已知比例尺求图上距离和实际距离

合集下载

已知比例尺和图上讲义距离求实际距离

已知比例尺和图上讲义距离求实际距离
10 × 500000 = 5000000(厘米) = 50(千米)
4、图上1厘米表示实际距离5千米。 5 × 10= 50(千米) 答:地铁1号线的实际长度是50千米。
先把图中的线段比例尺改写成数值比 例尺,再用直尺量出图中河西村与汽车站 的距离是多少厘米,并计算出两地的实际 距离大约是多少?
1、图上距离与实际距离的比是1:500000 1
2、图上距离是实际距离的500000
3、实际距离是图上距离的500000倍。
4、图上1厘米表示实际距离5千米。
1、图上距离与实际距离的比是1:500000 图上距离:实际距离=1:500000
解:设地铁1号线的实际长度是x厘米
10 = 1 x 500000
x = 10 × 500000
x = 5000000
5000000厘米 = 50千米
1 2、图上距离是实际距离的500000
10 ÷ 1
500000
用到了那条关系式?
= 10 × 500000 = 5000000(厘米)
图上距离÷比例 尺=实际距离
= 50(千米)
3、实际距离是图上距离的500000倍。
16、在比例尺是6:1的图纸上理得一种精密零件长是3厘 米,这个零件的实际长是多少毫米?
谢 谢 各 位 聆 听
此处加标题
已知比例尺和图上距 离求实际距离
眼镜小生制作
精品jing
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?

实际距离=比例尺图上距离实际距离=比例尺宽

实际距离=比例尺图上距离实际距离=比例尺宽
认识比例尺
我校新建一块长方形草坪,长50米,宽30米。 把这块草坪按一定的比例缩小,画出的平 面图 长5厘米,宽3厘米。
写出草坪长的图上距离和实际距离的比。

5厘米
3厘米 比例尺 1﹕1000
图上距离﹕实际距离 = 比例尺
图上距离 实际距离 =
比例尺
学校草坪平面图 1﹕1000
比例尺1﹕1000 表示
1
图上距离是实际距离的( 1000 )。
实际距离是图上距离的( 1000 )倍。
图上1厘米的距离表示实际距离(1000厘米 )。
10米
说出下面比例尺的意义。
图上1厘米等于 实际22千米
图上1厘米等于 实际22米
荷花村到杏树村的实际距离是10千米。量出
这两个村的图上距离,并算出这幅图的比例
尺。
0 ( 4 ) ( 8 ) (12) (16)千米
一、选择:根据提示选择合适的比例尺
①1︰500000
② 1︰5000
③1︰50000000
④ 1︰5000000
图上距离是实际距离的五百万分之一。 (④ )
图上1厘米表示实际距离5000米。 ( ① ) 实际距离是图上距离的5000倍。 ( ② )
三、判断
(1)比例尺就是图上距离与实际距离的比。√ ( )
按照国家规定的标准、图示和
比例尺绘制的地图叫做国家基本比 例尺地图。我国的国家基本比例尺 地图的比例尺有以下几种: 1:500、1:1000、1:2000、1:5000、 1 :10000、1:25000、1:50000、 1:100000、1:200000、1:500000、 1:1000000
(2) 0 400 800 1200 1600米

图上距离与实际距离

图上距离与实际距离
图上距离与实际距离
比例尺
1、如何计算比例尺?
图上距离 比例尺 = 实际距离 2、比例尺有单位吗?
3、比例尺通常化成1:n的形式?
随堂练习
1.已知A、B两市的实际距离是300km, 量得两地在地图上的距离是5cm,则这 地图册的比例尺是____; 注意:单位必须化统一且比例尺跟单 位的选取无关. 2.若在此地图册上量得A、C两市的距离 是16cm,则两市的实际距离是_km.
线段的比:两条线段长度的比叫做这 两条线段的比。 讨论: (1)若线段a:b=k,那么k的取值有 限制吗?
(2)求两条线段的比时,两条线段的
比值与采用的长度单位有没有关系?
(3)线段的比有单位吗?
成比例的线段
在四条线段中,如果两条线段的比等于另两条线 段的比,那么称这四条线段成比例.
a c = 即a∶b=c∶d或 b d
回忆比例的基本性质
如果a:b=c:d 或 ,那么ad=bc 。
a c = b d
如果ad=bc ,那么a:b=c:d 或
.
类似地与比例中项有关, 如果a:b=b:c 2 那么 b =ac . 2 如果b =ac那么 a:b=b:c .
注意:b≠o,d≠0
活动:探究比例的性质
ab cd a c = (1)如果 = ,那么 成立吗? b d b d
线段的比有顺序性,四条线段成比例也有顺序
a c 性.如 = 是线段a、b、c、d成比例,而不是 b d
线段a、c、b、d成比例;若a、c、d、b成比例, a d = 应表示为 c b
试一试
1.如果a=2㎝,bd是成比例线段吗?
比例中项
特别地, 如果a:b=b:c,这时我们把b 叫做a、c的比例中项,反之亦成立。

比例的应用比例尺例1例2例3

比例的应用比例尺例1例2例3

二、知识应用
1. 一个圆柱形零件的高是5mm,在图纸上的高是2cm, 这幅图纸的比例尺是多少?
图上距离:实际距离=比例尺 2cm=20mm 20:5=4:1 答:这幅图纸的比例尺是4:1。
绿色圃中小学教育网
二、知识应用
2. 一副地图的比例尺1:30000000,你能用线段比例尺表示出来吗?
绿色圃中小学教育网
一、探究新知
(一)比例尺的概念
一幅图的图上距离和实际距离的 比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺
绿色圃中小学教育网

图上距离
实际距离
=比例尺
一、探究新知
(一)比例尺的概念
这是线段比例尺, 表示地图上1cm的距 离相当于地面上40 千米的距离。
一、探究新知
(一)比例尺的概念
在绘制比较精细的零 件图时,经常需要把 零件的尺寸按一定的 比放大,你知道这幅 零件图纸的比例尺 2:1表示什么吗? 比例尺2:1表示图上 距离是实际距离的2 倍。实际距离是图 1 上距离的 2 。 为了计算方便,一般把比例尺写成前项或后项是1的形式!
绿色圃中小学教育网
比例尺有哪些形式? 怎样求一幅图的比例尺?
图上距离:实际距离=比例尺 图上距离 实际距离 =比例尺 数值比例尺 线段比例尺
绿色圃中小学教育网
一、复习旧知
说说下列比例尺的实际含义。
1:1500
1 8000
60 90 120千米
0
30
绿色圃中小学教育网
54.5:x=1:100
=5450(厘米)
100
x =54.5×100 x =5450
5450厘米=54.5米 答:比萨斜塔的实际高度是54.5米。

比例尺的应用(求图上距离)

比例尺的应用(求图上距离)

作业
按8:1的比例尺画在图纸上,长和宽各
应画多长?
练1
小军量得公园一个圆形花坛的周长是
157米,他想把它画在平面图上,请你
帮帮画一画。(比例尺根据纸的大小和 圆规的大小确定)
练2
一幅图的线段比例尺是:0
80 160 240 千米
甲乙两城在这幅地图上相距15厘米,两 城间的实际距离是多少千米?如果把甲 乙两城画在另一幅比例尺是 1 ︰10000000的地图上,应画 多少厘米?
答:应画40厘米。
一张地图的比例尺是1︰200000, 从甲地到乙地的距离是60千米,求
图上距离是多少厘米。
试1
英华小学有一块长120米、宽80米 的长方形操场,画在比例尺为1 : 4000的平面图上,长和宽各应画多 少厘米?图上面积是多少平方厘米?
试2
一个长方形机件长4.5毫米,宽2.4毫米,


一条跑道长200米,如果用1:500的比例尺画 在图纸上,应画多长? 算术方法
200米=20000厘米 实际距离×比例尺=图上距离
1 20000× =40(厘米) 500
列方程法
解:设应画χ厘米。 200米=20000厘米 图上距离︰实际距离=比例尺 χ︰20000=1︰500 500χ=20000 ×1 χ=20000÷500 χ=40
( 图上距离 ) =比例尺 ( 实际距离 ) ( =实际距离 ( 图上距离)÷ 比例尺 ) ( =图上距离 实际距离)× 比例尺 ) (
在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲 乙两地的实际距离是780千米。 (1)求这幅图的比例尺。 (2)在这幅地图上量得A、B两城的图上距离是5厘米,求A、 B两城的实际距离。 (1)比例尺: 13厘米︰780千米 =13厘米︰78000000厘米 =1 ︰6000000 (2)实际距离 解:设A、B两城的实际 距离是χ厘米。 5 ︰ χ=1 ︰6000000 1χ=5×6000000 (2)实际距离: 1 χ=30000000 5 ÷ 6000000 =30000000(厘米) 30000000厘米=300千米 =300千米 答:这幅图的比例尺是1 ︰6000000,A、B两城 的实际距离是300千米。

比例尺的三个公式题

比例尺的三个公式题

比例尺的三个公式题
当涉及到比例尺的计算时,有三个常用的公式可以帮助我们求解。

下面我将分别介绍这三个公式,并给出具体的计算示例。

1. 比例尺的定义公式:
比例尺是地图上距离与实际距离之间的比例关系。

它可以用以下公式表示:
比例尺 = 地图上的距离 / 实际距离。

例如,如果一张地图上的距离是5厘米,而实际距离是10公里,那么比例尺可以计算为:
比例尺 = 5厘米 / 10公里 = 1:200,000。

2. 求实际距离的公式:
当我们知道比例尺和地图上的距离时,可以使用以下公式求解实际距离:
实际距离 = 比例尺× 地图上的距离。

例如,如果一张地图的比例尺是1:100,000,而地图上的距离是3厘米,那么实际距离可以计算为:
实际距离= 1:100,000 × 3厘米 = 3公里。

3. 求地图上的距离的公式:
当我们知道比例尺和实际距离时,可以使用以下公式求解地图上的距离:
地图上的距离 = 实际距离 / 比例尺。

例如,如果一张地图的比例尺是1:50,000,而实际距离是6公里,那么地图上的距离可以计算为:
地图上的距离 = 6公里 / 1:50,000 = 0.12厘米。

这些公式可以帮助我们在地图测量和规划中进行距离的计算和转换。

但需要注意的是,比例尺只是地图上距离与实际距离的比例
关系,不考虑地形的复杂性和变化。

因此,在实际使用中,需要结合其他因素进行综合考虑。

希望以上解答能够满足你的要求,如果还有其他问题,请随时提问。

比例尺求实际距离的三种方法

比例尺求实际距离的三种方法

比例尺求实际距离的三种方法
嘿,朋友们!今天咱来聊聊比例尺求实际距离的三种超棒方法呀!
第一种,那就是直接用图上距离除以比例尺啦!就比如啊,你有张地图,图上两地之间是 5 厘米,比例尺是 1:10000,那实际距离不就是
5÷(1/10000)=50000 厘米,也就是 500 米嘛!
第二种呢,用比例关系来解决!就好像你做个数学题,知道图上距离和比例尺的比例,那实际距离不也就水到渠成能算出来啦!打个比方,地图上量得是 3 厘米,比例尺是 1:5000,那不就是设实际距离为 x 厘米,
3:x=1:5000,x 不就等于 15000 厘米,即 150 米嘛!
第三种,嘿嘿,那就是利用等量代换的思想哦!这就好比你玩拼图,换到对的位置就恍然大悟啦!好比有个图形,通过一些已知条件推出图上距离和比例尺的关系,那实际距离不就能轻松找到啦!比如说,已知一些相关信息推出图上距离是 4 厘米,比例尺是 1:8000,那实际距离自然就是
4÷(1/8000)=32000 厘米,也就是 320 米呀!
哇塞,这三种方法是不是超赞的呀!大家可一定要学会哦,这样以后遇到比例尺求实际距离就再也不怕啦!。

初一地理地图计距离方法

初一地理地图计距离方法

初一地理地图计距离方法地理是关于地球的研究科学,而地图则是地理学中常用的工具。

通过地图,我们可以更好地理解和分析地球上的各种现象和关系。

而在地理学习的过程中,计算距离是一项非常重要的技巧。

本文将介绍初一地理学习中常用的几种计算距离的方法。

一、比例尺计算比例尺是地图上显示距离与实际距离之间的比例关系。

在地图上通常有一个比例尺尺度的指示,如1:10000。

这意味着地图上的1cm实际上相当于10000cm(或100m)的实际距离。

通过比例尺,我们可以简单地计算地图上两点之间的距离。

例如,如果地图上两点的距离为5cm,而比例尺为1:10000,则实际距离为5cm × 10000 = 50000cm = 500m。

因此,两点之间的实际距离是500m。

二、使用经纬度计算经纬度是地球表面上一个点的坐标。

经度表示东西方向的位置,以子午线为基准,最大值为180度,分别用E表示东经和W表示西经。

纬度表示南北方向的位置,以赤道为基准,最大值为90度,分别用N 表示北纬和S表示南纬。

通过经纬度,我们可以计算两个点之间的距离。

这种方法通常适用于全球范围内的距离计算。

常用的经纬度计算距离的公式有球面三角法和海卡公式。

通过这些公式,我们可以准确地计算两点之间的球面距离。

三、使用方位角和距离计算方位角和距离计算适用于地图上的直线距离。

方位角是从一个点指向另一个点的方向角度,通常以北为参考。

通过方位角和距离,我们可以计算直线距离。

首先,确定两点之间的方位角。

然后,使用三角关系计算直线距离。

这种方法适用于地图上近距离的两点计算。

四、使用网格计算网格是地图上的方格,用于帮助确定位置和测量距离。

通过网格计算,我们可以估算两点之间的距离。

首先,确定两点所在的方格。

然后,通过计算两点在方格中的行数和列数之差,以及每个方格的大小,可以估算出两点之间的距离。

总结:初一地理学习中,我们可以通过比例尺计算、使用经纬度计算、方位角和距离计算以及网格计算等方法来计算距离。

图上距离与实际距离课件

图上距离与实际距离课件

问题聚焦
你能说说线段的比与成比例线段的相同点和不同点吗?
1)他们都具有有序性; 2)比是两个数之间的一种运算,运算的结果称 为比值;而成比例线段是指两组比值相等的4条 线段之间所成立的一种关系; 3)比的结果(比值)是一个数或式;比例是一个 用“=”连接的等式,它满足等式的一切性质。
典例分析
例1.如果a=1㎝,b=0.4dm,c=2㎝,d=8㎝, 那么a、b、c、d是成比例线段吗?
如果ad=bc,则 a:b=c:d 或 a= c (b,d都不为0)。
bd
重要结论
在a:b=c:d中,当内项b=c时,上面的比例式可 以写成:a:b=b:d(即b2=ad),这时我们把b叫做a 和d的比例中项.
及时巩固
1.已知线段b是线段a、c的比例中项,其中a=2,c=8,则b= . 2.已知b是a、c的比例中项,其中a=2,c=8,则b= .
变式1:如果a=1㎝,b=8㎝,c=2㎝,d=4㎝, 那么a、b、c、d是成比例线段吗?
变式2:如果a=1㎝,b=8㎝,c=2㎝,d=4㎝, 那这四条线段成比例吗? 思考:那么你觉得该如何判断四条线段是不是成 比例线段呢?
重要结论
比例的基本性质:
如果a:b=c:d或
a=
c
,那么ad=bc;反之,
bd
苏科版数学九年级下册
6.1 图上距离与实际问题
图片欣赏
两幅图有什么特点? 形状相同、大小相等
全等图形
图片欣赏
两幅图有什么特点? 形状相同、大小不等 你能举诞生活中的实例吗?
是什么决定了大小不等?
对应线段不等,因此要研究形状相同的图形,第一要研 究线段的比。
ห้องสมุดไป่ตู้
苏科版数学九年级下册

图上距离应该等于什么

图上距离应该等于什么

图上距离应该等于什么
实际距离=图上距离÷比例尺,图上距离=实际距离×比例尺。

在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。

这时,就要确定图上距离和相对应的实际距离的比。

扩展资料
比例尺公式
图上距离=实际距离×比例尺。

实际距离=图上距离÷比例尺。

比例尺=图上距离÷实际距离.(在比例尺计算中要注意单位间的`换算)。

(1公里=1千米=1×1000米=1×100000厘米)。

单位换算:图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零。

比例地图
国家测绘部门将1∶5000、1∶1万、1∶2.5万、1∶5万、1∶10万、1∶25万、1∶50万和1∶100万八种比例尺地形图规定为国家基本比例尺地形图,简称基本地形图,亦称国家基本图,以保证满足各部门的基本需要。

其中:
大比例尺地形图:1∶5000至1∶10万的地形图;
中比例尺地形图:1∶25万和1∶50万地形图;
小比例尺地形图:1∶100万地形图。

生活中的比例尺
如:地图,绘图、测量、田地、航空、公路、航海,建筑。

比例尺的三个公式

比例尺的三个公式

比例尺的三个公式1、什么叫比例尺?地图上的距离与实际距离之比称为比例尺。

也就是图上距离:实际距离 = 比例尺或写成(= 比例尺)2、比例尺的种类:(1)、数字比例尺:如:1:100000或通常是前项是1的比或分子是1的分数。

(2)线比例尺:是指地图上1cm的距离相当于实际几公里(或几米)的距离。

例如:意味着地图上1cm的距离相当于实际30km的距离。

(3)、缩小比例尺:当比例尺小于1时,所得的图上距离小于实际距离,这样的比例尺叫缩小比例尺。

如:由比例尺1:50而得到的图上距离一定小于实际距离,即为缩小比例尺。

在实际生活中应用比较广泛:如盖大楼绘制的图纸。

(4)放大比例:当地图上的距离大于实际距离时,如电子元器件的平面图,地图的尺寸必然大于实际尺寸,所以大于1的比例称为放大比例。

3、比例尺的求法与应用(1)求标度:先把图上的距离和实际距离以比值的形式写出来,再把它变成前段1的比值或分子中1的分数。

(放大刻度,必须换算成最后一项的比值为1)例如:在一张中国地图上,太原和北京之间的距离是5厘米,两地之间的实际距离是500公里。

找出这张地图的比例。

解: 5厘米:500千米=5厘米:厘米=1:(或)()答:这幅地图的比例尺是1:(2)、求图距或实距:先设未知数x,再把已知数和未知数x 代入关系式中,就得到方程,然后解方程。

例:北京到广州的距离是1917千米,在比例尺是1:9000000的地图上北京到广州的图距是多少厘米?解:设北京的广州的图距是x厘米,根据:= 比例尺得:=x =x = 21.3地图上北京到广州的距离是21.3厘米。

例:在1:8000000的地图上量得两地的距离是4厘米,,问两地的实际距离有多少千米?解:设:两地的实际距离x千米,根据= 比例尺得:=x = 4X =厘米= 320千米答:两地的实际距离320千米。

注:1、(1)、Scale未命名,最后一步要单独写。

(2)、厘米聚成千米应去掉五个“0”;千米化成厘米应添上五个“0”.2、(1)、Scale还可以与旅行问题、工程问题、几何形状等相关的应用问题综合使用。

根据比例尺与实际距离求图上距离

根据比例尺与实际距离求图上距离
=
1 1000
1000y=1×2500
y = 2.5
再画图: 答案略。
五、巩固应用、拓展练习
2.填表 图上距离 6厘米 3厘米 实际距离 180千米 15千米 4毫米 比例尺 1∶3000000 1∶500000
8厘米
20∶1
五、巩固应用、拓展练习
3. 在比例尺是1:25000的地图上量得甲、乙两地之间的距离是 20 厘米,如果把它改画在比例尺为1:20000的地图上,甲、乙两 地的图上距离应画多长?
二、创设情境,提出问题
边线
底 线
禁 区
中 线
禁 区
底 线
边线 关于“足球场”的知识,你都有哪些了解?
二、创设情境,提出问题
足球场平面图
左边线
10号队员在蓝色区域距 底线1米、右边线25米处 起脚,射进第一个球。 底 A点距底线的图上距离是 线 多少厘米?距右边线呢?
4号队员在距底线16米、 比例尺1:1000 左边线20米处起脚,射 右边线 雏鹰少年足球队上半场以2∶0领先。10号队员在 进第二个球。
1. 一块长方形草坪长40米,宽25米。请用1∶1000的比例尺 画出这块草坪的平面图。 先算出图上距离:
解:设长方形草坪长的图上 距离是χ厘米。 40米=4000厘米 χ 1 = 1000 4000 1000χ= 1×4000
χ= 4
解:设长方形草坪宽的图上 距离是y厘米。
25米=2500厘米 y 2500
一、复习回顾,知识铺垫
回忆:已知图上距离与比例尺求实际距离的方法
1、列方程:根据比例尺意义:图上距离:实际距离=比例尺 , 解设实际距离为×厘米,列方程解答。
2、乘法: 根据实际距离是图上距离的200000倍,

六年级数学上册知识讲义-根据比例尺和图上距离求实际距离-冀教版

六年级数学上册知识讲义-根据比例尺和图上距离求实际距离-冀教版

小学数学根据比例尺和圆上距离求实际距离知识梳理:量出下图中学校到汽车站、少年宫、电影院的图上距离,并标在图上,再根据线段比例尺算出它们的实际距离。

(1)学校到汽车站的实际距离为:。

(2)学校到少年宫的实际距离为:。

(3)学校到电影院的实际距离为:。

测量结果如下图:因为图上距离1厘米表示实际距离500米,转化为数值比例尺为1︰50000.(1)方法一:3.5×500=1750(米)方法二:解:设学校到汽车站的实际距离为x厘米。

3.5︰x=1︰50000x=⨯3.550000x=175000175000厘米=1750米答:学校到汽车站的实际距离为1750米。

(2)方法一:2.5×500=1250(米)方法二:解:设学校到少年宫的实际距离为m厘米。

2.5︰m=1︰50000m=⨯2.550000125000m =125000厘米=1250米答:学校到少年宫的实际距离为1250米。

(3)方法一:2×500=1000(米)方法二:解:设学校到电影院的实际距离为n 厘米。

2︰n =1︰50000250000n =⨯100000n =100000厘米=1000米答:学校到电影院的实际距离为1000米。

故答案为:1750米,1250米,1000米。

1. 数值比例尺和线段比例尺用数字形式表示的比例尺是数值比例尺。

如1︰1000就是数值比例尺。

在图上附有一条注有数量的线段来表示和实际相对应的实际距离,这样的比例尺叫作线段比例尺,如就是线段比例尺,表示图上1厘米的距离相当于实际距离50米。

改写成数值比例尺为1厘米︰50米=1厘米︰5000厘米=1︰5000.2. 已知比例尺和图上距离,求实际距离,有两种解法:(1)利用图上距离和实际距离的关系,直接用乘法求出实际距离。

(2)利用“=图上距离比例尺实际距离”列出比例求实际距离。

注意:用解比例的方法求实际距离时,所设的未知量(实际距离)的单位名称要与已知量(图上距离)的单位名称一致。

比和比例应用题

比和比例应用题

比和比例应用题例104 在比例尺是1∶1000 000的地图上,量得松江县城到上海西区汽车站的距离是4厘米.松江县到上海实际距离是多少千米?(上海市松江县)【分析1】根据“图上距离∶实际距离=比例尺”,可得“实际距离=图上距离÷比例尺”.由此可求出松江到上海的实际距离.【解法1】 4÷=4×1000 000=4 000 000(厘米)=40(千米)【分析2】因为图上距离∶实际距离=1∶1000 000,所以,实际距离是图上距离的1000 000倍.因此求出4厘米的1000 000倍,即是松江县到上海的实际距离.【解法 2】4×1 000 000=4 000 000(厘米)=40(千米).【分析3】因为图上距离∶实际距离=比例尺,比例尺一定,所以图上距离和实际距离成正比例.【解法3】设松江到上海实距为x千米.4∶x=1∶1 000 000x=4×1 000 000x=40000004 000 000厘米=40千米.答:松江县到上海的实际距离是40千米.【评注】比较以上三种解法,解法1和解法3是常用解法,但运算稍繁些.解法2的思路简单明白,运算简便,是本题最佳解法.例105 太原到晋祠的距离是25千米,在比例尺是的地图上,两地的图上距离是多少厘米?(山西省太原市)【分析1】比例尺是,即图上距离是实际距离的,把两地实际距离看作“1”,运用分数乘法应用题的解法求出图上距离.【解法1】 25千米=2 500 000(厘米)2 500 000×=12.5(厘米).【分析2】因为比例尺是,所以实际距离是图上距离的200 000倍.因此,把两地的实际距离缩小2 00 000倍,即得两地的图上距离.【解法2】25千米=2 500 000厘米2 500 000÷200 000=12.5(厘米).【分析 3】因为“图上距离∶实际距离=比例尺”,而比例尺一定,所以图上距离和实际距离成正比例.【解法3】设图上距离为x厘米.25千米=2 500 000厘米x∶2500000=1∶200000200 000x=2 500 000x=x=12.5答:太原到晋祠的图上距离是12.5厘米.【评注】比较以上三种解法,解法1和解法2是本题的较好解法.例106 一幅地图,图上5厘米表示实际距离10千米,已知甲乙两地的实际距离是15千米,在这幅地图上甲乙两地的距离是多少厘米.(福建省福州市)【分析1】先求出这幅图的比例尺,再根据“图上距离=实际距离×比例尺”,求出甲乙两地的图上距离.【解法1】这幅图的比例尺?5厘米∶10千米=5厘米∶1000000厘米=1∶200000甲乙两地的图上距离是多少厘米?15×=0.000075(千米) =7.5(厘米)综合算式: 15×=15×=0.000075(千米)=7.5(厘米).【分析2】先求出实际距离是图上距离的几倍,再用15千米除以这个倍数,即得两地的图上距离.【解法2】实际距离是图上距离的几倍?10千米÷5厘米=200 000(倍)甲乙两地的图上距离是多少厘米?15÷200 000=0.000075(千米)=7.5(厘米)综合算式: 1500 000÷(1000 000÷5)=1500 000÷2 00 000=7.5(厘米).【分析3】先求出实际距离1千米在图上是多少厘米,再求实际距离15千米在图上是多少厘米.【解法3】 1千米实距在图上是几厘米?5÷10=0.5(厘米)甲乙两地15千米在图上是几厘米?0.5×15=7.5(厘米)综合算式: 5÷10×15= 0.5×15= 7.5(厘米).【分析4】先求10千米是15千米的几分之几,即5厘米的对应分率,再求甲乙两地的图上距离.【解法4】 5÷=5×=7.5(厘米).【分析5】先求15千米里有几个10千米,即有几个5厘米,再求甲乙两地的图上距离.【解法5】5×(15÷10)=5×1.5=7.5(厘米).【分析6】因为“图上距离∶实际距离=比例尺”,而比例尺一定,所以图上距离和实际距离成正比例.【解法6】设两地的图距为x厘米.5∶10=x∶1510x=5×15x=x=7.5答:在这幅地图上甲乙两地距离是7.5厘米.【评注】解法1、解法2明显地比其它解法麻烦,而后四种解法都是较好的解法.其中解法3、解法4、解法5的思路更为简单,运算更为简便,是本题的最佳解法.例107 按1∶3∶5用水泥.黄沙、石子制成混凝土24.3吨,需用水泥、黄沙、石子各多少吨?(江苏省句容县)【分析1】水泥、黄沙、石子的重量比是1∶3∶5,即水泥1份,黄沙3份,石子5份,总共9份.因此可按归一解法先求每份多少吨,再分别求3份、5份各多少吨.【解法1】混凝土共分了几等份?1+3+5=9(份)水泥需用多少吨?24.3÷9=2.7(吨)黄沙需用多少吨?2.7×3=8.1(吨)石子需用多少吨?2.7×5=13.5(吨)综合算式:水泥:24.3÷(1+3+5)=2.7(吨)黄沙:24.3÷(1+3+5)×3=8.1(吨)石子:24.3÷(1+3+5)×5=13.5(吨).【分析2】运用按比例分配的方法解答.【解法2】总份数:1+3+5=9(份)需用水泥多少吨?24.3×=2.7(吨)需用黄沙多少吨?24.3×=8.1(吨)需用石子多少吨?24.3×=13.5 (吨).【分析3】因为“混凝土原料重量÷总份数=每份数重量”,而每份重量一定,所以各种原料所需吨数与它们各占的份数成正比例.由此可分别列比例式.【解法3】设需用水泥x吨.9x=24.3x=24.3÷9x=2.7设需用黄沙y吨.9y=24.3×3y=■y=8.1石子:24.3-8.1-2.7=13.5(吨)答:略.【评注】比较以上三种解法,解法1和解法2是本题的较好解法.例108 六一班男、女生人数的比是6∶5,女生有20人男生有多少人?(河南省郑州市)【分析1】用归一解法.男女生人数的比是6∶5,即男生人数为6等份,女生人数为5等份.因为女生人数的5份是20人,所以可先求出每份多少人,再求6份多少人.【解法1】 20÷5×6=4×6=24(人)【分析2】男女生人数的比是6∶5,其比值是,根据“比的前项=后项×比值”求出男生人数.【解法2】男生∶女生=男生∶20=男生人数=20×=24(人).【分析3】把6∶5转化为,即把女生人数看作“1”,那么男生人数是女生的,由此运用分数应用题的解法,求出男生人数.【解法3】20×=24(人).【分析4】把男生人数看作“1”,那么女生人数占男生的.由此可求男生人数.【解法4】20÷=20×=24(人).【分析5】按比例分配解法.【解法5】男女生人数共有几份?6+5=11(份)女生人数占全班的几分之几?5÷11=男女生共有多少人?20÷=44(人)男生有多少人?44×=24(人)综合算式: 20÷=20÷×=20××=24 (人)【分析6】用比例解法.因为男生人数∶女生人数=,比值一定,所以男生人数和女生人数成正比例.【解法8】设男生人数为x.x∶20=6∶55x=20×6x=20×6÷5x=24答:男生有24人.【评注】以上六种解法中,前三种解法的思路简单明白,运算简便,是本题较好解法.例109 100克蜂蜜里含有34.5克葡萄糖,300克蜂蜜里含有多少克葡萄糖?(河南省南阳地区)【分析1】用比例解法.因为“葡萄糖重量÷蜂蜜重量=出糖率”,出糖率一定,所以葡萄糖重量和蜂蜜重量成正比例.【解法1】设300克蜂蜜里含糖x克.34.5∶100=x∶300100x=34.5×300x=x=103.5【分析2】用倍比解法.先求300克里有几个100克,即有多少个34.5克葡萄糖.由此可求出葡萄糖的重量.【解法2】 34.5×(300÷100)=34.5×3=103.5(克).【分析 3】用归一解法.先求出1克蜂蜜里含有多少克葡萄糖,再求300克蜂蜜里含有多少克葡萄糖.【解法3】 1克蜂蜜含糖多少克?34.5÷100=0.345(克)300克蜂蜜含糖多少克?0.345×300=103.5(克)综合算式: 34.5÷100×300=0.345×300=103.5(克).【分析4】把蜂蜜重量看作“1”.先求出蜂蜜的出糖率,再求300克蜂蜜含糖多少克.【解法4】蜂蜜的出糖率是多少?34.5÷100=34.5%300克蜂蜜里含葡萄糖多少克?300×34.5%=103.5(克)综合算式: 300×(34.5÷100)=300×34.5%=103.5(克).【分析5】根据“比的前项∶后项=比值”,推导出“比的前项=后项×比值”.从而求出300克蜂蜜里含糖多少克.【解法5】因为糖∶蜜=34.5∶100==,即糖∶300=,所以糖=300×=103.5(克).答:300克蜂蜜含有葡萄糖103.5克.【评注】前三种解法都具有思路简单明白、运算简便的特点,是本题的较好解法.例110 大旺乡挖一条长3 600米的水渠,6天挖了450米,照这样计算,多少天可以挖完?(广东省广州市东山区)【分析1】用比例解法.因为“水渠长度÷修渠天数=每天修渠长度”,每天修渠长度一定,所以修渠长度和修渠天数成正比例.【解法1】设x天可以挖完.3600∶x=450∶6450x=3600×6x=x=48【分析2】用归一解法.先求每天修渠多少米,再求3 600米内包含多少个每天修的米数,即多少天可以挖完.【解法2】每天修水渠多少米?450÷6=75 (米)多少天可以挖完?3 600÷75=48(天)综合算式: 3600÷(450÷6)=3600÷75=48(天).【分析3】用比例解法.同分析1.不同点,先求剩余的需几天,再加上已修的6天.【解法3】设剩下的需修x天.(3600-450)∶x=450∶6450x=3150×6x=x=4242+6=48(天).【分析4】用归一解法.先求出剩余的水渠需修多少天,再求修全长要多少天.【解法4】每天修多少米?450÷6=75(米)剩下水渠还需修多少天?(3 600-450)÷75=42(天)多少天可以挖完全长?42+6=48(天)综合算式:(3 600-450)÷(450÷6)+6=3150÷75+6=42+6=48 (天).【分析5】用倍比解法.先求出3 600米里有几个450米,即有几个6天,再求挖全长需几天.【解法5】3600米是450米的几倍?3 600÷450=8(倍)水渠全长需挖几天?6×8=48(天)综合算式: 6×(3 600÷450)=6×8=48(天).【分析6】用归一解法.先求出修1米水渠需多少天.再求修全长3 600米需多少天.【解法6】 6÷450×3 600=×3600=48 (天).【分析7】求出450米是3 600米的几分之几.就是 6天相当于挖全长需天数的几分之几.由此可求出挖全长需多少天.【解法7】450米占水渠全长的几分之几?450÷3600=水渠全长需修几天?6÷=48(天)综合算式: 6÷(450÷3 600)= 6÷=48(天).答:水渠全长48天可以挖完.【评注】解法1和解法2易于理解,运算简便,是本题较好解法.解法5和解法7虽不常用,但其思路及运算都较佳,也可列为本题较好的解法.解法3和解法6对培养学生转换角度思考问题大有益处.例111 一批货物,原计划每天运走18吨,84天可以运完.实际每天运21吨,这批货物多少天可以运完?(广东省肇庆市)【分析1】用比例解法.因为每天运货吨数×运货天数=运货总吨数,运货总吨数一定,所以每天运货吨数和运货天数成反比例.【解法1】设这批货x天可运完.21x=18×84x=x=72【分析2】用比例解法.根据“原计划每天运货量和实际每天运货量的比,等于原计划和实际的工作效率比”这一等量关系,列比例.【解法2】设这批货x天可运完.18∶21=∶×18=×21x=72【分析3】先求出这批货共有多少吨,再看这批货物总量里包含多少个21吨,即这批货物多少天可以运完.【解法3】这批货物共有多少吨?18×84=1512(吨)这批货物多少天可以运完?1512÷21=72(天)综合算式: 18×84÷21=1512÷21=72(天).【分析4】因为运货总量一定,而实际每天运货量是计划每天运货量的21÷18=倍,所以原计划运货天数是实际运货天数的倍.由此可求出这批货实际多少天运完.【解法4】84÷(21÷18)=84÷=72(天).答:这批货物72天可以运完.【评注】比较以上四种解法,解法3的思路简单明白,但运算并不简便.解法1的思路通畅,运算简便,是本题的较好解法.例112 童装厂要做396套儿童衣服,前8天做了144套,剩下的还要几天才能完成?(广西壮族自治区百色地区)【分析1】用比例解法.因为“衣服总套数÷天数= 每天做的套数”,每天做的套数一定,所以衣服总套数和做的天数成正比例.【解法1】设剩下的还要x天完成.(39-144)∶x=144∶8144x=252×8x=14【分析2】用比例法.同分析1.先求出做396套衣服要用多少天,再求剩下的还要用几天完成.【解法2】设做396套衣服要用x天.396∶x=144∶8144x=396×822-8=14(天).【分析3】用归一解法.先求出每天能做多少套,再求剩下的套数,最后求剩下套数里包含多少每天做的套数,即还要做的天数.【解法3】每天能做多少套?144÷8=18(套)还剩下多少套?396-144=252(套)剩下的还要几天完成?252÷18=14(天)综合算式:(396-144)÷(144÷8)=252÷18=14天).【分析4】用归一解法。

根据比例尺求实际距离

根据比例尺求实际距离

方法二:
1 8000000
根据:图上距离÷比例尺=实际距离

=32000000(厘米)
32000000厘米=320千米
320÷100=3.2(小时)
答:大约需要3.2小时到达青岛。
方法三:
根据比例尺表示的意义:图上距离1厘米表 示实际距离8000000厘米。
4×8000000=32000000(厘米) 32000000厘米=320千米 320÷100=3.2(小时) 答:大约需要3.2小时到达青岛。
根据比例尺 求实际距离
青岛版六年○ 图上距离:实际距离=比例尺
二.说说下列比例尺的实际含义 三.1500
复习
• 1. 在比例尺是1:4000000的地图上,图上距离是实际距离的(

)倍。
• 2. 20千米=(
)厘米
1
• 30米=(
)厘米
4000000
• 2500000厘米=( )千米 • 5000厘米=( )米
1 6 ÷ 40000000 =240000000(厘米)
240000000厘米=2400千米 答:两地之间的实际距离是2400千米
单击此处 添加大标 题内容
三.在一幅比例尺是1:20000000的地图上,甲乙两地 相距6厘米。一架飞机以每小时800千米的速度飞往 乙地,需要飞多少小时?
解:设甲乙两地的实际距离是X厘米。 三.X=1:20000000 X=6×20000000 X=120000000 120000000厘米=1200千米 1200÷800=1.5(小时) 答:需要飞1.5小时。
4000000
2000000
3000
25
50
),实际距离是图上距离的

六上数学《比例尺》课件

六上数学《比例尺》课件
比例尺
第3课时
复习引入
一、怎样计算出地图的比例尺?
图上距离 :实际距离 比例尺

图上距离 实际距离
比例尺
复习引入
二、如何用比例尺求图上距离和实际距离?
图上距离 :实际距离 比例尺
图上距离 = 比例尺 × 实际距离 实际距离 = 图上距离 ÷ 比例尺
探究活动
在比例尺是1:6000000的中国地图上, 小兰量得北京到重庆的图上距离是24cm, 实际距离是多少? 如果飞机平均每时飞行 720km,从北京到重庆乘飞机需要多少时?
思考: 1. 仔细读题,你能获得哪些信息? 2. 题中的比例尺表示什么意思? 3. 求什么?需要哪些条件? 4. 怎样计算?
知识突破
在比例尺是1:6000000的中国地图上, 小兰量得北京到重庆的图上距离是24cm,实 际距离是多少?
(1)实际距离=图上距离 ÷ 比例尺
24 ÷
1 =144000000(cm)
1cm 1.5cm 1cm
2.5cm
图上的1c图上距离:1+1.5+1+2.5=6(cm) 可求得甲地到乙地的实际距离:20×6=120(km) 所以汽车到达乙地的时间: 120÷60=2 (时)
8时+2时=10 (时)
答:汽车到达乙地的时间是10时。
练习巩固
3.在比例尺是1:26000000的中国地图上,量得重庆 到武汉的图上距离是3cm。实际距离是多少千米?如 果飞机7:54在重庆起飞,9:00达到武汉。飞机平均每 时飞行约多少千米?(得数保留整十数)
(1)求实际距离;
(2)求速度;
1 3÷
26000000
9:00- 7:54=66(分) =1.1(时)

知道图上距离和比例尺实际距离怎么求

知道图上距离和比例尺实际距离怎么求

比例尺分放大比例尺和缩小比例尺,放大比例尺就是把一些很小的东西数据放大画在图纸上(因为把那么小的东西画在图纸上,很难观察清楚),一般用于一些特别小的零件上,比如一个手表里的一个零件长3毫米,放大10倍画在图纸上的话,那么,写成放大比例尺就是10:1;而缩小比例尺就是把一个很大的东西画在图纸上(比如房子、汽车、飞机,这么大的东西,图纸怎么够画呢,当然要缩小画在图纸上啦),比如一栋房子长10米,宽10米,高50米(我是举例),要缩小100倍画在图纸上,写成比例尺就是10:100。

比例尺公式:图上距离=实际距离*比例尺
实际距离=图上距离/比例尺比例尺=图上距离/实际距离
已知比例1:10000
地图距离a厘米
实际距离a×10000厘米
记住1:10000表示的就是地图上1厘米代表实际10000厘米。

比例尺怎么算

比例尺怎么算

比例尺怎么算一1比例尺计算1.图上距离÷实际距离=比例尺2.图上距离÷比例尺=实际距离3.比例尺×实际距离=图上距离2比例尺三种形式1.数字式:用数字的比例式或分数式表示比例尺的大小。

例如地图上1厘米代表实地距离500千米,可写成1∶50000000或写成:五千万分之一。

2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。

3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如图上1厘米相当于地面距离10千米。

3地图比例尺表示图上距离比实际距离缩小(或放大)的程度,因此也叫缩尺。

如1∶10万,即图上1厘米长度相当于实地1000米。

严格讲,只有在表示小范围的大比例尺地图上,由于不考虑地球的曲率,全图比例尺才是一致的。

通常绘注在地图上的比例尺称为主比例尺。

在地图上,只有某些线或点符合主比例尺。

比例尺与地图内容的详细程度和精度有关。

二比例尺=图上距离/实际距离。

比例尺的概念:比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。

按照比例尺概念,比例尺的算式为:比例尺=图上距离/实际距离。

比例尺的特点:比例尺实际上是一个“比”;比例尺是图上距离与实际距离的“比”;图上距离和实际距离的单位是统一的(即换算成相同单位再比),所以比例尺没有单位(单位统一被约分了);比例尺的前项一般为1。

比例尺的换算方法:(1)长度单位换算公式:1公里=1千米。

1000米=1千米。

1米=10分米=100厘米=1000毫米。

1分米=10厘米=100毫米。

1厘米=10毫米。

(2)比例尺的换算:举例说明:“图上一厘米代表实际1公里,比例尺是多少?”解析:长度单位换算公式是孩子原来就掌握的知识,因为比例尺必须统一单位,只需要按长度单位换算公式,将图上距离和实际距离的单位换算成相同单位,然后统一代入比例尺算式,比例尺=1厘米/1公里=1厘米/100000厘米=1/100000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、兰州到乌鲁木齐的铁路线大约长1900km。在比 例尺是1:40000000的地图上,它的长是多少?
4、小明家在学校正西方向,距学校200米,小亮家在小 明家正东方向,距小明家400米,小红家在学校正北方向, 距学校250米。在下图中画出他们三家和学校的位置平面图。

学校
0 50 100
1、图上距离与实际距离的比是1:500000
图上距离:实际距离=1:500000
解:设地铁1号线的实际长度是x厘米
10 1 = x 500000
x = 10 × 500000 x = 5000000 5000000厘米 = 50千米
1 2、图上距离是实际距离的 500000 1 10 ÷ 500000
x=8
x=6000÷1000 x=8
答:长画8cm,宽应画6cm。
1 2、表示图上距离是实际距离的 1000
可写成那条 关系式?
80m = 8000cm 1 8000 × 1000 = 8(cm)
60m = 6000cm 1 6000 × 1000 = 6(cm)
1 80 × 1000 = 0.08(m)
3、表示实际距离是图上距离的1000倍。
4、表示图上1厘米相当于实际距离10米。
1、表示图上距离与实际距离的比是1:1000 图上距离:实际距离=1:1000 解:设长应画xcm,宽应画ycm。 80m = 8000cm x:8000=1:1000 1000x=8000×1 x=8000÷1000 60m = 6000cm x:6000=1:1000 1000x=6000×1

0.08m = 8(cm)
1 60 × 1000 = 0.06(m)
0.06m = 6(cm)
答:长画8cm,宽应画6cm。
做一做
1、一块长方形草地长20米,宽15米。把它画在比例 1 尺是 500 的图纸上,长和宽各应画多少厘米?
2、一张地图的经例尺是1:20000,从甲地到乙地 的距离是60千米,求图上距离是多少厘米。
例3 把一个长80m、宽60m的长方形操场画在比 例尺是1:1000的图纸上。长和宽各应画多少cm?
例3 把一个长80m、宽60m的长方形操场画在比 例尺是1:1000的图纸上。长和宽各应画多少cm?
比例尺1:1000表示什么意义?
1、表示图上距离与实际距离的比是1:1000
1 2、表示图上距离是实际距离的 1000
复习
1、1千米=(100000 )厘米 1米=(100 )厘米
2、比例尺1:2000000可00000 1 图上距离是实际距离的 2000000 实际距离是图上距离的2000000倍。
图上1厘米表示实际距离20千米。
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?
用到了那条关系式? 图上距离÷比例 尺=实际距离
= 10 × 500000 = 5000000(厘米) = 50(千米)
先把图中的线段比例尺改写成数值比 例尺,再用直尺量出图中河西村与汽车站 的距离是多少厘米,并计算出两地的实际 距离大约是多少?
12、在一张图纸上量得一个零件的长度是6厘米,已知这张 图纸的比例尺子是1/100,求这个零件的实际长度是多少米? 13、在一张地图上量得A地到B地的距离是5厘米,这幅地 图的比例尺是1/3000000,A地到B地的实际距离是多少千米? 15、在比例尺是1:4000000的中国地图上,量得北京到广 州的距离是50厘米,北京到广州的实际距离是多少千米? 16、在比例尺是6:1的图纸上理得一种精密零件长是3厘 米,这个零件的实际长是多少毫米?
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少?
例2下面是北京市地铁规划图.地铁1号线在图中的长度大约是 10cm,它的实际长度大约是多少? 1、图上距离与实际距离的比是1:500000
1 2、图上距离是实际距离的 500000
3、实际距离是图上距离的500000倍。 4、图上1厘米表示实际距离5千米。
相关文档
最新文档