公务员考试行测答题技巧:六大基本数列全解析
公务员考试行政能力测验数列篇解题技巧
公务员考试行政能力测验数列篇解题技巧第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+ 55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=1 6,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。
而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D总结:对幂次数要熟悉第二步思路B:寻找视觉冲击点注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引视觉冲击点1:长数列,项数在6项以上。
行测数列八大技巧
行测数列八大技巧
以下是 7 条关于“行测数列八大技巧”的内容:
1. 等差数列可是基础中的基础呀!就像爬楼梯,一级一级很有规律呢!比如说 1、3、5、7、9 这样的数列,相邻两项的差值始终是 2,是不是很好找规律呀?这就得靠你细心观察啦!
2. 等比数列呢,那简直就是速度与激情!想想看呀,数字像小火箭一样快速变化着!比如 2、4、8、16 这样,相邻两项的比值是固定的,抓住这个特点就好啦!
3. 那周期性数列就像是一首循环播放的歌一样!来来去去就是那几个数字重复出现呢!像 3、2、5、3、2、5,是不是很有趣呀,一旦发现这个规律,哇塞,那可就容易多啦!
4. 幂次数列,哎呀呀,这可是有点挑战性呢,但别怕呀!你看像 1、4、9、16 不就是平方数嘛。
看到数字突然变大好多,就得想想是不是幂次数列在捣鬼呢!
5. 递推数列呢,就像接力跑一样,一个数字接着影响下一个数字!比如有些数列告诉你前面两个数字的和等于后面一个数字,这就得动动脑筋啦,认真分析它们之间的关系哟!
6. 组合数列,嘿,这就像是玩拼图一样呢!把数字分成几组来看,说不定就能看出门道哟!比如某些数列奇数项有规律,偶数项也有规律,多神奇呀!
7. 分数数列有时会让人头疼呢,但是别担心呀!你想想把分数化简或者通分一下,说不定规律就出来了呢!就像在迷雾中找到那一丝亮光,是不是很有成就感呀!
总之啊,掌握这些技巧,行测数列就不再是难题啦!相信自己,一定可以搞定!。
行测数量关系知识点汇总2024
行测数量关系知识点汇总2024一、数字推理。
1. 等差数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。
- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。
2. 等比数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。
- 通项公式:a_n=a_1q^n - 1。
- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。
- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。
3. 和数列。
- 定义:通过相邻项相加得到下一项的数列。
- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。
- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。
4. 积数列。
- 定义:通过相邻项相乘得到下一项的数列。
- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。
- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。
5. 多次方数列。
- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。
公务员考试数列问题相关公式
一、数列问题相关公式:(注意数量关系,实在不会就用相近排除法,跟着感觉走,不要一个劲的改)1、等差数列通项公式:a n=a1+(n+1)d=a m+(n-m)d2、等差数列求和公式:s n=na1+n(n-1)d/2=n(a1+a n)/23、等差数列中项公式:N为奇数时,等差中项为1项,即a n+1/2=s n/nN为偶数时,等差中项为2项,即a n/2和a n/2+1,而a n/2+ a n/2+1=2s n/n4、等比数列通项公式:a n=a1q n-1=a m q n-m二、工程问题:工作总量/工作效率=工作时间把全工程看作“1”,工作效率为1/n,两组共同完成的工作效率为1/n1+1/n2。
三、年龄问题:(偶尔会遇到公倍数,注意就好)1、已知二人年龄,求几年前或几年后的大年龄是小年龄的几倍:年龄差/(倍-1)=成倍时的小年龄成倍时的小年龄-小的现年龄=几年后的年龄小的现年龄-成倍时的小年龄=几年前的年龄2、如果已知二人年龄之和及几年后大的是小的几倍,求现在二人的年龄各是多少:几年后的二人年龄和/(倍+1)=几年后小的年龄几年后小的年龄-几年后年数=现在小的年龄二人年龄和-现在小的年龄=现在大的年龄*年龄问题的基本公式:大年龄=(两人年龄和+两人年龄差)/2小年龄=(两人年龄和-两人年龄差)/2几年后的年龄=大小年龄差/倍数差-小年龄几年后的年龄=小年龄-大小年龄差/倍数差(比较复杂,三次以上用表格法计算,又快又准)四、溶质问题:在一定温度下的饱和溶液中:1、溶质、溶剂和溶液质量比等于S:100:LS,S为该温度下的溶质的溶解度。
2、溶解度=溶质质量/溶剂质量×100%3、溶液浓度=溶质质量/溶液质量×100%五、相遇问题:(最好用画图解决,比较明显)1、速度和,即AB两者所走的路程和=速度和×相遇时间相遇(距离)路程=速度和×相遇时间2、追及问题速度差,即A走的路程减去B走的路程=速度差×追及时间路程差=速度差×追及时间六、方阵问题:方针的总人数=最外层人数的平方方阵的最外层人数=总人数/4+1,每减少一层,每边就得减少2,一共减少8,依次类推。
行测之数列技巧
行测之数列技巧数列是数学中的一个重要概念,也是行政能力测验(行测)中经常涉及的一个知识点。
在行测中,数列相关的考题常常是应用题、逻辑推理题以及判断题的重要组成部分。
掌握数列技巧不仅能帮助我们解答这些题目,还能提升我们的数学思维能力和分析问题能力。
本文将介绍数列的基本概念和常见的解题技巧。
一、数列的基本概念数列是有序的数字的集合,其中每个数字称为数列的项。
数列可以用以下形式表示:{a₁, a₂, a₃, ..., aₙ}。
其中,a₁为首项,aₙ为末项,n为数列的项数。
常见的数列有等差数列和等比数列。
1. 等差数列(Arithmetic Progression,AP)等差数列是一个数列,其中每个项与它的前一项的差是一个常数d。
等差数列可以表示为:{a₁, a₁+d, a₁+2d, ..., a₁+(n-1)d}。
等差数列的常用公式有:- 第n项公式:aₙ = a₁ + (n-1)d- 求和公式:Sₙ = (n/2)(a₁ + aₙ)2. 等比数列(Geometric Progression,GP)等比数列是一个数列,其中每个项与它的前一项的比是一个常数r。
等比数列可以表示为:{a₁, a₁r, a₁r², ..., a₁r^(n-1)}。
等比数列的常用公式有:- 第n项公式:aₙ = a₁r^(n-1)- 求和公式(当|r| < 1):Sₙ = a₁(1 - rⁿ)/(1 - r)二、数列的解题技巧1. 确定数列的类型在解题之前,我们首先要确定给定的数列是等差数列还是等比数列。
可以通过观察数列中的相邻项之间的差或比是否相等来判断。
2. 求解数列的通项公式数列的通项公式是指可以用来表示数列中任意一项的公式。
对于等差数列,可以使用第n项公式求解;对于等比数列,可以使用第n项公式求解。
3. 求解数列的和在行测中,经常会涉及到求解数列的和的问题。
对于等差数列,可以使用求和公式求解;对于等比数列,当|r| < 1时,也可以使用求和公式求解。
【推荐下载】公务员行测数列的解题技巧介绍word版本 (6页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==公务员行测数列的解题技巧介绍行政职业能力测验是目前现行公务员考试的笔试科目之一,考生们想在考试中取得更好的成绩需要掌握更多的行测技巧,以下是小编精心整理的行测数列的解题技巧,希望能帮到大家!行测数列的解题技巧一般的,如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列,常数d为公差。
等差数列通项公式写为。
同时我们还可以得出等差数列的下列性质:(1);(2)m、n、p、q是正整数,且m+n=p+q,则有;(3);(4)若,则。
求和公式:和= ;项数公式:。
根据这些性质和公式,我们看其在公务员考试中的应用。
【例1】【国家201X—48】{ }是一个等差数列,a3+a7-a10=8,a11-a4=4,则数列前13项的和是( )。
A.32B.36C.156D.182解析:根据求和公式和已知项数13,我们只需求出中位数,就可以计算出数列前13项的和。
将题目中两式相加a3+a7-a10+(a11-a4)=8+4=12,,故数列前13项的和=13×12=156,答案为C。
解析:假设小华从1数到n,重复数的数字为x,,则前n项和= ,则他所数的全部数= ,将这些数求平均= ,则全部数= ,肯定是一个整数,则是5的倍数。
若,则,显然不符合条件。
同样的,也不符合题意。
,,故他重复的那个数是6,答案为B。
解析:已知A班15人,根据等差数列的定义和性质及求和公式,我们知K班25人,则A—K班一共人,L班23人,故第244名学生是M班1号,根据项数公式知,所以第256名学生的学号是M13。
下面介绍一大类倒数成等差数列的题型,即调和平均数问题:。
利用调和平均数我们可以解决五类题:(1) 等距离平均速度问题:解析:上山、下山一样的路程,则小王的平均速度我们直接代入公式:,答案为B。
行测数列秒杀
行测数列秒杀在公务员行测考试中,数列题目常常让考生感到头疼。
但实际上,只要掌握了一定的方法和技巧,数列题目是可以实现“秒杀”的。
首先,我们要明确数列的常见类型。
数列大致可以分为等差数列、等比数列、和数列、差数列、积数列、商数列以及组合数列等。
对于等差数列,其特点是相邻两项的差值相等。
比如数列1,3,5,7,9 就是一个典型的等差数列,公差为2 。
在遇到等差数列的题目时,我们通常可以先计算相邻两项的差值,看是否存在固定的差值。
如果差值固定,那么就可以利用等差数列的通项公式 an = a1 +(n 1)d(其中 a1 为首项,d 为公差,n 为项数)来求解。
等比数列则是相邻两项的比值相等。
例如 2,4,8,16,32 就是一个等比数列,公比为 2 。
对于等比数列,要注意其通项公式 an =a1×q^(n 1) (其中 a1 为首项,q 为公比,n 为项数)。
通过计算相邻两项的比值,确定是否为等比数列,然后利用公式求解。
和数列通常是指前两项或前几项的和等于下一项。
比如 1,2,3,5,8 ,其中 1 + 2 = 3,2 + 3 = 5,3 + 5 = 8 。
在处理这类数列时,要善于观察数列中数字之间的和关系。
差数列与和数列类似,只是前两项或前几项的差等于下一项。
积数列是指前两项或前几项的积等于下一项。
例如 2,3,6,18 ,其中 2×3 = 6,3×6 = 18 。
商数列则是前两项或前几项的商等于下一项。
组合数列相对复杂一些,它可能是由两个或多个简单数列组合而成。
这就需要我们将数列进行合理的分段或分组,分别找出其规律。
接下来,我们通过一些具体的例子来看看如何“秒杀”数列题目。
例 1: 2,5,8,11,14,()我们先计算相邻两项的差值:5 2 = 3,8 5 = 3,11 8 = 3,1411 = 3 ,差值都为 3 ,所以这是一个公差为 3 的等差数列。
括号里的数应该是 14 + 3 = 17 。
行测数列题
行测数列题数列是数学中常见的概念之一,也是行测中经常出现的考试题型。
掌握数列的基本概念和解题方法对于应对行测数学题非常重要。
本文将介绍数列的基本概念,并结合一些例题来讲解数列题的解题方法。
一、数列的定义和性质数列是按照一定规律排列的一系列数的集合。
通常用表示数列的一般项,表示第 n 项,表示公差,表示首项。
数列的公式可以表示为:通常数列具有以下几个基本性质:1. 等差数列:当数列的相邻两项的差值相等时,这个数列就是等差数列。
等差数列的特点是,从第二项起,每一项与前一项的差都相等。
2. 等比数列:当数列的相邻两项的比值相等时,这个数列就是等比数列。
等比数列的特点是,从第二项起,每一项与前一项的比都相等。
3. 通项公式:对于给定的数列,可以通过观察数列的规律来找出通项公式,即表示第 n 项的公式。
二、等差数列题目的解题方法对于行测中的等差数列题目,一般会给出数列的前几项或者数列的规律,要求求解数列的某个特定项或者整个数列的和。
下面我们以几个例题来介绍等差数列的解题方法。
例题1:已知等差数列的首项为 a,公差为 d,前 n 项和为 S,求第 n 项。
解析:根据等差数列的特点,第 n 项可以表示为:。
又由等差数列的前 n 项和公式得:。
根据以上两个公式,可以得到:。
因此,可以通过已知的 a、d、S 和 n 来求解第 n 项。
例题2:已知等差数列的首项为3,公差为5,前n 项和为120,求 n。
解析:根据等差数列的前 n 项和公式,可以得到:。
根据已知条件可得到:。
将已知条件代入等式中,可以得到方程:。
解方程可得 n = 8。
因此,前 8 项和为 120。
三、等比数列题目的解题方法对于行测中的等比数列题目,一般会给出数列的前几项或者数列的规律,要求求解数列的某个特定项或者整个数列的和。
下面我们以几个例题来介绍等比数列的解题方法。
例题1:已知等比数列的首项为 a,公比为 r,前 n 项和为 S,求第 n 项。
公务员考试行测数量关系知识点
公务员考试行测数量关系知识点公务员考试中的行政职业能力测验(简称行测)是众多考生需要攻克的难关,而其中的数量关系部分更是让许多人感到头疼。
数量关系主要考查考生对数学运算和数学思维的运用能力,涵盖了众多知识点和题型。
接下来,我们就详细梳理一下这部分的重要知识点。
一、数字推理数字推理是数量关系中的常见题型,要求考生通过分析给定的数字序列,找出其中的规律并推测出下一个数字。
1、等差数列这是最基础的规律之一。
相邻两项的差值相等,例如:1,3,5,7,9,差值均为 2。
2、等比数列相邻两项的比值相等。
比如:2,4,8,16,32,比值均为 2。
3、多次方数列数字是某个数的平方、立方或多次方。
例如:1,4,9,16,25 分别是 1、2、3、4、5 的平方。
4、组合数列数列由两个或多个简单数列组合而成,需要分别分析不同部分的规律。
5、递推数列通过前面若干项的运算得到下一项,如前两项相加等于第三项等。
二、数学运算数学运算包含了各种各样的实际问题和数学模型。
1、行程问题涉及速度、时间和路程之间的关系。
如相遇问题、追及问题等。
相遇问题:路程=速度和×相遇时间。
追及问题:路程差=速度差×追及时间。
2、工程问题工作总量=工作效率×工作时间。
常考的有合作完工问题,根据各自工作效率和合作方式来计算完成工作的时间。
3、利润问题涉及成本、售价、利润、利润率等概念。
利润=售价成本,利润率=利润÷成本×100% 。
4、排列组合问题排列是有顺序的,组合是无顺序的。
例如从 5 个人中选 3 个人排成一排,这是排列;从 5 个人中选 3 个人组成一组,这是组合。
5、概率问题计算某个事件发生的可能性大小。
古典概率:概率=有利事件数÷总事件数。
6、容斥原理用于解决集合之间的重叠问题。
两集合容斥:总数= A + B 既 A 又 B +既非 A 又非 B 。
三、解题方法1、方程法这是最基本也是最常用的方法。
国家公务员行测数列题三个解题技巧(必看)
国家公务员行测数列题三个解题技巧[编辑]导言:作为公务员考试行政职业能力测验中阅读量最小的一类题型,数列推理经常让很多考生觉得无从下手,因为每一道题的信息量都非常少。
有没有可能在有限的考试时间内迅速准确的锁定行政能力测试数列题的正确答案,既省时又省力呢?数列三条黄金法则:作者系新东方北斗星公务员考试研究中心贾柱保作为公务员考试行政职业能力测验中阅读量最小的一类题型,数列推理经常让很多考生觉得无从下手,因为每一道题的信息量都非常少。
尽管在公务员考试中可能出现的数列类型相对固定,只要按部就班的对各类数列的可能的性质进行推算,绝大多数的题目都可以得到正确的答案,但这往往耗时较长或者需要考生具备比较扎实的数学基本功。
在考场上,平均每道题的解题时间只有不到一分钟,而若每一道题都按部就班的计算,时间是不容许的。
那么,有没有可能在有限的考试时间内迅速准确的锁定正确答案,既省时又省力呢?答案是:有的。
请先看以下两道例题:2007年国家公务员考试41题2,12,36,80,()A.100B.125C.150D.175本题的正确答案是C,因为前后项两两做差后得到的二级数列是10,24,44,70;再次做差得到的三级数列是14,20,26的等差数列,即原数列是三级等差数列。
这当然是最基础的解法,计算起来也不会出现错误,但耗时较长。
而且由于题干中给出的已知项只有四项,因此需要将选项依次代入才能得到正确答案。
计算能力不是太强或者不太熟练的考生,可能需要花费一分钟以上的时间才能把本题解出。
实际上,这道题在考场上完全可以用三秒钟的时间解决,请看:首先,该数列所有给出的已知项都是偶数,因此空缺的一项也应是一个偶数,可以排除B、D选项;其次,该数列的已知项在依次增大并且越增越快,可以排除A选项,正确答案只能是C,和按部就班计算得到的结果完全一致。
事实上,我们在排除选项的时候只应用到了数列的两个基本性质。
第一,奇偶性。
具备奇偶性质的数列无外乎只有三种情况,全是奇数、全是偶数、奇偶交错。
公务员考试之数列题答题技巧
公务员考试之数列题答题技巧答题技巧:排除选项时用到的是数列的两个基本性质。
第一奇偶性:具备奇偶性的数列有三种情况,全奇数、全偶数、奇偶交错。
当给出的已知项符合其中的任何一个规律,那未知项也符合该规律。
第二增减性:单调变化的数列有四种变化情况:单调递增且越增越快、单调递增且越增越慢、单调递减且越减越慢、单调递减且越减越快。
可根据已知项的变化情况选出未知项。
做题首选:奇偶性、增减性、整除性三大基本性质。
㈠奇偶性:都为奇数:1.3.5.7……都是偶数:2.4.6.8……㈡⑴等差性、等比性:相邻两项的差或商是一个定数⑵隔位等差或等比:奇数项为一个等差或等比数列。
偶数项为一个等差或等比数列。
⑶二级等差、等比:①⒈二级等差数列指数列后一项减去前一项的值为一个等差数列。
二级等差数列形式特点:数列各项依次递增或递减,变化幅度逐渐变大或变小。
但总体上各项数值起伏比较缓和。
⒉二级数列的特殊变式是指后一项减去前一项得到一个新的呈现特定规律变化的数列。
该数列可能为自然数列、等比数列、平方数列、立方数列,或是以上数列+1、-1的形式。
数列形式特点:数列各项变化幅度较大,有时末项会由前项较小的二位数猛然升到较大的三位数。
②⒈二级等比数列是指数列后项除以前项所得的数列为一个新的等比数列。
二级等比数列形式特点:数列各项均为倍数关系数值又构成一个新的等比数列。
⒉二级等比数列特殊变式是指数列后一项除以前一项得带一个呈现规律变化的新数列,该数列可能为自然数列、平方数列、立方数列或是上述数列+1、-1的形式。
㈢和数列及其变式1、和数列是指前两项相加得第三项的数列,即an+an+1=an+2,(n∈N)。
数列形式特点:因前两项之和得第三项,所以各项数值逐渐递增(如递减则从后向前推),变化幅度逐渐增大,但总体变化较平稳。
2、和数列的变式类型:①数列各项为分数或根式,分子、分母或根式内数字构成和数列;②数列前两项相加后再加、减、乘、除某一常数得第三项或第三项+1(第三项-1);③数列前两项相加得一等差数列、等比数列、平方数立方数列或上述数列+1/-1的形式。
公务员行政能力测试数字推理答题技巧(非常有用)
数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列: 2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方.所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列.相减,是否二级等差。
8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2—1=7,7*2+1=15……2 特殊观察:项很多,分组。
三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107—5)每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2—21),4465,6,19,17,344,(—55)—1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
公务员考试行测数量关系中六大基础数列及备考要点
只有1和它本身两个约数的自然数叫做质数;除了1和它本身之外还有其他约数的自然数叫做合数。注意:1既不是质数,也不是合数。
五、周期数列
自某一项开始重复出现前面相同(相似)项的数列叫做周期数列。
【例6】1,3,7,1,例8】1,3,7,-1,-3,-7,…
在公务员录用考试行政职业能力测验考试中数量关系部分的六大基础数列:常数数列、等差数列、等比数列、质数型数列、周期数列、简单递推数列,在下文中通过实例来说明这些基础数列及备考要点。
一、常数数列
由一个固定的常数构成的数列叫做常数数列。
【例1】3,3,3,3,3,3,3,3,3,…
二、等差数列
相邻两项之差(后项减去前项)等于定值的数列叫做等差数列。
【例2】3,5,7,9,11,13,15,17,…
三、等比数列
相邻两项之比(后项除以前项)等于定值的数列叫做等比数列。
【例3】3,6,12,24,48,96,192,…
备考要点
“等差数列”与“等比数列”的基本概念在考试当中基本没有意义,对于考生来说,重要的是以下两点:
(1)快速地判断出某个中间数列是等差数列还是等比数列,抑或两者皆不是;
(2)迅速将数列对应规律的下一项计算出来。
四、质数型数列
质数数列:由质数构成的数列叫做质数数列。
【例4】2,3,5,7,11,13,17,19,…
合数数列:由合数构成的数列叫做合数数列。
【例5】4,6,8,9,10,12,14,15,…
在公务员考试中,以上基础数列都相对比较简单,直接考查以上各种基础数列的题目也并不是很多,但各位考生一定要注意以下两点:
1.在规律不变的前提下,可能只是由于数字稍加变化,规律就可能变得模糊;
公考数列知识点归纳总结
公考数列知识点归纳总结数列作为数学中的重要概念,经常在公共考试中出现。
掌握数列的相关知识点,不仅有助于解题,还能提升解题效率。
本文将对公考数列知识点进行归纳总结,并提供相应的解题技巧与注意事项。
1. 数列的定义与常见表示方式数列是指按照一定顺序排列的一串数,常用的表示方式有通项公式、递推公式和集合表示法。
通项公式表示数列中的每一项,递推公式则表示数列中每一项与前项之间的关系,集合表示法则用花括号将数列中的元素列出。
2. 等差数列等差数列是指数列中的每一项与它的前一项之差都相等的数列。
常用的表示方式为a、d和n,其中a为首项,d为公差,n为项数。
等差数列的通项公式为an=a1+(n-1)d。
解题时,可根据首项、公差、项数中的任意两个量求出第n项的值。
3. 等比数列等比数列是指数列中的每一项与它的前一项之比都相等的数列。
常用的表示方式为a、q和n,其中a为首项,q为公比,n为项数。
等比数列的通项公式为an=a1*q^(n-1)。
解题时,可根据首项、公比、项数中的任意两个量求出第n项的值。
4. 错位相减法错位相减法是一种解决数列问题的常用技巧。
当遇到数列问题时,首先观察数列是否存在相邻两项之差或之比满足某种规律。
如果存在规律,则可利用错位相减的方式推导出数列的通项公式,从而解决问题。
5. 数列求和数列求和是数列相关问题中常见的一个考点。
对于等差数列,求和公式为Sn=(a1+an)*n/2;对于等比数列,求和公式为Sn=a1*(1-q^n)/(1-q)。
在应用求和公式时,需注意计算终点的取值,以及项数与终点之间的关系。
6. 数列的推导与推断在解答数列问题时,有时需要根据已知条件推导出数列的通项公式或递推公式。
此外,还可能需要根据数列的通项公式或递推公式进行反向推断,得出数列中某一项的值。
对于这类问题,要善于利用已知条件和数列的性质进行推理和分析。
数列作为数学中的基础知识,运用广泛,且常常与其他数学概念相互关联。
快速解答行测数列题的万能套路
快速解答行测数列题的万能套路(真题详解)公务员考试行政能力测验解题心得数列篇第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。
注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)第二步思路A:分析趋势1,增幅(包括减幅)一般做加减。
基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。
例1:-8,15,39,65,94,128,170,()A.180 B.210 C. 225 D 256解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。
总结:做差不会超过三级;一些典型的数列要熟记在心2,增幅较大做乘除例2:0.25,0.25,0.5,2,16,()A.32 B. 64 C.128 D.256解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256总结:做商也不会超过三级3,增幅很大考虑幂次数列例3:2,5,28,257,()A.2006 B。
1342 C。
3503 D。
3126解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。
而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D总结:对幂次数要熟悉第二步思路B:寻找视觉冲击点注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引视觉冲击点1:长数列,项数在6项以上。
行测数列知识点归纳总结
行测数列知识点归纳总结在行测考试中,数列是一种常见的数学题型。
对于考生来说,了解数列的相关知识点是备考过程中必不可少的一部分。
本文将对行测数列的相关知识点进行归纳总结,以帮助考生更好地掌握这一知识点。
一、数列的定义与概念数列是指按照一定规律排列起来的一串数字的集合,其中每个数字称为数列的项。
例如,1,2,3,4,5,6,7就是一个数列,其中每个数字都是这个数列的一项。
常见的数列有等差数列和等比数列。
等差数列是指数列中相邻两项之间的差值相等的数列,而等比数列则是指数列中相邻两项之间的比值相等的数列。
二、等差数列的相关知识点1. 公差在等差数列中,相邻两项之间的差值称为公差,用d表示。
公差可以通过数列中任意两项的差值来求得。
2. 通项公式等差数列中的第n项可以通过通项公式来计算,通项公式为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
3. 前n项和等差数列的前n项和可以通过求和公式来计算,求和公式为:Sn = (a1 + an) * n / 2,其中Sn表示前n项和,a1表示首项,an表示第n项,n表示项数。
三、等比数列的相关知识点1. 公比在等比数列中,相邻两项之间的比值称为公比,用q表示。
公比可以通过数列中任意两项的比值来求得。
2. 通项公式等比数列中的第n项可以通过通项公式来计算,通项公式为:an =a1 * q^(n - 1),其中an表示第n项,a1表示首项,q表示公比。
3. 前n项和等比数列的前n项和可以通过求和公式来计算,求和公式为:Sn =a1 * (q^n - 1) / (q - 1),其中Sn表示前n项和,a1表示首项,q表示公比,n表示项数。
四、数列题的解题技巧解题过程中,对于数列题的解答思路有以下几点技巧:1. 分析数列类型首先需要明确题目给出的数列是等差数列还是等比数列,确定公差或公比的数值,以便后续计算。
2. 求解未知数根据题目给出的条件,利用数列的通项公式或求和公式,求解未知数的值。
行测数列问题解题方法和技巧
行测数列问题解题方法和技巧《行测数列问题解题方法和技巧》说起行测数列问题的技巧,我有一些心得想分享。
我在准备公务员行测考试的时候,数列问题就像一个个小怪兽,横在我的面前,可把我给折磨得够呛。
比如说有这么一道数列题:1,3,5,7,(?)。
这就是一个很简单的等差数列,就像小朋友们上楼梯,每个台阶都一样高,这里的公差是2,所以答案很明显就是9。
这就是最基本的识别数列类型来解题,对于这种简单的数列,就看相邻两项的差值或者比值是不是固定的。
如果差值固定那就是等差数列,如果比值固定那就是等比数列。
这就好比你去超市数货物一样,一个个找规律,很直观。
但是呢,有些数列就很狡猾。
就像我之前遇到一个这样的数列:2,5,10,17,(?)。
刚开始我就懵了,差值3、5、7,好像没什么头绪。
老实说,我一开始也不懂,后来研究了一下才发现,其实这是二次等差数列。
这些差值3、5、7是个等差数列,那下一个差值就应该是9,所以括号里的数应该是17+9 = 26。
你可能会问,那要是数列更复杂怎么办呢?这里有个小技巧。
比如说这个数列:1,2,4,7,11,(?)。
你可以先试着做差看看,得到1,2,3,4,这时候就发现又有了等差数列的苗头,下一个差应该是5,那括号里就是11+5 = 16。
这就像我们在森林里找路,如果一条路走不通,换个方向再看看,先求差不行的话,还可以试试求比或者看数字是不是有什么特殊性质,像平方立方关系。
当然了,我的这些技巧也有局限性。
有时候数列非常不规则,像那种混合了多种规律的,用常规方法就很难搞定。
对了,还有个事儿要说,如果遇到这种比较难的数列,还有个替代方案就是代入法。
把答案选项一个一个代入数列,看能不能符合整个数列的规律。
但是这个方法可能会比较耗时,在正式考试的时候,如果时间充裕可以试试。
在总结了这么多经验和教训之后,我发现做行测数列题的关键,就是要冷静,敢于尝试不同的方法。
就像解一个谜题,多试几次就会有思路了。
省考数列知识点归纳总结
省考数列知识点归纳总结数列是数学中常见的一种数学对象,在省考中也是一个重要的考点。
本文将对数列的知识点进行归纳总结,以帮助考生更好地理解和掌握数列的概念、性质和求解方法。
一、数列的定义和性质1. 数列的定义:数列是按一定规律排列的一列数,数列中的每个数称为项。
2. 数列的通项公式:如果数列的第n项可以用n的某个函数来表示,我们就称这个函数为数列的通项公式。
3. 数列的递推关系:数列的递推关系指的是通过前一项或几项来确定下一项的关系式。
4. 等差数列:等差数列指的是数列中任意两个相邻项的差都相等的数列。
- 等差数列的通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
- 等差数列的前n项和:Sn = (a1 + an)n/2二、等差数列的应用等差数列在实际问题中有广泛的应用,常见的应用场景包括:1. 平均数的性质:一个等差数列的首项、末项和中间项的平均数相等。
2. 等差数列的长度:给定等差数列的首项、末项和公差,可以通过等差数列的通项公式计算出数列的长度。
3. 某项的值:已知等差数列的首项、公差和项数,可以通过递推关系计算出任意一项的值。
4. 求和问题:给定等差数列的首项、末项和项数,可以通过等差数列的前n项和公式计算出数列的和。
三、等比数列的性质和应用1. 等比数列的定义:等比数列指的是数列中任意两个相邻项的比值都相等的数列。
2. 等比数列的通项公式:an = a1 * r^(n-1),其中a1为首项,r为公比。
3. 等比中项的概念:等比数列中两个连续项的平方根称为等比数列的等比中项。
4. 等比数列的前n项和:Sn = (a1 * (1 - r^n))/(1 - r),其中a1为首项,r为公比。
四、数列求和的方法1. 等差数列求和:根据等差数列的前n项和公式,可直接计算等差数列的和。
2. 等差数列求和的变形:当等差数列的首项、末项和和项数中两个已知,可以通过求解方程或利用性质进行计算。
公务员行测数量关系知识点详解
公务员行测数量关系知识点详解在公务员行测考试中,数量关系一直是让众多考生感到头疼的一个模块。
但其实,只要掌握了相关的知识点和解题技巧,数量关系并非难以攻克。
接下来,就让我们详细地了解一下公务员行测数量关系中的常见知识点。
一、等差数列等差数列是数量关系中比较基础且常见的知识点。
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
通项公式:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。
求和公式:\(S_n =\frac{n(a_1 + a_n)}{2}\)。
在解题时,关键是要找出首项、公差和项数。
例如:已知一个等差数列的首项是\(3\),公差是\(2\),第\(10\)项是多少?我们就可以用通项公式求出\(a_{10} = 3 +(10 1)×2 = 21\)。
二、等比数列等比数列是指从第二项起,每一项与它前一项的比值等于同一个常数的数列。
通项公式:\(a_n = a_1 × q^{n 1}\),其中\(q\)为公比。
求和公式:当\(q ≠ 1\)时,\(S_n =\frac{a_1(1 q^n)}{1 q}\);当\(q = 1\)时,\(S_n = na_1\)。
比如:一个等比数列的首项是\(2\),公比是\(3\),求第\(5\)项。
则\(a_{5} = 2×3^{5 1} = 162\)。
三、行程问题行程问题在数量关系中出现的频率较高。
主要包括相遇问题、追及问题和流水行船问题等。
相遇问题:路程和=速度和×相遇时间。
追及问题:路程差=速度差×追及时间。
流水行船问题:顺水速度=船速+水速;逆水速度=船速水速。
例如:甲乙两人分别从 A、B 两地同时出发相向而行,甲的速度是\(5\)千米/小时,乙的速度是\(3\)千米/小时,\(2\)小时后相遇,那么 A、B 两地的距离就是\((5 + 3)×2 = 16\)千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公务员考试行测答题技巧:六大基本数列全解析在近些年公务员考试中,出现形式主要体现在等差数列、等比数列、和数列、积数列、平方数列、立方数列这六大数列形式中,在此,针对上述六大数字推理的基本形式,根据具体的例题一一为考生做详细解析。
第一:等差数列
等比数列分为基本等差数列,二级等差数列,二级等差数列及其变式。
1.基本等差数列例题:12,17,22,,27,32,( )
解析:后一项与前一项的差为5,括号内应填27。
2.二级等差数列:后一项减前一项所得的新的数列是一个等差数列。
例题:-2,1,7,16,( ),43
A.25
B.28
C.31
D.35
3.二级等差数列及其变式:后一项减前一项所得的新的数列是一个基本数列,这个数列可能是自然数列、等比数列、平方数列、立方数列有关。
例题:15. 11 22 33 45 ( ) 71
A.53
B.55
C.57
D. 59
『解析』二级等差数列变式。
后一项减前一项得到11,11,12,12,14,所以答案为45+12=57。
第二:等比数列分为基本等比数列,二级等比数列,二级等比数列及其变式。
1.基本等比数列:后一项与前一项的比为固定的值叫做等比数列。
例题:3,9,( ),81,243
解析:此题较为简单,括号内应填27。
2.二级等比数列:后一项与前一项的比所得的新的数列是一个等比数列。
例题:1,2,8,( ),1024
解析:后一项与前一项的比得到2,4,8,16,所以括号内应填64。
3.二级等比数列及其变式
二级等比数列变式概要:后一项与前一项所得的比形成的新的数列可能是自然数列、平方数列、立方数列。
例题:6 15 35 77 ( )
A.106
B.117
C.136
D.163
『解析』典型的等比数列变式。
6×2+3=15,15×2+5=35,35×2+7=77,接下来应为64×2+9=163。
第三:和数列
和数列分为典型和数列,典型和数列变式。
1.典型和数列:前两项的加和得到第三项。
例题:1,1,2,3,5,8,( )
解析:最典型的和数列,括号内应填13。
2.典型和数列变式:前两项的加和经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者每两项加和与项数之间具有某种关系。
例题:3,8,10,17,( )
解析:3+8-1=10(第3项),8+10-1=17(第4项),10+17-1=26(第5项),
所以,答案为26。
第四:积数列
积数列分为典型积数列,积数列变式两大部分。
1.典型积数列:前两项相乘得到第三项。
例题:1,2,2,4,( ),32
A.4
B.6
C.8
D.16
解析:1×2=2(第3项),2×2=4(第4项),2×4=8(第5项),4×8=32(第6项),所以,答案为8
2.积数列变式:前两项的相乘经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者每两项相乘与项数之间具有某种关系。
例题:2,5,11,56,( )
A.126
B.617
C.112
D.92
解析:2×5+1=11(第3项),5×11+1=56(第4项),11×56+1=617(第5项),
所以,答案为617
第五:平方数列
平方数列分为典型平方数列,平方数列变式两大部分。
1.典型平方数列:典型平方数列最重要的变化就是递增或递减的平方。
例题:196,169,144,( ),100
很明显,这是递减的典型平方数列,答案为125。
2.平方数列的变式:这一数列特点不是简单的平方或立方数列,而是在此基础上进行“加减常数”的变化。
例题:0,3,8,15,( )
解析:各项分别平方数列减1的形式,所以括号内应填24。
第六:立方数列
立方数列分为典型立方数列,立方数列的变式。
1.典型立方数列:典型立方数列最重要的变化就是递增或递减的立方。
例题:125,64,27,( ),1
很明显,这是递减的典型立方数列,答案为8。
2.立方数列的变式:这一数列特点不是立方数列进行简单变化,而是在此基础上进行“加减常数”的变化。
例题:11,33,73,( ),231
解析:各项分别为立方数列加3,6,9,12,15的形式,所以括号内应填137。
更多公务员考试免费资料请访问“新东方在线公务员频道”。