等腰三角形和直角三角形专项练习题资料

合集下载

八下期末专题之等腰三角形和直角三角形训练题

八下期末专题之等腰三角形和直角三角形训练题

八下期末专题之等腰三角形和直角三角形训练题(人教版)一.选择题(共6小题)1.如图,在△ABC中,AB=AC,D为BC边的中点,下列结论不一定正确的是()A.AD⊥BC B.∠B=∠C C.AD平分∠BAC D.AB=BC2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成一个等腰三角形的是()A.4cm,6cm,8cm B.4cm,6cm,6cmC.3cm,6cm,9cm D.3cm,3cm,6cm3.如图,在△ABC中,AB=BC,∠B=36°,∠BAC的平分线交BC于点D,过点D作AC的平行线,交AB于点E.则图中的等腰三角形有()A.3个B.4个C.5个D.6个4.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE 的度数为()A.20°B.25°C.30°D.35°5.在△ABC中,若AB=BC,则△ABC是()A.不等边三角形B.等边三角形C.直角三角形D.等腰三角形6.如图,在四边形ABCD中,AB=AD=12,BC=DC,∠A=60°,点E在AD上,连接BD,CE相交于点F,CE∥AB.若CE=9,则CF的长为()A.4B.5C.6D.8二.填空题(共6小题)7.如图,△ABC是等边三角形,点D是BC的中点,连接AD,则∠BAD的大小为.8.如图,在边长为2等边△ABC中,以B为原点建立坐标系,则点A的坐标为.9.一个等腰三角形的两个内角的和为140°,则它的顶角度数为.10.如图,CD是△ABC的高,∠A=2∠B,∠ACB的平分线CG交AB于点G,则的值为.11.如图,在直角三角形ABC中,∠ACB=90°,D为线段AC上一点,连接BD.过点A 作AE∥BD,连接DE,当DB平分∠CDE时,延长DC至点F使得DF=DE,连接BF.若∠BAC=∠BFD且BF=3.6,则CD=.12.如图,线段AB的一个端点B在直线m上,直线m上存在点C,使△ABC为等腰三角形,这样的点C有个.三.解答题(共3小题)13.如图,上午10时,一条船从A处出发以20海里每小时的速度向正北航行,中午12时到达B处,从A、B望灯塔C,测得∠NAC=40°,∠NBC=80°.求从B处到灯塔C 的距离.14.如图,△ABC中,∠B=45°,点D在边AB上,DC=AC,AE⊥DC,垂足为F,AE 交BC于点E.(1)用等式表示∠BAE与∠ACD的数量关系,并证明;(2)求证:AE=DC.15.在△ABC中,AB=BC,D是AC的中点,连接BD.(1)如图1,若∠BAC=60°,AB=4,求CD的长.(2)如图2,过点A作AF∥BC交BD的延长线于点F,求证:△ABF是等腰三角形.。

等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础练习1、已知等腰三角形的一个内角为 70°,则它的另外两个内角的度数分别是()A 55°,55°B 70°,40°C 55°,55°或 70°,40°D 以上都不对解析:当 70°的角为顶角时,底角的度数为:(180° 70°)÷ 2 =55°;当 70°的角为底角时,另一个底角也是 70°,顶角的度数为 180°70°× 2 = 40°。

所以答案选择 C。

2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18解析:当腰长为 3 时,3 + 3 = 6,不能构成三角形;当腰长为 6 时,周长为 6 + 6 + 3 = 15。

所以答案选择 B。

(二)提高练习1、如图,在△ABC 中,AB = AC,AD 是∠BAC 的平分线,点 E 在 AD 上。

求证:△EBC 是等腰三角形。

证明:因为 AB = AC,AD 是∠BAC 的平分线,所以 AD⊥BC,BD = CD。

又因为点 E 在 AD 上,所以 EB = EC,即△EBC 是等腰三角形。

2、已知等腰三角形一腰上的中线将其周长分成 9 和 15 两部分,求这个等腰三角形的腰长和底边长。

设腰长为 2x,底边长为 y,则有两种情况:情况一:\(\begin{cases}2x + x = 9 \\ x + y = 15\end{cases}\),解得\(\begin{cases}x = 3 \\ y = 12\end{cases}\),此时腰长为 6,底边长为 12,因为 6 + 6 = 12,不符合三角形三边关系,舍去。

情况二:\(\begin{cases}2x + x = 15 \\ x + y = 9\end{cases}\),解得\(\begin{cases}x = 5 \\ y = 4\end{cases}\),此时腰长为 10,底边长为 4,符合三角形三边关系。

等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题一、等腰三角形练习题(一)基础巩固1、已知等腰三角形的一个内角为 80°,则它的另外两个内角分别是多少度?解:当 80°的角为顶角时,底角的度数为:(180° 80°)÷ 2 = 50°,所以另外两个内角分别是 50°,50°。

当 80°的角为底角时,顶角的度数为:180° 80°× 2 = 20°,所以另外两个内角分别是 80°,20°。

2、等腰三角形的两边长分别为 6 和 8,则其周长是多少?解:当腰长为 6 时,三边长分别为 6,6,8,因为 6 + 6>8,所以能组成三角形,此时周长为 6 + 6 + 8 = 20。

当腰长为 8 时,三边长分别为 8,8,6,因为 8 + 6>8,所以能组成三角形,此时周长为 8 + 8 + 6 = 22。

综上,其周长为 20 或 22。

3、一个等腰三角形的周长为 20,其中一边长为 8,求另外两边的长。

解:当 8 为腰长时,底边长为 20 8× 2 = 4,因为 8 + 4>8,所以能组成三角形,此时另外两边长分别为 8,4。

当 8 为底边时,腰长为(20 8)÷ 2 = 6,因为 6 + 6>8,所以能组成三角形,此时另外两边长分别为 6,6。

(二)能力提升1、等腰三角形一腰上的高与另一腰的夹角为 30°,则顶角的度数为多少?解:当等腰三角形为锐角三角形时,腰上的高与另一腰的夹角为30°,则顶角为 60°。

当等腰三角形为钝角三角形时,腰上的高与另一腰的夹角为 30°,则顶角的外角为 60°,所以顶角为 120°。

综上,顶角的度数为 60°或 120°。

2、如图,在△ABC 中,AB = AC,D 是 BC 边上的中点,∠B =30°,求∠1 和∠ADC 的度数。

八下北师版等腰三角形和直角三角形练习题

八下北师版等腰三角形和直角三角形练习题

八下北师版等腰三角形和直角三角形练习题在八年级下册的数学学习中,等腰三角形和直角三角形是两个非常重要的几何图形。

为了帮助同学们更好地掌握这部分知识,我们来一起做一些练习题。

一、等腰三角形练习题1、已知等腰三角形的一个内角为 80°,则这个等腰三角形的顶角为()A 80°B 20°C 80°或 20°D 50°分析:当 80°角是顶角时,答案就是 80°;当 80°角是底角时,顶角为 180° 80°× 2 = 20°。

所以答案是 C。

2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18分析:因为三角形的两边之和大于第三边,所以这个等腰三角形的腰长只能是 6,底边长为 3。

周长为 6 + 6 + 3 = 15,答案是 B。

3、如图,在△ABC 中,AB = AC,AD 是∠BAC 的平分线,DE⊥AB 于点 E,DF⊥AC 于点 F。

求证:BE = CF。

证明:因为 AB = AC,AD 是∠BAC 的平分线,所以∠BAD =∠CAD。

又因为 DE⊥AB,DF⊥AC,AD = AD,所以△ADE≌△ADF (AAS)。

所以 AE = AF。

因为 AB = AC,所以 AB AE = AC AF,即 BE = CF。

4、一个等腰三角形的周长为 16,其中一边长为 6,求另外两边的长。

分析:当 6 是腰长时,底边长为 16 6× 2 = 4;当 6 是底边长时,腰长为(16 6)÷ 2 = 5。

所以另外两边的长为 6,4 或 5,5。

二、直角三角形练习题1、在直角三角形中,如果一个锐角为 30°,斜边为 2,则斜边上的高为()A 1B √3C √3 / 2D 1 / 2分析:在直角三角形中,如果一个锐角为 30°,那么它所对的直角边是斜边的一半。

八年级数学下等腰三角形、直角三角形、线段的垂直平分线练习题

八年级数学下等腰三角形、直角三角形、线段的垂直平分线练习题

八年级数学劣等腰三角形.直角三角形.线段的垂直等分线演习题 等腰三角形试题:一.选择题1. 如图,在△ABC 中,AB=AC,∠A=36°,BD.CE 分离是△ABC.△BCD 的角等分线,则图中的等腰三角形有( ) (A)5个 (B)4个 (C)3个(D)2个第 2题 第3题2.如图,直线CD 是线段AB 的垂直等分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A .6 B .5 C .4 D .33.如图,过边长为1的等边△ABC 的边AB 上一点P,作PE⊥AC 于E,Q 为BC 延伸线上一点,当PA =CQ 时,连PQ 交AC 边于D,则DE 的长为( )A . B . C .D .不克不及肯定4.下列性质中,等腰三角形具有而直角三角形不必定具有的是 ( )A .双方之和大于第三边B .有一个角的等分线垂直于这个角的对边C .有两个锐角的和等于90°D.内角和等于180°5.已知等腰三角形的两条边长分离是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .36.如图,△ABC 内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )A.100° B.80° C.70° D.50° 第6题 第10题(第1题) ABC D PAC DB 第7题7.如图所示的正方形网格中,网格线的交点称为格点.已知.是两格点,假如也是图中的格点,且使得为等腰三角形,则点的个数是()A.6B.7C.8 D.98.如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分离是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的偏向移动(不与点A,B重合),衔接DE,得到四边形DMNE.这个四边形的面积变更情形为()(A)逐渐增大 (B) 逐渐减小 (C) 始终不变 (D)先增大后变小9.已知等腰三角形的一个内角为70°,则别的两个内角的度数是()A.55°,55° B.70°,40° C.55°,55°或70°,40° D.以上都不合错误10.一等腰三角形的双方长x.y知足方程组则此等腰三角形的周长为()A.5 B.4 C.3 D.5或411.如下图1,已知:△ABC中,AB=AC=,BC=6,则腰长的取值规模是()A . B. C . D.13.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分离取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的办法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第8个正△A8B8C8的面积是()A .B.C.D.二.填空题填空第1题…… 图③图②图①第8题D 1D 5 D 2 D 3 D 4 D 01.如图,△ABC 中,DE 垂直等分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE=.3.等腰△ABC 的双方长分离为2和5,则第三边长为.4.如上图4,在△ABC 中,AB=AC=13,BC=10,D 是AB 的中点,过点D 作DE⊥AC 于点E,则DE 的长是.5.如图,将第一个图(图①)所示的正三角形贯穿连接各边中点进行朋分,得到第二个图(图②);再将第二个图中最中央的小正三角形按同样的方法进行朋分,得到第三个图(图③);再将第三个图中最中央的小正三角形按同样的方法进行朋分,……,则得到的第五个图中,共有________个正三角形. 6.下面的方格图案中的正方形极点叫做格点,图1中以格点为极点的等腰直角三角形有4个,图2中以格点为极点的等腰直角三角形有个,图3中以格点为极点的等腰直角三角形有个,图4中以格点为极点的等腰直角三角形有个.8.如图,△ABC 是一个边长为2的等边三角形,AD0⊥BC,垂足为点D0.过点D0作D0D1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD0,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;……;如许一向作下去,得到一组线段:D0D1,D1D2,D2D3,……,则线段Dn1Dn 的长为_ _(n 为正整数). 直角三角形试题:一.选择题1.合适前提∠A =∠B =∠C 的三角形必定是 ( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 随意率性三角形图2 图图4 图32.两个直角三角形全等的前提是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.如下图1,△ABC 中,AD⊥BC 于D,BE⊥AC 于E,AD 与BE 订交于F,若BF=AC,则∠ABC 的大小是( )A.40° B.45° C.50° D.60°4.等腰直角三角形的斜边长为a,则其斜边上的高为( ) A. B. C. D.二.填空题1.若等腰三角形的腰长为4,腰上的高为2,则此等腰三角形的顶角为.2.若等腰三角形一腰上的高级于腰长的一半,则这个等腰三角形的底角为.3.一汽船以每小时20海里的速度沿正东偏向航行.上午8时,该船在处测得某灯塔位于它的北偏东30°的处(如上图2),上午9时行到处,测得灯塔正好在它的正南偏向,此时它与灯塔的距离是海里(成果保存根号).和4,则直角三角形的两条直角边的和是.5.在△ABC 中,AB=5cm,BC=6cm,BC 边上的中线AD=4cm,则∠ADC 的度数是___度6.如下图1,∠E =∠F =90°,∠B =∠C .AE =AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.个中准确的结论是(注:将你以为准确的结论都填上.)7.如上图2:△ABC 中,AD⊥BC,CE⊥AB,垂足分离为D.E,AD.CE 交于点H,请你添加一个恰当的前提:,使△AEH≌△CEB.(填空第3题) 填空第4题)8.如图,在等腰直角三角形ABC中,AD⊥BC,PE⊥AB,PF⊥AC,则△DEF是三角形9.等腰直角三角形一条直角边的长为1cm,那么它斜边长上的高是cm.10.已知⊿ABC中,∠A = ,角等分线BE.CF交于点O,则∠BOC =11.在△ABC中,∠BAC=90°,AD⊥BC于D,AB=3,AC=4,则AD=;三.解答题1.已知:如图,在等边三角形ABC中,D.E分离为BC.AC上的点,且AE=CD,贯穿连接AD.BE交于点P,作BQ⊥AD,垂足为Q.求证:BP=2PQ.四.探讨题1.AF是△ABC的角等分线,BD⊥AF交AF的延伸线于D,DE∥AC 交AB于E,求证:AE=BE.2.如图,已知点B.C.D在统一条直线上,△ABC和△CDE 都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③断定△CFH 的外形并解释来由.线段的垂直等分线:1.如图,在△ABC中,分离以点A和点B为圆心,大于AB的长为半径画孤,两弧订交于点M,N,作直线MN,交BC于点D,衔接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7 B.14 C.17 D.202.如图,在Rt△ACB中,∠C=90°,BE等分∠ABC,ED垂直等分AB于D.若AC=9,则AE的值是()A.6 B.4 C.6 D.43.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直等分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30° B.40° C.50° D.60°4.如图,在梯形ABCD中,AD∥BC,AB=a,DC=b,DC边的垂直等分线EF交BC边于E,且E为BC边的中点,又DE∥AB,则梯形ABCD的周长等于()A.2a+2bB.3a+bC.4a+bD.5a+b第1题图第2题图第3题图第4题图5.如下图1,在周长为20cm的□ABCD中,AB≠AD,AC.BD订交于点O,OE⊥BD交AD 于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm6.如下图2,△ABC中边AB的垂直等分线分离交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm 第5题图第6题图第7题图第8题图7.如上图3,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直等分线DE交BC的延伸线于点E,则CE的长为 .8.如上图4,在△ABC中,AB=BC,∠B=120°,AB的垂直等分线交AC于点D.若AC=6cm,则AD=cm.9.如下图1,在△ABC中,BC边上的垂直等分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为.10.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直等分线分离交AD,BC于点E.F,衔接CE,则CE的长为.11.已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于.第9题图第10题图第11题图12.如图,在四边形ABCD中,AD∥BC,E为CD的中点,衔接AE.BE,BE⊥AE,延伸AE 交BC的延伸线于点F.求证:(1)FC=AD;(2)AB=BC+AD.13、如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C.D不重合),以CG为一边向正方形ABCD外作正方形GCEF,衔接DE交BG的延伸线于H.(1)求证:①△BCG≌△DCE;②BH⊥DE.(2)试问当点G活动到什么地位时,BH 垂直等分DE?请解释来由.。

专题19等腰三角形、等边三角形、直角三角形(基础巩固练习)练习版

专题19等腰三角形、等边三角形、直角三角形(基础巩固练习)练习版

2021年中考数学专题19 等腰、等边三角形、直角三角形(基础巩固练习,共50个小题)一、选择题(共20小题):1.(2020•毕节市)已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17 C.13或17 D.13或102.(2020•福建)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10 B.5 C.4 D.33.(2020•呼伦贝尔)如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°4.(2020•兰州)如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°5.(2020•青海)等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°6.(2020•临沂)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°7.(2020•自贡)如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°8.(2020•巴中)如图,在△ABC中,∠BAC=120°,AD平分∠BAC,DE∥AB,AD=3,CE=5,则AC的长为()A .9B .8C .6D .79.(2020•铜仁市)已知等边三角形一边上的高为2√3,则它的边长为( )A .2B .3C .4D .4√310.(2019•天水)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(1,√3)C .(√3,1)D .(√3,√3)11.(2019•铜仁市)如图,四边形ABCD 为菱形,AB =2,∠DAB =60°,点E 、F 分别在边DC 、BC 上,且CE =13CD ,CF =13CB ,则S △CEF =( )A .√32B .√33C .√34D .√39 12.(2018•扬州)在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是( )A .BC =ECB .EC =BE C .BC =BED .AE =EC13.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3 B.4 C.5 D.614.(2019•陕西)如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°15.(2020•赤峰)如图,Rt△ABC中,∠ACB=90°,AB=5,AC=3,把Rt△ABC沿直线BC向右平移3个单位长度得到△A'B'C',则四边形ABC'A'的面积是()A.15 B.18 C.20 D.2216.(2020•绵阳)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.417.(2020•包头)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,BE⊥CD,交CD的延长线于点E.若AC=2,BC=2√2,则BE的长为()A.2√63B.√62C.√3D.√218.(2020•陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.1013√13B.913√13C.813√13D.713√1319.(2020•德阳)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.2√2−2 C.2√2+2 D.2√220.(2020•威海)七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为()A.25cm2B.1003cm2C.50cm2D.75cm2二、填空题(共16小题):21.(2020•齐齐哈尔)等腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是.22.(2020•眉山)如图,等腰△ABC中,AB=AC=10,边AC的垂直平分线交BC于点D,交AC于点E.若△ABD的周长为26,则DE的长为.23.(2020•滨州)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.24.(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.25.(2020•黄冈)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.26.(2020•常州)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.27.(2019•哈尔滨)如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.28.(2020•岳阳)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD=°.29.(2020•绵阳)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.30.(2020•宿迁)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为.31.(2020•雅安)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.32.(2020•苏州)如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=.33.(2020•安顺)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.34.(2020•丹东)如图,在四边形ABCD中,AB⊥BC,AD⊥AC,AD=AC,∠BAD=105°,点E和点F分别是AC和CD的中点,连接BE,EF,BF,若CD=8,则△BEF的面积是.35.(2020•十堰)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为.36.(2020•青海)如图,△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于点D,且△DBC的周长是24cm,则BC=cm.三、解答题(共14小题):37.(2020•衡阳)如图,在△ABC中,∠B=∠C,过BC的中点D作DE⊥AB,DF⊥AC,垂足分别为点E、F.(1)求证:DE=DF;(2)若∠BDE=40°,求∠BAC的度数.38.(2019•攀枝花)如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.39.(2019•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.40.(2019•重庆)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.41.(2020秋•河北区期末)如图,在等边△ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)求证:DC=CF.42.(2020秋•道外区期中)如图1,已知等边△ABC中,D、E分别是AB、AC上的点,连接DE.(1)若DE∥BC,求证:△ADE是等边三角形;(2)如图2,若D、E分别为AB、AC中点,连接CD、BE,CD与BE相交于点F,请直接写出图中所有等腰三角形.(△ADE与△ABC除外)43.(2020•海淀区一模)如图,在▱ABCD中,∠ABC=60°,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接DF.(1)求证:△ABF是等边三角形;(2)若∠CDF=45°,CF=2,求AB的长度.44.(2018•无锡)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.45.(2020秋•齐河县期末)如图,在△ABC中,∠ACB=90°,∠B=30°,CE垂直于AB于点E,D是AB的中点.(1)求证:AE=ED;(2)若AC=2,求DE的长.46.(2020秋•农安县期末)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:CE=CF;(2)若CD=2,求DF的长.47.(2020秋•松江区期末)如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E是AC中点,点F是BD中点.(1)求证:EF⊥BD;(2)过点D作DH⊥AC于H点,如果BD平分∠HDE,求证:BA=BC.48.(2020秋•南海区期末)在△ABC中,(1)如图1,AC=15,AD=9,CD=12,BC=20,求△ABC的面积;(2)如图2,AC=13,BC=20,AB=11,求△ABC的面积.49.(2020春•米东区期末)如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.50.(2020秋•锦江区校级期末)如图1,已知Rt△ABC中,∠BAC=90°,点D是AB上一点,且AC=8,∠DCA=45°,AE⊥BC于点E,交CD于点F.(1)如图1,若AB=2AC,求AE的长;(2)如图2,若∠B=30°,求△CEF的面积;(3)如图3,点P是BA延长线上一点,且AP=BD,连接PF,求证:PF+AF=BC。

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

等腰三角形与直角三角形(共26道)一、单选题1(2023·江苏徐州·统考中考真题)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且ADAB=DEBC,则AE的长为()A.1B.2C.1或32D.1或22(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD中,点E为BA延长线上一点,F为CE的中点,以B为圆心,BF长为半径的圆弧过AD与CE的交点G,连接BG.若AB=4,CE=10,则AG= ()A.2B.2.5C.3D.3.53(2023·北京·统考中考真题)如图,点A、B、C在同一条线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE,设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>a2+b2;③2a+b>c;上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③4(2023·江苏无锡·统考中考真题)如图△ABC中,∠ACB=90°,AB=4,AC=x,∠BAC=α,O为AB中点,若点D为直线BC下方一点,且△BCD与△ABC相似,则下列结论:①若α=45°,BC与OD相交于E,则点E不一定是△ABD的重心;②若α=60°,则AD的最大值为27;③若α=60°,△ABC∽△CBD,则OD的长为23;④若△ABC∽△BCD,则当x=2时,AC+CD取得最大值.其中正确的为()A.①④B.②③C.①②④D.①③④5(2023·浙江·统考中考真题)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是()A.2B.2C.2D.126(2023·四川眉山·统考中考真题)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK⋅HD=2HE2.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题7(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为dm3.8(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.9(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.10(2023·湖北·统考中考真题)如图,△BAC ,△DEB 和△AEF 都是等腰直角三角形,∠BAC =∠DEB =∠AEF =90°,点E 在△ABC 内,BE >AE ,连接DF 交AE 于点G ,DE 交AB 于点H ,连接CF .给出下面四个结论:①∠DBA =∠EBC ;②∠BHE =∠EGF ;③AB =DF ;④AD =CF .其中所有正确结论的序号是.11(2023·山东·统考中考真题)如图,△ABC 是边长为6的等边三角形,点D ,E 在边BC 上,若∠DAE =30°,tan ∠EAC =13,则BD =.12(2023·山东日照·统考中考真题)如图,矩形ABCD 中,AB =6,AD =8,点P 在对角线BD 上,过点P 作MN ⊥BD ,交边AD ,BC 于点M ,N ,过点M 作ME ⊥AD 交BD 于点E ,连接EN ,BM ,DN .下列结论:①EM =EN ;②四边形MBND 的面积不变;③当AM :MD =1:2时,S △MPE =9625;④BM +MN+ND 的最小值是20.其中所有正确结论的序号是.13(2023·四川遂宁·统考中考真题)如图,以△ABC的边AB、AC为腰分别向外作等腰直角△ABE、△ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:①当AB=AC= BC时,∠AED=30°;②EC=BD;③若AB=3,AC=4,BC=6,则DE=23;④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)14(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B 分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为15(2023·江苏苏州·统考中考真题)如图,∠BAC=90°,AB=AC=32.过点C作CD⊥BC,延长CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)CB到E,使BE=1316(2023·山西·统考中考真题)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.17(2023·湖北十堰·统考中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC∠A=90°硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.三、解答题18(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.19(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.20(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.21(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).22(2023·吉林长春·统考中考真题)如图①.在矩形ABCD.AB=3,AD=5,点E在边BC上,且BE=2.动点P从点E出发,沿折线EB-BA-AD以每秒1个单位长度的速度运动,作∠PEQ=90°,EQ交边AD或边DC于点Q,连续PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t 秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.23(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.24(2023·重庆·统考中考真题)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB =4,直接写出PQ+QF的最小值.25(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.。

中考数学同步练习第4单元 课时4等腰三角形与直角三角形

中考数学同步练习第4单元 课时4等腰三角形与直角三角形

课时4 等腰三角形与直角三角形一、基础巩固1.(2019·山西)如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是(C)A .30°B .35°C .40°D .45°第1题图 第2题图 2.在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是(C)A .BC =ECB .EC =BE C .BC =BED .AE =EC3.若等腰△ABC 的周长是50 cm ,一腰长为x cm ,底边长为y cm ,则y 与x 的函数关系式及自变量x 的取值范围是(C)A .y =50-2x (0<x <50)B .y =12(50-2x )(0<x <50)C .y =50-2x ⎝ ⎛⎭⎪⎫252<x <25 D .y =12(50-2x )⎝ ⎛⎭⎪⎫252<x <254.(2019·成都)如图,在△ABC中,AB=AC,点D,E都在边BC 上,∠BAD=∠CAE,若BD=9,则CE的长为__9__.第4题图第5题图5.(2019·攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.二、能力提升6.若(a -1)2+|b -2|=0,则以a 、b 为边长的等腰三角形的周长为(A)A .5B .4C .3D .4或57.(2019·台湾)如图,△ABC 中,AC =BC <AB .若∠1、∠2分别为∠ABC 、∠ACB 的外角,则下列角度关系正确的是(C)A .∠1<∠2B .∠1=∠2C .∠A +∠2<180°D .∠A +∠1>180°第7题图 第8题图 8.(2019·大连)如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .若AB =2,则AD 的长为 23 .【笔记】∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°, ∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,∴∠BAD =90°,∴AD =AB tan 30°=233=2 3. 9.如图,在△ABC 中,点D 在AB 上,且CD =CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF =12AC ;(2)若∠BAC =45°,求线段AM 、DM 、BC 之间的数量关系. 解:(1)∵CD =CB ,E 为BD 的中点;∴CE ⊥BD ,∴∠AEC =90°.又∵F 为AC 的中点,∴EF =12AC .(2)∵∠BAC =45°,∠AEC =90°,∴∠ACE =∠BAC =45°,∴AE =CE .又∵F 为AC 的中点,∴EF ⊥AC ,∴EF 为AC 的垂直平分线,∴AM =CM ,∴AM +DM =CM +DM =CD .又∵CD =CB ,∴AM +DM =BC .三、应用拓展10.(2019·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__2或2.5__.【笔记】如图∵AB =2,AD =7,∴BD =BC +CD =5,∵BC 作为腰的等腰三角形,∴BC =AB 或BC =CD ,∴BC =2或2.5.11.(2019·武汉模拟)如图,△ABC 中,AB =AC ,D 为BC 上一点,AD =BD ,BE ⊥AD 于点E ,则AE BC 的值为12.解图解:过A 作AN ⊥BC 于N ,则BN =CN ,∵AD =BD ,∴∠DAB =∠DBA ,∵BE ⊥AD ,∴∠E =∠ANB =90°,在△ABN 与△BAE 中,⎩⎪⎨⎪⎧ ∠E=∠ANB ∠BAE =∠ABNAB =BA ,∴△ABN ≌△BAE (AAS),∴AE =BN ,∴AE =BN =12BC ,∴AE BC =12.12.如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α,D 是△ABC 外一点,且△BOC ≌△ADC ,连接OD .(1)△COD 是什么三角形?说明理由;(2)当α为多少度时,△AOD 是直角三角形?(3)当α为多少度时,△AOD 是等腰三角形?解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO =CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°-110°-90°-60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-100°-60°-α=200°-α,∠ADO=α-60°,∴200°-α=α-60°,∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°-α,∠ADO=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)=40°,∴α-60°=40°,∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°-α=40°,∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,100°,150°或160°时,△AOD是等腰三角形.四、权威预测13.(2019·邢台二模)我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是__130°__.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为180°7.【笔记】(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=180°7.。

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________(25道)一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12 B 5C .23 D 32.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A .23B .232C .2D .233.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .44.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为 ①若60,ABC CBD α=︒∽,则OD 的长为 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC =,则AE 的长为( )A .1B .2C .1D .1或26.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .537.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC = 2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.29.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD的长是( )A B C D11.ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.参考答案一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12BC .23 D【答案】D 【详解】解:①点O 是①ABC 的重心 ①OC =23CE ①①ABC 是直角三角形 ①CE =BE =AE ①①B =30° ①①F AE =①B =30° ①BAC =60° ①①F AE =①CAF =30° ①ACE 是等边三角形 ①CM =12CE ①OM =23CE ﹣12CE =16CE 即OM =16AE ①BE =AE ①EF①EF ①AB ①①AFE =60° ①①FEM =30° ①MF =12EF ①MF①MO MF1AE故选D .2.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A.2B.2 C .2 D.【答案】B 【分析】根据等腰直角三角形的性质可得2cm AD CD == 由含30度角直角三角形的性质可得24cm BC CD == 由勾股定理可得BD 的长 即可得到结论.【详解】解:如图,在Rt ACD △中 45ACD ∠=︒①45CAD ACD ∠=︒=∠①2cm AD CD ==在Rt BCD 中 60BCD ∠=︒①30CBD ∠=︒①24cm BC CD == ①)22224223cm BD BC CD --= ①()233cm AB BD AD =-=.故选:B .【点睛】本题考查了勾股定理 等腰直角三角形的性质 含30︒角直角三角形的性质 熟练掌握勾股定理是解题的关键.3.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据等腰三角形两底角相等与36A ∠=︒ 得到72ABC C ∠=∠=︒ 根据角平分线定义得到36ABD CBD ∠=∠=︒ 根据线段垂直平分线性质得到EB ED = 得到EBD EDB ∠=∠ 推出EDB CBD ∠=∠ 得到DE BC ∥ 推出AED ABC ∠=∠ ①正确 根据等角对等边得到AD AE = AD BD = 根据三角形外角性质得到72BDC C ∠=︒=∠ 得到BC BD = 推出BC AE = ①正确 根据AED ABC △∽△ 得到ED AD AD BC AC AD DC ==+ 推出ED = ①错误 根据2AC =时CD AD = 2AD AD =-,推出1AD = ①正确. 【详解】①ABC 中 AB AC = 36A ∠=︒ ①()1180722ABC C A ∠=∠=︒-∠=︒ 由作图知 BD 平分ABC ∠ MN 垂直平分BD ①1362ABD CBD ABC ∠=∠=∠=︒EB ED = ①EBD EDB ∠=∠①EDB CBD ∠=∠①DE BC ∥①AED ABC ∠=∠ ①正确 ADE C ∠=∠①AED ADE ∠=∠①AD AE =①A ABD ∠=∠①AD BD =①72BDC A ABD ∠=∠+∠=︒ ①BDC C ∠=∠①BC BD =①BC AE = ①正确设ED x = BC a =则AD a = BE x =①CD BE x ==①AED ABC △∽△ ①EDADADBC AC AD DC ==+ ①x aa a x =+①220x ax a +-=①0x >①51x -= 即51ED -=①错误 当2AC =时 2CD AD =- ①51CD AD -=512AD AD -=-, ①51AD = ①正确①正确的有①①① 共3个.故选:C .【点睛】本题主要考查了等腰三角形 相似三角形 解决问题的关键是熟练掌握等腰三角形判定和性质 相似三角形的判定和性质 角平分线的定义和线段垂直平分线的性质.4.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为27 ①若60,ABC CBD α=︒∽,则OD 的长为23 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①【答案】A 【分析】①有3种情况 分别画出图形 得出ABD △的重心 即可求解 当60α=︒ BD BC ⊥时 AD 取得最大值 进而根据已知数据 结合勾股定理 求得AD 的长 即可求解 ①如图5 若60α=︒ C ABC BD ∽△△ 根据相似三角形的性质求得3CD = 3GE DF == 32CF = 进而求得OD 即可求解 ①如图6 根据相似三角形的性质得出214CD BC =在Rt ABC △中 2216BC x =- 根据二次函数的性质 即可求AC CD +取得最大值时 2x =. 【详解】①有3种情况 如图1 BC 和OD 都是中线 点E 是重心如图2 四边形ABDC 是平行四边形 F 是AD 中点 点E 是重心如图3 点F 不是AD 中点 所以点E 不是重心①正确①当60α=︒ 如图4时AD 最大 4AB =∴2AC BE == BC AE == 6BD ==∴8DE =∴AD =≠∴①错误①如图5 若60α=︒ C ABC BD ∽△△①60BCD ∠=︒ 90CDB ∠=︒ 4AB = 2AC = BC = OE = 1CE =①CD = GE DF ==32CF =①52EF DG == OG①OD =≠①①错误①如图6 ABC BCD ∽△△①CD BC BC AB= 即214CD BC =在Rt ABC △中 2216BC x =- ①()221116444CD x x =-=-+ ①22114(2)544AC CD x x x +=-+=--+ 当2x =时 AC CD +最大为5①①正确.故选:A .【点睛】本题考查了三角形重心的定义 勾股定理 相似三角形的性质 二次函数的性质 分类讨论 画出图形是解题的关键.5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC=,则AE 的长为( )A .1B .2C .13D .1或2【答案】D 【分析】根据题意易得3,4==AB AC 然后根据题意可进行求解.【详解】解:①90,30,2B A BC ∠︒∠︒=== ①323,24AB BC AC BC ====①点D 为AB 的中点 ①132AD AB =①AD DE AB BC= ①1DE =①当点E 为AC 的中点时 如图①122AE AC == ①当点E 为AC 的四等分点时 如图所示:①1AE =综上所述:1AE =或2故选D .【点睛】本题主要考查含30度直角三角形的性质及三角形中位线 熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.6.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .53【答案】D 【分析】过点D 作DM AB ⊥于M 由勾股定理可求得4AC = 由题意可证明ADC ADM △≌△,则可得4AM AC == 从而有1BM = 在Rt DMB 中 由勾股定理建立方程即可求得结果.【详解】解:过点D 作DM AB ⊥于M 如图由勾股定理可求得4AC =由题中作图知 AD 平分BAC ∠①DM AB AC BC ⊥⊥,①DC DM =①AD AD =①Rt Rt ADC ADM △≌△①4AM AC ==①1BM AB AM =-=设BD x =,则3MD CD BC BD x ==-=-在Rt DMB 中 由勾股定理得:2221(3)x x +-= 解得:53x = 即BD 的长为为53故选:D .【点睛】本题考查了作图:作角平分线 角平分线的性质定理 全等三角形的判定与性质 勾股定理 利用全等的性质 利用勾股定理建立方程是解题的关键.7.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m【答案】B 【分析】作AD BC ⊥于点D 根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒ 再根据含30度角的直角三角形的性质即可得出答案. 【详解】解:如图,作AD BC ⊥于点DABC 中,120BAC ∠=︒ AB AC =∴()1180302B C BAC ∠=∠=︒-∠=︒AD BC ⊥∴11126m 22AD AB ==⨯=故选B .【点睛】本题考查等腰三角形的性质 三角形内角和定理 含30度角的直角三角形的性质等解题的关键是掌握30度角所对的直角边等于斜边的一半.8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC =2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.2【答案】C【分析】证明ADC DEB ∽△△ 根据题意得出45BD BC = 进而即可求解.【详解】解:①ABC 为等边三角形①60B C ∠=∠=︒①ADB ADE BDE C DAC ∠=∠+∠=∠+∠ 60ADE ∠=︒①BDE DAC ∠=∠①ADC DEB ∽△△ ①AD ACDE BD =①4BD DC = ①45BD BC =①AD AC DE BD =5445BC BC == ① 2.4DE = ①534AD DE =⨯= 故选:C .【点睛】本题考查了相似三角形的性质与判定 等边三角形的性质 熟练掌握相似三角形的性质与判定是解题的关键.9.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图 1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等【答案】D【分析】利用直角三角形斜边中线的性质证明:OC OA OB ==即可.【详解】解:作直线PQ (两点确定一条直线)连接PA PB QA QB OC ,,,,①由作图 PA PB QA QB ==,①PQ AB ⊥且AO BO =(与线段两个端点距离相等的点在这条线段的垂直平分线上).①90ACB ∠=︒ ①12OC AB =(直角三角形斜边中线等于斜边的一半) ①OA OB OC ==①A B C 三点在以O 为圆心 AB 为直径的圆上.①O 为ABC 的外接圆.故选:D .【点睛】本题考查作图-复杂作图 线段的垂直平分线的定义 直角三角形斜边中线的性质等知识 解题的关键熟练掌握基本知识 属于中考常考题型.10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD 的长是( )A B C D 【答案】C 【分析】如图所示 过点B 作BE AC ⊥于E 利用勾股定理求出5AC = 进而利用等面积法求出125BE =,则可求出95AE = 再由BD 平分ABC 的周长 求出32AD CD ==, 进而得到65DE =,则由勾股定理得BD ==【详解】解:如图所示 过点B 作BE AC ⊥于E①在ABC 中 9034ABC AB BC ∠=︒==,, ①225AC AB +BC ①1122ABC S AC BE BC AC =⋅=⋅△ ①125AB BC BE AC ⋅== ①2295AE AB BE =-= ①BD 平分ABC 的周长①AD AB BC CD +=+ 即34AD CD +=+又①5AD CD AC +==①32AD CD ==, ①65DE AD AE =-= ①2265BD BE DE =+=故选C .【点睛】本题主要考查了勾股定理 正确作出辅助线构造直角三角形是解题的关键.11.ABC 的三边长a b c 满足2()23|320a b a b c ----=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()20230320a b a b c ⎧-≥⎪⎪--⎨-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5【答案】B 【分析】利用三角形三边关系求得04AC << 再利用等腰三角形的定义即可求解.【详解】解:在ACD 中 2AD CD ==①2222AC -<<+ 即04AC <<当4AC BC ==时 ABC 为等腰三角形 但不合题意 舍去若3AC AB ==时 ABC 为等腰三角形故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义 解题的关键是灵活运用所学知识解决问题.二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .【答案】23【分析】先求出AD=2 BD=4 根据三角形的一个外角等于与它不相邻的两个内角的和可得①AMD+①A=①EDF+①BDN 然后求出①AMD=①BDN 从而得到①AMD 和①BDN 相似 根据相似三角形对应边成比例可得MA MD BD DN= 求出MA•DN=4MD 再将所求代数式整理出完全平方的形式 然后根据非负数的性质求出最小值即可.【详解】①AB=6 AB=1:3 ①AD=6×13=2 BD=6﹣2=4 ①①ABC 和①FDE 是形状 大小完全相同的两个等腰三角形①①A=①B=①FDE 由三角形的外角性质得 ①AMD+①A=①EDF+①BDN ①①AMD=①BDN①①AMD①①BDN ①MA MD BD DN= ①MA•DN=BD•MD=4MD ①MD+12⋅MA DN =MD+2233()(2323MD MD MD+- =①3MD MD 即3MD+12⋅MA DN 有最小值为23故答案为考点:相似三角形的判定与性质 等腰三角形的性质 旋转的性质 最值问题 综合题.14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .【答案】32/112/1.5 【分析】先根据AAS 证明BDA CDE △≌△ 推出5==BA CE 再利用勾股定理求出BC 最后根据中点的定义即可求CD 的长. 【详解】解:CE AB ∥∴BAD CED ∠=∠点D 为BC 的中点∴BD CD = 又BDA CDE ∠=∠∴BDA CDE △≌△()AAS∴5==BA CERt ABC △中 90ACB ∠=︒ 4AC =∴3BC === ∴1322CD BC ==. 故答案为:32. 【点睛】本题考查全等三角形的判定与性质 勾股定理 平行线的性质等 证明BDA CDE △≌△是解题的关键.15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .541【分析】分两种情况当D 在CA 延长线上和当D 在CA 上讨论 画出图形 连接OC 过点O 作ON BC ⊥于N 利用勾股定理解题即可【详解】解:当在线段上时 连接OC 过点O 作ON BC ⊥于N①当D 在线段AC 上时1AD =2CD AC AD ∴=-=90BCD ∠=︒22222313BD CD BC ∴=+=+点O 是线段BD 的中点1132OC OB OD BD ∴====ON BC ⊥1322CN BN BC ∴===AB DE45COE A CBA CED ∴∠=∠=∠=∠=︒2CE CD ∴==31222NE ∴=-=221ON CO CN =-2222151()2OE ON NE ∴=++=②当D 在CA 延长线上时,则4CD AD AC =+=O 是线段BD 的中点 90BCD ∠=︒12OC OB OD BD ∴=== ON BC ⊥1322CN BN BC ∴=== OB OD =122ON CD ∴== AB DE45CAB COE CBA CED ∴∠=∠=∠=∠=︒4CE CD ∴==35422EN CE CN ∴=-=-=OE ∴==OE ∴【点睛】本题考查等腰直角三角形的判定和性质 勾股定理 正确作出辅助线是解题的关键.16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .【答案】32【分析】连接CP 利用勾股定理列式求出AB 判断出四边形CDPE 是矩形 根据矩形的对角线相等可得DE CP = 再根据垂线段最短可得CP AB ⊥时 线段DE 的值最小 然后根据直角三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP①90,6C AC BC ∠=︒== ①22226662AB AC BC ++=①PD BC ⊥于点D PE AC ⊥于点E 90ACB ∠=︒①四边形CDPE 是矩形①DE CP =由垂线段最短可得CP AB ⊥时 线段CP 的值最小 此时线段DE 的值最小此时 1122ABC S AC BC AB CP ==△⋅⋅ 代入数据:11666222CP ①32CP =①DE 的最小值为32故答案为:【点睛】本题考查了矩形的判定与性质 垂线段最短的性质 勾股定理 判断出CP AB ⊥时 线段DE 的值最小是解题的关键.17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .【答案】【分析】连接AC BD 交于点O 过点E 作EF AC ⊥ 交AC 于点F 先证明BCD △是等边三角形 AC垂直平分BD 求得30EAC ACD ACB ∠=∠=∠=︒ 6AE EC == 再解三角形求出AO AC CO =-= 4BO = 最后运用勾股定理求得AB 即可.【详解】解:如图:连接AC BD 交于点O又①BC DC = 60C ∠=︒①BCD △是等边三角形①8BD BC CD ===①AB AD = BC DC =①AC BD ⊥ 142BO DO BD === ①1302ACD ACB BCD ∠=∠=∠=︒ 又①AE CD ∥①30EAC ACD ACB ∠=∠=∠=︒.①6AE EC ==过点E 作EF AC ⊥ 交AC 于点F ①3cos30633CF CE =⋅︒==3cos30633AF AE =⋅︒==3cos3083CO BC =⋅︒==①63AC CF AF =+=①634323AO AC CO =-==①在Rt BOA 中 2222(23)427AB BO AO ++= 故答案为:27【点睛】本题属于四边形综合题 主要考查了等边三角形的判定和性质 平行线的性质 垂直平分线 勾股定理 解直角三角形等知识点 正确作出辅助线成为解答本题的关键.18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.【答案】65【分析】根据题意可得BD BE = 再根据等腰三角形两个底角相等和三角形内角和为180°进行计算即可解答.【详解】解:根据题意可得:BD BE =①BDE BED ∠=∠①18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,①65BDE BED ∠=∠=︒.故答案为:65.【点睛】本题主要考查了等腰三角形的性质 三角形内角和等知识点 掌握等腰三角形的性质是解答本题的关键.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .【答案】4【分析】利用圆的性质得出AP 垂直平分CD 和5AD AC == 运用勾股定理便可解决问题.【详解】解:根据题意可知 以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P ①AP 垂直平分CD ,即90AED ∠=︒ ①132DE CD == 又①在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 其中5AC =①5AD AC ==在ADE 中 4AE =故答案为:4.【点睛】本题主要考查圆和三角形的相关性质 掌握相关知识点是解题的关键.20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .【答案】12【分析】过点B 作BM AC ∥交CG 的延长线于点M 证明ACG BMG ∽ 得出AG AC AC GB BM BC == 根据96ACG BCG S AG AC S GB BC ===32= 即可求解. 【详解】解:如图所示 过点B 作BM AC ∥交CG 的延长线于点M①ACM CMB ∠=∠由作图可得CG 是ACB ∠的角平分线①ACM BCM ∠=∠①BCM CMB ∠=∠①BC BM =①BM AC ∥①ACG BMG ∽ ①AG AC AC GB BM BC== ①96ACG BCG S AG AC S GB BC ===32= ①BCG 的面积为8①ACG 的面积为12故答案为:12.【点睛】本题考查了相似三角形的性质与判定 作角平分线 熟练掌握基本作图以及相似三角形的性质与判定是解题的关键.21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD ==①6BC①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .【答案】5【分析】先根据题意画出图形 再运用勾股定理求得AB 然后再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图:①△ACB =90° AC =6 BC =8 ①22226810AB AC BC①①ACB =90° D 为AB 的中点①CD =12AB =12×10=5.故答案为5.【点睛】本题主要考查了运用勾股定理解直角三角形 直角三角形斜边上的中线等于斜边的一半的性质等知识点 掌握“直角三角形斜边上的中线等于斜边的一半”成为解题的关键.三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.【答案】(1)见解析 (2)185BD = 【分析】(1)根据三角形高的定义得出90ADB ∠=︒ 根据等角的余角相等 得出BAD C ∠=∠ 结合公共角B B ∠=∠ 即可得证(2)根据(1)的结论 利用相似三角形的性质即可求解.【详解】(1)证明:①90BAC AD ∠=︒,是斜边BC 上的高.①90ADB ∠=︒ 90B C ∠+∠=︒①90B BAD ∠+∠=︒①BAD C ∠=∠又①B B ∠=∠①C ABD BA ∽△△(2)①C ABD BA ∽△△ ①AB BD CB AB=又610AB BC ==, ①23618105AB BD CB ===. 【点睛】本题考查了相似三角形的性质与判定 熟练掌握相似三角形的性质与判定是解题的关键. 24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.【答案】见解析【分析】利用三线合一和等腰三角形的性质 证出2E ∠=∠ 再利用等边对等角即可.【详解】证明:BD 为等边ABC 的中线BD AC ∴⊥ 160∠=︒330∴∠=︒BD DE =330E ∴∠=∠=︒2160E ∠+∠=∠=︒230E ∴∠=∠=︒CD CE ∴=【点睛】本题考查了等边三角形 等腰三角形的性质和判定 理解记忆相关定理是解题的关键.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①11422AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.。

等腰三角形与直角三角形练习题

等腰三角形与直角三角形练习题

等腰三角形、直角三角形以及轴对称图形同步练习一、选择题:*1、等腰三角形的周长为13,其中一边长为3,则该等腰三角形底边长为( ).(A ) 7 (B ) 3 (C )7或3 (D )52、如下图,在△ABC 中,AB=AC ,∠A=50°,P 是△ABC 内一点,∠PCB=∠PCA ,且∠PBC=∠PBA ,则∠BPC 的度数为( ). PAC B(A )115° (B )100° (C )130° (D )140°3、至少有两边相等的三角形是( ).(A )等边三角形 (B )等腰三角形(C )等腰直角三角形 (D )锐角三角形4、在线段、角、等腰三角形、正三角形中,是轴对称图形的有( ).(A )1个 (B )2个 (C )3个 (D )4个*5、下列说法中正确的是( )(A )角是轴对称图形,它的平分线就是对称轴(B )等腰三角形的内角的平分线,中线和高三线合一(C )直角三角形不是轴对称图形(D )等边三角形有三条对称轴6、等腰三角形的一个内角是50°,那么其它两个内角分别是( )(A )50°和80° (B )65°和65°(C )50°和80°或65°和65° (D )无法确定*7、等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是( ).(A )42° (B )60° (C )36° (D )46°*8、如下图,△ABC 中,AD ⊥BC ,AB=AC ,∠BAD=30°,且AD=AE ,则∠EDC 等于() D B AEC(A )10° (B )° (C )15° (D )20°*9、如下图,PM=PN ,MQ 为△PMN 的角平分线,若∠MQN=72°,则∠P 的度数是( ).PQM N(A )18° (B )36° (C )48° (D )60°**10、已知△ABC 中,AB=AC ,AD ⊥BC 于D ,△ABC 的周长为36cm ,△ADC 的周长为30cm ,那么AD 等于( ).(A )6cm (B )8cm (C )12cm (D )20cm*11、如下图,在△ABC 中,AB=AC , ∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的平分线,则图中等腰三角形的个数为( ). AD EC B O(A )12 (B )10 (C )9 (D )812、如果三角形一边的中线和这边上的高重合,那么这个三角形是( ).(A )等边三角形 (B )等腰三角形 (C )锐角三角形 (D )钝角三角形*13、在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④三个外角都相等的三角形是等边三角形.其中正确的是( ).(A )4个 (B )3个 (C )2个 (D )1个14、在△ABC 中,∠B=∠C=40°,D 、E 是BC 上的两点,且∠ADE=∠AED=80°,则图中共有( )等腰三角形. AC B E D(A )6个 (B )5个 (C )4个 (D )3个二、填空题:1、在△ABC 中, ∠A=∠B=∠C ,则△ABC 是_____三角形;2、在△ABC 中, ∠ABC=∠ACB , ∠ABC 与∠ACB 的平分线交于点D ,过D 作EF ∥BC ,交AB 于E ,交AC 于F ,则图中的等腰三角形有____个,分别是______. F AD C B E3、等腰三角形的对称轴是_____,等边三角形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴.4、等边三角形的两条中线相交所成的钝角的度数是_____.三、解答题:1、在△ABC 中,AD 是∠BAC 的平分线,过C 作CE ∥AD 交BA 的延长线于点E ,则线段E D C B A AE 与AC 是否相等,为什么A E2、△ABC 是等腰三角形,AB=AC ,D 为底边BC 上一点,DE ∥AB 且交AC 于E ,请判断△EDC 是什么三角形并说明理由.AC B E D3、如图所示,△ABC 中,∠ABC 与∠ACB 的角平分线相交于点O ,过O 作EF 平行于BC ,写出图中的所有等腰三角形 一、选择题:1.若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形2. 已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .33.下列命题中,错误的是( )A.三角形两边之差小于第三边B.三角形的外角和是360°C.三角形的一条中线能将三角形分成面积相等的两部分D.等边三角形既是轴对称图形,又是中心对称图形4.如图,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有( )A .5个 个 个 个二、填空题:5.如图,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = .6.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __ __度.7.数学活动课上,老师在黑板上画直线平行于射线AN (如图),让同学们在直线l 和射线AN 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画 个.A E ABCDE (第4题图) (第5题图) (第6题图)A B C DE F G 8.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 .9.如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE= .10.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________.11.已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .(第10题图)12.如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在AB AC 、上,将ABC △沿着DE 折叠压平,A 与A '重合,若70A ∠=°,则12∠+∠= .三、解答题:13.有一块直角三角形的绿地,量得两直角边长分别为6m m ,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.14.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90o ,∠E=∠ABC=30o ,AB=DE=4.(1)求证:△EGB 是等腰三角形;(2)若△DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)).求此梯形的高.(第8题图) (第7题图) (第9题图) 1 (第11题图) 第14题图(1) A B C E FF B (D )G G A E D 第14题图(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形和直角三角形专项练习题
一、选择题
1.等腰三角形一底角为30°,底边上的高为9cm,则腰长为( )cm .
A.3
B.18
C.9
D.39
2.已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( )
A.5
B.6
C.7
D.8
3.如图,△ABC 中,AC=BC ,∠ACB=90°,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 于M ,连接CD .下列结论:①AC+CE=AB ;②CD =21 AE ;③∠CDA=45°;④AM AB AC =定值.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
4.等腰三角形的一个角等于20°, 则它的另外两个角等于:( )
A.20°、140°
B.20°、140°或80°、80°
C.80°、80°
D.20°、80°
5.如图,BE 和AD 是△ABC 的高,F 是AB 的中点,则图中的三角形一定是等腰三角形的有( )
A .2个
B .3个
C .4个
D .5个
6.下列命题正确的是( )
A.等腰三角形只有一条对称轴
B.直线不是轴对称图形
C.直角三角形都不是轴对称图形
D.任何一角都是轴对称图形
7.等腰三角形两边分别为35厘米和22厘米,则它的第三边长为( )
A.35cm
B.22cm
C.35cm 或22cm
D.15cm
8.下列条件不可以判定两个直角三角形全等的是( )
A.两条直角边对应相等
B.有两条边对应相等
C.一条边和一锐角对应相等
D.一条边和一个角对应相等
9.等腰三角形中,AB 长是BC 长2倍,三角形的周长是40,则AB 的长为( )
A.20
B.16
C.20或16
D.18
10.如图已知:AB =AC =BD,那么∠1与∠2之间的关系满足( )
A.∠1=2∠2
B.2∠1+∠2=180°
C.∠1+3∠2=180°
D.3∠1-∠2=180°
二、填空题
1. 等腰三角形的腰长是底边的4
3,底边等于12cm ,则三角形的周长为______ cm. 2. 等腰三角形的底角是65°,顶角为________.
3. 等腰三角形的一个内角为100°,则它的其余各角的度数分别为_______.
4. 等腰三角形的顶角等于一个底角的4倍时, 则顶角为_________度.
5. 已知如图,A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°,则∠ABD =_______
6. 如图, ∠P =25°, 又PA =AB =BC =CD, 则∠DCM =_______度.
第7题 第5题 第6题
7. 如图已知∠ACB=90°, BD=BC, AE=AC, 则∠DCE=__________度
8. △ABC中,∠C=90°,AB=10,∠A=30°,则BC= ______ ,AC=_________
9. 已知Rt△ABC中,斜边AB=10cm,则斜边上的中线的长为______
10.如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件____________或_______________;若利用“HL”证明△ABC≌△ABD,则需要加条件___________或_______________ .
三、几何题
1.如图,在△ABC 中,已知AB = 10,BD = 6, AD = 8,AC = 17.
(1)求DC的长.
(2)判断△ABC是否是直角三角形?
2.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使得CE=CD.连接DE (1)∠E等于多少度?
(2)△DBE是什么三角形?
3.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,求树的高度
4.如图,在等腰三角形ABC中,已知AB=AC=13cm,BC=10cm,AD⊥BC于点D.
(1)求BC边上的高AD的长
(2)求AC边上的高的长
5.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.
6.如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.
90090
7. 如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F.
(1)线段AD 与BE 有什么关系?试证明你的结论
(2)求∠BFD 的度数
8. 如图,在△ABC 中,AB=BC ,∠ABC= ,OA=OB,在△EOF 中,∠EOF= ,OE=OF,连接AE 、BF.问线段AE 与BF 之间的关系?请说明理由
9.如图,在△ABC 中,AB=AC,E 为CA 延长线上一点,ED ⊥BC 于D 交AB 于F.求证:△AEF 为等腰三角形.
10.如图,一艘渔船以30海里/h 的速度由西向东追赶鱼群.在A 处测得小岛C 在船的北偏东60°方向;40min 后,渔船行至B 处,此时测得小岛C 在船的北偏东30°方向.已知以小岛C 为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?。

相关文档
最新文档