放射化学基础放射性核素元素化学

合集下载

第十三章 放射性核素在化学、 放射化学 课件(共42张PPT)

第十三章 放射性核素在化学、 放射化学 课件(共42张PPT)
第二十四页,共42页。
二、实验方法(fāngfǎ): 1、由实验测得t=0和t⇒∞和t时刻固体中的放
射性活度,即可按(13-31)式求得交换度F 2、由计算出的F-Bt表查出Bt值。 3、由t值计算出B。为了得到平均值,一般是
测量不同时刻的F,由表中查出一系列Bt值, 做Bt-t曲线,应为一条直线,直线斜率即B 4、再根据固体半径r求得自扩散系数Ď。
等。 2、医学和生物方面: 医学上的诊断,治疗(zhìliáo);光合作用等生物过程
研究。 3、化学研究方面: 分子结构研究;化学反响机理研究;各种动力学参数
测定;热力学平衡常数等的测定;分析元素含量等。
第八页,共42页。
三、对标记(biāojì)化合物所需放射性比活度的 估算
如:每分钟计数〔根据测量误差而定〕为A, 那么要求示踪原子的毫居里数q:
第三页,共42页。
4、放射性核素示踪剂的选择 (xuǎnzé)
• 半衰期:根据实验目的及周期长短选择适 合半衰期的放射性核素。太长太短都不好。 医用大多项选择择半衰期为几小时到十几 天之间。
• 辐射类型和能量:常用β和γ,β测量效率高, 且容易防护。对需穿过较厚物质(wùzhì)层 那么需用γ射线。如脏器的扫描和γ照相。 对于β,要求Eβ=0.01-2Mev; 对于γ, Eγ=100-600Kev。
第十九页,共42页。
§13-4配合(pèihé)物稳定常数的 测定
一、测定原理〔见讲义〕 关键是引入配合度Ф和函数ψ。然后逐级外推,即可
求得β1、β2……βn。 二、实验方法: 通常是先用实验求得无配体时的分配比D和有配体
时的分配比D’,再按照(13-19)式,以log(D/D’1)对log[L]作图,从直线截距可求得logβn,由斜 率求得配位数n。 由于示踪原子(shì zōnɡ yuán zǐ)方法灵敏度高,可 以在中心离子浓度非常低时进行。

元素周期表中的放射性元素

元素周期表中的放射性元素

元素周期表中的放射性元素元素周期表是化学领域中一张至关重要的表格,它将元素按照原子序数、元素符号和原子量等属性进行了整理与归类。

其中,放射性元素是周期表中一类特殊的元素,具有放射性衰变的特性。

本文将介绍元素周期表中的放射性元素的性质、应用以及其对环境和人类的影响。

一、放射性元素的定义和分类放射性元素是指具有不稳定原子核,能够自发地通过衰变释放放射线的元素。

根据放射性衰变方式的不同,放射性元素可以分为三类:α衰变、β衰变和γ射线。

1. α衰变:在α衰变中,放射性元素的原子核释放出α粒子(由两个质子和两个中子组成)。

这种衰变会导致原子序数减2,而原子量减4。

常见的放射性元素如镭(Ra)和铀(U)就属于α衰变系列。

2. β衰变:β衰变分为β-衰变和β+衰变两类。

β-衰变时,放射性元素的原子核从一个中子转变为一个质子,并释放出一个电子和一个反中微子。

β+衰变则相反,原子核中的一个质子转变为一个中子,释放出一个正电子和一个中微子。

这种衰变会导致原子序数增加或减少1。

例如,碳-14(C-14)和钴-60(Co-60)是常见的β衰变放射性元素。

3. γ射线:γ射线是高能电磁波,不带任何电荷或质量。

放射性元素衰变产生的高能激发态会通过γ射线释放能量。

γ射线不改变原子序数和原子量,只起到能量释放和原子核稳定化的作用。

二、放射性元素的性质与应用1. 放射性元素的物理性质:放射性元素具有较高的原子质量和较长的半衰期。

半衰期是指元素的原子核数目减半所需要的时间。

放射性元素的半衰期与其衰变方式和能级有关,范围从纳秒到亿年不等。

2. 放射性元素的化学性质:放射性元素的化学性质与其非放射性同位素相似,所以在化学反应中表现出了相似的特性。

它们可以形成化合物,并参与各种化学过程。

3. 医学应用:放射性同位素在医学领域有着广泛的应用。

例如,放射性同位素碘-131(I-131)可以用于治疗甲状腺疾病和甲状腺恶性肿瘤。

其他放射性同位素如锶-89(Sr-89)和钇-90(Y-90)可以用于骨癌治疗。

化学放射性元素的性质和应用

化学放射性元素的性质和应用

化学放射性元素的性质和应用化学放射性元素是指核素不稳定,会通过放射性衰变释放能量和粒子的元素。

常见的有铀、钚、镭等。

这些元素具有独特的性质和广泛的应用。

一、性质1. 放射性放射性是化学放射性元素最突出的性质。

它们会通过放射性衰变释放α、β、γ三种类型的射线和微粒子。

这种放射性可以被用来研究物质的性质和结构,也可以用来控制和治疗疾病。

2. 不稳定性化学放射性元素的核素不稳定,会发生自发性的放射性衰变。

这种不稳定性可以被用来测量化学物质的时效,还可以用来控制反应速率和稳定性。

3. 放射性同位素化学放射性元素还具有广泛的放射性同位素。

这些同位素在放射性同位素技术中有着诸如放射性标记、放射性示踪、核医学、核电技术等方面的广泛应用。

二、应用1. 核武器化学放射性元素在核武器的制造和使用中发挥着十分重要的作用。

铀、钚等元素被用作核燃料,通过核裂变释放出大量的能量,产生核爆炸。

它们的广泛应用给人类带来了深重的后果。

2. 核能来源核电站利用化学放射性元素的核能进行发电。

在反应堆中,铀、钚等元素通过核裂变产生热能,通过蒸汽发电机转化成电能。

核能作为清洁、高效的能源来源,正在被越来越广泛地应用。

3. 放射性同位素技术放射性同位素技术是对无机物、有机物、生物体和环境等进行定量和结构分析的高精度技术。

其中,使用放射性示踪法可以直接标记化合物和分子,从而定量测定化合物的含量和分离层析;放射性核医学可以探测和治疗患者体内的病变;放射性气溶胶技术可以研究气溶胶在大气环境中的转化和传播等。

4. 放射性治疗化学放射性元素具有强大的放射性,可以用于癌症和其他疾病的放射性治疗。

在放射性治疗中,放射线能够杀死癌细胞,减轻病人的疼痛和不适。

同时,放射性治疗也具有一定的副作用和风险,需要慎重使用。

总之,化学放射性元素具有独特的性质和广泛的应用,研究它们的性质和应用对人类的科技发展和生活有着举足轻重的作用。

同时,我们也应该对其进行合理利用和控制,以避免对人类和生态环境造成不可逆的损害。

放射化学知识点整理

放射化学知识点整理

放射化学第一章绪论1.1898年M. Curie用化学方法发现放射性元素钋;2.1910年,英国的Cameron提出将其作为一个独立的分支;3.放射化学诞生于1898年。

4.1956年北大开始建设我国第一个放射化学专业。

5.1958年开始在全国正式招收放射化学专业本科生。

6.1981年,放射化学专业成为国家批准建立的首批博士点之一。

7.放射化学:是研究放射性元素及其衰变产物的化学性质和属性的一门科(基础8.放射化学:研究放射性化学的物理化学行为和状态及其分离纯化方法和原理)9.放射化学包括的内容:核化学,核药物化学,放射性元素化学,放射分析化学,同位素生产及标记化合物,环境放射化学。

10.辐射化学和放射化学的区别:放射化学侧重研究放射性物质的化学性质和化学行为,而辐射化学主要研究辐射(射线)对物质的作用11.放射化学的主要特点:放射性;不稳定性;微量性1-7第二章基础知识1.核素:具有相同的质子数Z、相同的中子数N、处于相同的能态且寿命可测的一类原子2.同位素:质子数相同、中子数不同的两个或多个核素。

3.异位素:中子数相同、质子数不同的核素为同中子:。

4.同质异能素:处于不同的能量状态且其寿命可以用仪器测量的同一种原子核5.同质异位素:不存在相邻的稳定的6.元素质子数的幻数:2, 8, 20, 28, 50, 和827.元素中子数的幻数:2, 8, 20, 28, 50, 82,和1268.质子和中子统称核子9质子和中子是核子的两种不同状态10.核力:核子间存在的短程强相互作用(吸引)11.原子核的核力作用半径大于电荷分布半径12.原子核的体积与原子核的质量数成正比13.原子核的核子密度约:1038核子•cm-314.核物质的密度约:1.66 ⨯1014(g•cm-3)15.位于中子滴线上的核素,其最后一个中子的结合能为零;16.位于质子滴线上的核素,其最后一个质子的结合能为零;17.核衰变:不稳定原子核自发地放出粒子或电磁辐射变成另一种原子核的过程;18.对任一元素,质量数越大,α衰变能越小,质量数越小,α衰变能越大19.相对于β稳定线,中子过剩的核素发生β-衰变,质子过剩的核素发生β+衰变;20.只有在衰变能大于1.02MeV的情况下才能发生β+衰变21.放射性活度:每秒钟放射出的粒子个数(A) Bq(贝可), Ci(居里), 1居里=3.7⨯107Bq.22.质子:1H的原子核23.规定1u等于一个12C原子质量的1/1224.核物质:由无限多等量中子和质子组成的、密度均匀的物质称为核物质。

核化学

核化学
可以生产无载体,高比活度及某些不能用反应堆生 产的缺中子、短寿命的医用放射性核素。
三、从核燃料后处理厂提取铀核裂变产物
铀核裂变产物多达200多种。 大多数裂变产物寿命短、产额低,难以提
取。 某些重要产物见表2-4
§2-4 人工放射性元素
放射性元素:指该元素所有的同位素都是放射性核 素。
某些重要产物在大气中的产生速度与含量见表
2-3。
2、地壳中天然放射性引起的核反应产物
地壳中的天然放射性核素放出的α粒子和γ射线也可引起核 反应,而生成新的放射性核素。例如: 19F(α,n)22Na
18O(α,n)21Ne
9Be(α,n)12C
由核自发裂变产生的中子和其它天然核反应产生的中子几乎 可以和所有的核素发生(n,γ),(n,2n),(n,p)或(n, α)核 反应而得到新的放射性核素。
二、钷 Pm Promethium 普罗米修斯(希腊 神话中的火神)
发现: 1945年 Jacob Marinsky 等从铀核 裂变产物中分离得到。
17种同位素, 4种同质异能素 重要核素:147Pm 只发射0.225Mev的β射
线,半衰期长(2.26年),可作为软β辐 射源用于密度计等制造。
2、对靶子物的要求
靶子物:生产放射性核素时,反应堆中受照射的物质 选择靶子元素含量最高的化合物,最好是单质。如果
靶子物是金属元素,常用氧化物或碳酸盐;如果是非 金属,常用它们的钾盐。特殊情况,用富集靶,以便 得到高比活度,高放射化学纯度的产品。 靶子物要有较高的纯度,特别是不能含有热中子截面 大的杂质(如B和Cd等)。 照射后易于化学Байду номын сангаас理。 靶子物应有较好的辐照稳定性和热稳定性,在反应堆 强辐射场中不分解,不生成有害于反应堆的气体和毒 物。

放射化学试题库及答案

放射化学试题库及答案

放射化学试题库及答案试题库及答案第⼀章1.放射化学是研究放射性元素及其衰变产物的化学性质和属性的⼀门学科,详述其所涉及的六个主要领域? P11放射性元素化学2核化学3核药物化学4放射分析化学5同位素⽣产及标记化合物6环境放射化学要详细描述2.放射化学所研究的对象都是放射性物质,简述其所具有的三个明显特点?P11.放射性2.不稳定性3.微量性3.放射化学科学发展史上有很多重要发现,其中有四个是具有划时代意义,简述这四个具有划时代意义的重⼤发现(包括年代、发现者及国籍等)?P2-5 1放射性和放射性元素的发现(1869年法国贝可放射性的发现,1898年波兰居⾥夫妇钍盐放射性发现与钋的发现)2实现⼈⼯核反应和发现⼈⼯放射性(1919年英国卢瑟福⼈⼯核反应和质⼦的发现,1934年波兰⼩居⾥夫妇⼈⼯放射性的发⽣,⽤化学的⽅法研究核反应)3铀核裂变现象的发现(1939年德国哈恩铀的裂变,1940年美国麦克⽶兰超铀元素的发现)4合成超铀元素和⾯向核⼯业(1945年美国第⼀颗原⼦弹,1952年美国第⼀颗氢弹)第⼆章4.列表阐述质⼦、中⼦和电⼦的主要性质?5.核物质是由⽆限多的质⼦和中⼦组成的密度均匀的物质,简述其两个主要特点?11①每个核⼦的平均结合能与核⼦的数⽬⽆关②核物质的密度与核⼦的数⽬⽆关6.简述A mX中每个字母所代表的含义?Z NX:元素符号A:原⼦核的质量数Z:原⼦核中的质⼦数,也叫原⼦核的电⼦数N:原⼦核所含的中⼦数m:原⼦所带电荷数7.简述某核素的电荷分布半径及核⼒作⽤半径的测定原理及公式?电荷分布半径⽐核⼒作⽤半径⼩说明了什么?13-14电荷分布半径:测定原理:⾼能电⼦被原⼦核散射。

因为电⼦与质⼦之间的作⽤⼒是电磁相互作⽤,所以测得的是原⼦核中质⼦的分布,即电荷分布公式:13R r A= (r0≈1.2fm)核⼒作⽤半径:原理:π介⼦被原⼦核散射,因为介⼦与核⼦之间的相互作⽤⼒是核⼒,测得的是原⼦核中核⼒的分布,即核物质的分布。

放射性化学简介

放射性化学简介

放射性化学简介放射性化学是研究与放射性元素及其化合物有关的化学现象的一个分支学科。

放射性元素具有不稳定的原子核,在衰变过程中会释放出放射线并转化为其他元素。

这些元素的特殊性质使得它们在许多科学领域,如核能、药物研究和环境监测中发挥着重要的作用。

本文将从理论和应用的角度,对放射性化学进行一些详细的讨论。

放射性化学的理论基础主要涉及放射性原子核的结构和衰变模式。

原子核由质子和中子组成,质子数决定了元素的化学性质,而中子数则决定了原子核的稳定性。

当原子核不稳定时,会发生衰变,可分为放射性α衰变、β衰变和γ衰变。

α衰变是指放射出一个带正电荷的α粒子,同时减少原子核的质子数和中子数。

β衰变则分为β负衰变和β正衰变,前者是指放射出一个带负电荷的β粒子,后者是指放射出一个带正电荷的反电子。

γ衰变是指通过放射出高能γ射线来稳定原子核。

放射性化学的应用领域广泛,其中核能是最重要的一部分。

核能通过控制和利用放射性核素的裂变或聚变反应,来产生巨大的能量。

裂变是指将重核素如铀或钚分裂成两个中等大小的核素,释放出大量的能量。

聚变则是将轻核素如氘或氚聚合成更重的核素,同样会释放出巨大的能量。

这些能量被广泛用于发电、航天和核武器等领域。

此外,放射性化学在医学和药物研究领域也有着重要的地位。

放射性同位素被用于医学诊断、放疗和治疗。

例如,放射性同位素技术可以用于放射性示踪,通过注射具有放射性标记的药物来观察其在人体内的代谢和行为。

同时,也可以利用放射性同位素进行放射治疗,通过消灭癌细胞或抑制其生长来对抗癌症。

此外,环境监测中的放射性化学也有着重要的应用。

放射性同位素的释放和传播可能对环境和生态系统产生不良影响。

通过监测放射性同位素的浓度和分布,可以评估和管理其对环境的潜在风险,确保公众的安全和健康。

总之,放射性化学作为一个分支学科,探索了放射性元素和其化合物的特殊性质和行为。

通过理论研究和应用实践,放射性化学为人类社会的核能发展、医学和环境监测等领域做出了重要贡献。

放射化学基础

放射化学基础

第一节 放射性
一、放射性衰变规律
(一)放射性的定义
原子核自发地按固定的速率放出粒子的现象,即 为放射性
• 原子核自发地发射粒子(如α,β,p, 14C,…)或电磁辐射、俘获核外电子,或自 发裂变的现象称为放射性。
(二)衰变规律
衰变的统计规律:放射性衰变是一种随机事件,各个放
射性原子核的衰变是彼此独立的,大量放射性原子核的衰 变从整体上服从指数衰减规律
放射性浓度:单位体积中的放射性活度
A
CA
V
半衰期T1/2, 平均寿命τ
无论初始放射性核数的数目为多少,其所剩放射性核的数目为 初始数目的一半或已衰变了一半的核所经历的时间,即为该核 素的半衰期,即当N=1/2N0时所经历的时间,所以半衰期也可 表示为:
所以放射性衰变公式也可以表示为:
e N N ln 2 t
在1g239Pu(T1/2=24000a)和1g3H(T1/2=12.4a)中每分钟衰变多少个原子?
(三)分支衰变
• 某些放射性核素可以同时以几种方式衰变称分 支衰变。
• 在每一次衰变中,按其中第i种方式衰变的概率 为衰变的分支比。
64Cu
64Zn(40%) 64Ni(19%)
64Ni(41%)
(四)放射性衰变平衡
单位:Bq(贝可)——国际单位;其它有KBq, MBq, GBq; 1Bq=1dps(1次衰变/秒)
常用Ci(居里)表示,1Ci=3.7×1010Bq=37GBq
1Ci 相当于1g 226Ra的放射性活度 。
与放射性活度有关的几个概念
• 放射性比活度:单位质量的物质的放射性活度。
As A m
m为总质量,包含放射性物质和所有非放射性杂质的质量

2 放射化学分离方法

2 放射化学分离方法
A mA 6.02 1023 M

ln 2 0.693 T T
6.02 1023 0.693 s0 MT
1g任何放射性核素 : S 0
K Bq g MT
k值:S/60→min/60→h/24→d/365→a
例:某单位有一个226Ra放射源,该源的放射性物 质为Ba(226Ra)CO3,其活度为3700Bq,质量为1.0g。 问该源的放射性核素质量为多少?稳定物质的质量为 多少?
如131I在水和CCl4中的分配。
1.11 分离系数α
是指物料中两种物质经过某一分离过程后分别在
不相溶的两相中相对含量之比,它。
A

B
A B
α与D之间的关系可表示为:
DA DB
α越大于1或越少于1,两种物质越容易分离,若
放射性核素的化学回收率可通过测量其活度来计算:
Y
A A0
100%
分离效率可以通过加入载体或者加入放射性示踪
剂的方法来测定。
当载体的化学状态与被分离的放射性核素的化学
状态完全相同时,化学收率可用载体的化学收率来表
示。
分离所得的载体量 Y% 100% 加入的载体量
例:
1、从铀矿石中分离提取227Ac,235U活度为
1)萃取剂和稀释剂
通常把有机相中能将处于水相中的欲萃取物质转移
到有机相的有机试剂叫做萃取剂。 这了改善萃取剂的某些物理性能而加入的有机溶剂 叫稀释剂。
2)反萃取剂
能使被萃取物质从有机相返回到水相溶液的试剂。
如在铀浸出液-30%TBP(TBP+煤油)萃取铀,有机
相用水清洗,洗出铀。TBP为萃取剂、煤油为稀释剂、
化还原反应,使载体与欲分离核素的价态趋于一致。

放射性核素名词解释

放射性核素名词解释

放射性核素名词解释(1)放射性核素:(2)原子核内部质子数或中子数与核电荷数不相等的元素称为放射性元素。

这类元素共有28种。

其中最常见的是镭、钍、锕。

放射性元素衰变时,质子数增多,电荷数减少。

所以它们的化学性质非常活泼。

如钋在放射性衰变过程中,一部分质子转换为α粒子,因而具有β衰变和γ衰变。

镭也能发生β和γ衰变。

β和γ射线就是从放射性元素的原子核里发射出来的。

β射线能使空气电离而引起放射性元素被破坏,在探矿工作中得到广泛应用。

放射性核素在天然地壳中含量较少,一般只占天然物质的几千分之一。

但由于宇宙线强度很高,因此它仍然是环境中的污染源。

最早发现并用于医疗目的的镭、钍、钋、钫和氡等,也都是天然放射性核素。

某些金属(例如金、银)也能放出β、γ射线。

某些人工核素是天然放射性核素蜕变后产生的。

原子序数比自然界存在的同位素大的放射性核素,则称为超铀元素。

用人工方法产生的放射性核素统称为人工核素。

通常所说的放射性物质是指原子核或其他粒子具有放射性同位素(核素)的总称。

(3)具有放射性的核素:能发射β和γ射线的核素称为放射性核素。

常用于医疗诊断的有11种核素,它们的通用名称见表10-3。

表10-3常用于医疗诊断的放射性核素的通用名称3、单质铀235和钍232可分别用作水冶法制取超铀元素的原料。

二者均具有较好的抗生物效应,但含量很低。

(4)人工核素:由天然核素蜕变而成的放射性核素称为人工核素,即用人工方法产生的放射性核素称为人工核素。

目前研究较多的人工核素有11种,这11种人工核素具有半衰期长、生物半衰期短和对机体损伤小的特点,是医疗、工业探伤、防护检查等方面普遍使用的放射性核素。

(5)放射性核素的半衰期:放射性核素的半衰期,指放射性核素经过一次蜕变到再进行下一次蜕变所经历的时间。

放射性核素半衰期的倒数,称为放射性核素的半减期。

核素的半衰期越长,在环境中的含量越低。

因此,放射性核素半衰期是衡量放射性核素在环境中存在时间的重要标志。

放射性核素名词解释

放射性核素名词解释

放射性核素名词解释
放射性核素是指具有放射性衰变性质的化学元素或同位素。

它们具有不稳定的原子核,会自发地通过放射性衰变释放能量,并转化为其他元素或同位素,以达到更加稳定的状态。

放射性核素的衰变过程包括α衰变、β衰变和γ射线的发射。

其中,α衰变是指放射性核素释放α粒子,即具有两个质子和
两个中子的氦离子,从而转变为质量数比较小的核。

α粒子有
较强的电荷和较大的质量,因此其穿透能力较差,只能在短距离内作用。

β衰变则是指放射性核素释放β粒子,β粒子分为β-粒子和β+
粒子。

β-粒子是指一个电子,它是从核内一个中子转化为质子
时释放出的。

而β+粒子是指正电子,它是从核内一个质子转
化为中子时释放出的。

β粒子的穿透能力较强,因此在物质中
的作用距离较长。

另外,放射性核素还会放射出γ射线。

γ射线是高能电磁辐射,具有很强的穿透能力,可以经过较厚的物质层。

γ射线的能量
非常高,对生物体具有较强的穿透力和辐射杀伤作用。

放射性核素具有广泛的应用。

在医学上,放射性同位素可以用于医学成像、放射性治疗和放射性示踪等方面。

同样,放射性同位素在工业上也被广泛应用,如密封放射源用于检测、辐照技术用于杀菌、探测器用于检测等。

然而,放射性核素的放射性也带来了一定的风险和危害。

长时
间暴露于放射性核素的辐射下可能造成人体细胞的遗传变异、癌症和其他健康问题。

因此,对于放射性核素的处理和运输需要严格的规范和安全措施。

放射化学

放射化学

放射化学:基础放射化学、放射性元素化学、核化学、放射分析化学、应用放射化学低浓度 和微量发射性溶液行为:形成放射性胶体溶液、放射性气体溶胶;易被器皿或其他固体物质沉淀所再带和吸附减少吸附的方法有:加载体、提高溶液的酸度、硅烷化放射化学的特点:放射性、不稳定性、低浓度和微量放射性:某些核素自发放出粒子或γ射线,或在轨道电子俘获后放出χ射线,或发生自发裂变的性质放射性元素:具有放射性的化学元素。

放射性核素:某种元素中发生放射性衰变的核素。

放射性核素按其来源有天然放射性核素和人工核素之分。

载体:载体是以适当的数量载带某种微量物质共同参与某化学或物理过程的另一种物质。

反载体:为了减少分离过程对杂质核素的载带,在加入被分离核素和载体之外,还必须加入这些杂质核素的稳定同位素或化学类似物,以减少它们对被分离核素和器皿的污染,即起反载带作用,这类稳定同们素或化学类似物就称为反载体或抑制体。

放射性核素纯度:放射性核素纯度也称放射性纯度,指在含有某种特定放射性核素的物质中,该核素的放射性活度对物质中总放射性活度的比值。

放射化学纯度:简称放化纯度,指在一种放射性样品中,以某种特定的化学形态存在的放射性核素占总的该放射性核素的百分数比活度:单位质量的某种放射性物质的放射性活度。

S=A/(M1+M2)放射性浓度:放射性浓度C 是指单位体积某放射性活度。

C=A/V 单位为Bq/ml 或Bq/L 。

分配系数 D :某一物质M 在不相溶的两相中达到分配平衡即在两相中的浓度不再变化时,它分别在两相中的表观浓度之比。

分离系数α:是指物料中两种物质经过某一分离过程后分别在不相溶的两相中相对含量之比,它表示两物质经过分离操作之后所达到的相互分离的程度化学回收率Y :净化系数DF 净化系数又称去污系数或去污因子萃取率E 经萃取而进入有机相的欲萃取物的量占其在两相中总量的百分数。

萃取剂:通常把有机相中能将处于水相中的欲萃取物质转移到有机相的有机试剂叫做萃取剂。

优选南华大学放射化学天然放射性元素化学

优选南华大学放射化学天然放射性元素化学
❖ 铀在不同情况下可以形成从+3~+6价的各种铀化合 物,主要有以下几类:
❖ 铀的氧化物 ❖ UO2、U4O9、U3O8、UO3和UO4。 ❖ 最稳定的是U3O8,可作为重量法测铀的基准化合
物; ❖ UO2可作为动力堆的核燃元件; ❖ UO3为两性铀氧化物,它是铀酸酐。
3.2 铀化学——铀的化合物
❖ 自然界还存在一些不属于天然放射系而半衰期很 长的放射性核素:40K、87Rb;
❖ 由天然核反应生成的放射性核素:3H、14C等。
3.1 概述
❖ 自然界中存三个天然放射系 母体:238U (4n+2)铀系,T1/2:4.468×109a 母体:235U(4n+3)锕系,T1/2:7.038×108a 母体:232Th(4n)钍系, T1/2:1.41×1010a。
铀矿石
3.2 铀化学
❖ 铀的主要用途及危害 ❖ 早期,铀仅用作玻璃、陶瓷和珐琅的着色剂。现在
用于制造核燃料。 ❖ 235U、 233U为易裂变的核燃料核素, 238U可以转换
成239Pu,后者为易裂变核燃料核素,反应式为:
238U n, 239U 239Np239Pu
3.2 铀化学
3.2 铀化学
为0.0004%(4ppm),铀在海水中的含量约为 3~4μg/L。海中铀量约为4.5×109t。 ❖ 铀的同位素 ❖ 铀共有15种放射性同位素和一种同质异能素,其中 238U、235U和234U三种地天然的,它们组成了天然铀。 ❖ 提高铀中235U丰度的过程称铀的浓缩,其产品称为浓 缩铀。
3.2 铀化学
❖ 天然放射性元素是指在自然界中存在的放射性元 素,它们是84Po、85At、86Rn、87Fr、88Ra、89Ac 、90Th、91Pa和92U等9个元素。

放射化学

放射化学
N.Bohn解释了原子核被具有固定轨道的电子包围。
1919 1919
1921 1924 1924 1925-1927
1928 1931 1931 1932
1932 1932 1932 1932 1933
Rutherford在实验室中首次进行了核转化,4He+14N17O+1H Aston建立了首台实用的质谱仪,并且通过质谱仪发现同位素的质量不是精确的 整数。
放射化学
唐泉
第一章 绪论
1.1 放射化学发展简史 从1896年发现放射性到现在,放射化学发展的一
百多年的历史,大体上可分为三个阶段。 1896~1931年:
放射化学发展的初期阶段。放射性的发现,天然放 射性元素的发现及分离,衰变规律的发现,衰变位移 规律的发现,放射性元素分离规律的发现;
1932~1942年: 放射化学蓬勃发展的阶段。中子、人工放射性和裂
1959
第一艘反应堆驱动的民用破冰船(Lenin)在俄罗斯下水。
~1960 Hofstadter等人发现质子和中子在内电荷中不平衡分布。
~1960 Lederman, Schwarz和Steinberger等人发现介子。
1961
放射性核素238Pu首次作为电源应用到卫星(Transit-4 A)上。
Geiger和Müller建立了用于测量单个核粒子测量的第一个GM管。 Van de Graaff开发了电级高压发生器,可以加速原子粒子来提高能级。 Pauli假设了一个新的粒子“neutrino”,在衰变中形成。 Cockcroft和Walton开发了高压倍加器,利用它在实验室加速粒子进行了首次核 转化反应(0.4MeV1H+7Li24He)
美国首次试验了不控制的规模大聚变能装置(氢弹)。

放射性核素在化学中的应用示踪原子方法原理利用

放射性核素在化学中的应用示踪原子方法原理利用

第十三章 放射性核素在化学中的应用第一节 示踪原子方法原理利用放射性核素容易探测这一优点,人们常用放射性同位素作为示踪来揭示体系中所研究物质变化的规律。

在一些简单的示踪方法中,放射性核素仅仅附着于所研究的对象上。

例如将含放射性钴的线系在昆虫身上,就可以利用γ射线来考察昆虫的活动习性和规律。

用放射性浮标可以测定密闭容器中的液面高度,此时,只要在液面上加有含少许放射性物质的浮标,便可根据探测到的射线来判断液面的高度。

在另一类应用中,由于放射性示踪与研究对象混合均匀,所以可以根据示踪的浓度判断研究对象的行为。

例如当油管中相继流过几中不同的油时,将可溶性的124Sb —三苯基锑加入油中,可以判断各种油流动时的交界面。

将24Na 标记的盐水溶液注入病人体内,待盐水在体内均匀分布后,取样分析24Na 的浓度可求得病人体液的总量。

在化学研究中,广泛用放射性核素作为示踪原子。

示踪原子方法常用于分子结构的研究;化学反应以及吸附、色层、电解、电泳等过程的动力学研究;还用于反应的平衡常数、活化能、分离系数、扩散速度、物质的比表面、溶解度、蒸气压等物理化学数据的测定;在分析化学中用于元素含量的定量测定等。

在化学中,除了将放射性同位素作为示踪原子应用以外,还可以作为辐射源应用。

后一类属于辐射化学领域。

本世纪初有人曾试图将RaD(210Pb)从大量珠铅中分离出来,然而实验表明,这种分离是徒劳的。

但是分离工作的失败却启示了人们,既然RaD 不能从铅中分离出来,RaD 和普通铅又发生完全相同的化学变化,那么就可以用RaD 来“标记”非放射性铅。

在可以忽略同位素效应的前提下,同一元素的各种同位素的物理化学性质完全相同。

因此若合成一种与所研究的化合物相同并含有放射性同位素标记化合物,则在将标记化合物均匀地加入所研究的化合物后,便可依靠对射线测量而方便地根据放射性同位素的行为来判断原来不易或不能辨认的大量稳定同位素的行为。

该放射性同位素的原子常称为示踪原子。

放射化学的名词解释是什么

放射化学的名词解释是什么

放射化学的名词解释是什么放射化学是研究与放射性同位素相互作用的化学学科。

它涉及到放射性同位素的生成、分离、纯化、测量和应用等方面。

放射化学的研究对象包括人工合成的放射性同位素以及自然界中存在的放射性元素。

放射化学的基础概念之一是放射性。

放射性是一种不稳定核素的特性,指的是核素的原子核在自然状态下发生自发衰变,并释放出射线的能力。

射线可以分为α、β和γ射线等几种形式。

α射线由带有两个质子和两个中子的α粒子组成,具有较强的穿透力。

β射线包括正电子和电子,穿透力较强。

γ射线是电磁波,具有最强的穿透力。

放射性同位素是指具有相同原子核中的质子数(即原子序数)和不同中子数的同位素。

同位素是指具有相同原子序数但不同质量数的元素。

放射性同位素具有不稳定的原子核,它们通过衰变过程释放出射线以稳定自身。

放射性同位素可以是自然界中存在的,也可以通过人工合成。

放射活度是放射性样品中的放射性粒子数目的度量。

它通常用单位时间内发射出的射线数来表示,单位为贝克勒尔(Bq)。

放射活度越高,说明放射性样品中的放射性同位素越多,辐射剂量也就越大。

放射化学的研究方向包括放射性同位素的生成和研究、核技术在医学和工业中的应用、辐射防护和核废料处理等。

其中,放射性同位素的生成和研究是放射化学的重要内容之一。

通过不同的核反应,可以合成不同的放射性同位素。

放射性同位素的生成与核反应速率和选择性密切相关,研究人员需要选择适当的反应条件来实现合成目标同位素。

放射化学在医学上的应用主要体现在放射性同位素的药物标记和放射性同位素的医学诊断与治疗中。

放射性同位素的药物标记是将放射性同位素与药物分子结合,使其具备特定生物作用,并通过放射线的探测来实现对生物体内部结构和功能的研究。

核技术在医学上的应用进一步推动了放射化学的发展和研究。

另外,放射化学在工业上的应用主要涉及材料辐照、辐射交联和材料形态与结构的分析等方面。

通过辐射处理,可以改变材料的性能和结构,从而实现特定的工业应用。

化学实验设计放射性元素实验

化学实验设计放射性元素实验

化学实验设计放射性元素实验化学实验设计:放射性元素实验引言:放射性元素实验在化学教学中具有重要的意义。

通过实验,学生可以深入了解放射性元素的性质、特点以及安全使用的方法。

本文将针对放射性元素实验的设计进行探讨,旨在帮助教师更好地引导学生进行这类实验,并确保实验过程的安全与有效性。

一、实验目的与原理实验目的:探究放射性元素的性质和特点,了解放射性元素在化学中的应用。

实验原理:放射性元素是指核素存在放射性衰变现象的元素。

它们在衰变过程中会释放出射线,包括α粒子、β粒子和γ射线。

本实验将重点研究放射性元素的射线产生及其与物质的相互作用。

二、实验器材与试剂实验器材:放射性元素样品、辐射计、铅屏蔽室、实验探测器等。

实验试剂:不锈钢容器、稳定剂、试剂溶液等。

三、实验步骤1. 应事先准备好辐射计和铅屏蔽室,并确保实验室有必要的辐射防护措施。

2. 将放射性元素样品放置于不锈钢容器中,并添加适量的稳定剂,以降低放射性材料的辐射强度。

3. 根据实验需求,将不同浓度的试剂溶液加入至实验容器中。

4. 用实验探测器测量不同条件下的射线强度,并记录数据。

5. 通过分析实验数据,探究放射性元素与试剂溶液的反应关系。

四、实验安全注意事项1. 操作前需佩戴防护手套、防护眼镜等个人防护装备。

2. 在实验操作过程中,应尽量避免直接接触放射性物质。

3. 操作完成后,及时清理实验设备,并将辐射源正确存放或处理。

4. 在实验操作过程中,保持实验室通风良好,避免长时间接触放射性物质。

五、实验结果与讨论通过实验数据的测定和分析,我们得到了不同条件下射线强度的变化趋势,并推测了放射性元素与试剂溶液之间的反应关系。

根据实验结果,我们可以深入探讨放射性元素的性质、特点以及与物质的相互作用。

六、实验的意义与应用1. 通过放射性元素实验可以提高学生对放射性元素的认识和理解。

2. 放射性元素在核工业、医疗、环境保护等领域有广泛的应用,通过实验学习可以培养学生应对相关问题的能力。

放射化学基础习题及答案_放射化学与核化学基础

放射化学基础习题及答案_放射化学与核化学基础

放射化学基础习题答案第一章绪论答案 (略)第二章 放射性物质1. 现在的天然中,摩尔比率238U :235U=138:1,238U 的衰变常数为1。

54×10—10年-1,235U的衰变常数为9。

76×10-10年—1。

问(a)在二十亿(2×109)年以前,238U 与235U 的比率是多少?(b )二十亿年来有多少分数的238U 和235U 残存至今?解一: 0tN N e λ-=2352380238023523823823523513827:11t t t tN N ee N N e e λλλλ----==•= 保存至今的分数即 teλ-则238U :0.753≈0.74235U :0。

142≈0。

14解二:二十亿年内238U 经过了9102100.44ln 21.5410-⨯=⨯个半衰期 235U 经过了910210 2.82ln 29.7610-⨯=⨯个半衰期 保存到今的分数: 0.30.44238100.74f -⨯== 0.3 2.82235100.14f -⨯==二十亿年前比率23523823823513827:11tt U e U eλλ--=•=2.把1cm 3的溶液输入人的血液,此溶液中含有放射性I o =2000秒—1的24Na,过5小时后取出1cm 3的血液,其放射性为I=16分-1。

设24Na 的半衰期为15小时,试确定人体中血液的体积.(答:60升)解: 5小时衰变后活度: 1ln 2515020001587.4tI I e eλ--⨯-==⨯=秒人体稀释后1587.41660V =(1min=60s) 5953600060V ml ml L ∴=≈= 3.239Np 的半衰期是2.39天,239Pu 的半衰期是24000年.问1分钟内在1微克的(a) 239Np ,(b) 239Pu 中有多少个原子发生衰变?(答: (a )5.07×1011; (b )2.6×109)解: 623150110 6.02310 2.519710239N -⨯=⨯⨯≈⨯个原子 (a) ()()1511001 2.5197101 5.0710t t N N N e e λλ---=-=⨯⨯-=⨯ (b )239Pu 的半衰期太长 t=1min 时 t e λ-≈1 0N N -≈ 01/2ln 2t λ⎛⎫= ⎪⎝⎭若 t 为1天,1 小时等,再求出平均数,则与题意有距离.则0N N -=62.610⨯≈6310⨯4.(a)据报导,不纯的镭每克放射衰变每秒产生3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放射性(radioactive ): 原子核自发地放射出、、等各种射线的现象,称放射性。 射线:氦原子核粒子流,贯穿能力很弱。 射线:高速电子流,贯穿能力较强。 射线:波长很短的电磁波,贯穿能力更强。
核素(nuclide):核素是指具有一定数目质子和一定数 目中子的一种原子。具有放射性的核素称为放射性核素。
素。
返回
(1)天然放射性元素(natural radioelements)
固有的 衰变
半衰期长
逐步产生的 衰变
232Th 238U 235U
钍系(4n 系)
铀系(4n+2 系)
返回
锕系(4n+3 系)
84~92号元素
(2)人工放射性元素(artificial radioelements )
93~112号元素,以及43Tc和61Pm
(3)天然放射性核素
不属于天然放射系而半衰期很长的放射性核素, 如40K和87Rb。
由于宇宙射线与大气作用,在自然界中不断进行 核反应形成的,如3H、7Be、14C 和22Na 等。
裂片元素:人工核反应的中间产物。
元素(element):元素是具有一定数目质子的一类原子。 全部由放射性核素组成的元素称为放射性元素。
化学(chemistry):在分子、原子、离子层面上某种 核素(元素)的存在状态 、化学反应特性。
A - 天然放射性元素-自然界原来存在,9个。
84
Po(钋)、85At
(砹)、86Rn
(氡)87
Fr(钫)、88Ra
(镭)
放射性核素-
89 Ac(锕)、90Th(钍)、91Pa(镤)、92U(铀); B - 人工放射性元素-人工核反应产生的放射性核素,

括周期表中铀以后的93号元素至112号元素及锝(43
T
c)
ห้องสมุดไป่ตู้
和钷(61Pm)。 C40 K.45 Ca.14 C.3
H等少数几个放射性核
1937年意大利矿物学家C.佩列尔和美国物理学家E.G.塞格雷 在加利福尼亚大学劳伦斯-伯克利实验室用回旋加速器加速的 氘核轰击钼靶,通过下述核反应98Mo(d,n)99Tc 合成了锝,这 是人类首次用人工的方法制造出来的元素。
人工放射系,镎系(4n+1)系。其起始核素是241Pu。半衰期 最长的子体是237Np,半衰期是2.14×106a。 237Np的比活度 比天然铀高近2000倍。
相关文档
最新文档