离散型随机变量的均值与方差、正态分布ppt

合集下载

高中数学2-3-2 离散型随机变量的方差 名师公开课市级获奖课件(人教A版选修2-3)

高中数学2-3-2 离散型随机变量的方差 名师公开课市级获奖课件(人教A版选修2-3)

0.2 0.3 0.2 0.1
∴ D(2X - 1) = ( - 1 - 2.6)2×0.2 + (1 - 2.6)2×0.2 + (3 - 2.6)2×0.3+(5-2.6)2×0.2+(7-2.6)2×0.1=6.24. 方法 2:利用方差的性质 D(aX+b)=a2D(X). ∵D(X)=1.56. ∴D(2X-1)=4D(X)=4×1.56=6.24.
2 ( x - E ( X )) 则 i 描述了 x (i=1,2,…,n)相对于均值 E(X)的
i
偏离程度,而 D(X)=
i=1
xi-EX2pi
n
为这些偏离程度的加权
平均,刻画了随机变量 X 与其均值 E(X)的 平均偏离程度. 我 们称 D(X)为随机变量 X 的方差,其算术平方根 DX为随机变 量 X 的 标准差.
[答案]
[ 解析 ]
B.2 和 2.4 D.6 和 5.6
B
∵ X ~ B(10,0.6) ,∴ E(X) = 10×0.6 = 6 , D(X) =
10×0.6×(1-0.6)=2.4, ∴E(η)=8-E(X)=2,D(η)=(-1)2D(X)=2.4.
建模应用引路
方差的实际应用
A、B 是治疗同一种疾病的两种药,用若干试验组 进行对比实验. 每个试验组由 4 只小白鼠组成, 其中 2 只服用 A, 另 2 只服用 B,然后观察疗效.若在一个试验组中,服用 A 有效 的小白鼠的只数比服用 B 有效的多, 就称该试验组为甲类组. 设 2 1 每只小白鼠服用 A 有效的概率为 ,服用 B 有效的概率为 . 3 2 (1)求一个试验组为甲类组的概率; (2)观察 3 个试验组,用 ξ 表示这 3 个试验组中甲类组的个 数,求 ξ 的分布列和数学期望.

8 第8讲 离散型随机变量的均值与方差、正态分布

8 第8讲 离散型随机变量的均值与方差、正态分布

第8讲 离散型随机变量的均值与方差、正态分布1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平.(2)方差称D (X )= i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,并称其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差(1)若随机变量X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). 4.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π .(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.导师提醒牢记均值与方差的七个常用性质若Y =aX +b ,其中a ,b 是常数,X 是随机变量,则(1)E (k )=k ,D (k )=0,其中k 为常数. (2)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ). (3)E (X 1+X 2)=E (X 1)+E (X 2). (4)D (X )=E (X 2)-(E (X ))2.(5)若X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)·E (X 2). (6)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(7)若X 服从二项分布,即X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).判断正误(正确的打“√”,错误的打“×”)(1)随机变量的均值是常数,样本的平均数是随机变量,它不确定.( )(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )(5)均值是算术平均数概念的推广,与概率无关.( ) 答案:(1)√ (2)√ (3)√ (4)√ (5)×已知X 的分布列为设Y =2X A.73 B .4 C .-1D .1解析:选A.E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.已知ξ~B ⎝⎛⎭⎫4,13,并且η=2ξ+3,则方差D (η)=( ) A.329B.89C.439D.599解析:选A.由题意知,D (ξ)=4×13×⎝⎛⎭⎫1-13=89, 因为η=2ξ+3,所以D (η)=4·D (ξ)=4×89=329.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<4)=( )A .0.6B .0.4C .0.3D .0.2解析:选A.由P (ξ<4)=0.8,得P (ξ≥4)=0.2.又正态曲线关于x =2对称,则P (ξ≤0)=P (ξ≥4)=0.2,所以P (0<ξ<4)=1-P (ξ≤0)-P (ξ≥4)=0.6.一个正四面体ABCD 的四个顶点上分别标上1分,2分,3分和4分,往地面抛掷一次,记不在地面上的顶点的分数为X ,则X 的均值为________.解析:X 的分布列为所以E (X )=1×14+2×14+3×14+4×14=52.答案:52一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时就放对了,否则就放错了.设放对个数记为ξ,则ξ的期望为________.解析:将四个不同小球放入四个不同盒子,每个盒子放一个小球,共有A 44种不同放法,放对的个数ξ可取的值有0,1,2,4,其中P (ξ=0)=9A 44=38, P (ξ=1)=C 14×2A 44=13,P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124,E (ξ)=0×38+1×13+2×14+4×124=1. 答案:1离散型随机变量的均值与方差(多维探究)角度一 离散型随机变量的均值与方差的计算某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望与方差.【解】 (1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.方差D (X )=415(0-1)2+715(1-1)2+415(2-1)2=815.角度二 二项分布的均值与方差的计算(2019·成都第一次诊断性检测)某部门为了解一企业在生产过程中的用水量情况,对其每天的用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的数据作为样本,得到如图所示的茎叶图(单位:吨).若用水量不低于95吨,则称这一天的用水量超标.(1)从这12天的数据中随机抽取3个,求至多有1天的 用水量超标的概率;(2)以这12天的样本数据中用水量超标的频率作为概率,估计该企业未来3天中用水量超标的天数,记随机变量X 为未来这3天中用水量超标的天数,求X 的分布列、数学期望和方差.【解】 (1)记“从这12天的数据中随机抽取3个,至多有1天的用水量超标”为事件A ,则P (A )=C 14C 28C 312+C 38C 312=168220=4255.(2)以这12天的样本数据中用水量超标的频率作为概率,易知用水量超标的概率为13.X 的所有可能取值为0,1,2,3, 易知X ~B ⎝⎛⎭⎫3,13,P (X =k )=C k 3⎝⎛⎭⎫13k⎝⎛⎭⎫233-k,k =0,1,2,3,则P (X =0)=827,P (X =1)=49,P (X =2)=29,P (X =3)=127.所以随机变量X 的分布列为数学期望E (X )=3×13=1,D (X )=3×13×⎝⎭⎫1-13=23.(1)求离散型随机变量ξ的均值与方差的步骤 ①理解ξ的意义,写出ξ可能的全部取值; ②求ξ取每个值的概率; ③写出ξ的分布列; ④由均值的定义求E (ξ); ⑤由方差的定义求D (ξ). (2)二项分布的期望与方差如果ξ~B (n ,p ),则用公式E (ξ)=np ;D (ξ)=np (1-p )求解,可大大减少计算量. [提醒] 均值E (X )由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 取值的平均水平.1.(2019·洛阳市第一次统一考试)雾霾天气对人体健康有伤害,应对雾霾污染、改善空气质量的首要任务是控制PM 2.5,要从压减燃煤、严格控车、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格考核指标.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A 、B 、C 三个城市进行治霾落实情况抽查.(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率;(2)每一个城市都要由四个专家组分别对抽查情况进行评价,并对所选取的城市进行评价,每个专家组给检查到的城市评价为优的概率为12,若四个专家组均评价为优则检查通过不用复检,否则需进行复检.设需进行复检的城市的个数为X ,求X 的分布列和期望.解:(1)随机选取,共有34=81种不同方法,恰有一个城市没有专家组选取的有C 13(C 14A 22+C 24)=42种不同方法,故恰有一个城市没有专家组选取的概率为4281=1427.(2)设事件A :“一个城市需复检”,则P (A )=1-⎝⎛⎭⎫124=1516,X 的所有可能取值为0,1,2,3,P (X =0)=C 03·⎝⎛⎭⎫1163=14 096,P (X =1)=C 13·⎝⎛⎭⎫1162·⎝⎛⎭⎫15161=454 096,P (X =2)=C 23·⎝⎛⎭⎫1161·⎝⎛⎭⎫15162=6754 096,P (X =3)=C 33·⎝⎛⎭⎫15163=3 3754 096. 所以X 的分布列为 X ~B ⎝⎭⎫3,1516,E (X )=3×1516=4516. 2.已知6只小白鼠中有1只感染了病毒,需要对6只小白鼠进行病毒DNA 化验来确定哪一只受到了感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为止.方案乙:将6只小白鼠分为两组,每组三只,将其中一组的三只小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒DNA ,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到确定感染病毒的小白鼠为止;若化验结果显示不含病毒DNA ,则在另外一组中逐个进行化验.(1)求执行方案乙化验次数恰好为2次的概率;(2)若首次化验的化验费为10元,第二次化验的化验费为8元,第三次及以后每次化验的化验费都是6元,求方案甲所需化验费的分布列和期望.解:(1)执行方案乙化验次数恰好为2次的情况分两种:第一种,先化验一组,结果显示不含病毒DNA ,再从另一组中任取一只进行化验,其恰好含有病毒DNA ,此种情况的概率为C 35C 36×1C 13=16;第二种,先化验一组,结果显示含病毒DNA ,再从中逐个化验,恰好第一只含有病毒,此种情况的概率为C 25C 36×1C 13=16.所以执行方案乙化验次数恰好为2次的概率为16+16=13.(2)设用方案甲化验需要的化验费为η(单位:元),则η的可能取值为10,18,24,30,36.P (η=10)=16,P (η=18)=56×15=16,P (η=24)=56×45×14=16,P (η=30)=56×45×34×13=16,P (η=36)=56×45×34×23=13,则化验费η的分布列为所以E (η)=10×16+18×16+24×16+30×16+36×13=773(元).均值与方差的实际应用(师生共研)(2018·高考全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解】(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220 [2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.(i)令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以EX=E(40+25Y)=40+25EY=490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于EX>400,故应该对余下的产品作检验.均值与方差的实际应用(1)D(X)表示随机变量X对E(X)的平均偏离程度,D(X)越大表明平均偏离程度越大,说明X的取值越分散;反之,D(X)越小,X的取值越集中在E(X)附近,统计中常用D(X)来描述X的分散程度.(2)随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量取值偏离于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.1.(2019·广东省七校联考)某工厂的检验员为了检测生产线上生产零件的情况,现从产品中随机抽取了80个零件进行测量,根据测量的数据作出如图所示的频率分布直方图.注:尺寸数据在[63.0,64.5)内的零件为合格品,频率作为概率. (1)从产品中随机抽取4个,记合格品的个数为ξ,求ξ的分布列与期望. (2)从产品中随机抽取n 个,全是合格品的概率不小于0.3,求n 的最大值.(3)为了提高产品合格率,现提出A ,B 两种不同的改进方案进行试验.若按A 方案进行试验后,随机抽取15个产品,不合格品个数X 的期望是2;若按B 方案进行试验后,随机抽取25个产品,不合格品个数Y 的期望是4.你会选择哪种改进方案?解:(1)由频率分布直方图可知,抽取的产品为合格品的频率为(0.75+0.65+0.2)×0.5=0.8,即抽取1个产品为合格品的概率为45,从产品中随机抽取4个,合格品的个数ξ的所有可能取值为0,1,2,3,4,则P (ξ=0)=⎝⎛⎭⎫154=1625, P (ξ=1)=C 14×45×⎝⎛⎭⎫153=16625,P (ξ=2)=C 24×⎝⎛⎭⎫452×⎝⎛⎭⎫152=96625, P (ξ=3)=C 34×⎝⎛⎭⎫453×15=256625, P (ξ=4)=⎝⎛⎭⎫454=256625. 所以ξ的分布列为ξ的数学期望E (ξ)=4×45=165.(2)从产品中随机抽取n 个产品,全是合格品的概率为⎝⎛⎭⎫45n,依题意得⎝⎛⎭⎫45n≥0.3,故n 的最大值为5.(3)设按A 方案进行试验后,随机抽取1个产品是不合格品的概率是a ,则随机抽取15个产品,不合格品个数X ~B (15,a );设按B 方案进行试验后,随机抽取1个产品是不合格品的概率是b ,则随机抽取25个产品,不合格品个数Y ~B (25,b ).依题意得E (X )=15a =2,E (Y )=25b =4,所以a =215,b =425.因为215<425,所以应选择方案A .2.(2019·辽宁五校联合体模拟)某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.(1)试求选出的3种商品中至少有一种是家电的概率;(2)该商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖机会,若中奖一次,则获得数额为n 元的奖金;若中奖两次,则获得数额为3n 元的奖金;若中奖三次,则获得数额为6n 元的奖金.假设顾客每次抽奖中奖的概率都是14,请问:该商场将奖金数额n 最高定为多少元,才能使促销方案对该商场有利?解:(1)设选出的3种商品中至少有一种是家电为事件A ,从2种服装、3种家电、4种日用品中,选出3种商品,共有C 39种不同的选法,选出的3种商品中,没有家电的选法有C 36种,所以选出的3种商品中至少有一种是家电的概率为 P (A )=1-C 36C 39=1-521=1621.(2)设顾客三次抽奖所获得的资金总额(单位:元)为随机变量ξ, 则其所有可能的取值为0,n ,3n ,6n .当ξ=0时,表示顾客在三次抽奖中都没有中奖. 所以P (ξ=0)=C 03⎝⎛⎭⎫140⎝⎛⎭⎫1-143=2764,P (ξ=n )=C 13⎝⎛⎭⎫141⎝⎛⎭⎫1-142=2764,P (ξ=3n )=C 23⎝⎛⎭⎫142⎝⎛⎭⎫1-141=964, P (ξ=6n )=C 33⎝⎛⎭⎫143⎝⎛⎭⎫1-140=164.所以顾客在三次抽奖中所获得的奖金总额的期望值是 E (ξ)=0×2764+n ×2764+3n ×964+6n ×164=15n16,由15n16≤60,解得n ≤64, 所以该商场将奖金数额n 最高定为64元,才能使促销方案对该商场有利.正态分布(师生共研)(1)(2019·惠州市第二次调研)设随机变量ξ服从正态分布N (4,3),若P (ξ<a -5)=P (ξ>a +1),则实数a 等于( )A .7B .6C .5D .4(2)已知随机变量X 服从正态分布N (1,σ2),若P (X >2)=0.15,则P (0≤X ≤1)=( ) A .0.85 B .0.70 C .0.35D .0.15【解析】 (1)由随机变量ξ服从正态分布N (4,3)可得正态分布密度曲线的对称轴为直线x =4,又P (ξ<a -5)=P (ξ>a +1),所以x =a -5与x =a +1关于直线x =4对称,所以(a -5)+(a +1)=8,即a =6.选B.(2)P (0≤X ≤1)=P (1≤X ≤2)=0.5-P (X >2)=0.35. 【答案】 (1)B (2)C正态分布下的概率计算常见的两类问题(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.1.(2019·太原模拟)已知随机变量X 服从正态分布N (3,1),且P (X ≥4)=0.158 7,则P (2<X <4)=( )A .0.682 6B .0.341 3C .0.460 3D .0.920 7解析:选A.因为随机变量X 服从正态分布N (3,1),且P (x ≥4)=0.158 7,所以P (X ≤2)=0.158 7,所以P (2<X <4)=1-P (X ≤2)-P (X ≥4)=0.682 6,故选A.2.某校在一次月考中有900人参加考试,数学考试的成绩服从正态分布X ~N (90,a 2)(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的35,则此次月考中数学考试成绩不低于110分的学生约有________人.解析:因为成绩服从正态分布X ~N (90,a 2), 所以其正态分布曲线关于直线x =90对称,又因为成绩在70分到110分之间的人数约为总人数的35,由对称性知成绩在110分以上的人数约为总人数的12×⎝⎛⎭⎫1-35=15,所以此次数学考试成绩不低于110分的学生约有15×900=180(人).答案:180利用期望与方差进行决策某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买.则每个500元,现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列:(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一.应选用哪个?【解】(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16,17,18,19,20,21,22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.利用期望与方差进行决策的方法(1)若我们希望实际的平均水平较理想时,则先求随机变量ξ1,ξ2的期望,当E(ξ1)=E(ξ2)时,不应误认为它们一样好,需要用D (ξ1),D (ξ2)来比较这两个随机变量的偏离程度,偏离程度小的更好.(2)若我们希望比较稳定时,应先考虑方差,再考虑均值是否相等或者接近.(3)若对平均水平或者稳定性没有明确要求时,一般先计算期望,若相等,则由方差来确定哪一个更好.若E (ξ1)与E (ξ2)比较接近,且期望较大者的方差较小,显然该变量更好;若E (ξ1)与E (ξ2)比较接近且方差相差不大时,应根据不同选择给出不同的结论,即是选择较理想的平均水平还是选择较稳定.(2019·洛阳第一次统考)甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司,底薪80元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表(1)3天送餐单数都不小于40的概率.(2)若将频率视为概率,回答下列两个问题:①记乙公司送餐员日工资为X (单位:元),求X 的分布列和数学期望E (X );②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.解:(1)记抽取的3天送餐单数都不小于40为事件M , 则P (M )=C 325C 350=23196.(2)①设乙公司送餐员的送餐单数为a , 当a =38时,X =38×6=228, 当a =39时,X =39×6=234,当a =40时,X =40×6=240, 当a =41时,X =40×6+1×7=247, 当a =42时,X =40×6+2×7=254.所以X 的所有可能取值为228,234,240,247,254. 故X 的分布列为 X 228 234 240 247 254 P110151525110所以E (X )=228×110+234×15+240×15+247×25+254×110=241.8.②依题意,甲公司送餐员的日平均送餐单数为38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7,所以甲公司送餐员的日平均工资为80+4×39.7=238.8元. 由①得乙公司送餐员的日平均工资为241.8元. 因为238.8<241.8,所以推荐小王去乙公司应聘.[基础题组练]1.设随机变量X 服从正态分布N (0,1),若P (X >1)=p ,则P (-1<X <0)=( ) A.12+p B .1-p C .1-2pD.12-p 解析:选D.因为随机变量X 服从正态分布N (0,1),所以正态分布曲线关于直线x =0对称,所以P (X >0)=P (X <0)=12,P (X >1)=P (X <-1)=p ,所以 P (-1<X <0)=P (X <0)-P (X <-1)=12-p .2.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C .2D.83解析:选D.因为口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,所以取出的球的最大编号X 的可能取值为2,3,所以P (X =2)=1C 23=13,P (X =3)=C 12C 11C 23=23,所以E (X )=2×13+3×23=83. 3.(2018·安徽合肥一模)已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ=0.954 5) A .4 093件 B .4 772件 C .6 827件D .8 186件解析:选D.由题意可得,该正态分布的对称轴为x =100,且σ=2,则质量在[96,104]内的产品的概率为P (μ-2σ<X <μ+2σ)=0.954 5,而质量在[98,102]内的产品的概率为P (μ-σ<X <μ+σ)=0.682 7,结合对称性可知,质量在[98,104]内的产品的概率为0.682 7+0.954 5-0.682 72=0.818 6,据此估计质量在[98,104]内的产品的数量为10 000×0.818 6=8186(件).4.已知随机变量X +η=8,若X ~B (10,0.6),则E (η),D (η)分别是( ) A .6,2.4 B .2,2.4 C .2,5.6D .6,5.6解析:选B.由已知随机变量X +η=8,所以η=8-X . 因此,求得E (η)=8-E (X )=8-10×0.6=2, D (η)=(-1)2D (X )=10×0.6×0.4=2.4.5.某篮球队对队员进行考核,规则是①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为23.如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X 的期望是( )A .3 B.83 C .2D.53解析:选B.在一轮投篮中,甲通过的概率为P =89,未通过的概率为19.由题意可知,甲3个轮次通过的次数X 的可能取值为0,1,2,3,则P (X =0)=⎝⎛⎭⎫193=1729, P (X =1)=C 13×⎝⎛⎭⎫891×⎝⎛⎭⎫192=24729P (X =2)=C 23×⎝⎛⎭⎫892×⎝⎛⎭⎫191=192729, P (X =3)=⎝⎛⎭⎫893=512729. 所以随机变量X 的分布列为数学期望E (X )=0×1729+1×24729+2×192729+3×512729=83.6.(2019·辽宁五校联合体模拟)已知随机变量X 服从正态分布N (72,4),则P (X <70或X >76)等于________.(附:(P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5)解析:因为随机变量X 服从正态分布N (72,4),所以μ=72,σ=2,所以P (70<X <74)=0.682 7,P (68<X <76)=0.954 5,所以P (X <70)=0.158 65,P (X >76)=0.022 75,所以P (X <70或X >76)=0.158 65+0.022 75=0.181 4.答案:0.181 47.若随机变量ξ的分布列如下表所示,E (ξ)=1.6,则a -b =________.解析:易知a ,b ∈[0,1],由0.1+a +b +0.1=1,得a +b =0.8,又由E (ξ)=0×0.1+1×a +2×b +3×0.1=1.6,得a +2b =1.3,解得a =0.3,b =0.5,则a -b =-0.2.答案:-0.28.某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中两个是判断题,另一个是有三个选项的单项选择题,设ξ为回答正确的题数,则随机变量ξ的数学期望E (ξ)=________.解析:由已知得ξ的可能取值为0,1,2,3. P (ξ=0)=12×12×23=212,P (ξ=1)=12×12×23+12×12×23+12×12×13=512,P (ξ=2)=12×12×23+12×12×13+12×12×13=412,P (ξ=3)=12×12×13=112.所以E (ξ)=0×212+1×512+2×412+3×112=43.答案:439.(2019·西安模拟)一个盒子中装有大量形状、大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率).解:(1)由题意,得(0.02+0.032+a +0.018)×10=1,解得a =0.03.由频率分布直方图可估计盒子中小球重量的众数为20克,而50个样本中小球重量的平均数为x =0.2×10+0.32×20+0.3×30+0.18×40=24.6(克).故由样本估计总体,可估计盒子中小球重量的平均数为24.6克. (2)该盒子中小球重量在[5,15]内的概率为15,则X ~B ⎝⎛⎭⎫3,15,X 的可能取值为0,1,2,3.P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125,P (X =1)=C 13⎝⎛⎭⎫151×⎝⎛⎭⎫452=48125, P (X =2)=C 23⎝⎛⎭⎫152×⎝⎛⎭⎫451=12125, P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125. 所以X 的分布列为所以E (X )=0×64125+1×48125+2×12125+3×1125=35.(或者E (X )=3×15=35.)10.(2019·长沙模拟)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,下雨会影响药材品质,基地收益如下表所示:20万元;有雨时,收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (2)该基地是否应该额外聘请工人,请说明理由.解:(1)设下周一无雨的概率为p ,由题意得,p 2=0.36,解得p =0.6,基地收益X 的可能取值为20,15,10,7.5,则P (X =20)=0.36,P (X =15)=0.24,P (X =10)=0.24,P (X =7.5)=0.16.所以基地收益X 的分布列为E (X )=20×0.36+15×0.24+10×0.24+7.5×0.16=14.4(万元), 所以基地的预期收益为14.4万元. (2)设基地额外聘请工人时的收益为Y 万元,则其预期收益E (Y )=20×0.6+10×0.4-a =16-a (万元),E (Y )-E (X )=1.6-a (万元). 综上,当额外聘请工人的成本高于1.6万元时,不额外聘请工人;成本低于1.6万元时,额外聘请工人;成本恰为1.6万元时,额外聘请或不聘请工人均可以.[综合题组练]1.某鲜奶店每天以每瓶3元的价格从牧场购进若干瓶鲜牛奶,然后以每瓶7元的价格出售.如果当天卖不完,剩下的鲜牛奶作垃圾处理.(1)若鲜奶店一天购进30瓶鲜牛奶,求当天的利润y (单位:元)关于当天需求量n (单位:瓶,n ∈N )的函数解析式;(2)鲜奶店记录了100天鲜牛奶的日需求量(单位:瓶),绘制出如下的柱形图(例如:日需求量为25瓶时,频数为5):以100天记录的各需求量的频率作为各需求量发生的概率.①若该鲜奶店一天购进30瓶鲜奶,X 表示当天的利润(单位:元),求X 的分布列及数学期望;②若该鲜奶店计划一天购进29瓶或30瓶鲜牛奶,你认为应购进29瓶还是30瓶?请说明理由.解:(1)当n ≥30时,y =30×(7-3)=120;当n ≤29时,y =(7-3)n -3(30-n )=7n -90.故y =⎩⎪⎨⎪⎧7n -90,0≤n ≤29120,n ≥30,n ∈N .(2)①X 的可能取值为85,92,99,106,113,120, P (X =85)=0.05,P (X =92)=0.1, P (X =99)=0.1, P (X =106)=0.05, P (X =113)=0.1, P (X =120)=0.6. X 的分布列为E (X )=(85+106)×0.05+(92+99+113)×0.1+120×0.6=111.95.②购进29瓶时,当天利润的数学期望为t =(25×4-4×3)×0.05+(26×4-3×3)×0.1+(27×4-2×3)×0.1+(28×4-1×3)×0.05+29×4×0.7=110.75,因为111.95>110.75,所以应购进30瓶.2.(2019·洛阳尖子生第二次联考)现有两种投资方案,一年后投资盈亏的情况如下表:投资股市(1)当p =14时,求q 的值.(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围.(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?请说明理由.解:(1)因为“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,所以p +13+q =1.又p =14,所以q =512.(2)记事件A 为“甲投资股市且获利”,事件B 为“乙购买基金且获利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”,则C =AB ∪AB ∪AB ,且A ,B 独立. 由题意可知,P (A )=12,P (B )=p ,所以P (C )=P (AB )+P (AB )+P (AB ) =12(1-p )+12p +12p =12+12p . 因为P (C )=12+12p >45,所以p >35.又p +13+q =1,q ≥0,所以p ≤23.所以p 的取值范围为⎝⎛⎦⎤35,23.(3)假设丙选择“投资股市”的方案进行投资,记X 为丙投资股市的获利金额(单位:万元),所以随机变量X 的分布列为则E (X )=4×12+0×18+(-2)×38=54.假设丙选择“购买基金”的方案进行投资,记Y 为丙购买基金的获利金额(单位:万元), 所以随机变量Y 的分布列为则E (Y )=2×12+0×13+(-1)×16=56.因为E (X )>E (Y ),所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.3.(2019·高考全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i =1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.解:(1)X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明:由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)。

离散型随机变量均值和方差、正态分布

离散型随机变量均值和方差、正态分布

课堂互动讲练
ξ 0 2345 P 0.03 p1 p2 p3 p4
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投篮得 分超过3分与选择上述方式投篮得分超过3 分的概率的大小.
课堂互动讲练
【思路点拨】 首先由P(ξ=0)= 0.03计算出q2,从而可写出分布 列.本题便可求解.
课堂互动讲练
P(X≥7)=P(X≤3) =12×[1-P(3<X<7)], =12×(1-0.9544)=0.0228, ∵P(4<X<6)=0.6826, ∴P(5<X<6)=12P(4<X<6) =0.3413.
课堂互动讲练
考点二 求离散型随机变量的均值与方差
求离散型随机变量X的均值与方差的步 骤:
【解】 (1)由题设知,“ξ=0”对 应的事件为“在三次投篮中没有一次投 中”,由对立事件和相互独立事件性质 可知
P(ξ=0)=(1-q1)(1-q2)2=0.03, 解得q2=0.8.
课堂互动讲练
(2)根据题意 p1=P(ξ=2)=(1-q1)C21(1-q2)q2 =0.75×2×0.2×0.8=0.24. p2=P(ξ=3)=q1(1-q2)2=0.25×(1- 0.8)2=0.01. p3=P(ξ=4)=(1-q1)q22=0.75×0.82 =0.48. p4=P(ξ=5)=q1q2+q1(1-q2)q2 =0.25×0.8+0.25×0.2×0.8=0.24. 因此Eξ=0×0.03+2×0.24+3×0.01 +4×0.48+5×0.24=3.63.
基础知识梳理
参数μ,σ在正态分布中的实际 意义是什么?
【思考·提示】 μ是正 态分布的期望,σ是正态分布 的标准差.
1.若随机变量X的分布列如下,则X 的数学期望是( )

7离散型随机变量的均值、方差及正态分布

7离散型随机变量的均值、方差及正态分布

§12.7 离散型随机变量的均值、方差及正态分布了解离散型随机变量的均值、方差、标准差的意义,会根据离散型随机变量的分布列求出均值、方差或标准差。

理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξB (n,p ),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的均值或期望;了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,—p )”,并会应用上述公式计算有关随机变量的方差 。

教学重点:离散型随机变量的均值或期望的概念;正态分布曲线的性质、标准正态曲线N(0,1) 。

教学难点:根据离散型随机变量的分布列求出均值或期望通过正态分布的图形特征,归纳正态曲线的性质。

再现型题组1.若离散型随机变量ξ的分布列为则称E ξ= 为随机变量ξ的均值,也称为期望,它反映了离散型随机变量取值的 。

把 叫做随机变量方差,D ξξ的 ,记作 。

随机变量的方差与标准差都反映了随机变量取值的 。

其中标准差与随机变量本身有 。

2.若η=a ξ+b (a,b 为常数),则E η=E(a ξ+b )=______________;D η=D(a ξ+b )=____________;若ξ服从两点分布,则E ξ= ,D ξ= ,若X 服从二项分布,即~(,)B n p ξ,则E ξ= ,D ξ= 。

3.函数,()______________x μσϕ=的图象称为正态密度曲线,简称正态曲线。

4.对于任何实数a b <,随机变量X 满足()____________,P a X b <≤≈则称X 的分布为正态分布,正态分布完全由参数 确定。

因此正态分布常记作 ,如果X 服从正态分布,则记为 。

5.正态分布的特点:(1)曲线在 ;(2)曲线关于直线 对称; (3)曲线在x μ=时 ;(4)当μ一定时,曲线的形状由σ确定,σ越大,曲线 ,表示总体的分布越 ;σ越小,曲线 ,表示总体的分布越 。

第十一章(理) 第9节 离散型随机变量的均值与方差、正态分布

第十一章(理)  第9节  离散型随机变量的均值与方差、正态分布

第十一章 第九节 离散型随机变量的均值与方差、正态分布1.已知随机变量ξ其中m ,n ∈[0,1),且E (ξ)=16,则m ,n 的值分别为________.解析:由p 1+p 2+…+p 6=1,得m +n =712,由E (ξ)=16,得12-m =16,∴m =13,n =14.答案:13,142.有10件产品,其中3件是次品,从中任取两件,若X 表示取到次品的个数,则E (X )等于________.解析:X =0时,P =27210C C ;X =1时,P =1173210C C C ;X =2时,P =23210C C ,∴E (X )=0×27210C C +1×1173210C C C +2×23210C C =7×3+2×3C 210=35. 3C k 答案:353.(2009·重庆高考)为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设. (1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及数学期望.解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3.由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13,P (C i )=16. (1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3) =6×12×13×16=16.(2)法一:设3名工人中选择的项目属于民生工程的人数为η,由已知,η~B (3,13),且ξ=3-η,所以P (ξ=0)=P (η=3)=33C (13)3=127, P (ξ=1)=P (η=2)=23C (13)2(23)=29, P (ξ=2)=P (η=1)=13C (13)(23)2=49, P (ξ=3)=P (η=0)=03C (23)3=827. 故ξ的分布列为:ξ的数学期望E (ξ)=0×127+1×29+2×49+3×827=2.法二:记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i =1,2,3.由已知,D 1,D 2,D 3相互独立,且P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=23,所以ξ~B (3,23),即P (ξ=k )=3C k (23)k (13)3-k,k =0,1,2,3. 故ξ的分布列是:ξ的数学期望E (ξ)=3×23=2.4.(2010·长沙模拟)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值为( )A .60,34B .60,14C .50,34D .50,14解析:由ξ~B (n ,p ),有E (ξ)=np =15, D (ξ)=np (1-p )=454,∴p =14,n =60.答案:B5.已知随机变量ξ的分布列为若E (ξ)=158,则D (ξ)等于________.解析:由分布列的性质得x +y =0.5,又E (ξ)=158,所以2x +3y =118,解得x =18,y =38. 所以D (ξ)=(1-158)2×12+(2-158)2×18+(3-158)2×38=5564.答案:55646.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. (1)求ξ的分布列、期望和方差;(2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解:(1)ξ的分布列为:∴E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5,D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (ξ),得a 2×2.75=11,即a =±2. 又E (η)=aE (ξ)+b ,∴当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4,即为所求.7.(2010·出租,该公司每月都要负担这辆车的各种管理费100元,如果在一个月内该车被租的概率是0.8,租金是2 600元,那么公司每月对这辆车收入的期望值为________元. 解析:设公司每月对这辆车收入为X 元,则其分布列为:故E (X )=(-100)×0.2+答案:1 9808.利用下列盈利表中的数据进行决策,应选择的方案是________.自然状况解析:利用方案A 1、A 2、A 3、A 4盈利的期望分别是: 50×0.25+65×0.30+26×0.45=43.7; 70×0.25+26×0.30+16×0.45=32.5; -20×0.25+52×0.30+78×0.45=45.7; 98×0.25+82×0.30-10×0.45=44.6. 答案:A 39.某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙.已知从城市甲到城市乙只有两条公路,且运费由果园承担.若果园恰能在约定日期(×月×日)将水果送到,则销售商一次性支付给果园20万元;若在约定日期前送到,每提前一天销售商将多支付给果园1万元;若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果.已知下表内的信息:(1)记汽车走公路Ⅰ时果园获得的毛利润为ξ(单位:万元),求ξ的分布列和数学期望E (ξ);(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?注:毛利润=销售商支付给果园的费用-运费.解:(1)汽车走公路Ⅰ时,不堵车时果园获毛利润ξ=20-1.6=18.4万元;堵车时果园获得的利润ξ=20-1.6-1=17.4万元.则果园获得毛利润ξ的分布列为:E (ξ)=18.4×910+17.4×110=18.3(万元).(2)设汽车走公路Ⅱ时果园获得的毛利润为η.不堵车时果园获的毛利润η=20-0.8+1=20.2万元;堵车时果园获的毛利润η=20-0.8-2=17.2万元.故汽车走公路Ⅱ时果园获得的毛利润η的分布列为:E (η)=20.2×12+17.2×12=18.7(万元).∵E (ξ)<E (η),∴选择公路Ⅱ运送水果有可能让果园获得的毛利润更多.10.设两个正态分布N (μ1,1)(σ1>0)和N (μ2,2)(σ2>0)的密度函数图象如图所示,则有22σ( )A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2解析:μ反映正态分布的平均水平,x=μ是正态曲线的对称轴,由图知μ1<μ2,σ反映正态分布的离散程度,σ越大,曲线越“矮胖”,表明越分散,σ越小,曲线越“高瘦”,表明越集中,由图知σ1<σ2.答案:A11.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.解析:在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8.答案:0.812.已知随机变量X服从正态分布N(0,σ2),且P(-2≤X≤0)=0.4,则P(X>2)=________.解析:∵P(-2≤X≤0)=0.4,∴P(-2≤X≤2)=0.8,∴P(X>2)=P(X<-2)=0.1.答案:0.1。

(广东专用)高考数学总复习 第十章第九节 离散型随机变量的均值与方差、正态分布课件 理

(广东专用)高考数学总复习 第十章第九节 离散型随机变量的均值与方差、正态分布课件 理

【思路点拨】 (1)获奖则摸出2个白球或摸出3个白球,
利用互斥事件概率加法不难求解;(2)在2次游戏中,获奖的次
数X服从二项分布,进而可求分布列与数学期望.
【尝试解答】 (1)设 Ai 表示“在 1 次游戏摸出 i 个白 球”(i=0,1,2,3).
①摸出 3 个白球的概率 P(A3)=CC3225·CC1223=15, ②设“在 1 次游戏中获奖”为事件 B,则 B=A2∪A3, ∵P(A2)=CC5322··CC2322+CC31C25 12·CC1223=21,又 A2 与 A3 互斥, ∴P(B)=P(A2+ A3)= P(A2)+P(A3)=15+12=170, 因此,在一次游戏中获奖的概率为170.
【解析】 设 P(ξ=1)=x,则 P(ξ=3)=x, 由分布列性质,∴P(ξ=2)=1-2x, 因此 Eξ=1·x+2·(1-2x)+3·x=2.
【答案】 2
正态分布下的概率
(2011·湖北高考)已知随机变量ξ服从正态分布N(2, σ2),且P(ξ<4)=0.8,则P(0<ξ<2)=( )
A.0.6
【解】 ∵随机变量 ξ~μ(3,1), ∴正态曲线关于直线 x=3 对称, 由 P(2≤ξ≤4)=0.682 6,得 P(ξ>4)=12[1-P(2≤ξ≤4)]=12(1 -0.682 6)=0.158 7.
离散型随机变量的均值与方差
(2011·天津高考)学校游园活动有这样一个游戏项目:甲 箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑 球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随 机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏 结束后将球放回原箱) (1)求在1次游戏中, ①摸出3个白球的概率;②获奖的概率. (2)求在2次游戏中获奖次数X的分布列及数学期望E(X).

高考数学 第十章第九节 离散型随机变量的均值与方差、正态分布课件 新A

高考数学 第十章第九节 离散型随机变量的均值与方差、正态分布课件 新A
它刻画了随机变量 X 与均值 E(X)的 平均偏离程度 ,其 算术平方根 DX 为随机变量 X 的标准差.
2.均值与方差的性质 (1)E(aX+b)= aE(X)+b . (2)D(aX+b)= a2D(X) .(a,b 为常数)
3.两点分布与二项分布的均值、方差 (1)若X服从两点分布,则E(X)= p,D(X)= p(1-p) . (2)若X~B(n,p),则E(X)= np ,D(X)= np(1-p) .
在某校组织的一次篮球定点投篮训练中,规定每人最多 投3次:在A处每投进一球得3分,在B处每投进一球得2分; 如果前两次得分之和超过3分即停止投篮,否则投第三 次.某同学在A处的命中率q1为0.25,在B处的命中率为q2, 该同学选择先在A处投一球,以后都在B处投,用X表示该 同学投篮训练结束后所得的总分,其分布列为
P(ξ=k)=C3k(16)k(56)3-k,k=0,1,2,3.…………………(8 分)
所以中奖人数 ξ 的分布列为
ξ
0
1
2
3
P 125 216
25 5
1
72 72 216
………………………………………………………(10 分)
Eξ=0×122156+1×2752+2×752+3×2116=12………(12 分)
P(a<X≤b)= a φμ,σ(x)dx ,则称X的分布为正态
分布,记作X~N(μ,σ2) .
(2)正态分布的三个常用数据
①P(μ-σ<X≤μ+σ)=
0.;6826
②P(μ-2σ<X≤μ+2σ)=
0.;9544
③P(μ-3σ<X≤μ+3σ)=
0.9.974
考点一
离散型随机变量的数学期望

第十章 第十节 离散型随机变量的均值与方差、正态分布(理)

第十章  第十节      离散型随机变量的均值与方差、正态分布(理)

3.正态分布密度函数满足的性质 . (1)函数图像关于直线 x= 对称. 函数图像关于直线 = 对称. (2)σ(σ>0)的大小决定函数图像的“胖”“瘦”. 的大小决定函数图像的“ ”“瘦 的大小决定函数图像的 (3)P(μ-σ<X<μ+σ)= - + = P(μ-2σ<X<μ+2σ)= - + = P(μ-3σ<X<μ+3σ)= - + = 68.3% . 95.4% . 99.7% .
+0× × (0+ +
+1× × )2×
=- + (1=0)= = = 答案: 答案:C
,故①③正确,②错误. ①③正确, 错误. 正确
4.从装有3个红球,2个白球的袋中随机取出 个球,以X表 .从装有 个红球, 个白球的袋中随机取出2个球, 表 个红球 个白球的袋中随机取出 个球 示取得红球的个数, 示取得红球的个数,则P(X=1)=______________,EX = = , = ______________. 解析:由已知可得 = = 解析:由已知可得P(X=0)= 0.6,P(X=2)= , = = 答案: 答案:0.6 1.2 =0.1,P(X=1)= , = = =
某市出租车的起步价为6元 行驶路程不超过 某市出租车的起步价为 元,行驶路程不超过3 km 时,租车费为6元,若行驶路程超过 km,则按每超出 租车费为 元 若行驶路程超过3 ,则按每超出1 km(不足 km也按 km计程 收费3元计费.设出租车一次行 不足1 也按1 计程)收费 元计费. 不足 也按 计程 收费 元计费 驶的路程数X(按整 数计算,不足 km的自动计为 km)是 的自动计为1 驶的路程数 按整km数计算 不足1 按整 数计算, 的自动计为 是 一个随机变量,则其收费也是一个随机变量. 一个随机变量,则其收费也是一个随机变量.已知一个司 机在某一天每次出车都超过了3 机在某一天每次出车都超过了 km,且一次的总路程数可 , 能的取值是20、 、 、 、 、 能的取值是 、22、24、26、28、30 (km),它们出现的概 , 率依次是0.12、0.18、0.20、0.20、100a2+3a、4a. 率依次是 、 、 、 、 、

第十章 第九节 离散型随机变量的均值与方差、正态分布1

第十章  第九节  离散型随机变量的均值与方差、正态分布1

P
p1
p2

pi

pn
则称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量 X的均值或数学期望,它反映了离散型随机变量取值 的 平均水平 .
返回
2.若Y=aX+b,其中a,b为常数,则Y也是随机变量,
且E(aX+b)= aE(X)+b . 3. (1)若X服从两点分布,则E(X)= p ; (2)若X~B(n,p),则E(X)= np.
返回
9 9 81 P(X=110)=10×10=100. X的分布列为: X P 50 1 100 70 9 100 90 9 100 110 81 100
1 9 9 81 E(X)=50×100+70×100+90×100+110×100=104.
返回
[冲关锦囊] 1.求离散型随机变量的均值关键是先求出随机变量的分
返回
记“该运动员获得第一名”为事件C,依题意得 3 3 1 3 3 P(C)=P(AB)+P( A B)=4×4+4×4=4. 3 该运动员获得第一名的概率为4.
返回
(2)若该运动员选择乙系列,X的可能取值是50,70,90,110,则P(X=50) 1 1 1 =10×10=100, 1 9 9 P(X=70)=10×10=100, 9 1 9 P(X=90)=10×10=100,
返回
np=12, 解析:由 np1-p=4
2 得n=18,p=3.
答案: A
返回
4.(教材习题改编)有10件产品,其中3件是次品,从 中任取两件.若X表示取到次品的个数.则E(X)=
________.
1 C2 21 C1C3 21 7 7 解析:X=0时,C2 =45,X=1时,P= C2 =45, 10 10

【高中数学】离散型随机变量的均值 课件 高二下学期数学人教A版(2019)选择性必修第三册

【高中数学】离散型随机变量的均值 课件 高二下学期数学人教A版(2019)选择性必修第三册
7
8
9
10
张娟娟射中的
概率
0.1
0.2
0.3
0.4
朴成贤射中的
概率
0.15
0.25
0.4
0.2
如何比较他们射箭水平的高低呢?
追问1:解决问题从哪里入手呢?
假设张娟娟射箭n次,射中7环、8环、9环和10环的频率分布表:
环数X
7
8
9
10
频数
1
2
3
4
频率
n3
n1
n2
n4
所以,甲n次射箭射中的平均环数为 x 7 8 9 10 .
名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A, B, C歌名的概率
及猜对时获得相应的公益基金如下表所示.
歌曲
猜对的概率
A
0.8
B
0.6
C
0.4
获得的公益基金额/元
1000
2000
3000
规则如下: 按照A, B, C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下
一首. 求嘉宾获得的公益基金总额X的分布列及均值.
追问3:从平均值角度比较,谁的射箭水平高?
张娟娟的射箭水平比乙高.
当n足够大时,
频率稳定于概率
概念形成
随机变量的均值
一般地,若离散型随机变量X的分布列如下表所示,
X
P
x1
p1
x2
p2
‧‧‧
‧‧‧
xn
pn
则称
为随机变量X的均值或数学期望, 数学期望简称期望.
均值是随机变量可能取值关于取值概率的加权平均数,它综合
例2 抛掷一枚质地均匀的骰子, 设出现的点数为X,求X的均值.

河北省清河县清河中学高三数学《离散型随机变量的均值与方差、正态分布》课件

河北省清河县清河中学高三数学《离散型随机变量的均值与方差、正态分布》课件

高三总复习
人教A版 · 数学(理)
热点之二
期望与方差的性质及应用
利用均值和方差的性质,可以避免复杂的运算.常用性质
有:
(1)EC=C(C为常数);
(2)E(aX+b)=aEX+b(a,b为常数); (3)E(X1+X2)=EX1+EX2;E(aX1+bX2)=aE(X1)+bE(X2);
高三总复习
人教A版 · 数学(理)
即时训练
某商场举行抽奖促销活动,抽奖规则是:从装有9
个白球,1个红球的箱子中每次随机地摸出1个球,记下颜色后放
回,摸出1个红球可获得奖金10元;摸出2个红球可获得奖金50
元,现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X表示
甲,乙摸球后获得的奖金总额.求: (1)X的概率分布; (2)X的数学期望.
高三总复习
人教A版 · 数学(理)
[思路探究] 解答该5个问题可以认为是5次独立重复试验,答
对问题的个数ξ服从二项分布,求η的期望与方差可通过ξ与η的线性 关系间接求出.
[课堂记录] (1)由题意知,解答这 5 个问题,答对的个数 ξ 服从二 2 项分布,即 ξ~B(5,3), 由二项分布的期望与方差的公式有 2 10 Eξ=np=5×3= 3 , 2 2 10 Dξ=npq=5×3×(1-3)= 9 .
高三总复习
人教A版 · 数学(理)
第九节 离散型随机变量的均值与方差、正态分布
高三总复习
人教A版 · 数学(理)
1.理解取有限个值的离散型随机变量均值、方差的概 念.
2.能计算简单离散型随机变量的均值、方差,并能
解决一些实际问题. 3.利用实际问题的直方图,了解正态分布的特点及 曲线所表示的意义.

10-9 离散型随机变量的均值与方差、正态分布

10-9 离散型随机变量的均值与方差、正态分布

高效
训练
正确的个数是( )
A.0
B.1
C.2
D.3
山 东
解析:由 E(X)=(-1)×12+0×13+1×16=-31,故①正确.
金 太

由 D(X)=-1+132×12+0+132×13+1+132×16=59,知②不正确.
书 业

由分布列知③正确.


答案:C

菜 单 隐藏
高考总复习 A 数学(理)
提素能 高效
度,而D(X)=ni=1 (xi-E(X))2pi为这些偏离程度的加权平均,刻画了
训 练 随机变量X与其均值E(X)的 平均偏离程度 .称D(X)为随机变量X的方
差,其算术平方根为随机变量X的标准差.
山 东
2.D(aX+b)= a2D(X) .
金 太
3.若X服从两点分布,则D(X)= p(1-p) .
阳 书
4.若X~B(n,p),则D(X)= np(1-p)

业 有



菜 单 隐藏
高考总复习 A 数学(理)
抓主干 考点 解密
研考向 要点 探究
悟典题
能力 提升
____________________[通关方略]____________________
提素能
随机变量的均值、方差与样本的平均值、方差的关系
高效
训练
随机变量的均值、方差是常数,它们不依赖于样本的抽取,而样
本的平均值、方差是随机变量,它们随着样本的不同而变化.
山 东









菜 单 隐藏
高考总复习 A 数学(理)

10.7 离散型随机变量的均值与方差、正态分布

10.7 离散型随机变量的均值与方差、正态分布

(2)若X服从两点分布,则EX= (3)若X~B(n,p),则EX= 2.离散型随机变量的方差 设离散型随机变量X的分布列为:
X P
x1 p1
x2 p2
… …
xi pi
… …
xn pn
则(xi-EX)2描述了 xi(i=1,2,…,n)相对于均值 n EX的偏离程度.而DX= ∑ = (x i - EX) 2 p i 为这些偏离程 i =1 度的加权平均,刻画了随机变量X与其均值EX的平 均偏离程度.我们称DX为随机变量X的方差,其算术 平方根 DX 为随机变量X的标准差,记作σX. 随机变量的方差和标准差都反映了随机变 量 取值偏离于均值的平均程度 .方差或标准差越 小,则随机变量偏离于均值的平均程度 越小 . (1)D(aX+b)= a2DX . p(1-p) . .
10.7
离散型随机变量的
均值与方差、正态分布
1.离散型随机变量的均值
一般地,若离散型随机变量X的分布列为:
X
P
x1
p1
x2
p2


xi
pi


xn
pn
则称EX=x1p1+x2p2+…+xipi+…+xnpn为随机变量X 的均值或数学期望.它反映了离散型随机变量 取值的 平均水平 . (1)E(aX+b)= aEX+b . P np . .
(2)若X服从两点分布,则DX= (3)若X~B(n,p),则DX=
np(1-p)
3.正态分布
函数φμ,σ(x)=
1 e 2πσ
(x - μ ) 2 2σ 2
,x∈(-∞,+∞),其中实

届高考总复习资料:第章 第讲 离散型随机变量的均值方差和正态分布(共64张PPT)

届高考总复习资料:第章 第讲 离散型随机变量的均值方差和正态分布(共64张PPT)

已知随机变量ξ的分布列为
ξ
1
2
3
P
0.5
x
y
若E(ξ)=185,则D(ξ)=________.
2.正态分布
(1)正态曲线的性质
①曲线位于x轴________,与x轴不相交;
②曲线是单峰的,它关于直线________对称;
③曲线在________处达到峰值σ
1; 2π
④曲线与x轴之间的面积为________;
μ,σ在正态分布中的实际意义是什么?
设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(- 1<ξ<0)=________.
1. x1p1+x2p2+…+xipi+…+xnpn 数学期望 平均水平
n
i=1 (xi-E(X))2pi 平均偏离程度 算术平方根 DX aE(X)+ b a2D(X) p p(1-p) np np(1-p)
∴D(ξ1)=0.2[(x1- x )2+(x2- x )2+…+(x5- x )2]
=0.2[x21+x22+…+x25+5 x 2-2(x1+x2+…+x5) x ]
=0.2(x21+x22+…+x25-5 x 2).
同理D(ξ2)=0.2[(x1+2 x2)2+(x2+2 x3)2+…+(x5+2 x1)2-5 x 2] ∵(x1+2 x2)2<x21+2 x22,…,x5+2 x12<x25+2 x21, ∴x1+2 x22+x2+2 x32+…+x5+2 x12<x12+x22+…+x25. ∴D(ξ1)>D(ξ2).
2.上方 x=μ x=μ 1 μ 越小 越大 0.6826 0.9544 0.9974
想一想:提示:μ是正态分布的期望,σ是正态分布的标准 差.

离散型随机变量的均值与方差正态分布理演示文稿

离散型随机变量的均值与方差正态分布理演示文稿
第三十页,共58页。
变式思考 1 (2014·温州第一次测试)从装有大小相同的2个 红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的 球中有红球(不放回),则试验结束.
(1)求第一次试验恰好摸到一个红球和一个白球的概率; (2)记试验次数为X,求X的分布列及数学期望E(X).
第三十一页,共58页。
第二十七页,共58页。
听 课 记 录 (1)“从这12名队员中随机选出两名,两人来自 于同一班级”记作事件A,则
P(A)=C42+C22C+122C23+C32=1636. (2)ξ的所有可能取值为0,1,2, 则P(ξ=0)=C04C×212C28=1343,P(ξ=1)=C14C×212C18=1363, P(ξ=2)=C24C×212C08=111.
3.两点分布与二项分布的均值、方差 (1)若X服从两点分布,则E(X)= p ,D(X)= p(1-p) . (2)若X~B(n,p),则E(X)= np,D(X)= np(1-p.)
第七页,共58页。
4.正态曲线及性质
(1)正态曲线的定义:
1 函数f(x)= σ 2πe
,x∈(-∞,+∞),其中实数μ和σ(σ
第三十五页,共58页。
听 课 记 录 (Ⅰ)由已知得,小明中奖的概率为23,小红中奖 的概率为25,且两人中奖与否互不影响.
记“这两人的累计得分X≤3”的事件为A, 则事件A的对立事件为“X=5”, 因为P(X=5)=23×25=145, 所以P(A)=1-P(X=5)=1115, 即这两人的累计得分X≤3的概率为1115.
第三十八页,共58页。
【规律方法】 随机变量的均值反映了随机变量取值的平均 水平,方差反映了随机变量稳定于均值的程度,它们从整体和全 局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论 依据,一般先比较均值,若均值相同,再用方差来决定.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i=1
的方差,其算术平方根__D_X__为随机变量 X 的标准差,记作_σ__X__.方差和标准差 刻画了随机变量取值的稳定与波动、集 中与离散的程度.
(2)D(aX+b)=____a_2D__X____.
(3)若X服从两点分布,则DX= _p_(_1_-__p_)_.___
(4)若X~B(n,p),则DX= _n_p_(_1_-__p_)._____
(3)①若 X 服从两点分布,则 EX=_p_; ②若 X~B(n,p),则 EX=_n_p__. ③若 X 服从参数为 N,M,n 的超几何
分布,则 E(X)=nNM.
2.方差 (1)设离散型随机变量X的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn
n
则称 DX= (xi-EX)2pi 为随机变量 X
则 n,p 的值分别为( )
A.50,14
B.60,14
C.50,34
D.60,34
答案:B
2.设随机变量 ξ 的分布列为 P(ξ=k)=15
(k=2,4,6,8,10),则 Dξ 等于( )
A.5
B.8
C.10 答案:B
D.16Biblioteka 3.口袋中有5只球,编号分别为 1,2,3,4,5,从中任意取3只球以X表示取 出的球的最大号码,则X的期望EX的
考点探究讲练互动
考点突破
考点1 离散型随机变量的均值与方

求离散型随机变量X的均值与方差的方法 步骤. (1) 理 解 X 的 意 义 , 写 出 X 可 能 取 的 全 部 值. (2)求X取每个值的概率.
(3)写出X的分布列. (4)由均值的定义求EX. (5)由方差的定义求DX.
例1 (2010·高考北京卷)某同学参加 3 门课程的考试.假设该同学第一门课 程取得优秀成绩的概率为45,第二、第三 门课程取得优秀成绩的概率分别为 p、 q(p>q),且不同课程是否取得优秀成绩 相互独立,记 ξ 为该生取得优秀成绩的 课程数,其分布列为
⑤当σ一定时,曲线随着μ的变化而沿x 轴平移;
⑥当μ一定时,曲线的形状由σ确定. _σ_越__小___,曲线越“瘦高”,表示总体 的分布越_集__中___;_σ__越__大__,曲线越“ 矮胖”,表示总体的分布越__分__散__._
课前热身
1.设 X~B(n,p),且 EX=15,DX=445,
值是( )
A.4
B.4.5
C.4.75
D.5
答案:B
4.在篮球比赛中,罚球命中1次得1 分,不中得0分.如果某运动员罚球 命中的概率为0.7,那么他罚球1次的 得分X的均值是________. 答案:0.7
5.有一批产品,其中有12件正品和4件 次品,有放回地任取3次,每次1件,若X 表 示 取 到 次 品 的 次 数 , 则 D(X) = ________. 答案:196
正态分布完全由参数 μ 和 σ 确定,因此
正态分布常记作 N(μ,σ2).
(3)正态曲线的特点
①曲线位于x轴_上__方__,与x轴__不__相__交__;
②曲线是单峰的,它关于直线__x_=__μ___
对称;
1
③曲线在x=μ处达到峰值__σ___2_π___;
④曲线与x轴之间的面积为___1__;
P(A1)=45,P(A2)=p,P(A3)=q.
(1)由于事件“该生至少有 1 门课程取得 优秀成绩”与事件“ξ=0”是对立的, 所以该生至少有 1 门课程取得优秀成绩 的概率是 1-P(ξ=0)=1-1625=111295.
(2)由题意知
P(ξ

0)=
P(
A
1
A
2
A
3)

1 5
(1

p)(1
正态随机变量 X 落在区间[a,b]内的概
率为:
P(a<X≤b)≈∫baf (x)dx. 即由正态曲线,过点(a,0)和(b,0)的两条 x 轴的垂线,及 x 轴所围成的平面图形 的面积,就是随机变量 X 落在区间[a, b]的概率的近似值,如图.
(2)正态分布 一般地,如果对于任何实数 a<b,随机 变量 X 满足 P(a<X≤b)=∫baf(x)dx,则 称 X 的分布为正态分布.

q)
=1625,
P(ξ=3)=P(A1A2A3)=45pq=12245.
整理得 pq=265,p+q=1.
由 p>q,可得 p=35,q=25.
(3)由题意知 a=P(ξ=1) =P(A1 A 2 A 3)+ P( A 1A2 A 3)+P( A 1 A 2A3) = 45 (1 - p)(1 - q) + 15 p(1 - q) + 15 (1 - p)q
则称EX= _x_1_p_1+__x_2_p_2_+__…__+__x_ip_i+__…__+__x_n_p_n____为 随机变量X的均值或数学期望,它反映 了离散型随机变量取值的 __平__均__水__平__._____
(2)若Y=aX+b,其中a,b为常数,则 Y也是随机变量,且E(aX+b)= __a_E_X_+__b____.
=13275,
离散型随机变量的均值与方差 、正态分布
教材回扣夯实双基
重点难点
重点:理解掌握随机变量的期望、方差 的概念和正态分布的概念. 难点:随机变量的期望与方差的意义、 正态曲线的性质.
基础梳理
1.均值 (1)若离散型随机变量X的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn
思考探究
1.随机变量的均值、方差与样本均 值、方差的关系是怎样的?
提示:随机变量的均值、方差是一个 常数,样本均值、方差是一个随机变 量,随观测次数的增加或样本容量的 增加,样本的均值、方差趋于随机变 量的均值与方差.
3.正态分布 (1)正态曲线 函数 f(x)= 21πσe-x2-σμ22,x∈R.其中实数 μ 和 σ 为参数,我们称 f(x)的图象为正 态曲线.服从正态分布的随机变量叫做 正态变量.
ξ 0 12 3
P
6 125
a
b
24 125
(1)求该生至少有1门课程取得优秀成绩 的概率;
(2)求p,q的值;
(3)求数学期望Eξ.
【思路分析】 利用 P(ξ=0)=1625,P(ξ
=3)=12245,求 p,q 的值. 【解】 记事件 Ai 表示“该生第 i 门课 程取得优秀成绩”,i=1,2,3.由题意知
相关文档
最新文档