来还要强些。

现代工程师还必须了解建筑物所用材料经常承受的各种应力。

其中包括压力和拉力这两种相反的力。

在压力下,材料被压紧或推拢到一起,在拉力下,材料象一个橡皮筋那样被拉开或拉长。

In the Fig.2.1,the top surface is concave,or bent inward,and the material in it is Intension.Wh en a saw cuts easily through a piece of wood,the wood is in tension,but when the saw begins to bind,the wood is in compression because the fibers in it are being pushed tighter.除了拉力和压力之外,还有一种称为剪力的力在起作用,我们给它下定义为,使材料沿应力线断裂的趋势。

剪力可能发生在垂直面上,但它也可能沿着梁的水平轴线——中性面——作用,中性面上既没有拉力也没有压力。

总的说来,有三种力作用于建筑物,垂直的——那些向上或向下作用的力,水平的——那些侧向作用的力,以及那些使建筑物发生旋转或转动的力。

成一个角度作用的力是水平力和垂直力的合力。

因为土木工程师设计的建筑物总是力求使它们静止或稳定,因此这些力必须保持平衡。

例如,各垂直力必须波此相等。

假如一个梁支承上面的一个荷载,梁本身必须有足够的强度去抗衡这个重量。

水平力也必须彼此相等,才能不出现过多的向右或向左的推力。

并且,那些可能使构筑物发生转动的力必须由向反方向推动的力去抵销。

现代最引人注目的工程事故之一——1940年塔科马海峡大桥的倒塌,就是由于没有非常仔细地考虑这些因素中的最后一个因素。

在一场暴风雨中,当每小时高达65公里的强劲狂风冲击这座桥时,狂风引起了沿着桥面方向的波动;同时还产生了一种使路面塌落的横向运动。

幸亏工程师们从错误中汲取了教训,所以现在的通常做法是将按比例缩小的桥梁模型放在风洞中检验它们的空气动力学抵抗力。

早期的主要建筑材料是木材和圬工材料——砖,石、或瓦,以及类似材料。

砖行或砖层之间,用灰浆或沥青(一种象焦油的物质),或者别的粘结剂粘结在一起。

希腊人和罗马人有时还用铁条或铁夹子去加固建筑物。

例如,雅典的帕提依神庙的圆柱上就有原来安装铁棍的钻孔,现在铁棍已经锈蚀竟尽。

罗马人还使用一种叫白榴火山灰的天然水泥,这是用火山灰制成,在水中能变得和石头一样坚硬。

近代的两种最重要的建筑材料,钢材和水泥,都是十九世纪才采用的。

直到那时为止,钢(基本上是铁和少量碳的合金)一直是要经过很复杂的工艺过程才能制成的,这就使钢只限于用在制剑刃这类特殊的用途上。

1856年发明贝色麦法以后,人们才能以低价大量地使用钢。

钢的极大优点是它的抗拉强度,即:在特定程度拉力——就象我们已经知道的那种会把许多种材料拉断的力——的作用下,它的强度不会降低。

新的合金进一步增强了钢的强度,并且还消除了它所存在的一些问题,如疲劳。

疲劳是指在应力连续变化的情况下强度降低的趋势。

现代的水泥叫做波特兰水泥,是1824年发明的。

是石灰石和粘土的混合物,将它加热,然后磨成粉末。

在建筑现场或靠近现场的地方,将它掺上砂子、骨料(小石子、碎石或砾石)和水,就制成混凝土。

不同的配料比例能制成不同强度和重量的混凝土。

混凝土的适用性很强,它可以灌注,可以用泵抽送,甚至可喷注成各种各样的形状。

而且,钢有很大的抗拉强度,混凝土却有很大的抗压强度。

因而,这两种材料可以互相补充。

它们还可以在其它方面互相补充:它们具有几乎相同的收缩率和膨胀率。

因而它们可以在同时存在着压与拉力两种因素的情况下共同起作用。

在受拉的混凝土梁或结构中埋置进钢筋,就制成钢筋混凝土。

凝土和钢还形成一种很强的粘结力——一种将它们连结起来的力——使钢不能在混凝土中滑动。

还有另一个优点就是钢在混凝土中不锈蚀。

酸会腐蚀钢,而混凝土却具有与酸相反的碱性化学反应。

预应力混凝土是钢筋混凝土的一种改进形式。

钢筋被弯成各种形状以使它具有所需要的受拉强度。

然后,通常采用先张法或后张法对混凝土预加应力。

预应力混凝土使特殊形状的建筑物有了发展的可能,象某些现代的体育馆,他们的大空间没有任何挡住视线的支承物。

这种比较新的结构方法的使用正在持续地发展着。

当前的趋向是发展轻质材料。

例如,铝的重量比钢轻得多,但是却有许多与之相同的性能。

铝梁巳被用于桥梁结构和一些建筑物的框架。

目前正在试图生产强度更高、耐久性更好、而且重量更轻的混凝土。

有一种用聚合物(塑料中用的长链化合物)作为部分配料的方法。

这种方法有助于使混凝土的重量降低到一定的程度。

Lesson4 预应力混凝土混凝土的抗压性能强而抗拉性能弱:它的抗拉强度仅仅是它抗压强度的8%-14%不等。

相关文档
最新文档