钢结构杆件计算长度及回转半径
钢结构课程设计计算书
![钢结构课程设计计算书](https://img.taocdn.com/s3/m/390106f102768e9951e7388b.png)
钢结构课程设计计算书1 设计资料某车间跨度为24m ,厂房总长度90m ,柱距6m ,车间内设有两台300/50kN 中级工作制吊车(参见平面图、剖面图),工作温度高于-20℃,无侵蚀性介质,地震设防烈度为6度,屋架下弦标高为12.5m ;采用1.5×6 m 预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面,屋架采用梯形钢桁架,两端铰支在钢筋混凝土柱上,混凝土柱上柱截面尺寸为400×400mm ,混凝土强度等级为C25,屋架采用的钢材为Q235B 钢,焊条为E43型。
钢材采用Q235B 级,焊条采用E43型,手工焊。
桁架计算跨度:L 0=L -2×0.15=27-2×0.15=26.7m 跨终端部高度:桁架的中间高度:h=3.35m26.7m 处h 0=2.015m 27m 处h 0=2.000m 桁架跨中起拱60mm (≈L /500) 2 结构形式与布置桁架形式及几何尺寸如图所示 桁架支撑布置如图所示 3 荷载计算屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。
沿屋面斜面分布的永久荷载乘以αcos 1=)1102+/10=1.005换算为沿水平投影面分布的荷载。
桁架沿水平投影面积分布的自重(包括支撑)按经验公式(w p =0.12+0.011*跨度)计算,跨度单位为m 。
标准永久荷载:预应力混凝土大型屋面板 1.005×1.42m kn =1.4072m kn 改性沥青防水层 1.005×0.42mkn=0.4022m kn20厚1:2.5水泥砂浆找平层 1.005×0.02m ×0.43mkn =0.008042m kn80mm 厚泡沫混凝土保温层 1.005×0.08m ×0.483mkn=0.0395922m kn4 设计桁架时,应考虑以下三种荷载组合:(1)全跨永久荷载 + 全跨可变荷载 (按永久荷载为主控制的组合) 全跨节点荷载设计值: F=(1.35×2.2732m kn+ 1.4×0.9×0.7)×1.5m ×6m=35.555KN(2)全跨永久荷载 + 半跨可变荷载 全跨永久荷载设计值: 对结构不利时:11-F =1.35×2.2732m kn ×1.5m ×6m=27.617KN(按永久荷载为主的组合)21-F =1.2×2.2732m kn×1.5m ×6m=24.548KN(按可变荷载为主的组合)对结构有利时:31-F =1.0× 2.273 2m kn×1.5m × 6m = 20.457 KN半跨节点荷载设计值12-F =1.4×0.9×0.7×1.5m ×6m=7.938KN (按永久荷载为主的组合) 22-F =1.4×(0.7+0.9×0.7)×1.5m ×6m=16.758KN (按可变荷载为主的组合)(3)全跨桁架包括支撑 + 办跨屋面板自重 + 半跨屋面活荷载 (按可变荷载为主的组合)全跨节点桁架自重设计值: 对结构不利时13-F =1.2×0.42m kn×1.5m ×6m=4.320KN对结构有利时23-F =1.0×0.42m kn×1.5m ×6m=3.6KN半跨节点屋面板自重及活荷载设计值:4F =(1.2×1.42mkn+1.4×0.72m kn)×1.5m ×6m=23.94KN备注:F=13.04KN .11.-F =13.22KN 21-F =12.75KN 31-F =12.13KN 12-F =8.82KN22-F =13.24KN 13-F =4.15KN 23-F =3.46KN 4F =23.94KN5 杆件设计 (1)上弦杆整个上弦采用等截面,按HI 杆件之设计最大内力设计 N=207.34KN=207340N 上弦杆计算长度:在桁架单面内,为节间轴线长度lox=150.8cm在桁架平面外,根据支撑布置和内力变化情况取loy=3*150.8cm=452.4cm因为l oy =3l ox ,故截面宜选用两个小等肢角钢,沿肢相并腹杆最大内力N=122.05KN ,节点板厚度选用6mm ,支座节点板厚度选用8mm 。
【干货】计算长度、长细比、平面内平面外、回转半径解析
![【干货】计算长度、长细比、平面内平面外、回转半径解析](https://img.taocdn.com/s3/m/e65a0196ee06eff9aff80738.png)
计算长度、长细比、平面内平面外、回转半径解析计算长度:构件在其有效约束点间的几何长度乘以考虑杆端变形情况和所受荷载情况的系数而得的等效长度,用以计算构件的长细比。
计算焊缝连接强度时采用的焊缝长度。
计算长度是从压杆稳定计算中引出的概念。
计算长度等于压杆失稳时两个相邻反弯点间的距离。
计算长度=K*几何长度。
K为计算长度系数。
记住铰支座可以看成是反弯点,这样两端铰接压杆的计算长度等于两个铰支座的距离,即等于几何长度。
此时,k=1。
K可以大于1,也可小于1.1、在很多教材中规定,不同端部约束条件下轴心受压构件(柱)的计算长度系数:如两端铰接L=1.0;两端固定L=0.5;一端铰支一端固定L=0.7;悬臂L=2.0等2、钢结构规范附录D中柱的计算长度系数,需要根据K1、K2值查表第1条中所列的计算长度系数是理想条件下的;第2条是考虑上下端既不是固定也不是铰接而进行的一种修正。
此外,需要注意国内钢结构的压杆和拉杆都需要按计算长度来计算长细比,实际上拉杆没有失稳的问题,也自然不会有计算长度了,应直接取几何长度。
美国钢结构规范中规定拉杆的长细比直接按几何长度计算,概念正确!平面外与平面内实际上这是钢结构中常用的简化术语。
以钢梁和钢屋架为例,全称应该分别是弯矩作用平面内和弯矩作用平面外,即在竖向平面内失稳的计算长度称为平面内计算长度。
对于三角形钢屋架中央的竖杆还有斜平面计算长度呢,详细看一下有关的参考书吧钢结构杆件截面形心有两个轴,x、y轴,绕这两个轴就有两个回转半径。
受压杆要计算在这两个方向的压杆稳定及纵向弯曲系数,就需要这两个方的计算长度。
在主平面(一般是绕x轴)方向的叫平面内,另一个方向就叫平面外。
例如钢屋架的上弦杆,平面内的计算长度就是节点间的距离,而另方向支撑点间的距离就是平面外的计算长度。
平面内,平面外,举个简单的例子,也就是你在看pkpm的手册里面,特别是关于板这个概念用得多.1、关于板的面内面外,通常刚性板假定面内刚度无穷大,面外刚度为零,面内就是你站在地面,目光平视看到的板的方向就是面内方向,即水平方向的板的刚度,(个人认为)这个时候如果视板为一个构件,简单的认为其轴向刚度无穷大.面外方向就是水平板的垂直方向,就是你站在楼板上,你自身身体的方向,就是面外方向,这个时候视为其抗弯刚度为零(GA和EA一般是不考虑的),也即分析时不考虑.框架结构分析时,特别是在大学期间手算框架时有明显的体现的,2、还有一种是在柱子的计算中提得比较多,即所谓的弯矩作用平面内和弯矩作用平面外.对单向偏压构件,弯矩所在的平面即弯矩作用平面内,是按照压弯构件计算的,弯矩作用平面内就是取一个柱横截面,做一个垂直于柱横截面的平面,弯矩在这个平面内,这个平面就是弯矩作用平面.规范规定在弯矩作用平面外按轴压构件验算,弯矩作用平面外就是与前面所述的包含了弯矩的那个作用面相垂直的平面,当然也垂直于柱截面.(我认为在通常的平面简化计算中这个解释还是比较圆满的)回转半径回转半径是指物体微分质量假设的集中点到转动轴间的距离,它的大小等于转动惯量除总质量后再开平方。
钢结构必学知识点
![钢结构必学知识点](https://img.taocdn.com/s3/m/211c408485254b35eefdc8d376eeaeaad1f31636.png)
1.钢结构设计时,挠度超出限值,会后什么后果?影响正常使用或外观的变形;影响正常使用或耐久性能的局部损坏(包括裂缝);影响正常使用的振动;影响正常使用的其它特定状态。
2.采用直缝钢管代替无缝管,不知能不能用?结构用钢管中理论上应该是一样,区别不是很大,直缝焊管不如无缝管规则,焊管的形心有可能不在中心,所以用作受压构件时尤其要注意,焊管焊缝存在缺陷的机率相对较高,重要部位不可代替无缝管,无缝管受加工工艺的限制管壁厚不可能做的很薄(相同管径的无缝管平均壁厚要比焊管厚),很多情况下无缝管材料使用效率不如焊管,尤其是大直径管。
无缝管与焊管最大的区别是用在压力气体或液体传输上(DN)o3.什么是长细比?结构的长细比人=ul∕i,i为回转半径。
概念可以简单的从计算公式可以看出来:长细比即构件计算长度与其相应回转半径的比值。
从这个公式中可以看出长细比的概念综合考虑了构件的端部约束情况,构件本身的长度和构件的截面特性。
长细比这个概念对于受压杆件稳定计算的影响是很明显的,因为长细比越大的构件越容易失稳,。
可以看看关于轴压和压弯构件的计算公式,里面都有与长细比有关的参数。
对于受拉构件规范也给出了长细比限制要求,这是为了保证构件在运输和安装状态下的刚度。
对稳定要求越高的构件,规范给的稳定限值越小。
4.长细比和挠度是什么关系呢?1.挠度是加载后构件的的变形量,也就是其位移值。
2.细比用来表示轴心受力构件的刚度〃长细比应该是材料性质。
任何构件都具备的性质,轴心受力构件的刚度,可以用长细比来衡量。
3.挠度和长细比是完全不同的概念。
长细比是杆件计算长度与截面回转半径的比值。
挠度是构件受力后某点的位移值。
5.挠度在设计时不符合规范,用起拱来保证可不可以这样做?1、结构对挠度进行控制,是按正常使用极限状态进行设计。
对于钢结构来说,挠度过大容易影响屋面排水、给人造成恐惧感,对于混凝土结构来说挠度过大,会造成耐久性的局部破坏(包括混凝土裂缝)。
钢结构屋架计算说明书
![钢结构屋架计算说明书](https://img.taocdn.com/s3/m/2d8d9460561252d380eb6e6b.png)
课程设计说明书课程名称:钢结构设计题目:钢屋架设计院系:土木与建筑工程学院学生姓名:学号:专业班级:10土木工程2班指导教师:李珂2012年12月16日课程设计任务书梯形钢屋架课程设计摘要:本设计说明说包括梯形钢屋架的形式及尺寸、支撑布置,内力计算,节点焊缝计算及设计方法,屋架施工图绘制,相关的详图大样绘制以及必要的结构剖面图。
关键词:梯形钢屋架节点节点焊缝支撑目录1 设计背景 (1)1.1设计资料 (1)1.2屋架形式 (1)2 设计方案 (2)3 方案实施 (3)3.1荷载与内力计算 (3)3.2杆件截面设计 (4)3.3节点设计 (10)4 结果与结论 (17)5收获与致谢 (18)5.1收获 (18)5.2致谢 (18)6 参考文献 (19)7 附件 (20)1.1 设计资料某地区一金加工车间。
厂房总长度为150m ,柱距6m ,跨度为24m 。
车间内设有两台中级工作制桥式吊车。
该地区冬季最低温度为-20℃。
屋面采用1.5m ⨯6.0m 预应力大型屋面板,屋面坡度为i=1:10,上铺120mm 厚泡沫混凝土保温层和三毡四油防水层等。
屋面可变荷载标准值为20.50/kN m ,雪荷载标准值为20.50/kN m , 积灰荷载标准值为20.50/kN m 。
屋架采用梯形钢屋架, 其两端铰支于钢筋混凝土柱上。
柱头截面为mm mm 400400⨯, 所用混凝土强度等级为C20。
根据该地区的温度及荷载性质, 钢材采用235Q B , 其设计强度2/215mm N f =,焊条采用E43型, 手工焊接。
构件采用钢板及热轧型钢, 构件与支撑的连接用M20普通螺栓。
屋架的计算跨度:024000215023700L mm =-⨯=,端部高度:2000h mm = (轴线处),2015h mm =(计算跨度处),桁架的中间高度:3200h mm =。
1.2 屋架形式屋架形式及几何尺寸见图 1所示图1屋架形式及几何尺寸屋架支撑符号说明:GWJ-(钢屋架);SC-(上弦支撑);XC-(下弦支撑);CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆)图2屋架支撑3方案实施3.1 荷载与内力计算1.荷载计算屋面可变荷载与雪荷载不会同时出现,故取两者较大的可变荷载计算。
钢结构计算书
![钢结构计算书](https://img.taocdn.com/s3/m/3db6b0d43186bceb19e8bb70.png)
梯形屋架设计计算书一、设计资料(1)某地一机械加工车间,长84m ,跨度24m ,柱距6m ,车间内设有两台40/10T 中级工作制桥式吊车,轨顶标高8.5m ,柱顶标高18m ,地震设计烈度7度。
采用梯形钢屋架,封闭结合,1.5×6m 预应力钢筋混凝土大型屋面板(1.4KN/m 2),上铺80mm 厚珍珠岩制品保温层(容重为4KN/m 3),二毡三油(上铺绿豆砂)防水层(0.4KN/m 2),找平层2cm 厚(0.4KN/m 2),卷材屋面,屋面坡度i=1/12,屋架简支于钢筋混凝土柱上,混凝土强度等级C25,上柱截面400×400mm 。
钢材选用Q235B ,焊条采用E43型。
屋面活荷载标准值0.7KN/m 2,积灰荷载标准值0.5KN/m 2,基本雪压为0.45 KN/m 2,基本风压为0.30 KN/m 2。
(2)屋架计算跨度:0l =24-2×0.15=23.7m(3)跨中及端部高度:本题设计为无檩屋盖方案,采用平坡梯形屋架,取屋架在24m 轴线处的端部高度m h 990.1'=,屋架的中间高度:h=2990m ,则屋架在29.7处,两端的高度为mm h 003.20=。
屋架跨中起拱按500/0l 考虑,取60mm 。
二、结构形式与布置(1)屋架形式与布置如图1所示图1 梯形钢屋架形式及几何尺寸(2)根据厂房长度(84>60)、跨度及荷载情况,设置三道上、下弦横向水平支撑。
因轴网采用封闭结合,厂房两端的横向水平支撑设在第一柱间,该水平支撑的规格与中间柱间支撑的规格有所不同。
在所有柱间的上弦平面设置了刚性与柔性系杆,以保证安装时上弦杆的稳定,在各柱间下弦平面的跨中及端部设置了柔性系杆,以传递山墙风荷载。
在设置横向水平支撑的柱间,于屋架跨中和两端各设一道垂直支撑。
梯形钢屋架支撑布置如图2所示:三、荷载计算(1)屋面和荷载与雪荷载不会同时出现,计算时,取较大的荷载标准值进m进行算。
钢结构计算书—杆件计算
![钢结构计算书—杆件计算](https://img.taocdn.com/s3/m/7cebdec58bd63186bcebbc2a.png)
四、杆件设计(1) 上弦杆整个上弦采用等截面,按FG,GH 杆件之最大设计内力设计。
862.77N KN = 上弦杆计算长度:在屋架平面内,为节间轴线长度:150.7ox l cm =在屋架平面外,根据支撑布置和内力变化情况,取:2150.7301.4oy l cm =⨯=由于l 0y =2 l 0x ,故截面宜选用两个不等肢角钢,短肢相并(图4)。
腹杆最大内力N=511.67KN ,查表9.6.4,节点板厚度选用12 mm ,支座节点板厚度用14 mm 。
截面在x 和y 平面皆属于b 类,则设λ=60,查附录4得ϕ=0.807。
需要截面积为: A s =3862.77100.807215N f ϕ⨯=⨯=4973 mm 2 需要的回转半径为:0150.7 2.51260xx l i λ=== cm 0301.45.02360y y l i λ=== cm 根据需要查角钢规格表,选用2∟140×90×12短肢相并,A=52.80 cm 2,i x =2.536 cm ,i y =6.89 cm ,按所选角钢进行验算:截面验算:0150.759.422.536x x x l cm i cmλ=== ∵b 1/t=140/12=11.67>0.56y l 0/ b 1=0.56×3014/140=12.06yz y λλ==43.74<[λ]=150截面在x 和y 平面皆属于b 类,由于λyz>λx 只需求y ϕ,。
查附表4-2,y ϕ=0.810,故3862.7710201.70.8105280y y N A σϕ⨯===⨯ N/mm 2<f =215 N/mm 2。
满足要求,所选截面合适。
图4 上弦杆截面(2) 下弦杆整个下弦采用同一截面,按最大内力所在的杆de 计算:852.57de N KN = cm l ox 300=1035oy l cm =(跨中有通长系杆)需要截面积为: A n =3852.5710215N f ⨯==3965 mm 2选用2∟140×90×10,因为l 0y >>l 0x ,故用不等肢角钢,短肢相并(图5)。
钢结构桁架设计计算书
![钢结构桁架设计计算书](https://img.taocdn.com/s3/m/9017d41d87c24028915fc3bf.png)
renchunmin一、设计计算资料1. 办公室平面尺寸为18m ×66m ,柱距8m ,跨度为32m ,柱网采用封闭结合。
火灾危险性:戊类,火灾等级:二级,设计使用年限:50年。
2. 屋面采用长尺复合屋面板,板厚50mm ,檩距不大于1800mm 。
檩条采用冷弯薄壁卷边槽钢C200×70×20×2.5,屋面坡度i =l/20~l/8。
3. 钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.800m ,柱上端设有钢筋混凝土连系梁。
上柱截面为600mm ×600mm ,所用混凝土强度等级为C30,轴心抗压强度设计值f c =14.3N/mm 2。
抗风柱的柱距为6m ,上端与屋架上弦用板铰连接。
4. 钢材用 Q235-B ,焊条用 E43系列型。
5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。
6. 该办公楼建于苏州大生公司所属区内。
7. 屋盖荷载标准值:(l) 屋面活荷载 0.50 kN/m 2(2) 基本雪压 s 0 0.40 kN/m 2(3) 基本风压 w 0 0.45 kN/m 2(4) 复合屋面板自重 0.15 kN/m 2(5) 檩条自重 查型钢表(6) 屋架及支撑自重 0.12+0. 01l kN/m 28. 运输单元最大尺寸长度为9m ,高度为0.55m 。
二、屋架几何尺寸的确定1.屋架杆件几何长度屋架的计算跨度mm L l 17700300180003000=-=-=,端部高度取mmH 15000=跨中高度为mm 1943H ,5.194220217700150020==⨯+=+=取mm L i H H 。
跨中起拱高度为60mm (L/500)。
梯形钢屋架形式和几何尺寸如图1所示。
120图1 梯形屋架形式和几何尺寸(虚线为起拱后轮廓)2.檩条、拉条、及撑杆:长尺复合屋面板可以不考虑搭接需要,檩条最大允许间距为1800mm 。
另外,屋架上弦节点处一般应设檩条。
钢结构课程设计计算书
![钢结构课程设计计算书](https://img.taocdn.com/s3/m/9a382a165ef7ba0d4b733ba0.png)
一由设计任务书可知:厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。
暂不考虑地震设防。
屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。
卷材防水层面(上铺120mm泡沫混凝土保温层和三毡四油防水层)。
屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。
屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20.二选材:根据该地区温度及荷载性质,钢材采用Q235-C。
其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。
屋架的计算跨度L。
=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。
三结构形式与布置:屋架形式及几何尺寸见图1所示:图1屋架支撑布置见图2所示:图2四荷载与内力计算:1.荷载计算:活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。
永久荷载标准值:防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40KN/㎡保温层(40mm厚泡沫混凝土0.25KN/㎡预应力混凝土大型屋面板1.4KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384KN/㎡总计:2.784KN/㎡可变荷载标准值:雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。
总计:1.2 KN/㎡永久荷载设计值 1.2×2.784KN/㎡=3.3408KN/㎡可变荷载设计值1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合:设计屋架时应考虑以下三种组合:组合一全跨永久荷载+全跨可变荷载屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡)×1.5×6=45.1872KN 组合二全跨永久荷载+半跨可变荷载屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KNP2=1.68KN/㎡×1.5×6=15.12KN组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载屋架上弦荷载P3=0.384KN/㎡×1.2×1.5×6=4.15KNP4=(1.4×1.2+0.7×1.4)×1.5×6=23.94KN3,内力计算:首先求出杆件内力系数,即单位荷载作用下的杆件内力,荷载布置如图3所示。
钢结构设计计算书
![钢结构设计计算书](https://img.taocdn.com/s3/m/c47ce9315727a5e9856a613a.png)
钢结构设计计算书一、设计资料1. 车间平面尺寸为144m×30m,柱距9m,跨度为30m,柱网采用封闭结合。
车间内有两台15t/3t中级工作制软钩桥式吊车。
2.屋面采用长尺复合屋面板,板厚50mm,檩距不大于1800mm。
檩条采用冷弯薄壁卷边Z型钢Z250×75×20×2.5,屋面坡度i=l/10。
3.钢屋架简支在钢筋混凝土柱顶上,柱顶标高9.000m,柱上端设有钢筋混凝土连系梁。
上柱截面为400mm×400mm,所用混凝土强度等级为C30,轴心抗压强度设计值f c =14.3N/mm2。
抗风柱的柱距为6m,上端与屋架上弦用板铰连接。
4. 钢材用Q235-B,焊条用E43系列型。
5. 屋架采用平坡梯形屋架,无天窗,外形尺寸如下图所示。
6. 该车间建于杭州近郊。
7. 屋盖荷载标准值:(l) 屋面活荷载0.50 kN/m2(2) 基本雪压s00.45 kN/m2(3) 基本风压w00.45 kN/m2(4) 复合屋面板自重0.15 kN/m2(5) 檩条自重查型钢表(6) 屋架及支撑自重0.12+0. 01l kN/m28. 运输单元最大尺寸长度为15m,高度为4.0m。
二、屋架几何尺寸及檩条设置1、屋架杆件及编号如下图各杆件尺寸运输单元最大尺寸长度15m,高度为4m 。
此屋架跨度为30米,高度为3.128m,所以可将屋架从屋脊处截断,取一半屋架作为运输单元,长度15m,高为3.128m 。
2 、檩条设置采用长尺复合屋面板,檩条间距最大允许值为1800m,另外,屋架上弦节点应设置檩条,所以将檩条设在各上弦节点上,檩距为L=1507mm,当檩条跨度在4~6m 时,至少在跨中设置一条拉条,跨度大于6m 时,宜布置两道,现檩条跨度9m,可在跨中布置二条拉条,布置如下:杆件编号 长度(mm ) 杆件编号 长度(mm ) 杆件编号 长度(mm ) 杆件编号 长度(mm ) AB 1358 ac 2850 Hf 3076 Ml 1964 TU 1358 su 2850 Hi 3076 Ll 1418 BC 1507 ce 3000 Ii 2835 Kl 2170 ST 1507 qs 3000 Ij 1964 lm 2170 CD 1507 ef 3000 Jj 1418 Kk3128RS 1507 oq 3000 kj 2170 DE 1507 fi 3000 ij 2170 QR 1507 mo 3000 Uu 1650 EF 1507 ik 3000 Tu 2238 PQ 1507 km 3000 Ts 2332 FG 1507 Aa 1650 Ss 1935 OP 1507 Ba 2238 Rs 2569 GH 1507 Bc 2332 Rq 2569 NO 1507 Cc 1935 Qq 2235 HI 1507 Dc 2569 Pq 2817 MN 1507 De 2569 Po 2817 IJ 1507 Ee 2235 Oo 2535 LM 1507 Fe 2817 No 3076 JK 1507 Ff 2817 Nm 3076 KL1507Gf2535Mm2835檩条屋架拉条斜拉条三、 支撑布置及屋架编号上弦水平支撑:下弦水平支撑:垂直支撑:中间垂直支撑两边垂直支撑四、 杆件内力计算1.荷载组合情况按荷载规范规定,取屋面活荷载和雪荷载中的大者作为可变荷载计算。
钢结构计算书
![钢结构计算书](https://img.taocdn.com/s3/m/9a6f7bc45fbfc77da269b180.png)
设计资料 请根据如下资料设计某厂房的三角形屋架1. 单跨双坡封闭式厂房,屋面离地面高度约20m ,屋架铰支于钢筋混凝土柱柱顶。
单层压型钢板屋面(自重0.1-0.18KN/mm 2),或带保温层的双层压型钢屋面(自重标准值2/50.030.0m kN -)槽钢檩条(坡向间距约mm 850750-)。
结构重要性系数为0.10=γ,地区基本风压20/45.0m kN w =,冬季室外计算温度高于C 020-。
2. 屋面坡度:5.2/1=i3. 屋架间距:m 6;厂房长度:m 1324. 屋架跨度:m 275. 基本雪压(2/m kN ):0.56. 钢筋混凝土柱子的上柱截面mm 400400⨯,混凝土强度等级为25C 。
一、屋架设计屋架结构的几何尺寸如图: 1. 屋架平面图见附图1 2. 荷载标准值(1) 永久荷载(恒荷载)(对水平投影面)带保0.4/cos21.98°=0.43 kN/m ²檩条自重 0.05kN/m ² 屋架及支撑自重 0.12+0.011L=0.417 kN/m ²合计 0.897 kN/mm ²(2) 可变荷载(活荷载)(对水平投影面)1) 雪荷载因屋架受荷载水平投影面积超过60㎡,故均布荷载为0.3 kN/m ²<0.5 kN/m ².故只考虑雪荷载。
2) 风荷载基本风压ω0=0.45 kN/m ²房屋高度H=20m<30m,高宽比H/B=20/18=1.11<1.5取风振系数z β=1.0 风荷载体型系数:迎风面1s μ=-0.328 背风面2s μ=-0.5假设地面粗糙度为A 类地区的风压高度系数z μ=1.63 风荷载标准值(垂直作用于屋面)迎风面:337.045.063.1)328.0(4.1011-=⨯⨯-⨯==ωμμβωz s z kN /㎡ 背风面:531.045.063.1)5.0(4.1021-=⨯⨯-⨯==ωμμβωz s z kN /㎡均未超过永久荷载垂直于屋面的设计值,不会引起杆件内力的变号,所以不考虑风荷载。
PKPM钢结构计算
![PKPM钢结构计算](https://img.taocdn.com/s3/m/48c882ab647d27284b7351c0.png)
PKPM做钢结构的经验集萃1、优化设计并非是把别人的设计拿过来,按照原设计思路死扣用钢量(俗称“蚊子腿上剔精肉”),因为这样通常大幅度降低了原设计的安全度,“荷载优化”是选取适当的荷载,应当兼顾业主对结构小幅改动的可能性,比如吊挂灯具、功能分区重新布局。
把恒载取得很小,用钢量没有减小太多,功能限制则限制太死。
优化首先考虑变化方案,简化结构传力模式和传力途径,做到大处节省,具体到杆件节点则要放宽。
如果原结构各部件安全储备相差严重时,可以选择一个合适的安全储备标准来调整各构件型号,该加大的加大,该减小的减小。
结构安全是整体安全,个别杆件强大没啥用。
2、《建筑工程施工质量验收统一标准》(GB50300-2001)5.0.6条:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。
一级建造师《项目管理》中讲:检测单位鉴定达不到要求时,经原设计单位核算认为满足安全时可以验收。
对未达要求的行为承担“违约责任”。
3、网架焊接球如果采用压制钢板制作,钢板厚度公差接近±2.5mm,《强规》规定偏差不大于13%和1.5mm。
怎么办呢?制作时可以把钢板加厚1mm就可以避质检找麻烦了。
4、设置20吨以上的吊车的厂房在国内不允许按《门式刚架规程》设计,主要在于国内吊车梁安装偏差和吊车轨道安装偏差造成卡规,使水平力增加4-5倍,导致厂房剧烈晃动,没法正常使用。
总之,任何先进的设计方法都无法超越实际施工水平来实现,要求符合国情(或者“公司加工实力”)。
比如对20吨驾操吊车的门架按美国规范控制柱头位移为H/240(国内H/400),晃动得没人愿意驾操,省那一点点钢材和厂房适用性相比就显“设计扣到家”有多么可笑了。
5、什么样的维护系统需要考虑阵风系数?(1)、对脆性材料。
如玻璃幕墙,必须采用阵风系数。
(2)、对阵风作用下,对荷载临时提高能够承受的钢材等,不需要考虑阵风系数。
(3)、不该考虑阵风系数的维护系统考虑了阵风系数,安全度比主结构高出一倍,不利于主体安全。
钢结构系杆计算公式
![钢结构系杆计算公式](https://img.taocdn.com/s3/m/42c9aaa9dd3383c4bb4cd2b6.png)
钢管壁厚 (mm) 4.5
截面面积 (m^2) 1.65E-03
每米重量 (kg/m) 12.93
ห้องสมุดไป่ตู้
惯性矩 (m^4) 2.80E-06 惯性矩 (m^4) 2.61E-08
抵抗矩 (m^3) 1.16E-05 总重量(kg) 47.19
回转半径 (m) 0.0412 回转半径 (m) 0.0078
钢管直径mm121圆钢直径mm27钢管壁厚mm45截面面积m2165e03每米重量kgm1293惯性矩m4280e06惯性矩m4261e08抵抗矩m3116e05总重量kg4719回转半径m00412回转半径m00078计算长度m8计算长度m14长细比194长细比1796截面面积有效截面面每米重量m2积m2kgm573e04429e04337临界应力初始弯曲率屈服强度受压承载力稳定系数empaofympakn540303235屈服强度fympa235021175受拉承载力kn69
计算长度 (m) 8 计算长度 (m) 14
长细比λ 194 长细比λ 1796
截面面积 有效截面面 每米重量 (m^2) 积(m^2) (kg/m) 5.73E-04 4.29E-04 3.37
临界应力σ 初始弯曲率 屈服强度 受压承载力 稳定系数ψ e(MPa) εo fy(MPa) (kN) 54 0.303 235 屈服强度 fy(MPa) 235 0.211 75 受拉承载力 (kN) 69
有侧移钢架计算长度系数计算表
![有侧移钢架计算长度系数计算表](https://img.taocdn.com/s3/m/84072707866fb84ae45c8d86.png)
1平面外计算长度系数确定
平面外柱子与水平环梁形成钢框架,计算长度系数按照《钢结构设计规范》GB50017-2003附录表D-2有侧移框架柱的计算长度系数μ确定。
2计算结果(考虑Y向有混凝土主楼故经计算Y向可按无侧移钢架考虑。
本次不做详细计算说明。
)
该层相交于柱上端的横梁线刚度之和与柱线刚度之和的比值K1=0.3,该层相交于柱下端的横梁线刚度之和与柱线刚度之和的比值,K2=0.250,查得首层计算长度系数μ=1.95,回转半径i=153.4mm,长细比:1.95*8190/153.4=104,满足规范要求。
端的横梁线刚度之和与柱线刚度之和的比值,K2=0.30,查得首层计算长度系数μ=1.74,回转半径i=153.4mm,长细比:1.74*13600/153.4=154,不满足规范要求。
该层相交于柱上端的横梁线刚度之和与柱线刚度之和的比值K1=0.27,该层相交于柱下端的横梁线刚度之和与柱线刚度之和的比值,K2=0.12,查得首层计算长度系数μ=2.33,回转半径i=153.4mm,长细比:2.33*10500/153.4=159.5,不满足规范要求。
钢屋架设计讲义
![钢屋架设计讲义](https://img.taocdn.com/s3/m/e93ca8630b1c59eef8c7b417.png)
5.5普通钢屋架设计5.5.4杆件计算长度与长细比1、杆件计算长度(《钢规》5.3.1-5.3.2条)(1)确定桁架弦杆和单系腹杆(用节点板与弦杆连接)的长细比时,其计算长度L0按下表采用:注:① L为构件的几何长度(节点中心间距离),L1为桁架弦杆侧向支承点之间的距离。
②斜平面系指与桁架平面斜交的平面,适用于构件截面两主轴均不在桁架平面内的单角钢腹杆和双角钢十字形截面腹杆。
③无节点板的腹杆计算长度在任意平面内均取其等于几何长度(钢管结构除外)。
当桁架弦杆侧向支承点之间的距离为节间长度的2倍,且两节间的弦杆轴心压力不相同时,则该弦杆在桁架平面外的计算长度,应按下式(5-8)确定,但不应小于0.5L1。
对桁架再分式腹杆体系的受压主斜杆及K形腹杆体系的竖杆等,在桁架平面外的计算长度与应按公式(5-8)确定(受拉主斜杆仍取L1);在桁架平面内的计算长度则取节点中心间距离。
(2)确定在交叉点相互连接的桁架交叉腹杆的长细比时,桁架平面内的计算长度应取节点中心到交叉点间的距离;桁架平面外的计算长度,当两交叉杆长度相等时,应按下列规定采用:①压杆(即计算杆为压杆)* 相交另一杆受压,两杆截面相同并在交叉点均不中断,则:⎪⎭⎫ ⎝⎛+=N N ll 00121 * 相交另一杆受压,此另一杆在交叉点中断但以节点板搭接,则:NN l l 020121π+=* 相交另一杆受拉,两杆截面相同并在交叉点均不中断,则:l N N ll 5.04312100≥⎪⎭⎫ ⎝⎛-= * 相交另一杆受拉,此拉杆在交叉点中断但以节点板搭接,则:l NN l l 5.043100≥-= 当此拉杆连续而压杆在交叉点中断但以节点板搭接,若N 0≥N ,或拉杆在桁架平面外的抗弯刚度⎪⎪⎭⎫ ⎝⎛-≥1430220N N l N EI Y π时,取L 0=0.5L 。
上述各式中:L 为桁架节点中心间距离(交叉点不作为节点考虑);N 为所计算杆的内力;N 0为相交另一杆的内力,均为绝对值。
关于钢结构稳定设计中计算长度的讨论
![关于钢结构稳定设计中计算长度的讨论](https://img.taocdn.com/s3/m/a4ae4e3c443610661ed9ad51f01dc281e53a56cf.png)
关于钢结构稳定设计中计算长度的讨论关于钢结构稳定设计中计算长度的讨论⽬前,钢结构因其优良的性能被⼴泛应⽤于⼤跨度结构、⾼层建筑、重型⼚房、⾼耸建筑物和桥梁结构等。
结构设计⾸先要保证安全性,对于⼀般的结构构件,强度计算是基本要求,但是对钢结构构件⽽⾔,其构件材料强度⾼,截⾯⼩,稳定计算往往是⼯程设计中的控制因素。
【1】:钢结构,陈绍蕃失稳和屈曲的概念Bazant[14]、Farshad[15]、Huseyin[16]等引述和讨论了稳定和屈曲的定义,他们从不同的⾓度和范围描述了失稳现象,并指出屈曲是众多失稳现象中的⼀个模式,屈曲是发⽣在结构中的⼀种失稳。
⽂献[14]-[18]讨论了结构产⽣屈曲的原因,可以定义结构的屈曲为处于⾼位能的结构由平衡临界状态随着能量的释放向处于低位能的结构平衡临界状态转移的过程,发⽣平衡转移的那个瞬间状态,就是临界状态。
这也是⽬前⽐较⼴泛被接受的解释[19]。
具体地讲有三种:1)、从能量的⾓度来说,结构失稳就是储存在结构中的应变能形式发⽣转换。
2)、从⼒学要素的性质⽅⾯来说,失稳是结构中承载的主要⼒学要素的性质发⽣了变化。
3)、从变形⾓度来说,失稳在实际上也可以被认为是⼀种从弹性变形到⼏何变形的变形转移。
钢结构构件以轴压、压弯构件居多,如上所述,其核⼼问题是稳定问题。
就单个钢结构构件⽽⾔,影响稳定的主要因素有残余应⼒的分布、初始缺陷、截⾯形状、⼏何尺⼨、材料强度和构件的长度等。
【2】张志刚。
⽽近年来,采⽤新技术设计和建造的⼤型复杂空间钢结构形式(如⽹壳结构、拱、弦⽀穹顶结构等)越来越多,通常这类结构整体上或某些较⼤区域内承受很⼤的压⼒作⽤,也即某些构件承受很⼤轴向压⼒,使得这类结构容易引发整体失稳或某区域内的局部失稳现象。
⼤型复杂结构的这⼀⼒学特征显著不同于传统的⼩跨度或⼩规模简单结构,因⽽,在设计这类结构时,除按常规设计规范验算结构构件的强度及稳定性,结构的刚度外,设计者还要验算结构的整体稳定性。
钢结构课程设计报告计算书
![钢结构课程设计报告计算书](https://img.taocdn.com/s3/m/b88998dbcfc789eb162dc87f.png)
钢构造课程设计计算书一、设计资料1、屋架形式为梯形钢屋架;2、屋架铰支于钢筋混凝土柱顶,混凝土标号 C25;3、车间柱网布置:长度 60m ;柱距 6m ;跨度 L=24m ;4、屋面材料为预应力大型面板〔1.5*6m ,屋面板需保证与上弦3个点焊牢,故上弦平面外计 算长度为3米〕5、钢材采用 Q235·BF 钢,焊条为 E43型,手工焊;二、屋架尺寸及尺寸确实定(1)根据车间长度、跨度及荷载情况,在屋架上下弦设置两道横向水平支撑及垂直支撑和系杆,使屋盖成为空间刚度很大的稳定系统,中间各个屋架用系杆联系,支撑,屋架平面布置见下列图1, 图1:〔2〕屋面材料为预应力混凝土大型屋面板,采用无檩屋盖体系,平坡梯形钢屋架。
屋面坡度。
10/1=i屋架计算跨度0215024000215023700l l mm =-⨯=-⨯=。
屋架端部高度取:01515H mm =。
跨中高度:00H 151523700/20.127002l H i mm =+⋅=+⨯=。
屋架高跨比:0270092370079H l ==。
屋架跨中起拱/50048,f l mm ==取50 mm 。
为了使屋架节点受荷,配合屋面板1.5m 宽,腹杆体系大局部采用下弦节间水平尺寸为3.0m 的人字形式,上弦节间水平尺寸为 1.5m ,左半跨如下图,左右对称,左端部间距150mm 屋架几何尺寸如图 2所示三、支撑布置根据车间长度、屋架跨度、荷载情况、屋架上弦设置横向水平支撑及垂直支撑和系杆,使屋盖成为空间刚度很大的稳定系统,见图1。
四、荷载的计算屋面荷载标准值见表 1表1 荷载标准值各屋架满跨与半跨内力系数见附图2。
1、荷载计算屋面荷载汇总如表 2所示:表2 荷载类型 荷载名称 荷载标准值 永久荷载D 总计 2.86 kN/m 2 可变荷载雪荷载L0.45 kN/m 22设计屋架时,应考虑以下三种组合:(1) 组合一:全跨永久荷载+全跨可变荷载。
钢结构课程设计计算书(2)
![钢结构课程设计计算书(2)](https://img.taocdn.com/s3/m/07a0a42f5727a5e9856a61f9.png)
一由设计任务书可知:厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。
暂不考虑地震设防。
屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。
卷材防水层面(上铺120mm 泡沫混凝土保温层和三毡四油防水层)。
屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。
屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20.二选材:根据该地区温度及荷载性质,钢材采用Q235-C。
其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。
屋架的计算跨度L。
=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。
三结构形式与布置:屋架形式及几何尺寸见图1所示:图1屋架支撑布置见图2所示:图2四荷载与内力计算:1.荷载计算:活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。
永久荷载标准值:防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝土0.25 KN/㎡预应力混凝土大型屋面板 1.4 KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384 KN/㎡总计:2.784 KN/㎡可变荷载标准值:雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。
总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合:设计屋架时应考虑以下三种组合:组合一全跨永久荷载+全跨可变荷载屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN组合二全跨永久荷载+半跨可变荷载屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KNP2=1.68KN/㎡×1.5×6=15.12KN组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载屋架上弦荷载P3=0.384KN/㎡×1.2×1.5×6=4.15KNP4=(1.4×1.2+0.7×1.4)×1.5×6=23.94KN3,内力计算:首先求出杆件内力系数,即单位荷载作用下的杆件内力,荷载布置如图3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构杆件计算长度及回转半径
先分有无节点板,再分单复系。
无节点板,平面内节点长,平面外侧向支撑长,
单系有节点板,直接见表5.3.1.
复系有节点板,平面内节点长,平面外压杆 5.3.2(1),拉杆侧向支撑长,斜平面仍为节点长,计算中L 侧向支撑长(交叉支点不算数)。
桁架弦杆侧向支撑为节点长2倍及再分式腹杆,平面内节点长,平面外公式(5.3.1)
单角钢(十字角钢)长细比计算(桁架腹杆、格构式缀条、侧向支撑),按上述取计算长度后(取最长计算长度),一般均采用最小回转半径,当计算交叉相连平面外计算长细比时,可采用肢边平行回转半径。
对单角钢轴压稳定性计算强度折减时,均取最小回转半径,当<20时,取等于20。