四川大学2017-2018 线性代数期末试卷
2017-2018-1 线性代数1-8周期末试卷B
第1页共4页 第2页共4页安徽工程大学2017——2018学年第 1学期(线性代数) 课程期末考试试卷 (B) 卷 考试时间 120 分钟,满分100 分要求:闭卷[√],开卷[ ];答题纸上答题[√],卷面上答题[ ] (填入√)一、选择题 (每小题3分,满分15分)1. 已知A 、B 为n 阶方阵,E 为n 阶单位矩阵,则下列各式中正确的是 ( ).(A )(A +B )2=A 2+2AB +B 2 (B ) AB =BA (C )(A +E )(A −2E )=(A −2E )(A +E ) (D ) (AB )2=A 2B 22. 已知A 、B 为2阶方阵,则下列各式中不正确的是 ( ). (A )|AB |=|A ||B | (B )|2A |=2|A | (C )|A T |=|A | (D )|AB |=|BA |3. 已知 α1,α2,α3 为 R 3中向量,下列说法不正确的是 ( ).(A )若 α1,α2,α3 线性相关,则 α1,α1+α2,α1+α2+α3 线性相关(B )若 α1,α2,α3 线性无关,则 α1,α1+α2,α1+α2+α3 线性无关(C )α1,α2,2α1−α2 线性相关(D )(1,0,0)T ,(1,1,0)T ,(1,1,1)T线性相关 4.已知A 为 m ×n 矩阵,则非齐次方程 Ax =b 有无穷多解的充要条件是 ( ).(A )r (A )<n (B ) r (A )=r (A |b )<n (C )r (A )=r (A |b )=n (D ) r (A )<n,r (A |b )=n 5. 已知 x,y 为内积空间V 中向量,下列说法不正确的是 ( ). (A )若 x ⊥y , 则 ‖x +y ‖2=‖x ‖2+‖y ‖2 (B )若 x ⊥y , 则 ‖x −y ‖2=‖x ‖2+‖y ‖2 (C ) λ 为任意实数,‖λx ‖=λ‖x ‖ (D )|〈x,y 〉|≤‖x ‖‖y ‖二、填空题(每空3分,满分15分)1. 已知矩阵 A =(1−2y−1x −32−42y),且 r (A )=1,则x=____,y=____.2. 已知 A 为3阶方阵,A ∗ 为其伴随矩阵,且 |A |=2,则 |A ∗|=_____.3.齐次线性方程组 { x 1+x 3=0x 2−x 4=0 的解空间维数为______.4. 已知矩阵 (x 110y 1004) 相似于对角矩阵 (100020004),则x 2+y 2=______.5. 二次型 f (x,y,z )=x 2+2y 2+2xy +4xz −2yz 的矩阵为第3页共4页 第4页共4页___________.三、计算题(每小题10分,满分60分)1. 已知矩阵 X 满足 XA =X +A ,其中 A =(001020002),求 X .2. 计算行列式 D =|a 01−a b20−b3|. 3. λ为何值时,齐次线性方程组 { x 1+3x 2+5x 3=02x 1+x 2=03x 1+4x 2+λx 3=0有非零解,并求此时方程组的一般解.4. 求矩阵 A =(1−2−1221−442) 的秩 r (A ),以及列空间 R (A )的一组基。
【期末试题】2018-2019秋线性代数(理工)
三、证明题(共 19 分)
1. (7 分)证明:向量组 ������1, ������2, ������3 线性无关的充分必要条件是向量组 ������1 + ������2, ������2 + ������3, ������3 + ������1 线性无关. 2.(6 分)设方阵 ������ 使得 ������3 = 2������, 证明 ������2 − ������ 可逆,并求 ������2 − ������ 的逆矩阵. 3.(6 分)设 ������ 阶方阵 ������ 满足 ������2 = ������. 则 ������ 是齐次线性方程组 ������������ = 0 解的充分必要条件 为:存在向量 ������ 使得 ������ = ������ − ������������.
0
相似,
则
������������ =
__________.
1 2 3 4 0 0 4 y
1 0 0
x
0
0
1
1
110 2. 若存在3维列向量不能由向量组 (0) , (������) , (2) 线性表出,则 ������ = __________.
121
1 2 4 ������1 3. 若二次型 (������1, ������2, ������3) (0 2 2) (������2) 正定,则 ������ 的取值范围为 __________.
0 0 ������ ������3 4. 设������为3阶实对称阵,������2 − ������ = 2������, ������������(������) = 0,则二次型 ������������������������ 的规范形为 __________.
线性代数期末考试试卷+答案合集
d (x a b c d) 0 x 0 0 (x a b c d)x3
d
00 x 0
1 b c xd
000 x
3 0 1 2. 设 AB A 2B ,且 A 1 1 0, 求 B 。
0 1 4
解. ( A 2E)B A
2 1 1
5 2 2
(A
2E) 1
2
。
1 2 1 x1 1
7、已知方程组 2 3 a 2 x2 3 无解,则 a
。
1 a 2 x3 4
8 、 二 次 型 f (x1, x2 , x3) 2x12 3x22 tx32 2x1x2 2x1x3 是 正 定 的 , 则 t 的 取 值 范 围
是
。
三、计算题(本题共 2 小题,每题 8 分,满分 16 分)
0 1 y
按第三列展开得
D xy x 0 x 2y 2 。 1y
(4 分)
(4 分)
10、解:把各列加到第一列,然后提取第一列的公因子
n i 1
xi
3
,再通过行列式的变换化
为上三角形行列式
1 x2 xn
Dn
n i 1
xi
3
1
x2 3
xn
1 x2 xn 3
(4 分)
1 x2 xn
共 3 页第 7页
(2) 4 不能由1,2 ,3 线性表出。
大学生校园网— 线性代数 综合测试题
12、设 A 是 n 阶矩方阵, E 是 n 阶单位矩阵, A E 可逆,且 f ( A) (E A)(E A) 1 。 证明 (1) (E f ( A))(E A) 2E ; (2) f ( f (A)) A 。
2
线性代数期末试卷及解析(4套全)2018科大
线性代数期末试卷一一、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)(5)设矩阵210120001⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,矩阵B 满足*2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则||=B __________.解:||=B 19.显然||3=A ,在等式*2=+ABA BA E 两端右乘A 得36=+AB B A (36)-=A E B A 上式取行列式03030||3003=-B故 1||9=B . 方法二:因||3=A ,则*31||||9-==A A将**2=+ABA BA E 移项得 *(2)-=A E BA E 两端取行列式得1||91⋅⋅=B ,故1||9=B .二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A )010100.101⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.解:(D )正确. 由题意12=AE B ,其中12010100001⎛⎫⎪= ⎪ ⎪⎝⎭E 为第一种类型初等矩阵,23(1)=BE C ,其中23100(1)011001⎛⎫ ⎪= ⎪ ⎪⎝⎭E 为第三种类型初等矩阵.于是有 1223(1)==AE E C AQ则 1223010100011(1)100011100001001001⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭Q E E与所给答案比较,选(D ).(12)设,A B 为满足=AB 0的任意两个非零矩阵,则必有 (A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关. (D )A 的行向量组线性相关,B 的列向量组线性相关. 解:(A )正确.设A 为m n ⨯矩阵,B 为n p ⨯矩阵,因为 =AB 0故 ()()r r n +≤A B ,其中(),()r r A B 分别表示矩阵,A B 的秩.又因为,A B 皆是非零矩阵,故()0,()0r r >>A B ,所以()r n <A ,()r n <B .因此A 的列秩数,B 的行秩数小于n ,这说明A 的列向量组线性相关,B 的行向量组线性相关,故选(A ).取101000⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB , 由B 的列向量组线性无关知(B )、(D )错误.取101010-⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB ,由A 的行向量组线性无关知(C )错误.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2)()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有11111111222220000aa a a a n n n n a na a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B L L L L L L L L L L. 当0a =时,()1r n =<A ,故方程组有非零解,其同解方程组为120n x x x +++=L , 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数. 当0a ≠时,对矩阵B 作初等行变换,有(1)1111000221002100.001001n n a a n n +⎛⎫++⎛⎫ ⎪⎪⎪-⎪-→→⎪ ⎪⎪ ⎪ ⎪ ⎪-⎪⎝⎭-⎝⎭B L L L L L L L L LL可知(1)2n n a +=-时,()1r n n =-<A ,故方程组也有非零解,其同解方程组为 1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. 解法2 方程组的系数行列式为111112222(1)||.2n aa n n a a nnn n a-+++⎛⎫==+ ⎪⎝⎭+A L L L LL当||0=A ,即0a =或(1)2n n a +=-时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有1111111122220000,0000n n n n ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A L L L L L L L L L L 故方程组的同解方程组为120,n x x x +++=L 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数.当(1)2n n a +=-时,对系数矩阵A 作初等行变换,有 11111111222220000aa a a an n n n a na a ++⎛⎫⎛⎫⎪⎪+-⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A L L LLL L L L L L . 1111000021002100.00101a n n +⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭L L LL L L L L L L 故方程组的同解方程组为1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. (21)(本题满分9分)设矩阵12314315a -⎛⎫⎪=-- ⎪ ⎪⎝⎭A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.解:A 的特征多项式为1232201431431515a aλλλλλλλ-----=-------11010(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根,则有22161830a -++=,解得2a =-.当2a =-时,A 的特征值为2,2,6,矩阵1232123123-⎛⎫⎪-=- ⎪ ⎪--⎝⎭E A 的秩为1,故2λ=对应的线性无关的特征向量有两个,从而A 可相似对角化.若2λ=不是特征方程的二重根,则28183a λλ-++为完全平方,从而18316a +=,解得23 a=-.当23a=-时,A的特征值为2,4,4,矩阵32341032113⎛⎫⎪-⎪-= ⎪⎪--⎪⎝⎭E A的秩为2,故4λ=对应的线性我关的特征向量只有一个,从而A不可相似对角化.线性代数期末试卷二一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中的横线上.) (6)同数学(一)一、(5).二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项目前的字母填在题后的括号内.) (13)同数学(一)二、(11). (14)同数学(一)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有111111112222200.33333004444400aa a a a a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B 当0a =时,()14r =<A ,故方程组有非零解,其同解方程组为 12340x x x x +++=.由此得基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当0a ≠时,11111000021002100,3010301040014001a a ++⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭B 可知10a =-时,()34r =<A ,故方程组也有非零解,其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为 T(1,2,3,4)=η,于是所求方程组的通解为 k =x η,其中k 为任意常数. 解法2 方程组的系数行列式311112222||(10)33334444aa a a a a++==+++A .当||0=A ,即0a =或10a =-时,方程组有零解. 当0a =时,对系数矩阵A 作初等行变换,有11111111222200003333000044450000⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A , 故方程组的同解方程组为12340.x x x x +++= 其基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当10a =-时,对A 作初等行变换,有911191112822201000337330010*******0010--⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭A91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为T(1,2,3,4)=η,于是所求方程组的通解为x k =η,其中k 为任意常数. (23)(本题满分9分) 同数学(一)三、(21).线性代数期末试卷三一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(4)二次型222123122331(,,)()()()f x x x x x x x x x =++-++的秩为_________.解:秩为 2 .222123122331(,,)()()()f x x x x x x x x x =++-++ 222123121323222222x x x x x x x x x =++++-于是二次型f 的表示矩阵为211121112⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A易求得()2r =A ,故二次型f 的秩为2.二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.) (12)设n 阶矩阵A 与B 等价,则必有 (A )当||(0)a a =≠A 时,||a =B . (B )当||(0)a a =≠A 时,||a =-B . (C )当||0≠A 时,||0=B . (D )当||0=A 时,||0=B . 解:(D )正确.因为n 阶矩阵A 与B 等价,故存在n 阶可逆矩阵,P Q 使 =PAP B故 ||||||||=B P A Q当||0=A 时,自然有||0=B ,故(D )正确.当||0≠A 时,由||,||P Q 皆不为零,故||0≠B ,所以(C )错误.当||0a =≠A 时,||||||a =B P Q ,仅由A 与B 等价,无法推出||||1=±P Q ,故(A )、(B )不正确.当,A B 相似时,(A )才正确.(13)设n 阶矩阵A 的伴随矩阵*≠A 0,若1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,则对应的齐次线性方程组=Ax 0的基础解系.(A )不存在. (B )仅含一个非零解向量. (C )含有两个线性无关的解向量. (D )含有三个线性无关的解向量. 解:(B )正确.因*=A 0,故*A 中至少有一个非零元素. 由于*A 中元素恰为A 的1n -阶代数余子式所组成,故A 至少有一个1n -阶子式非零,这表明()1r n ≥-A .现断言()r n ≠A ,否则A 可逆,则线性方程组=Ax b 有惟一解,这与12,ξξ是非齐次线性方程组=Ax b 不同的解矛盾.由此必有()1r n =-A ,所以齐次线性方程组=Ax 0的解空间维数为(1)1n n --=,即=Ax 0的基础解仅含一个非零解向量. 可见(B )正确,(A )错误.尽管从1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,可以得出=Ax 0有三个不同的非零解,如121314,,,---ξξξξξξ但是它们是成比例的线性相关解,也就是说=Ax 0不会有两个,更不会有三个线性无关的解向量,即(C )、(D )不正确.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题分13分)设T T T 123(1,2,0),(1,2,3),(1,2,2)a a b a b ==+-=---+ααα,T(1,3,3)=-β. 试讨论当,a b为何值时,(I )β不能由123,,ααα线性表示;(II )β可由123,,ααα惟一地线性表示,并求出表示式;(III )β可由123,,ααα线性表示,但表示式不惟一,并求出表示式. 解:设有数123,,k k k ,使得112233k k k ++=αααβ. (*) 记123(,,)=A ααα. 对矩阵()Aβ施以初等行变换,有1111()22230323a b a a b -⎛⎫ ⎪=+-- ⎪ ⎪-+-⎝⎭A β111101000a b a b -⎛⎫ ⎪→- ⎪ ⎪-⎝⎭.(I )当0,a b =为任意常数时,有1111()0010001b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A β.可知()()r r ≠A A β. 故方程组(*)无解,β不能由123,,ααα线性表示.(II )当0a ≠,且a b ≠时()()3r r ==A A β,故方程组(*)有惟一解 123111,,0,k k k a a=-== 则β可由123,,ααα惟一地线性表示,其表示式为1211(1)a a=-+βαα.(III )当0a b =≠时,对()A β施以初等行变换,有110011()011.0000a a ⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭A β. 可知()()2r r ==A A β,故方程组(*)有无穷多解,其全部解为123111,(),k k c k c a a=-=+=,其中c 为任意常数.β可由123,,ααα线性表示,但表示式不惟一,其表示式为12311(1)()c c a a=-+++βααα. (21)(本题满分13分)111b b bb b b ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭A L L M M M L. (I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1-P AP 为对角矩阵. 解:(I )1º当0b ≠时,11||1b b b b bbλλλλ-------=---E A L LM M ML1[1(1)][(1)]n n b b λλ-=-----.故A 的特征值为121(1),1n n b b λλλ=+-===-L .对于11(1)/n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b b n b b b ⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪⎝⎭ξξL L M M M L , 解得T1(1,1,,1)=ξL ,所以全部特征向量为T1(1,1,,1)k k =ξL (k 为任意非零常数).对于21n b λλ===-L ,解齐次线性方程组[(1)]0b --=E A x ,由111000(1)000b b b b b b b b b b ---⎛⎫⎛⎫⎪ ⎪---⎪ ⎪--=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭E A L L LL M M M M M M L L, 解得基础解系T2(1,1,0,,0)=-ξL ,T3(1,0,1,,0)=-ξL ,… …T(1,0,0,,1)n =-ξL .故全部特征向量为2233n n k k k +++ξξξL (2,,n k k L 是不全为零的常数). 2º当0b =时,特征值11n λλ===L ,任意非零列向量均为特征向量. (II )1º当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n =P ξξξL ,则 1diag{1(1),1,,1}.n b b b -=+---P AP L 2º当0b =时,=A E ,对任意可逆矩阵P ,均有 1-=P AP E .注:T1(1,1,,1)=ξL 也可由求解齐次线性方程组1()λ-=E A x 0得出.线性代数期末试卷四一、填空题(本题共6小题,每小4分,满分24分. 把答案填在题中横线上.)(4)设1010100,001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭A B P AP ,其中P 为三阶可逆矩阵,则200422-=B A _________. 解:300030001⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 由010100001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 得2100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,故4=A E ,其中E 是3阶单位阵,所以2004=A E .由1-=B P AP 得200412004-==B P A P E于是 20042210020030022010020030001002001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭BA E A . (5)设33()ij a ⨯=A 是实正交矩阵,且T 111,(1,0,0)a b ==,则线性方程组=Ax b 的解是__________.解:T (1,0,0).在方程=Ax b 两端左乘TAT T =A Ax A b 则 2131T 122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭x A b将 12131a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭x 代回=Ax b 有2131122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由此得22121311a a ++=因A 为实矩阵,故12130a a ==,因此=Ax b 的解为100⎛⎫ ⎪= ⎪ ⎪⎝⎭x .二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(12)同数学(三)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(20)(本题满分13分)设线性方程组1234123412340,220,3(2)(4)41,x x x x x x x x x x x x λμλμ+++=⎧⎪+++=⎨⎪+++++=⎩已知T(1,1,1,1)--是该方程组的一个解. 试求(I )方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II )该方程组满足23x x =的全部解.解:将T (1,11,1)--代入方程组,得λμ=. 对方程组的增广矩阵施以初等变换,得 1102112032441λλλλ⎛⎫ ⎪= ⎪ ⎪++⎝⎭A 102101311.002(21)2121λλλλλλ---⎛⎫ ⎪→ ⎪ ⎪---⎝⎭(I )当12λ≠时,有 1001011010.221100122⎛⎫ ⎪ ⎪ ⎪→-- ⎪ ⎪ ⎪ ⎪⎝⎭A 因()()34r r ==<A A ,故方程组有无穷多解,全部解为T T 11(0,,,0)(2,1,1,2)22k =-+--ξ, 其中k 为任意常数.当12λ=时,有 11101220131100000⎛⎫-- ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭A .因()()24r r ==<A A ,故方程组有无穷多解,全部解为T T T 121(,1,0,0)(1,3,1,0)(1,2,0,2)2k k =-+-+--ξ, 其中12,k k 为任意常数.(II )当12λ≠时,由于23x x =,即 1122k k -+=-. 解得12k =,方程组的解为T T T 111(0,,,0)(2,1,1,2)(1,0,0,1)222=-+--=-ξ. 当12λ=时,由于23x x =,即 121132k k k --=. 解得121142k k =-,故全部解为 T T 2111311(,,,0)(,,,2)444222k =-+---ξ, 其中2k 为任意常数.[注]:在题(II )中,12λ=时,解得21122k k =-时,全部解也可以表示为 T T 1(1,0,0,1)(3,1,1,4)k =-+-ξ,其中1k 为任意常数.(21)(本题满分13分)设三阶实对称矩阵A 的秩为122,6λλ==是A 的二重特征值. 若T T T 123(1,1,0),(2,1,1),(1,2,3)===--ααα都是A 的属于特征值6的特征向量. (I )求A 的另一特征值和对应的特征向量;(II )求矩阵A .解:(I )因为126λλ==是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个. 由题设可得123,,ααα的一个极大无关组为12,αα,故12,αα为A 的属于特征值6的线性无关的特征向量.由()2r =A 可知,||0=A ,所以A 的另一特征值30λ=. 设30λ=所对应的特征向量为T 123(,,)x x x =α,则有T T120,0==αααα,即 121230,20.x x x x x +=⎧⎨++=⎩ 解得此方程组的基础解系为T (1,1,1)=-α,即A 的属于特征值30λ=的特征向量为T (1,1,1)c c =-α,(c 为不为零的任意常数).(II )令矩阵123(,,)=P ααα,则1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭P AP ,所以 1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭A P P .又1011112333111333-⎛⎫ ⎪- ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭P , 故422242.224⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A。
四川大学数一二线性代数期末考试试卷
第 页 共6页1四川大学期末考试试卷科 目:《大学数学》(线性代数)一、填空题(每小题3分,共15分)1. 232323a a ab bb c c c = __abc()_____.2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性_______.3. 设A =378012002⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦, A *是A 的伴随矩阵, 则 |15-A*| = _________.4. 当t 满足______的条件时, 22212311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.第 页 共6页2 二、选择题(每小题3分,共15分)1. 设矩阵,23⨯A ,32⨯B 33⨯C , 则下列式子中, ( )的运算可行.(A) AC; (B) C AB -; (C) CB ; (D) BC CA -.2. 设D=123012247-, ij A 表示D 中元素ij a 的代数余子式, 则3132333A A A ++=( ).(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ⨯矩阵, 秩(A)=2,123,,X X X 是非齐次线性方程组AX =β的三个线性无关解向量, 则( )为AX =0的通解.(A) 11223;k X k X X +- (B) 123();X k X X +-(C)1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ).(A) 11--=BC A X ; (B) 11--=C BA X ; (C) 11--=A BC X ; (D) 11--=BA C X .5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值.(A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件三、计算下列各题(每小题10分,共30分)1. 计算行列式 11120132.12231420------第 页 共6页32. 解矩阵方程,X B AX +=其中21125111,3001214A B -⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦. X=[-1 5]5/4 2 .-1/2 .-1 3.求向量组]1,3,2,1[1-=α, ]1,10,11,5[2--=α,]9,1,8,3[3-=α, ]19,9,2,0[4-=α的秩与它的一个极大线性无关组.四、解答下列各题(每小题12分,共24分)1.讨论当b取何值时, 非齐次线性方程组123412341234237335135543x x x xx x x xx x x x b+++=⎧⎪+++=⎨⎪++-=⎩有解; 当有解时, 求方程组的通解.第页共6页4第 页 共6页5232232133),,(x x x x x f +=323121244x x x x x x -++ 化为标准形.第 页 共6页6 五、证明题(每小题8分, 共16分)1. 设12321311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 如果存在三阶矩阵 0,B ≠ 满足AB =0, 试求λ的值,并证明. rank B *=0, 其中B *是B 的伴随矩阵.2. 设A 是一个三阶矩阵,向量组123,,()I ααα中的三个向量分别是A 属于特征值0,1,3的特征向量, 向量组)(,,421II ααα线性相关。
(完整word版)线性代数期末考试试卷+答案合集
×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
四川大学数一二线性代数期末考试试卷A
第 页 共6页1四川大学期末考试试卷(A )科 目:《大学数学》(线性代数)一、填空题(每小题3分,共15分)1. 232323a a ab bb c c c = __abc()_____.2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性_______.3. 设A =378012002⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦, A *是A 的伴随矩阵, 则 |15-A*| = _________.4. 当t 满足______的条件时, 22212311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.第 页 共6页2 二、选择题(每小题3分,共15分)1. 设矩阵,23⨯A ,32⨯B 33⨯C , 则下列式子中, ( )的运算可行.(A) AC; (B) C AB -; (C) CB ; (D) BC CA -.2. 设D=123012247-, ij A 表示D 中元素ij a 的代数余子式, 则3132333A A A ++=( ).(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ⨯矩阵, 秩(A)=2,123,,X X X 是非齐次线性方程组AX =β的三个线性无关解向量, 则( )为AX =0的通解.(A) 11223;k X k X X +- (B) 123();X k X X +-(C)1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ).(A) 11--=BC A X ; (B) 11--=C BA X ; (C) 11--=A BC X ; (D) 11--=BA C X .5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值.(A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件三、计算下列各题(每小题10分,共30分)1. 计算行列式 11120132.12231420------第 页 共6页32. 解矩阵方程,X B AX +=其中21125111,3001214A B -⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦.X=[-1 5]5/4 2 .-1/2 .-1 3.求向量组]1,3,2,1[1-=α, ]1,10,11,5[2--=α,]9,1,8,3[3-=α, ]19,9,2,0[4-=α的秩与它的一个极大线性无关组.四、解答下列各题(每小题12分,共24分)1.讨论当b取何值时, 非齐次线性方程组123412341234237335135543x x x xx x x xx x x x b+++=⎧⎪+++=⎨⎪++-=⎩有解; 当有解时, 求方程组的通解.第页共6页4第 页 共6页5232232133),,(x x x x x f +=323121244x x x x x x -++ 化为标准形.第 页 共6页6 五、证明题(每小题8分, 共16分)1. 设12321311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 如果存在三阶矩阵 0,B ≠ 满足AB =0, 试求λ的值,并证明. rank B *=0, 其中B *是B 的伴随矩阵.2. 设A 是一个三阶矩阵,向量组123,,()I ααα中的三个向量分别是A 属于特征值0,1,3的特征向量, 向量组)(,,421II ααα线性相关, 证明: 向量组)(,,4321III αααα-线性无关.。
2018年线代期末试卷
10、设 n 阶矩阵 A 满足 A2 A 2I ,则下列矩阵中哪个可能不可逆( B )
(A) A 2I
(B) A I
(C) A I
(D) A
二、计算题(本题共 4 小题,满分 32 分)
5123 11、(8 分)计算行列式 D 3 5 1 2 的值。
2351 1235
11 1 2 3 11 1 2
4、设 A 为 n 阶可逆方阵,A* 为 A 的伴随矩阵,若 A 的一个特征值为 ,则 A* 必 有一个特征值 A / 。
5、二次型 f (x1, x2 , x3 ) 5x12 x22 cx32 4x1x2 2x1x3 2x2 x3 为正定的,则 c 的取值
范围是 c>2
。
6、已知 4 阶方阵 A 的第三列元素依次为 1,3,-2,2,它们的余子式的值分别 为 3,-2,1,1,则 A =( A )
c1c 2
r 2r1
3
c1
4
1
1
答案: D 11 5 1 2 0 4 1 1 112 3 2 (5 分)
11 c1c3
c1c 4
3
5
1 0 r3r1 r 4r1
2
3
2
11 2
11 2 3 5 0 1 1 2
11 39 429 (8 分)
1 0 2 0
12、(8
分)已知矩阵
A
1 11
1 2 1
a5 k1a1 k2a2 k3a3 k4a4 ,则 a5 k1(l2a2 l3a3 l4a4 ) k2a2 k3a3 k4a4 ,这说明
a5 能由 a2 , a3, a4 线性表示,矛盾。所以 a5 不能由 a2 , a3, a4 线性表示。 (6 分)
2017-2018(1)线性代数期末考试-A卷参考答案
A. 12,,,s ⋅⋅⋅ααα都不是零向量;B. 12,,,s ⋅⋅⋅ααα中至少有一个向量可由其余向量线性表示;C. 12,,,s ⋅⋅⋅ααα中任意两个向量都不成比例;D. 12,,,s ⋅⋅⋅ααα中任一部分组线性无关.6. 若二次型222123123(,,)(1)(1)(2)f x x x k x k x k x =++-+-正定,则k 的取值范围为 ( A ). A. 2k > ; B. 1k >; C. 12k << ;D. 1k >-.二、填空题 (共22分,第1-6小题每小题3分,第7小题4分)1. 行列式是一个 数值 ,矩阵是一个 数表 。
(请填“数表或数值”)2. 100201100010140001201103010⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭=210104350⎛⎫⎪ ⎪ ⎪⎝⎭. 3. 行列式111111x x x= (x +2)(x -1)2 或x 3-3x +2 .4. n 元齐次线性方程组A x =0只有零解的充要条件是 R(A)=n .5. 设向量1-2-1⎛⎫ ⎪= ⎪ ⎪⎝⎭α,β=22λ-⎛⎫⎪⎪ ⎪⎝⎭正交,则λ= -6 .6. 任意n +1个n 维向量 线性相关 .填(“线性相关”或“线性无关”)7. 已知三阶方阵A 的三个特征值分别为1,1,2,-则_-2_,A =1*132__.2A A -+=三、计算题 (共60分)1. (10分) 设122212221A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,1) 判断A 是否可逆;(4分)2) 如果A 可逆,请用初等行变换求出-1A .(6分)解:1) 由于||=-270A ≠,所以A 可逆。
(4分)2)用初等行变换求得11/92/92/92/91/9-2/92/9-2/91/9A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦。
(6分)2. (10分)计算行列式2004310050100232D =.解:将D 的第三行的-3倍加到第四行,得:2004200431003100501050100232-15202D ==(2分)对200431005010-15202按第三列展开,得:204310-1522D = (3分)将204310-1522第二行的-2倍加到第三行,得: 204310-2102D = (2分) 按第二列展开得2488-212D ==。
线性代数期末考试试卷+答案合集-大一期末线性代数试卷
线性代数期末考试试卷+答案合集-大一期末线性代数试卷×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足。
3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是阶矩阵。
4.矩阵=323122211211a a a a a a A 的行向量组线性。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0?D 。
()2. 零向量一定可以表示成任意一组向量的线性组合。
()3. 向量组m a a a ,,,21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
()4. ?=010*********0010A ,则A A =-1。
() 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ()。
① n2② 12-n③ 12+n ④ 42. n 维向量组s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是()。
① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关② 任意n 个1+n 维向量线性无关③ 任意1+n 个n 维向量线性相关④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
四川大学期末考试试题(闭卷)2017-2018春微积分
四川大学期末考试试题(闭卷)(2017——2018 学年第 2 学期) A 卷课程号:201138040 课序号:课程名称:微积分(I)-2 任课教师:成绩:⎩ 2 2 a b 1 - α 2 - β x 2 y 22 1 - - a 2 b2x 2 y 2⎧ 3 x 2 y 4 ⎪ , ( x , y ) ≠ (0, 0) ∂f ∂f5. f ( x , y ) = ⎨ x 2 + y 2, (1)求 ∂x (0, 0) 和 ∂y (0, 0) ;⎪0, ( x , y ) = (0, 0) (2)判断 (f x , y )在点 0, 0)处是否可微; (3)设向量l = ( , -2 2) , 求∂f (0, 0).∂l三、应用题 (每小题 9 分,共 18 分)1. 求圆 x 2 + y 2 = 1 上一点, 使得该点到 A (0, 0) 、 B (3, 0) 、C (0, 4) 的距离的平方之和最小.2. 设函数 y = f ( x ) 处处二阶可导, 其函数图像上任意一点x , y )处的切线与 y 轴的交点为(0, u ( x )) , 若u - u ' = y + 2 x 2 , 并且 f (1) = f '(1) + 4 = e , 求函数 y = f ( x ) .四、证明题 (每小题 6 分,共 12 分)1. 设可微函数 f ( x , y , z ) 满足: f (t a x , t b y , t c z ) = t a + b + c f ( x , y , z ), ∀t > 0 , 其中 a , b , c 都是正整数. 求证: ax∂f ( x , y , z ) ∂x + by ∂f ( x , y , z ) ∂y + cz ∂f ( x , y , z )∂z= (a + b + c ) f ( x , y , z ).x 2 y 2 z 2c 2 c 22. 设∑ 为曲面 a 2 + b 2 + c2 = 1 (a , b , c > 0) ,I = ⎰⎰ d S , ∑α = 1 - , β = 1 - .a 2b 2(1) 求证: I = 2⎰⎰d x d y , D xy其中 D xy = {( x , y ) ∈ 2| x a2 + y 2b 21}.1 (2) 上述积分很难直接计算, 试用你的想法给出 πI的估算公式, 并给出该公式在a = 1,b = 2,c = 3 时的结果. (保留两位小数, 合理的估值均可得分)2f 1 02018 微积分(1)-2 参考解答一、计算题:(每题褵分,共褳褰分)褱、求曲线x = cos t, y = sin t, z = t cos t 上点(1, 0, 0)处的切线方程褮解褺 对曲线方程关于t 求导可得切向量为(− sin t, cos t , cos t − t sin t ) ······························ 3分代入点(1, 0, 0)对应的参数t = 0可得点(1, 0, 0)处的切向量为(0, 1, 1). 于是褬切线方程为x − 1 = y = z ······································· 2分褲、求曲面z = xy 在点(−2, −3, 6)处的切平面方程褮 解褺 曲面z = xy 的法向量是(−z x , −z y , 1) = (−y, −x, 1), ········································ 3分于是在点(−2, −3, 6)处的法向量为(3, 2, 1). 因此,所求切平面方程为3(x + 2) + 2(y + 3) + z − 6 = 0,即3x + 2y + z + 6 = 0 ································ 2分褳、设D = {(x, y ) ∈ R 2| x + y :( 1, x ;;? 0, y ;;? 0},求FFx d x d y.解褺ffx d x d y = d x f 11−x 0x d y ······································ 3分1 11 =2 −3 = 6 ·······························2分褱0 = D 011D(x − x 2)d x ff f f f1−( ) =x x2 x Ω褴、设Ω是曲面z = ✓x 2 + y 2与平面z = 1围成的区域褬求FFF(z +x 2y 3 sin z 4)d x d y d z 褮解褺 由Ω的对称性褬fffx 2y 3 sin z 4d x d y d z = 0 ····························· 1分由截面法褬 注意到 D z = {(x, y ) ∈ R 2| x 2 +y 2 :( z 2} ············· 1分1 ∴ 原式 =d z 0D zf 1z d x d y=πz 3d zπ=4 ······························3分褵、设Γ是起点为(1, 0, 1)、 终点为(0, 1, 1)的有向线段褬 求F(y 2 + z − x )d y.解褺 Γ的参数方程x = 1−t, y = t, z = 1,t : 0 → 1, ········· 2分原式 = 0 5 (t 2+ t )d t褶、求微分方程初值问题= 6 ······························3分xy Iy = x 2的解褮y (1) = 2018解褺 由 y I xy I − y = 1,可得褺 y= x + C ······································· 2分代入初始条件褬 可得C = 2017.于是方程的解为y = x 2 + 2017x ······································· 3分褲Γ Ω0 x 3F 0 0F fff ff F ffff1 − 9 x2 + y 2二、解答题:(每题褸分,共褴褰分)褱、交换二次积分I = F 1 d x F 1 ✓3 y 2e y d y 的积分次序并计算I .解:画出积分区域:褲 分y I = F 1d yF √3 y ✓3y 2e y d x=1 ye y d y 3分 = ye y 11 − F 1 e y d yx 2 + y 2 + z 2 = 1褲、设曲线Γ的方程为x + y + z = 0 解褺 由Γ的轮换对称性褬 可得褬 求(x + 1)2d s 褮 Γx 2d s =ΓΓy 2d s =Γz 2d s= 1 (x 2+ y 2 + z 2)d s 3Γ1 2π = d s = .4分33Γ再由Γ关于原点的对称性褬 可得x d s = 0.2分 Γ(x + 1)2d s =ΓΓ(x 2+ 2x + 1)d s =Γx 2d s +Γ8πd s = .2分3褳、设平面曲线L 为y I x 2褬起点为 褬终点为 褬求F x d y − y d x 褮解褺 首先褬∂ −y−(x 2+ y 2) + 2y 2y 2 − x 2P y =( ∂y x 2+ y 2 ) = (x 2 + y 2 )2 = (x 2 + y 2 )2 , ∂ x (x 2 + y 2) − 2x 2 y 2 − x 2Q x =( ∂x x 2 + y 2 ) = (x 2 + y 2 )2 = (x 2 + y 2 )2 . 既然 P y = Q x 褬 于是曲线积分与路径无关褻 褳分褳Lx 0 0 0 = e − (e − 1) = 1.3分= 2 (3, 0) (−3, 0)(9 s in 2 θ + 9 c os 2 θ)d θ = π.3分✓ ✓−−Ω f √r cos ϕ · r 2 sin ϕd r4分∂x d x∂y d y取新的路径 L I : y =√9 − x 2褬 起点为(3, 0)褬 终点为(−3, 0)褮 L I 的参数方程x = 3 c os θ, y = 3 s in θ褬 其中θ从褰变化到π褮 褲分代入曲线积分可得1f π褴、设曲面Σ是球面z = 2 x 2 y 2与锥面z = x 2 + y 2围成立体的表面褬 Σ的方向指向外侧褬 求FF x 2d y d z + y 2d z d x + z 2d x d y 褮解褺 由高斯公式褬原式 =fff(2x + 2y + 2z )d x d y d z.2分由Ω的对称性褬 可得FFFx d x d y d z =FFFy d x d y d z = 0.∴ 原式 = 2ffff 2πΩz d x d y d z fπ/4Ωf 2= 4ππ/4cos ϕ sin ϕd ϕ = π.2分✓ 3x 2y 4褵、设f (x, y ) =✓x 2 + y2, (x, y ) (0, 0) 褬 褨褱褩求∂f (0, 0)和∂f(0, 0)褻0, (x, y ) = (0, 0)∂x ∂y √2 √2 ∂f褨褲褩判断f (x, y )在点(0, 0)处是否可微褻 褨褳褩设向量l = ( 2, − )褬 求 (0, 0)褮 2 ∂l 解褺 褨褱褩因为f (x, 0) = 0褬 ∂f (0, 0) = df (x, 0)| = 0.同理褬 因为f (0, y ) = 0褬 ∂f (0, 0) = df (0, y )|= 0. 2分褴0 d θ 0= 2 Ω 0 9 Σ原式 =d ϕx =0 y =0t5 5 5 5褨褲褩 令∆y = k ∆x 褬 通过计算下列极限褬发现其与k 有关褬 从而极限不存在褮f (0 + ∆x, 0 + ∆y ) − f (0, 0) − f x (0, 0)∆x − f y (0, 0)∆ylim∆x →0∆y →0✓(∆x )2 + (∆y )2✓ 3(∆x )2(∆y )4✓ 3(∆x )2(k ∆x )4 k 4/3= lim ∆x →0(∆x )2 ∆y →0+ (∆y ) = lim ∆x →0(∆x )2 + (k ∆x )2 = 1 + k 2 .因此褬由定义可知函数 f (x, y )在点(0, 0)处不可微褮 褳分褨褳褩因为 l = ( √2 2, − √2 ) = (cos α, cos β)褬 由方向导数的定义可得2∂f (0, 0) = limf (0 + t cos α, 0 + t cos β) − f (0, 0)∂l t →0+ 1✓ 3 t 6 cos 2 α cos 4 β1 分= lim t →0+t· ✓t 2cos 2 α +t 2 cos 2= .3β 2三、应用题:(每题褹分,共褱褸分)褱、求圆x 2 + y 2 = 1上一点褬 使得该点到A (0, 0)、B (3, 0)、C (0, 4)的距离的平方之和最小褮解褺 令f (x, y, λ) = x 2 + y 2 + (x − 3)2 + y 2 + x 2 + (y − 4)2 + λ(x 2 + y 2 − 1)褮褳分由方程组f x = 4x + 2(x − 3) + 2λx = 0f y = 4y + 2(y − 4) + 2λy = 0 3分f λ = x 2 + y 2 − 1 = 0可解得驻点为(x, y ) = (± 3 , ± 4 )褻 由题意可知所求的点为( 3 , 4)褮褳分褲、设函数y = f (x )处处二阶可导,并且f (1) = f I (1) + 4 = e ,其函数图像上任意一点(x, y )处的切线与y 轴的交点为(0, u (x )),若u − u I = y + 2x 2,求函数y = f (x )褮解褺 u (x ) − y = y I (0 − x )褬 u (x ) = y − xy I 褬 u I (x ) = y I − y I − xy II = −xy II 褮褵2∂u ∂v ∂wa 2 +b 2 +c 2= 1 (a, b, c > 0)I =d S α = 1 − a2 I 1 − αa 2 − β b 2因为u − u I = y − xy I + x y II = y + 2x 2,则当x0时褬 y II − y I = 2x.4分解方程y II − y I = 2x ,可得y = C 1e x + C 2 − x 2 − 2x.3分再由 f (1) = f I (1) + 4 = e ,可得y = e x − x 2 − 2x + 3.2分四、证明题:(每题褶分,共褱褲分)褱、设可微函数f (x, y, z )满足褺 f (t a x, t b y, t c z ) = t a +b +c f (x, y, z ), ∀t > 0褬 其 中 a, b, c 都是正整数褮 求证褺∂f ∂f ax (x, y, z ) + by ∂x ∂y ∂f (x, y, z ) + cz ∂z(x, y, z ) = (a + b + c )f (x, y, z ).证明褺 令u = t a x 褬 v = t b y 褬 w = t c z 褬 k = a + b + c 褮 对f (u, v, w ) = t k f (x, y, z )关于t 求导可得褺∂f (u, v, w )·at a −1x + ∂f (u, v, w )·bt b −1y + ∂f(u, v, w )·ct c −1z = k t k −1f (u, v, w ).褴分上述表达式中令t = 1褬 即有∂f ∂f ax (x, y, z ) + by ∂x ∂y ∂f(x, y, z ) + cz ∂z(x, y, z ) = (a + b + c )f (x, y, z ).褲、设为曲面x 2 y 2 z 2褲分褬FF褬c 2 褬β = 1 − b2 褮 褨褱褩 求证褺ff「Ix 2 y 2Ux 2 y 2a 2b 2褨褲褩 上述积分很难直接计算褬 试用你的想法给出1I 的估算公式褬 并给出该公π式在a = 1, b = 2, c = 3时的结果褮 褨保留两位小数褬 合理的估值均可得分褩褶1 − a2 − b 2D xy y 2 + x 2 d x d y, D xy : Σ c 2 Σ I = 2 :( 1.)∂x = − a 2 z 1 − a 2 − b 2 ∂y = − b 2 z , )y 2x 2 y 21 − a2 − b 2 − −2 2 a 1 α β I d x d y, 2分I ππ( 22 b1 − αa2 − β b 2 I证褺 褨褱褩 I x 2y 2 褬 ∂z c 2 x 褬 ∂z c 2 y褱分d S = !1 +c 2x 2−a 2 zc 2 y 2 + − b 2 zd x d y= 「I U 1 +x 2 c a 4 y 2 c 4 + d x d y「I 1 − (1 − c 2 a 2 ) x 2 a 2− (1 − c 2 y 2 b 2 ) b 2 d x d yU x 2 y 2I 「 x 21 − a2 − b 2 y 2U x 2 y 2 1 − a 2 − b2 由曲面Σ的对称性褬 只需要计算上半椭球面积的褲倍褻 因此褬ff 「Ix 2 y 2U x 2 y2a 2 b2褨褲褩 合理估值范围褺 4min {a 2, b 2, c 2} :( 1I :( 4max {a 2, b 2, c 2}. 参考估值公式褺1 I ≈ 4(a 2 + b 2 + c 2), π 314π I ≈ 3(ab + bc + ac ), 1 p πI ≈ 4a pb p + b pc p + a p c p, p > 0. 3当a = 1, b = 2, c = 3时褬 合理范围是 4 :( 1I :( 36 褮 事实上I ≈ 15.57褻 估值结果在[10, 20]上给褲分褻 估值结果在[4, 10) ∪ (20, 36]上给褱分褮褷1 − a2 − b 2D xy x 2 d x d y, D xy : = 1 − a 2 − b 2x 2 z = cI = 2 :( ( = y 21. 1分+。
四川大学线性代数2004级A卷第1学期
3 . 设 1 , 2 , 3 , 4 是 齐 次 线 性 方 程 组 AX 0 的 基 础 解 系 , 则 下 列 向 量 组 中 ( A. )也是 AX 0 的基础解系。
1 ,1 2 , 3 4
B. 1 2 , 2 3 , 3 4 , 4 1 D. 1 , 1 2 , 2 3 , 3
6 3 4 C. 3 1 2 4 2 1 1 2 1 D. 2 4 1 1 1 5
5.下列矩阵中, (
)是正定矩阵。
1 1 0 A. 2 3 1 0 0 2
4 3 2 B. 3 4 1 2 1 2
C. 21 , 2 3 , 3 4 , 4
第 1 页
共6页
4. 设 A 是 n 阶矩阵,如果 E 3 A 不可逆(E 是 n 阶单位矩阵) , 则有( A.3 是 A 的特征值; C. B. 3 是 A 的特征值; D.
)。
1 是 A 的特征值; 3
1 是 A 的特征值。 3
A 2 E 0, 2 A E 0, 其中 E 是三阶单
四、计算题(每小题 10 分,共 30 分)
1 0 1 2 1. 已知 A 0 2 0 ,且满足 AX E A X ,其中 E 是三阶单位矩阵,求矩阵 1 0 1
X。
第 4 页
共6页
。
1 0 3. 设 , (0,1, 0, 2) ,矩阵 A ,则秩(A)= 1 2
4.
3 2
。
设 三 阶 方 阵 A 的 特 征 值 为 1,1, 2 , 且 B A 5 A , 则 B 的 特 征 值 为 。 。
四川大学高等数学2017期末试卷参考答案
Ω
Ω
用截面法计算三重积分
˚
ˆ
z2dxdydz =
1¨ dz
ˆ z2dxdy =
1
z2 · π(1 − z2) =
2 π,
0
0
15
Ω
Dz
或者用球面坐标计算三重积分
˚
ˆ 2π ˆ
z2dxdydz = dθ
π/2 ˆ dϕ
1
r2 cos2 ϕ · r2 sin ϕdr =
2 π,
0
0
0
15
Ω
˜
˝
因此, x2dydz + y2dzdx + 5z3dxdy = 15 z2dxdydz = 2πN
解方程组可得:x
=
1 ,y 2
=
1,z
=
10,于是Vmax
=
20N
五、证明题:(W分)
˜
设区域D为x2 + y2 1,I = sin(x2 + y2)5/2dxdy,求证:(Q)I =
2π
´证01 明t si:n t(5dQt);I(=R)´02Iπ<dθ72´π01;ρ s(inSDρ)5dIρ
> =
L与l之间的区域记为D,l围成的区域记为D ,那么由格林公式,
˛
˛
˛
ydx − xdy
ydx − xdy ydx − xdy
x2 + y2 =
x2 + y2 +
x2 + y2
L
L¨−l
˛l
1
= 0dxdy + ydx − xdy
2
D¨
l
1
= 2 − 2dxdy = −2π.
线性代数期末考试试题含
江西理工大学《线性代数》考题一、填空题(每空 3 分,共 15 分)a1b1c1a1b1d11.设矩阵 A a2b2c2, B a2b2 d 2且A 4,B 1则A B______a3b3c3a3b3d32.二次型 f ( x , x, x)x2x 2tx x34x2是正定的,则 t 的取值范围 __________12312233.A为 3 阶方阵,且A1,则 (3A) 12A*___________24.设 n 阶矩阵 A 的元素全为 1,则 A 的 n 个特点值是 ___________5. 设 A 为 n 阶方阵,1 , 2 ,n 为A的n个列向量,若方程组AX0 只有零解,则向量组 ( 1,2,n )的秩为 _____二、选择题(每题 3 分,共 15 分)bx1ax22ab6.设线性方程组2cx 2 3bx3 bc ,则以下结论正确的选项是()cx1ax30(A)当a, b, c 取随意实数时,方程组均有解(B)当a= 0 时,方程组无解(C) 当b=0 时,方程组无解(D)当c=0 时,方程组无解7.同为 n 阶方阵,则()建立(A)A B A B(B)AB BA(C)AB BA(D)( A B) 1 A 1 B 1a11a12a13a21a22a230108. 设A a21a22a23, B a11a12a13,P1100,a31a32a33a11 a31a12a32a13 a33001100P2010则()建立101(A) AP1P2(B) AP2P1(C) P1P2A(D) P2P1A9. A,B均为n 阶可逆方阵,则AB 的陪伴矩阵( AB)*()(A)A* B*(B) AB A 1 B1(C) B 1 A1(D)B* A*10. 设A 为n n 矩阵,r (A)r < n ,那么 A 的n 个列向量中()( A)随意 r 个列向量线性没关(B)必有某 r 个列向量线性没关(C)随意 r 个列向量均组成极大线性没关组(D)随意 1 个列向量均可由其他 n-1 个列向量线性表示三、计算题(每题7 分,共 21 分)30011.设 A140 。
线性代数期末考试及答案
西南大学数学与统计学院《线性代数》课程试题〖B〗卷参考答案和评分标准阅卷须知:阅卷用红色墨水笔书写,得分用阿拉伯数字写在每小题题号前,用正分表示,不得分则在题号前写分登录在对应的分数框内;统一命题的课程应集体阅卷,流水作业;阅卷后要进行复核,发现漏评、漏记或总分统计错误应及时更正;对评定分数或统分记录进行修改时,修改人必须签名。
特别提醒:学生必须遵守课程考核纪律,违规者将受到严肃处理。
一、填空题(共5题,4分/题,共20分)1已知三阶方阵A的行列式\A=1,则(3A)~* -4A] = ________ 。
2、设向量组汀=(1, 1,1),:2T =(2,1,5),:3T=(3,0,2),:4丁=(4,5,2),则向量组°1,°2,°3,°4 线性相关。
1 2 3 4 5、3、矩阵A = 0 2 1 7 4 则矩阵A的秩为 3e 0 3 2 1丿r5 2 0X|1-2 04、已知A = 2 1 0 ,则A 4 -2 5 0.0 0 3丿0 0 13o;大题得「 2 3、5、A = |-1 a-2 -3,已知方程组AX=O 有非零解,则a= ___________________(0 a 1」、单项选择题(共5题,4分/题,共20分)设A 、B 、C 均为n 阶方阵,下列式子中正确的是( C ) o(A) : (A B)2 二 A 2 2AB B 2的一个解,贝U k 1 k 2 = ( A(A): 1 (B): 4、 两个n 阶初等矩阵的乘积为((A):初等矩阵. (C):单位矩阵. 5、 已知向量组>1, >2, >3, >4中:鸟:③爲线性相关,那么下列结论一定成立的是(C三、判断题(共5题,3分/题,共15分)1、 若A 2 =E ,则A 可逆。
(V ) (A): >1,〉2, >3,线性无关 (B):冷可由:2 :3 >4线性表示(C): >1, :'2, :'3, :'4线性相关 (D) : :'3, >4线性无关1、 (B):若 AB = CB ,贝U A = C(C): BA (D) : (AB)T2、 30 ,僅2 — 1 ,鼻3 - b(C) : c= 03、 设:'1, :2是非齐次线性方程组AX 二b 的解, k i , k 2为常数, K “ k 2: 2也是 AX 二b (D) : 2(C) : -1 (B):可逆矩阵.(D):不可逆矩阵.(B) : b =c = 0 线性无关,则(若向量组= 3,2、设A为四阶矩阵,且|A=2,则A] =8o ( V )3、若方阵A的行列式为0,则0是A的特征值。
线性代数期末试卷及详细答案
(A )A=E
(B ) A 相似于 E ( C) A2 E
( D) A 合同于 E
8、若 1, 2, 3 , 4 是线性方程组 AX O 的基础解系,则 1 + 2 + 3 + 4 是 AX O 的
(A )解向量
( B)基础解系
( C )通解;
( D) A 的行向量;
9、 1 , 2 都是 n 阶矩阵 A 的特征值, 1 2 ,且 X 1 和 X 2 分别是对应于 1 和 2 的特征
准型,并求出正交变换。 四、证明题( 7 分)
设 A 为 m× n 矩阵, B 为 n 阶矩阵,已知 R(A) n
证明:若 AB=O ,则 B=O
《线性代数》期末考试题 A 题参考答案与评分标准
填空题
1、 -10;
2、 81;
3、
4,
6,
12;
1
4、
A
3E ;
2
5、 5;
二、单项选择题 ( 每小题 2 分,共 20 分)
填空题 (将正确答案填在题中横线上。每小题 2 分,共 10 分)
345
1、设 D1 = 3 1
5 , D2= 5
2
2
1 0
0 ,则 D = D1 O
0
O
= _____________。
D2
2、四阶方阵
A、B ,已知
1 A=
,且 B= 2A -1
16
1
2A ,则 B =_____________ 。
1b1
002
求 a,b 6、齐次线性方程组
2 x1 x2 3x3 0 x1 3x2 4 x3 0
x1 2 x2 ax 0
川大02-03年线代期末考试+答案
线性代数期末试题四川大学20032002−.________))((,,.2._____________,,,.1)15(.222的条件是则为同阶方阵设是为等幂矩阵的条件则为同阶等幂矩阵设的矩阵称为等幂矩阵满足条件分填空题一B AB A B A B A B A B A A A −=−++=._______,,0||,,,.3==≠X B AXC AC n C B A 则如果且阶矩阵均为设._______),6,2,4(),2,1,3(),3,1,2(.4321则该向量组线性向量组=−==ααα._____0)(,2)(,5)(,5,.5个向量有的基础解系含则齐次线性方程组秩秩阶矩阵都是设===X AB B A B A .|,,,|4,|,,,|,|,,,|4,,,,,.1)15(.211232321132121321等于()阶行列式则列式阶行且都是四维列向量若分选择题二ββαααβαααβαααββααα+==n m nm D m n C n m B n m A −−+−+).(,)(),()(,).(则三条直线设,,,.2321332123211⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=c c c b b b a a a ααα().)3,2,1,0(),3,2,1(022交于一点的充要条件是其=≠+==++i b a i c y b x a ii i i i 线性无关线性相关秩秩线性无关线性相关2132121321321321,,,,).(),(),,().(,,,)(;,,).(ααααααααααααααααD C B A =件既不充分也非必要的条充分而非必要条件必要二非充分条件充分必要条件角化的可相似对个不同特征值是有阶矩阵).(;).()(;).(().3D C B A A n A n.)().(;)(;).()32),,(.42221321半正定的不定的;半负定的负定的(是二次型D C B A x x x x x f −−=的基础解系。