质点和质点系的动量定理
04 3-1 质点和质点系的动量定理
t2
F1+F2 dt (m1v1 m2v2 ) (m1v10 m2v20 )
t1
作用在两质点组成的系统的合外力的冲量等于系统内两质 点动量之和的增量,即系统动量的增量。
2、多个质点的情况
t2 t2 n n n Fi外 dt+ Fi内 dt m i v i m i v i 0 i 1 i 1 t1 i 1 t1 i 1 n
3-4 动能定理
一、功与功率
1、功
•恒力的功 力对质点所作的功等于该力在位移 方向上的分量与位移大小的乘积
F m
F
S
m
说明 •功是标量,没有方向,只有大小,但有正负 p/2,功W为正值,力对物体作正功; p /2,功W=0, 力对物体不作功; p /2,功W为负值,力对物体作负功,或 物体克服该力作功。 •单位:焦耳(J) 1J=1N· m
i i i
ex ex 若质点系所受的合外力为零 F Fi 0
则系统的总动量守恒,即
讨论
ex dp ex i F , F 0, P C dt
p pi
保持不变 .
i
1)系统的动量守恒是指系统的总动量不变,系 统内任一物体的动量是可变的, 各物体的动量必相 对于同一惯性参考系 .
W=F S dW=F dS
•变力的功 分成许多微小的位移元,在每一个 位移元内,力所作的功为
Z
dr
b
F
dW F dr F cos dr
总功
a O
Y
W
•合力的功
B
A
B X F dr F cosdr
第3章动量定理
F
I to F t t to
t
Fdt
o
to
t
t
平均冲力与同段时间内变力等效。
第一篇
力学
思考
重 大 数 理 学 院
I p
例1:撑杆跳运动员从横杆跃 过,落在海棉垫子上不会摔伤, 如果不是海棉垫子,而是大 理石板,又会如何呢?
赵 承 均
例2:汽车从静止开始运动, 加速到20m/s。如果牵引力大, 所用时间短;如果牵引力小, 所用的时间就长。
[A]
第一篇
力学
例3.质量为 m 的小球,以水平速度 v 与固定的竖直壁作弹性碰撞,设 指向壁内的方向为正方向,则由于此碰撞,小球的动量变化为:
重 大 数 理 学 院
(A)mv (B)0 (C)2mv (D)-2mv
赵 承 均
m v v 2mv
[D]
第一篇
力学
重 大 数 理 学 院
③由①可知,小球所受重力和拉力的冲量为0,因此,拉力的冲量必然等 于小球重力冲量的负值,即:
2 mg I N mgT
第一篇
力学
z
mc mi
§3.2 质点系的动量定理 一、质点系
重 大 数 理 学 院
particle system
相互作用的质点构成的整体,称为质 点系。由运动的可迭加性质(亦即矢量的 性质),质点系的整体运动可以看做是各 个质点单独运动的迭加。 质心
第一篇
力学
讨论
重 大 数 理 学 院
动量与冲量的区别
①.动量是状态量;冲量是过程量; ②.动量方向为物体速度方向;冲量方向为作用时间内动量变化的方向。
冲量定理的使用
动 量 定 理
质点系外力: R
e
Fi
e
2、内力:所研究得质点系内部的各质点之间的相互 i 作用力;用 F i 表示。
质点系内力: R
i
Fi
i
质点系内力系的主矩、主矢为:
R Fi 0
i
i
M o mo Fi i 0
i
解:取整体为研究对 象,其受力如图所示, 系统质心的位置:
xC
mx m
i i
Ci
1 m1l cost m1 3l cost m2 4l cost m1 m2 m3
4m1 m2 l cost 2m1 m2
将上式对时间求二阶导数,有
4m1 m2 2 C x l cost 2m1 m2
则力在时间段 t1 t 2 内的冲量为:
I F dt
t1
t2
单位为:N· s
§11-2 动量定理 一、质点的动量定理 牛顿第二定律: F ma
dv 质点运动微分方程: a dt
dv F ma m dt d F mv dt d P F dt
(m为常量,)
根据质心运动定理,有
4m1 m2 l 2 cost Fox P
Fox P 4m1 m2 l 2 cost
P M vc
即:质点系的质量与其质心速度的乘积等于质点系 的动量。
计算方法:投影法
c PX mvcx mx c Py mvcy my c Pz mvcz mz
二、冲量
1、常力的冲量: 2、变力的冲量
I Ft
元冲量:变力在微时间段内的冲量;即:
大学物理质点和质点系的动量定理
I
O
F t2 t
O
I
t1 t2 t
t1
动量定理常应用于碰撞问题
F
t1 mv2 mv1 t2 t1 t2 t1
在△p一定时, △t 越小,则F越大
t2
Fdt
mv
mv1
F
mv2
注意
第三章 动量守恒和能量守恒
9/14
物理学
第五版
3-1 质点和质点系的动量定理 例 1 一质量为0.05kg、速率为10m/s的刚球,以与钢 板法线呈45º 角的方向撞击在钢板上,并以相同的速率和 角度弹回来.设碰撞时间为0.05s.求在此时间内钢板所受 到的平均冲力 F 解:由动量定理得 F t mv mv mv1 2 1 建立如图坐标系 x
t2
物体由于运动具有的机械效果 Objects with the mechanical effect because of moving 冲量(Impluse) (矢量Vector)
I
t1
Fdt
力对时间的累积效应
The time accumulation effects of forces
作用于质点系的合外力等于质点系动量随 时间的变化率. The combined external force acting on the mass point system is equal to the momentum variation rate of the mass point system with respect to time.
则
y
两边同乘以ydy, 则
2
y
1 3 1 d yv 2 y gdy ydy yv d yv gy yv 3 2 dt y yv 1 2 2 g y d y yv d yv v ( gy ) 2 0 0 3
3-1 质点和质点系的动量定理
在直角坐标系中, 在直角坐标系中,动量定理分量形式
v v v v I = Ixi + I y j + Izk
I x = ∫ Fx dt = mv x − mv0 x
t0 t t
I y = ∫ Fy dt = mv y − mv0 y
t0 t
I z = ∫ Fz dt = mvz − mv0 z
t0
t2
参考系
t2 时刻
动量定理
v v mv1 mv2 S系 系 v v v v S’系 m( v1 − u ) m( v2 − u ) 系
∫t
t2
1
v v v F (t )dt = mv 2 − mv1
动量定理常应用于碰撞问题
v v v ∫t1 mv2 − mv1 F= = t 2 − t1 t 2 − t1
例 1 一质量为 0.05kg、速率为 、速率为10m·s-1 的刚球 , 以 角的方向撞击在钢板上, 与钢板法线呈 45º 角的方向撞击在钢板上 并以相同的 速率和角度弹回来. 速率和角度弹回来 设碰撞时间为 0.05s . 求在此时间 内钢板所受到的平均冲力 F . 建立如图坐标系, 解 建立如图坐标系 由动量定理得
答:冲量的方向是动量增量的方向。 冲量的方向是动量增量的方向。
问题二:冲量大小或动量增量与哪两个因素有关? 问题二:冲量大小或动量增量与哪两个因素有关? 与哪两个因素有关
答:力与时间的增量;要产生同样的动量的增量, 力与时间的增量;要产生同样的动量的增量, 力大力小都可以:力大则时间短些; 力大力小都可以:力大则时间短些;力小则时间 长些。只要力的时间累积即冲量一样, 长些。只要力的时间累积即冲量一样,就产生同 样的动量增量。 样的动量增量。
理论力学课件 第九章动量定理,质点和质点系动量定理
x
m1g
Fx
M O Fy
Fx = −m2ω2e cosωt Fy = −m2ω 2e sin ωt + (m1 + m2 )g
由主动力直接引起的静约束力
Fx静 = 0
Fy静 = (m1 + m2 )g
由质点系运动引起的动约束力
vy
ω
O2
e
O1 θ m2 g
x
m1g
Fx
M O Fy
Fx动 = −m2ω 2e cosωt
5、解方程。
ω
O2
e
O1 θ
例9-3 如图所示,电动机外壳固
定在水平基础上,定子、转子的
质量分别为m1、m2。设定子质心 位 于 转 轴中 心 O1 , 由 于 制 造 误 差,转子质心O2 到O1的距离为
e,已知转子以匀角速度ω 转
动。求: 基础对电机总的水平和
铅垂反力
偏心转子
解:1、研究对象
9.1 质点和质点系动量定理
思考题:两个相同的均质杆 AB 和 AD 用铰链连接,每个杆的质量为m ,长
为L,在屏幕面内运动。已知铰链A的速度为u,两个杆的角速度为ω(转向
如图),求该瞬时系统的动量。
p = 2mu ?
u
B
C2
ω
A
C1
D
ω
9.1 质点和质点系动量定理 思考:己知:车身质量m1,车轮总质量m2,履带总质量m3,车身 的速度为v。求其动量。
9.1 质点和质点系动量定理
∑ dpv =
dt
v Fi
e
微分形式的投影式
∑ ∑ p& x = F x p& y = F y
∑ p& z = F z
2动量定理2
N = 3×10 ×(9.8 + 2×9.8×1.5 / 0.01)
3
顿 = 1.9×10 牛
6
解法二:考虑从锤自由下落到静止的整个过程, 解法二:考虑从锤自由下落到静止的整个过程, 动量变化为零。 动量变化为零。 重力作用时间为
动量定理
τ + 2h/ g
支持力的作用时间为τ 根据动量定理,整个过程合外力的冲量为零, 根据动量定理,整个过程合外力的冲量为零,即
动量定理
Ix = ∫t1 F dt = mv2x mv1x x
t2
I y = ∫t1 Fy dt = mv2 y mv y 1
t2
Iz = ∫t1 F dt = mv2z mv z z 1
t2
显然,动量定理在某一方向上也成立。 显然,动量定理在某一方向上也成立。
在一维情况下,力的整个作用 在一维情况下 力的整个作用 时间内, 时间内,平均力的冲量等于变 力的冲量
解: t时刻,链条下垂部分长度为 y 设
m2
λ
o
y
以链条为一系统有:
下垂部分所受重 力 P1 = m1 g ,
桌上部分所受重 力 P2 = m2 g , 桌上部分所受支持 力 FN = m2 g ,
m1
y
所以系统所受合外力为:F ex = m1 g , 其中 m1 = λ y
在dt间隔内,由动量定理可得: F ex dt = λ ygdt = dp
一.冲量 质点动量定理
重写牛顿第二定律的微分形式
Fdt = dp = d(mv)
考虑一过程, 考虑一过程,时间从t1-t2,两端积分
∫t F dt = ∫p d p = p2 p1 = mv2 mv1
质点和质点系的动量矩和动量矩定理
质点和质点系的动量矩和动量矩定理今天我们进入第十一章的学习这篇文章先学习《11-1 质点和质点系的动量矩》《11-2 动量矩定理》一、质点和质点系的动量矩1、质点的动量矩M O(mv)=r×mv 质点的动量对点O的矩[M O(mv)]z=M z(mv) 质点对点O的动量矩矢在某轴上的投影,等于质点对该轴的动量矩。
2、质点系的动量矩L O=∑M O(m i v i) 质点系的动量对点O的矩L z=∑M z(m i v i) 质点系的动量对z轴的矩[L O]z=L z 质点系对点O的动量矩矢在某轴上的投影,等于质点系对该轴的动量矩刚体平移时:可将质量集中于质心,作为一个质点计算其动量矩。
定轴转动刚体:L z=∑M z(m i v i)=∑m i v i r i=∑m i(ωr i)r i=ω∑m i r i2令:J z=∑m i r i2——刚体对z轴的转动惯量,则:L z=J zω二、动量矩定理1、质点的动量矩定理设O为定点,有称为质点的动量矩定理:质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩.投影式:2、质点系的动量矩定理——质点系动量矩定理,即:质点系对于某定点O的动量矩对时间的导数,等于作用于质点系的外力对于同一点的矩的矢量和。
投影式:内力不能改变质点系的动量矩.例高炉运送矿石用的卷扬机如图,已知鼓轮半径为R,质量为m1,鼓轮对转轴的转动惯量为J,作用在鼓轮上的力偶矩为M。
小车和矿石总质量为m2,轨道倾角为θ。
设绳的质量和各处摩擦不计,求小车的加速度a。
守恒定律质点动量矩守恒定律若M O(F)≡0 ,则M O(mv)=恒量;若M z(F)≡0,则M z(mv)=恒量例小球A、B 以细绳相联,质量均为m ,其余构件质量不计。
忽略摩擦,系统绕z轴自由转动,初始时系统角速度为ω0,当细绳拉断后,各杆与铅垂线成θ角,求这时的角速度ω。
解:1、取整体研究,受力分析知,系统受重力和约束力作用,外力对转轴的矩都等于0,因此系统对转轴的动量矩守恒2、列方程L z1=L z2L z1=2maω0a=2ma2ω0,L z2=2m(a+l sinθ)2ω今天的知识点你都掌握了吗?。
动量和动量守恒定律
3)若某一方向合外力为零,则此方向动量守恒 。
Fxex 0 , Fyex 0 , Fzex 0 ,
px mi vix Cx p y mi viy C y pz mi viz Cz
4)动量守恒定律只在惯性参考系中成立,是自然 界最普遍,最基本的定律之一。
2-2 动量和动量守恒定律 一、质点和质点系的动量定理 1、冲量 质点的动量定理
d(mv) F 由牛顿第二定律 dt t2 v2 两边乘以dt并积分: Fdt d(mv) mv2 mv1
t1 v1
合力的冲量 I
I Fdt —–力的冲量 t
1
动量的增量
t2
*单位:N· s
I x Fx dt
例题 一质量为0.05kg、速率为10m· s-1的刚球,以与 钢板法线呈45º 角的方向撞击在钢板上,并以相同的速 率和角度弹回来。设碰撞时间为0.05s。求在此时间内 钢板所受到的平均冲力 F 。
解:建立如图坐标系, 由动量定理得
Fx t mv2 x mv1x mv cos (mv cos ) 2mv cos Fy t mv2 y mv1 y
2 1 2 1 2
说 明
1
mv
mv1
F
mv2
t1 Fdt F (t2 t1 ) t2 t1 Fdt mv 2 mv1 F t2 t1 t2 t1
t2
结论:物体动量变化一定的情况下,作用时间越长, 物体受到的平均冲力越小; 反之则越大。 海绵垫子可 以延长运动员 下落时与其接 触的时间,这 样就减小了地 面对人的冲击 力。
b
W ( Fxdx Fy dy Fz dz)
大学物理质点和质点系的动量定理
01
03
详细描述:冲量被定义为力和力的作用时间的乘积, 是改变物体动量的量。在直线运动中,冲量等于物体
动量的变化量。
04
总结词:冲量概念
质点在曲线运动中的动量定理应用
总结词:复杂应用 总结词:刚体运动
详细描述:质点在曲线运动中,动量定理的应用 需要考虑力的方向和大小随时间的变化。通过分 析力和速度的变化,可以深入理解物体运动的规 律。
质点
在物理学中,质点是一个理想化的模 型,用于描述具有质量的点在空间中 的运动。质点不考虑形状、大小和旋 转,只考虑其位置和质量。
质点系
质点系是由两个或多个质点组成的系 统。这些质点之间可以相互作用,如 万有引力、弹性力等。
动量的定义和计算方法
• 动量:物体的动量定义为质量与 速度的乘积,用符号p表示。计 算公式为p=mv,其中m为物体 的质量,v为物体的速度。
详细描述:刚体运动是质点在曲线运动中的一种 特殊情况,其特点是物体形状和质量分布不随时 间改变。动量定理在刚体运动中可以用来分析旋 转和角速度的变化。
质点系在碰撞中的动量定理应用
总结词:碰撞分析
详细描述:质点系在碰撞过 程中,动量定理是重要的分 析工具。通过分析碰撞前后 的动量和力的关系,可以确 定碰撞的性质(弹性、非弹 性)和能量损失情况。
总结词:动量守恒定律
详细描述:在理想情况下, 没有外力作用时,质点系内 的动量是守恒的。动量守恒 定律是动量定理的一种特殊 情况,广泛应用于物理和工 程领域。
03 质点和质点系的动量定理 的推导和证明
动量定理的推导过程
初始状态 假设一个质点在某个时刻的速度 为 (v),质量为 (m),则该质点的 动量为 (p = mv)。
4_1质点和质点系的动量定理
p = p0
p =0
3–1 质点和质点系的动量定理 1 动量定理常应用于碰撞问题
第三章动量守恒定律和能量守恒定律
∫ F=
mv2 mv1 = t 2 t1 t 2 t1
t1
t2
mv
Fdt
m v1
F
mv2
在 p 一定时 t 越小,则 F 越大 . 越小, 例如人从高处跳下,飞 例如人从高处跳下, 机与鸟相撞, 机与鸟相撞,打桩等碰 撞事件中, 撞事件中,作用时间很 短,冲力很大 .
�
∫
t
0
( F mg )dt = 0 mv0
3–1 质点和质点系的动量定理 1
第三章动量守恒定律和能量守恒定律
F t mgt = m 2 gh
由此解得
F 1 = 1+ mg t
计算结果如下
2h 0.55 = 1+ g t
t
F / mg
10-1s 6.5
10-2s 56
10-3s 551
10-4s 5501
第三章动量守恒定律和能量守恒定律
内力不改变质点系的总动量, 内力不改变质点系的总动量,但内力 做功却可以改变系统的总动能. 做功却可以改变系统的总动能
初始速度
v g 0 = v b 0 = 0 m b = 2m g 则
且方向相反 则
p0 = 0
推开后速度 v g = 2 v b 推开前后系统动量不变
(1)冲量的方向与动量增量的方向一致. (1)冲量的方向与动量增量的方向一致. 冲量的方向与动量增量的方向一致 (2)动量定理中的动量和冲量都是矢量, (2)动量定理中的动量和冲量都是矢量,常用的是 动量定理中的动量和冲量都是矢量 其在某个方向上的分量式. 其在某个方向上的分量式. 在碰撞或冲击问题中, 牛顿定律无法直接应用, (3) 在碰撞或冲击问题中, 牛顿定律无法直接应用, 而动量定理的优点在于避开了细节而只讨论过程的 总体效果. 总体效果. 动量定理仅适用于惯性系, (4) 动量定理仅适用于惯性系, 且与惯性系的选择 无关. 无关.
3_1质点和质点系的动量定理
质点系动量定理:作用于系统的合外力冲量等于 质点系动量定理:作用于系统的合外力冲量等于 系统的动量增量。 系统的动量增量。 将上式推广到n个质点的系统, 将上式推广到 个质点的系统,质点系动量定理为 系统
3–1 质点和质点系的动量定理 第三章动量守恒定律和能量守恒定律 1 n n → → t2 v v v ∫ F 合外力 d t = ∑ m i v i − ∑ m i v i 0 = P − P 0
∫
t2
t1
v v v v v v v v (F1 + F2 +F12 + F21)dt = (m1v1 + m2 v2 ) − (m1v10 + m2 v20 )
v v 由牛III, 由牛 ,一对内力抵消 F12 + F21 = 0 ,故
∫
t2
t1
v v v v v v ( F1 + F2 )dt = ( m1 v1 + m2 v 2 ) − ( m1 v10 + m2 v 20 )
0 0
F合
O′ ′
r → → T → v T0 mg 0 I G = ∫ m g dt = − m g ∫ dt = − mg j T0
r v
3. 合力给物体的冲量 给物体的冲量
3–1 质点和质点系的动量定理 1
第三章动量守恒定律和能量守恒定律
合力给物体的冲量为 力给物体的冲量为
→ → → → → v T0 → T0 → I合 = ∫ F合 dt = ∫ (T + m g)dt =m v2 − m v1 = m v − m v = 0 0 0
3–1 质点和质点系的动量定理 1
第三章动量守恒定律和能量守恒定律
动量守恒定律和能量守恒定律
过程为有限过程,必须用质点系的 O
x
动量定理的积分形式:
I外
t2
t1
Ndt
p
但积分形式只能算出该段时间内的平均力,不能算出
各个时刻的瞬时力。
t2
t1
Ndt
N t
p
N p t
3-1
3-2 动量守恒定律
一. 动量守恒定律
推导:由质点系的动量定理: F外dt dp 当外力为零时, F外 0 dp 0
3-1
五. 质点系的动量定理
推导(以只有两个质点的质 点系为例):由质点的动量 定理:
dI dp
dI
F1
dI F12
dp1
dI F2
dI F21
dp2
质点系
F1
F12
m1
F2
F21
m2
(dI F1
dI F2
)
(dI F12
dI ) F21
dp1
dp2
(dI F1
dI F2
)
dp1
dp2
3-4
F dl
d
1 2
mv
2
F
定义 1:(元)功:
dW F dl
定义
2:动能:
Ek
1 mv2 2
P dl
则有动能定理: dW dEk (微分形式)
dW dE 2
Ek 2
1
Ek 1
k
W Ek (积分形式)
3-4
一. 功
1. 元功:dW F dl
总功: W
2
1
F
dl
说明:当力为恒力,且质点做直线运动 时,
动量守恒定律和能量守恒定律
3-1 质点和质点系的动量定理
3-2 质点系动量定理和质心运动定理
解:
dm = 2xσdx
a/ 2
y a
三角形质心坐标x 三角形质心坐标 c是
xc
∫ xdm = ∫ = ∫ dm ∫
0
a/
0
2 a = 2 3 2σxdx
2σx dx
2
O x dx
x
这个结果和熟知的三角形重心位置一致。 这个结果和熟知的三角形重心位置一致。
11
三、质心运动定理 右边: 右边:
r d 据质点系动量定理: 据质点系动量定理 ∑ F = (∑m v ).
质点系动量定理:在一段时间内, 质点系动量定理:在一段时间内,作用于质点系的 外力矢量和的冲量等于质点系动量的增量. 外力矢量和的冲量等于质点系动量的增量
1
v d n v 微分形式) Fi = (∑mivi ) (微分形式) ∑ dt i=1 i=1
n
其分量式
Fixdt = ∑mi vix − ∑mi vi 0x ∫t0 ∑ t ∫t0 ∑Fiydt = ∑miviy − ∑mivi0 y t Fizdt = ∑mi viz − ∑mi vi 0z ∫t0 ∑
z
dm ( x , y , z )
体分布 面分布 线分布
dm = ρdV
r r
x o
M
dm = σdS dm = λdl
y
dm ρ= dτ dm σ= ds dm λ= dl
dm:宏观小,微观大 宏观小,
xc =
r rc =
∫ ∫
xdm M ydm M
注意: 注意:
1.质心的坐标值与坐标系的选取有关; 2.质量分布均匀、形状对称的实物,质 心位于其几何中心处; 3.不太大的实物,质心与重心相重合。
大学物理质点和质点系的动量定理 动量守恒定律
t1 t2
质点系动量定理 作用于系统的合外力的冲量等于 系统动量的增量.
F2 t1 ( F1 F12 )dt m1v1 m1v10 F21 F12 t2 F1 m2 ( F2 F21 )dt m2 v2 m2 v20 m1 t1 因为内力 F12 F21 0 ,故 t2 ( F1 F2 )dt (m1v1 m2 v2 ) (m1v10 m2 v20 )
注意:
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 . ex dp i ex 力的瞬时作用规律 F , F 0, P C dt
1)系统的动量守恒是指系统的总动量不变,系统 内任一物体的动量是可变的, 各物体的动量必相对于同 一惯性参考系 .
t0 i i i
可知
ex ex 若质点系所受的合外力为零 F F 0 i i 则系统的总动量守恒,即 p pi 保持不变 .
ex 力的瞬时作用规律 F ex dp , F 0, P C dt
i
2– 1 质点和质点系的动量定理 动量守恒定 律 动量守恒定律
I E
p mv
Fdt dp d (mv)
dp d (mv) F dt dt
t2 冲量 力对时间的积分(矢量) I Fdt
t1
t2
t1
Fdt p2 p1 mv2 mv1
2– 1 质点和质点系的动量定理 动量守恒定 律
mv1
F
大学物理动量定理
子弹穿过两木块所用的时间分别为t1和t2,木块对子 弹的阻力为恒力F,则子弹穿出后,木块A的速度大小
为
,木块B的速度大小为
.
解:
F t1 m1vA m2vA
vA
F m1
t1 m2
F t2 m2vB m2vA
vB
F t2 m2
vA
F t2 m2
F m1
t1 m2
2-8. 一质量为m的质点在xoy平面上运动,其位置矢量
机械能守恒:
1 2
m2 v02
1 2
(m1
m2 )v2
1 2
kxm2 ax
1 xmax 2 x0
下次课内容:
§3-1 刚体运动的描述 §3-2-1 力矩 §3-2-2 刚体绕定轴转动定律
j
t
i
v bs
a in t
sin j]
t
i
b cost Fx m 2 x
j
dt
m2[x i y j ]
Fy m2 y
A(a,0) B(0, b)
Wx
0
a Fxdx m2
0 xdx 1 ma22
a
2
Wy
b
0 Fydy m 2
bydy 1 mb2 2
0
2
质点动能定理
W
为
r
a
cos
t
i b sin t j
(SI).
式中a,b, 是正值常
数, 且a > b.
(1)求质点在A点(a,0)和B 点(0,b)的动能; (2)求质点所 受的作用力 F 以及质点从A点运动到B点 的过程中 F 的分力Fx和Fy分别做的功.
解:
质点和质点系的动量定理
质点和质点系的动量定理
质点和质点系的动量定理是物理学中的一个重要定理,可以用来描述质点和质点系的动量变化。
对于一个质点来说,动量定理可以表示为:质点的动量变化等于作用在质点上的力的时间积分。
具体表达式为:Δp = ∫ F dt
其中,Δp表示质点的动量变化,F表示作用在质点上的力,t 表示时间。
对于一个质点系来说,动量定理可以表示为:质点系的总动量变化等于作用在质点系上的外力的时间积分。
具体表达式为:ΔP = ∫ Fext dt
其中,ΔP表示质点系的总动量变化,Fext表示作用在质点系上的外力,t表示时间。
动量定理可以用来分析和解释质点或质点系在受到外力作用时的动量变化情况。
根据动量定理,当作用在质点或质点系上的力不为0时,质点或质点系的动量会发生变化,变化的大小与力持续的时间和力的大小有关。
质点动力学-动量及动量定理
t I t F d t
2 1
分量式:
Fx
Ix Iy Iz
t2 t1 t2 t1 t2 t1
Fx dt F y dt Fz dt
t I t F d t
2 1
+
0 t1 t2 t
(注意可取 + -号)
冲量的几何意义:冲量
I x 在数值上等于
Fx ~ t 图线与坐标轴所围的面积。
物体状态的改变不仅与所受到的力 F 有关, 还与力作用的延续时间 t有关 冲量
(例:推车)
有关,还与 物体状态的改变不仅与速度 v
物体的质量 m 有关 动量
(例:木、铁锤敲钉子) 显然,我们必须把注意力从力和运动的 瞬时关系转向力和运动的过程关系
冲量
质点动量定理 方向:速度的方向
1、动量 (描述质点运动状态,矢量)
解: 车和煤为系统,向下为Y正向, 向左为X正向,建立坐标系。 v2 tt+dt时刻,dm = dt
X
v1
Y
P (t ) ( m0 t )v 2 dt v1 P ( t d t ) ( m0 t d t ) v 2 dP P (t dt ) P (t ) (v 2 v1 )dt
P= m v 大小:mv
2、冲量 (力的作用对时间的积累,矢量)
I
方向:速度变化的方向
(1) 常力的冲量
I Ft
(2) 变力的冲量 F2 t 2 F1 t 1
Fi t i Fn t n
I
I F1t1 F2t2 Fntn
注意:冲量 I 的方向和瞬时力 F 的方向不同!
质点系的动量定理
i
Fi
d dt
i
Pi
以 F 和 P 表F示系d统P的合外力和总动量,上式可写为:
dt
由此可得F“dt质点d系P的动微量分定形理式”:
t2
Fdt
P2
dP
P
积分形式
t1
P1
内力不改变系统的总动量,但会使系统内部动量重新分配。 只有外力才能改变系统的总动量。
的速度,动量和应是同一时刻的===动量之和。
2、系统动量守恒,但每个质点的动量可能变化。
3、在碰撞、打击、爆炸等相互作用时间极短的过程 ===中,往往可忽略外力(外力与内力相比小很多)— ======——近似守恒条件。
4、动量守恒可在某一方向上成立(合外力沿某一方 ===向为零。)——部分守恒条件
5、动量守恒定律在微观高速范围仍适用。是比牛顿 ===定律更普遍的最基本的定律
离S1=100米,问另一块落地点与发射点的距离是多少? (空气阻力不计,g=9.8m/s2)
解:已知第一块方向竖直向下
h
v1t
'
1 2
gt
'2
t ' 1s 为第一块落地时间
v1 v1y 14 7m / s
y v2
h
v1 h S1
x
炮弹在最高点,vy
0, 到最高点用时为t
好触到水平桌面上,如果把绳
的上端放开,绳将落在桌面上。
试证明:在绳下落的过程中,
任意时刻作用于桌面的压力,
等于已落到桌面上的绳重力的
x
三倍。
证明:取如图坐标,设t 时刻已有x
o
长的柔绳落至桌面,随后的dt时间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t2
t1
t2
t1
(F1
(F2
F12 )dt F21)dt
m1v1 m1v10 m2v2 m2v20
t2
t1
t2
t1
(F1
(F2
F12 )dt F21)dt
m1v1 m1v10 m2v2 m2v20
因内力F12 F21 0,故将两式相加后得:
t2
t1
(F1
逆风行舟的分析:
返回 退出
(2) 动量定理中的动量和冲量都是矢量,符合 矢量叠加原理,或以分量形式进行计算:
Ix
t2 t1
Fxdt
mv2x
mv1x
分量表示
Iy
t2 t1
Fydt
mv2 y
mv1y
Iz
t2 t1
Fzdt
mv2z
mv1z
上式表明:某方向上所受外力的冲量,等
于该方向上动量的增量.
力的累积效应
F 对时间积累
I, p
F 对空间积累
W,E
动量、冲量 、动量定理、动量守恒 动能、功、动能定理、机械能守恒
一 冲量 质点的动量定理
➢ 动量 p mv
F
dp
d(mv)
Fdt
dtdp
dd(tmv)
t2
t1
Fdt
p2
p1
mv2
mv1
➢ 冲量(矢量) I
t2
Fdt
t1
F
dp
d(mv)
dt dt
I
t2 t1
Fdt
mv2
mv1
动量定理 在给定的时间间隔内,外力
作用在质点上的冲量,等于质点在此时间内
动量的增量.
v I
pv
说明
v I
(1)
冲量t1t2 IFvdt的方向Iv是 所pv有元m冲vvF2量dt
mvv1
的合矢量的方向。动量定理反映了力在时间
上的累积作用对质点产生的效果。
x
mv1
钢板法线呈45º角的方向撞击 在钢板上,并以相同的速率
O
mv2
和角度弹回来.设碰撞时间
为0.05 s.求在此时间内钢板
y
所受到的平均冲力.
解 由动量定理得:
mv1
x O mv2 y
方向与Ox 轴正向相同.
二 质点系的动量定理
对两质点分别应用 质点动量定理:质点系源自F2F1F12
m1
F21
果作用的时间(1) =0.1 s, (2) =0.01 s 。试求
锤对工件的平均冲力。
解:以重锤为研究对象,分析受力,作受力图。 解法一:研究锤和工件的作用过程,在竖直方向利 用动量定理,取竖直向上为正。
(FN mg )τ 0 (mv0 ) m 2gh
FN mg m 2gh / τ
(1) τ 0.1 s, FN 1.92 105 N (2) τ 0.01 s, FN 1.9106 N
(3) 两种特殊情况下的 冲量的计算
① F 为恒力
I Ft
② F 为变力(只变大
小,方向不变)
I
t2 t1
Fdt F (t2
t1)
F
O t1 F F O t1
t2 t t2 t
(4) 动量定理是牛顿第二定律的积分形式,只 适用于惯性系。
例1 质量m=0.3 t的重锤,从高度h=1.5 m处自 由落到受锻压的工件上,工件发生形变。如
也可类似于质点动量定理一样将其写
成分量形式。
作业:3-8、3-10
F2 )dt
(m1v1
m2 v2
)
(m1v10
m2 v20
)
t2
t1
F exdt
n i 1
mivi
n i 1
mi vi0
t2
t1
F exdt
n i 1
mivi
n i 1
mi vi0
p
p0
作用于系统的合外力的冲量等于系统
动量的增量——质点系动量定理
F ex F1 F2 FN
FN mg
返回 退出
解法二:研究锤从自由下落到静止的整个过程, 其动量变化为零。
重力作用时间为 2h / g
支持力的作用时间为
由动量定理: FNτ mg(τ 2h / g ) 0
FN mg m 2gh / τ
返回 退出
例2 一质量为0.05 kg、 速率为10 m·s-1的刚球,以与