实验二.晶体管特性分析与研究

合集下载

功率场效应晶体管MOSFET特性试验研究及仿真 - 副本

功率场效应晶体管MOSFET特性试验研究及仿真 - 副本
ID=f(Vsd)等的测试研究及仿真;
3、纯电阻及阻感负载时,MOSFET开关特性的测试研究;
二、基本要求
1、学功率场效应晶体管MOSFET的有关参数的测定方法和工作原理,设计实验步骤,做线路搭接并进行实验研究。
2、实验数据整理、绘制曲线,对实验结果和理论结果进行对比分析。
3、使用MATLAB软件对各主电路进行仿真。
放大原理和主要参数辅以实验来化解和提高学习效率是研究场效应管行之有效的方法。但由于目前MOS场效应管的实验装置普遍存在弊端,即实验装置没有充分考虑到场效应管易损的因素,即实验者误操作、带电连接电路,造成实验中场效应管大量损坏,导致实验不能顺利完成,乃至正常开展。经调查,目前高校开展MOS场效应管测试实验的较少,无法深入甚至放弃。
场效应管是一种电压控制半导体器件,应用非常广泛。目前与我们的日常生活高度相关,如现代电子计算机、超大规模成电路、数码相机、开关电源、控制电路、液晶电视、数码音响、热释电传感器等就是以场效应管为基本器件构成和发展起来的。
MOS场效应管由于特殊的结构和工艺,其栅极与导电沟道没有电接触,即绝缘的,故它的输入电阻很高,可达109Ω以上,工作时几乎栅极不取电流,又栅-源极间电容非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。通俗地说,MOS场效应管比较“娇气”。因此MOS场效应管出厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。
1、当需要进入实验室做毕设实验研究时,一定要遵守实验室学生守则。
2、不准在实验室内吸烟,喧哗、打闹等。不准在实验室内吃零食。
3、要爱护设备、仪器、仪表,轻拿轻放。旋钮使用不要用力过猛,防止机械性损坏;不要超量程扭动,以确保仪器、仪表等的完好和安全使用。

实验二、晶体管共射极单管放大器I

实验二、晶体管共射极单管放大器I

实验二、晶体管共射极单管放大器I实验目的:了解晶体管共射极单管放大器电路原理及性能指标的测量方法。

实验器材:晶体管(2SC1815),直流电源,信号源,示波器,万用表等。

实验原理:晶体管是一种电子器件,在电路中可以使用其放大、开关等功能。

共射极单管放大器是晶体管放大器中应用最广泛的一种电路。

共射极单管放大器具有放大倍数大、频带宽度宽的特点。

其电路原理图如下所示。

![image.png](attachment:image.png)当输入信号Vin加至共射极电路中时,基极中将出现一个与Vin同相的交流电压信号,进而影响晶体管的发射极电流Ie,使其随之发生周期性变化。

这样,晶体管的发射极将会出现一随输入信号而改变的电流信号Ie,从而对负载RL产生一随输入变化而改变的电压信号Vout,即输出信号。

根据输出信号的瞬时幅值与输入信号的瞬时幅值比值的大小,可以初步测定这个电路的放大倍数,即:Av = ΔVout / ΔVin式中,ΔVout表示输出信号的峰值与零点处的幅值之差,ΔVin表示输入信号的峰值与零点处的幅值之差。

为了进一步衡量这个电路的放大能力,需要定义一些性能指标,分别如下所示。

增益:A = Vout / Vin,它表示输出信号与输入信号的幅值比值。

最大输出电压:Vomax,它与输出电路的直流工作点有关,其大小可通过计算静态工作点的位置来确定。

Vomax是输出信号中某一瞬间的最大电压值。

最大输出功率:Pomax,它是输出信号的最大功率,同时也是输出电路在一定工作条件下所能输出的最大功率。

最大幅度稳定范围:Am,它是指在该范围内,输出信号的变化幅度始终不大于输入信号变化幅度的一定百分比,以保证输出信号的稳定性。

实验步骤:1. 按照电路原理图搭建共射极单管放大器电路,并接入信号源、示波器和万用表等。

2. 调节信号源输出电压幅值和频率,使其分别在两个电压档和两个频率档位内逐步变化,同时观察和记录示波器上输入信号和输出信号的波形,以了解电路的动态特性。

微电子器件实验指导书(实验2)

微电子器件实验指导书(实验2)

实验指导书实验名称:实验二图示仪检测MOS管参数学时安排:4学时实验类别:验证性实验要求:必做 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄一、实验目的和任务1、用图示仪检测MOS直流参数;2、学习并掌握该仪器的基本测试原理和使用方法,并巩固及加深对晶体管原理课程的理解。

二、实验原理介绍同实验五三、实验设备介绍晶体管直流参数是衡量晶体管质量优劣的重要性能指标。

在晶体管生产中和晶体管使用前,须对其直流参数进行测试。

XJ4822晶体管图示仪是一类专门用于晶体管直流参数测量的仪器。

用该仪器可在示波管屏幕上直接观察各种直流特性曲线,通过曲线在标尺刻度的位置可以直接读出各项直流参数。

用它可测试晶体管的输出特性、输入特性、转移特性和电流放大特性等;也可以测定各种极限、过负荷特性。

四、实验内容和步骤1、测试场效应管2SK30、IRF830的直流参数。

准备工作:在仪器未通电前,把“辉度”旋至中等位置,“峰值电压”范围旋至0-10伏档,“功耗限制电阻”调到1K档,“峰值电压” 调到0位,“X轴作用”置集电极电压1伏/度档,“Y轴作用”置集电极电流1毫安/度档。

接通电源预热10分钟。

调节“辉度”和“聚焦”使显示的图像清晰。

晶体管特性图示仪是为普通的NPN、PNP晶体管的特性图示分析而设计的,要用它来检测场效应管,就必须找出场效应管和普通晶体管之间的相似点和不同处。

场效应管的源极( S )、栅极( G )和漏极( D )分别相当于普通晶体管的发射极( E )、基极( B )、和集电极( C )。

普通晶体管是电流控制元件,而场效应管则是电压控制元件。

1)场效应管2SK30是N-MOS器件,它的管脚分布如图6.1所示。

图6.1 2SK30管脚分布图按照管脚的分布插好管脚后,把“Y轴作用”调到0.2mA/div,“X轴作用”调到1V/div,扫描电压极性为“+”,“功耗限制电阻”调为250Ω,“峰值电压”范围为60% ,“阶梯档级”调到0.1V/div,“阶梯极性”为“-”,“级/簇”置为10。

功率场效应晶体管(MOSFET)特性与驱动电路研究

功率场效应晶体管(MOSFET)特性与驱动电路研究

功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法2.掌握MOSEET对驱动电路的要求3.掌握一个实用驱动电路的工作原理与调试方法二.实验内容1.MOSFET主要参数:开启阀值电压V GS(th),跨导g FS,导通电阻R ds输出特性I D=f(Vsd)等的测试2.驱动电路的输入,输出延时时间测试.3.电阻与电阻、电感性质载时,MOSFET开关特性测试4.有与没有反偏压时的开关过程比较5.栅-源漏电流测试三.实验设备和仪器1.MCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分2.双踪示波器3.毫安表4.电流表5.电压表四、实验线路见图2—2五.实验方法1.MOSFET主要参数测试(1)开启阀值电压V GS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流I D=1mA)的最小栅源电压。

在主回路的“1”端与MOS 管的“25”端之间串入毫安表,测量漏极电流I D,将主回路的“3”与“4”端分别与MOS 管的“24”与“23”相连,再在“24”与“23”端间接入电压表, 测量MOS 管的栅源电压Vgs ,并将主回路电位器RP 左旋到底,使Vgs=0。

将电位器RP 逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流I D =1mA 时的栅源电压值即为开启阀值电压V GS (th )。

读取6—7组I D 、Vgs ,其中I D =1mA 必测,填入表2—6。

(2)跨导g FS 测试双极型晶体管(GTR )通常用h FE (β)表示其增益,功率MOSFET 器件以跨导g FS 表示其增益。

跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即g FS =△I D /△V GS 。

典型的跨导额定值是在1/2额定漏极电流和V DS =15V 下测得,受条件限制,实验中只能测到1/5额定漏极电流值。

根据表2—6的测量数值,计算g FS 。

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告

晶体管单级放大电路实验报告晶体管单级放大电路实验报告引言:晶体管是一种重要的电子元件,广泛应用于各种电子设备中。

晶体管的放大功能在电子技术中具有重要意义。

本次实验旨在通过搭建晶体管单级放大电路,探究晶体管在电路中的应用和性能。

一、实验目的通过搭建晶体管单级放大电路,了解晶体管的基本原理和工作特性,掌握晶体管的放大功能,研究晶体管在电路中的应用。

二、实验器材与原理1. 实验器材:- 晶体管:使用NPN型晶体管,如2N3904。

- 电源:提供电路所需的直流电源。

- 信号发生器:产生输入信号。

- 示波器:用于观测电路的输入输出波形。

2. 原理:晶体管是一种三极管,由发射极、基极和集电极组成。

晶体管的放大功能是基于PN结的导电特性。

当输入信号加到基极时,通过基极电流的变化,控制发射极与集电极之间的电流,从而实现信号的放大。

三、实验步骤1. 搭建电路:根据实验要求,按照电路图搭建晶体管单级放大电路,连接好晶体管、电源、信号发生器和示波器。

2. 调试电路:将信号发生器连接到输入端,示波器连接到输出端,调整信号发生器的频率和幅度,观察输出波形。

3. 测量电路参数:使用万用表测量电路中的电压和电流,记录下各个参数的数值。

四、实验结果与分析通过实验观察和测量,得到了晶体管单级放大电路的输入输出波形和电路参数。

根据实验数据,可以得出以下结论:1. 输入输出波形:通过示波器观察到输入信号和输出信号的波形。

输入信号经过晶体管的放大作用后,输出信号的幅度增大,但波形形状基本保持一致。

2. 电路参数:测量了电路中的电压和电流参数。

根据测量数据,可以计算出晶体管的放大倍数、输入输出阻抗等参数。

这些参数反映了晶体管在电路中的性能。

五、实验总结通过本次实验,我对晶体管的工作原理和放大功能有了更深入的了解。

通过搭建晶体管单级放大电路,我掌握了晶体管在电路中的应用方法,并通过实验数据分析了晶体管的性能。

这对于今后的电子技术学习和应用具有重要意义。

mosfet的实验报告

mosfet的实验报告

mosfet的实验报告《实验报告:探索mosfet的特性与应用》摘要:本实验报告旨在探索mosfet(金属氧化物半导体场效应晶体管)的特性和应用。

通过实验,我们对mosfet的工作原理、特性曲线以及在电子电路中的应用进行了深入研究。

实验结果表明,mosfet作为一种重要的半导体器件,在放大、开关和调节等方面具有重要的应用价值。

引言:mosfet是一种常见的半导体器件,其在电子电路中具有重要的应用价值。

本实验旨在通过实际操作,深入了解mosfet的特性和应用,为进一步的学习和研究打下基础。

实验一:mosfet的基本特性在本实验中,我们首先搭建了一个简单的mosfet电路,通过测量电压和电流的变化,绘制了mosfet的特性曲线。

实验结果显示,mosfet的特性曲线呈现出明显的非线性特性,且具有一定的开启电压和饱和电流。

通过分析特性曲线,我们对mosfet的工作原理有了更深入的理解。

实验二:mosfet在放大电路中的应用在本实验中,我们将mosfet应用于放大电路中,通过调节mosfet的工作点,实现了对输入信号的放大。

实验结果表明,mosfet在放大电路中具有良好的线性特性,能够有效地放大输入信号,为电子设备的放大功能提供了重要支持。

实验三:mosfet在开关电路中的应用在本实验中,我们将mosfet应用于开关电路中,通过控制mosfet的导通和截止,实现了对电路的开关功能。

实验结果表明,mosfet在开关电路中具有快速响应的特性,能够实现高效的开关控制,为电子设备的开关功能提供了重要支持。

结论:通过本次实验,我们深入了解了mosfet的特性和应用。

mosfet作为一种重要的半导体器件,在放大、开关和调节等方面具有重要的应用价值。

我们相信,通过不断的学习和研究,mosfet将会在电子领域发挥更加重要的作用。

AlGaN-GaN异质结高电子迁移率晶体管的研制与特性分析

AlGaN-GaN异质结高电子迁移率晶体管的研制与特性分析

AlGaN-GaN异质结高电子迁移率晶体管的研制与特性分析AlGaN/GaN异质结高电子迁移率晶体管的研制与特性分析引言:GaN (氮化镓) 近几十年来受到广泛关注,因其优异的物理和电学特性,在高功率、高频率电子器件中表现出了巨大的潜力。

然而,GaN材料的电子迁移率相对较低,限制了其在高频率应用中的实际应用。

为了克服这一问题,探究者开始将AlGaN与GaN材料结合,形成AlGaN/GaN异质结,以提高GaN材料的电子迁移率。

本文将对AlGaN/GaN异质结高电子迁移率晶体管的研制和特性进行分析。

一、AlGaN/GaN异质结晶体管的制备过程1. 材料的生长在制备AlGaN/GaN异质结晶体管时,起首需要生长GaN和AlGaN薄膜。

常用的生长方法包括分子束外延 (MBE) 和金属有机气相外延 (MOVPE) 等。

通过这些技术可以控制薄膜的生长速度和薄膜中杂质浓度的掺杂,从而获得高质量的AlGaN和GaN材料。

2. 材料的加工生长完成后的AlGaN/GaN异质结薄膜需要进行刻蚀、光刻和金属电极的制备等加工步骤。

刻蚀过程可以通过干法或湿法完成,以去除不需要的材料。

光刻技术则可以用来定义电极的外形和尺寸。

最后,通过金属蒸发或电化学沉积等方法制备金属电极,以实现电子迁移的载流子注入和收集。

二、AlGaN/GaN异质结晶体管的特性分析1. 高电子迁移率AlGaN/GaN异质结晶体管相比于传统的GaN晶体管具有更高的电子迁移率。

这是由于AlGaN/GaN异质结的构造使得电子能够在GaN材料和AlGaN材料的界面上形成二维电子气 (2DEG)。

2DEG的存在提供了高电子迁移率的环境,电子在其中能够快速挪动。

2. 优异的高功率特性由于AlGaN/GaN异质结晶体管具有高电子迁移率和良好的热传导性能,因此在高功率应用中表现出了优异的特性。

对于射频功率放大器等高功率电子器件,AlGaN/GaN异质结晶体管可以提供高输出功率和更高的效能。

场效应晶体管参数测量的实验报告(共9篇)

场效应晶体管参数测量的实验报告(共9篇)

场效应晶体管参数测量的实验报告(共9篇)实验2、场效应晶体管参数测量实验二场效应晶体管特性的测量与分析一前言场效应晶体管不同于一般的双极晶体管。

场效应晶体管是一种电压控制器件。

从工作原理看,场效应晶体管与电子管很相似,是通过改变垂直于导电沟道的电场强度去控制沟道的导电能力,因而称为“场效应”晶体管。

场效应晶体管的工作电流是半导体中的多数载流子的漂移流,参与导电的只有一种载流子,故又称“单极型”晶体管。

通常用“FET”表示。

场效应晶体管分为结型场效应管(JFET)和绝缘栅型场效应管(MISFET)两大类。

目前多数绝缘栅型场效应应为金属-氧化物-半导体(MOS)三层结构,缩写为MOSFET。

本实验对结型、MOS型场效应管的直流参数进行检测。

场效应管按导电沟道和工作类型可分为:???耗尽型??n沟????增强型MOSFET???耗尽型?? FET?p沟??增强型?????JFET?n沟?耗尽型???p沟???检测场效应管特性,可采用单项参数测试仪或综合参数测试仪。

同时,场效应管与双极管有许多相似之处,故通常亦采用XJ4810半导体管图示仪检测其直流参数。

本实验目的是通过利用XJ4810半导体管图示仪检测场效应管的直流参数,了解场效应管的工作原理及其与双极晶体管的区别。

二实验原理1. 实验仪器实验仪器为XJ4810图示仪,与测量双极晶体管直流参数相似,但由于所检测的场效应管是电压控制器件,测量中须将输入的基极电流改换为基极电压,这可将基极阶梯选择选用电压档(伏/级);也可选用电流档(毫安/级),但选用电流档必须在测试台的B-E间外接一个电阻,将输入电流转换成输入电压。

测量时将场效应管的管脚与双极管脚一一对应,即G(栅极)? B(基极);S(源极)? E(发射极);D(漏极)? C(集电极)。

值得注意的是,测量MOS管时,若没有外接电阻,必须避免阶梯选择直接采用电流档,以防止损坏管子。

另外,由于场效应管输入阻抗很高,在栅极上感应出来的电荷很难通过输入电阻泄漏掉,电荷积累会造成电位升高。

mosfet的实验报告

mosfet的实验报告

mosfet的实验报告MOSFET的实验报告引言:MOSFET (金属氧化物半导体场效应晶体管) 是一种重要的电子器件,具有广泛的应用领域。

本篇实验报告将介绍MOSFET的基本原理、实验装置、实验步骤、实验结果以及对实验结果的分析和讨论。

一、MOSFET的基本原理MOSFET是一种三端器件,由金属氧化物半导体结构组成。

它的主要特点是在输入电压较低的情况下,能够控制较大的输出电流。

MOSFET有两种类型:N沟道型和P沟道型,根据实验要求,我们选择了N沟道型MOSFET。

二、实验装置本次实验所需的装置包括:MOSFET芯片、直流电源、电阻、示波器、万用表、电容、电感等。

三、实验步骤1. 将MOSFET芯片正确连接到实验电路中,并确保连接正确无误。

2. 将直流电源连接到电路中,设置合适的电压和电流值。

3. 使用示波器测量输入和输出信号的波形,并记录下来。

4. 使用万用表测量电路中的电流和电压值,并记录下来。

5. 对实验进行多次重复,确保实验结果的准确性。

四、实验结果在实验过程中,我们观察到了以下结果:1. 输入电压的变化对输出电流和电压有明显的影响。

2. MOSFET的工作在某一特定电压范围内更为稳定。

3. 输出电流和电压随着输入电压的增加而增加,但增长速度逐渐减缓。

五、实验结果分析和讨论根据实验结果,我们可以得出以下结论:1. MOSFET在特定电压范围内具有较好的线性特性,适合用作放大器。

2. MOSFET的输出电流和电压与输入电压之间存在一定的关系,可以通过合适的电路设计实现不同的功能。

3. MOSFET的工作在某一特定电压范围内更为稳定,超出该范围可能导致器件损坏。

六、实验的应用前景MOSFET作为一种重要的电子器件,在现代电子技术中具有广泛的应用前景。

它可以用于放大电路、开关电路、模拟电路等领域。

随着科技的不断进步,MOSFET的性能也在不断提高,未来它将在更多领域发挥重要作用。

结论:通过本次实验,我们对MOSFET的基本原理和特性有了更深入的了解。

晶体管实验报告

晶体管实验报告

晶体管实验报告晶体管实验报告引言晶体管是一种重要的电子元件,广泛应用于各个领域。

本实验旨在通过实际操作,深入了解晶体管的工作原理、特性以及其在电路中的应用。

实验目的1. 了解晶体管的基本结构和工作原理;2. 掌握晶体管的静态特性和动态特性的测试方法;3. 理解晶体管在电路中的应用。

实验材料1. NPN型晶体管;2. 直流电源;3. 变阻器;4. 电流表;5. 电压表;6. 示波器。

实验步骤一、晶体管的基本结构和工作原理在实验开始之前,首先介绍晶体管的基本结构和工作原理。

晶体管由三个掺杂不同的半导体材料层组成,分别是发射区、基区和集电区。

发射区和集电区都是P型半导体,而基区是N型半导体。

当发射结和集电结正向偏置时,发射结和集电结都会导通,使得电流从发射区流向集电区。

而当发射结反向偏置时,发射结截止,晶体管处于关闭状态。

二、静态特性测试1. 搭建静态特性测试电路。

将晶体管连接到直流电源、变阻器、电流表和电压表上,确保电路连接正确。

2. 调节变阻器,改变基极电流的大小,记录集电极电流和基极电压的变化。

3. 根据实验数据,绘制集电极电流与基极电压的关系曲线,分析晶体管的静态特性。

三、动态特性测试1. 搭建动态特性测试电路。

将晶体管连接到信号源、电容器、电阻和示波器上,确保电路连接正确。

2. 调节信号源的频率和幅度,观察晶体管的输出波形。

3. 根据实验观察结果,分析晶体管的动态特性。

四、晶体管在电路中的应用1. 介绍晶体管在放大电路中的应用。

晶体管可以作为放大器,将微弱信号变为较大的信号输出。

2. 介绍晶体管在开关电路中的应用。

晶体管可以作为开关,控制电路的通断。

实验结果与分析通过静态特性测试,我们得到了晶体管的集电极电流与基极电压的关系曲线。

从曲线可以看出,当基极电压增大时,集电极电流也随之增大,符合晶体管的工作原理。

通过动态特性测试,我们观察到了晶体管在不同频率和幅度下的输出波形,可以看出晶体管具有放大信号的能力。

用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数一.实验目的掌握晶体管特性图示仪测试晶体管的特性和参数的方法。

二.实验设备(1)XJ4810晶体管特性图示仪(2)QT 2晶体管图示仪(3)3DG6A 3DJ7B 3DG4三.实验原理1.双极型晶体(以3DG4NPN 管为例)输入特性和输出特性的测试原理(1)输入特性曲线和输入电阻i R ,在共射晶体管电路中,输出交流短路时,输入电压和输入电流之比为i R ,即=常数CE V B BEi I V R ∂∂= (1.1)它是共射晶体管输入特性曲线斜率的倒数。

例如需测3DG 4在V CE =10时某一作点Q 的R 值,晶体管接法如图1.1所示。

各旋扭位置为峰值电压%80% 峰值电压范围0~10V 功耗电阻50Ω X 轴作用基极电压1V/度 Y 轴作用 阶梯选择μ20A/极 级/簇10 串联电阻10K 集电极极性 正(+)把X 轴集电极电压置于1V/度,调峰值电压为10V ,然后X 轴作用扳回基极电压0.1V/度,即得CE V =10V 时的输入特性曲线。

这样可测得图1.2:V CE V B BEi I V R 10=∆∆= (1.2)根据测得的值计算出i R 的值图1.1晶体管接法 图1.2输入特性曲线 (2)输出特性曲线、转移特性曲线和β、FE h在共射电路中,输出交流短路时,输出电流和输入电流增量之比为共射晶体管交流电流放大系数β。

在共射电路中,输出端短路时,输出电流和输入电流之比为共射晶体管直流电流放大系数FE h 。

晶体管接法如图1.1所示。

旋扭位置如下:峰值电压范围10V 峰值电压%80% 功耗电阻250Ω X 轴集电极电压1V/度 Y 轴集电极电流2mA/度 阶梯选择μ20A/度 集电极极性 正(+)得到图1.3所示共射晶体管输出特性曲线,由输出特性曲线上读出V V CE 5=时第2、4、6三根曲线对应的C I ,B I 计算出交流放大系数BC I I ∆∆=β (1.3) FE h >β主要是因为基区表面复合等原因导致小电流β较小造成的,β、FE h 也可用共射晶体管的转移特性(图1.4)进行测量只要将上述的X 轴作用开关拨到“基极电流或基极源电压”即得到共射晶体管的转移特性。

晶体管开关特性、限幅器与钳位器

晶体管开关特性、限幅器与钳位器

晶体管开关特性、限幅器与钳位器实验二晶体管开关特性、限幅器与钳位器1. 实验目的(1)观察晶体二极管、三极管的开关特性,了解外电路参数变化对晶体管开关特性的影响(2)掌握限幅器和钳位器的基本工作原理。

2. 实验原理(1)晶体二极管的开关特性由于晶体二极管具有单向导电性,故英开关特性表现在正向导通与反向截止两种不同状态的转换过程。

如图2—1电路,输入端施加一方波激励信号%,由于二极管结电容的存在,因而有充电、放电和存贮电荷的建立与消散的过程。

因此当加在二极管上的电压突然由正向偏B(+K)变为反向偏置(-?时,二极管并不立即截止,而是出现一个较大的反向电流-冬,并维持R一段时间:(称为存贮时间)后,电流才开始减小,再经徐(称为下降时间)后,反向电流才等于静态特性上的反向电流厶,将tr=ts+tf叫做反向恢复时间,纭与二极管的结构有关,PN结面积小,结电容小,存贮电荷就少,匚就短,同时也与正向导通电流和反向电流有关。

当管子选泄后,减小正向导通电流和增大反向驱动电流,可加速电路的转换过程。

(2)晶体三极管的开关特性晶体三极管的开关特性是指它从截止到饱和导通,或从饱和导通到截止的转换过程,而且这种转换都需要一泄的时间才能完成。

如图2-2电路的输入端,施加一个足够幅度(在-%和+%之间变化)的矩形脉冲电压%激励信号,就能使晶体管从截止状态进入饱和导通,再从饱和进入截止。

可见晶体管T的集电极电流几和输出电压K 的波形已不是一个理想的矩形波,其起始部分和平顶部分都延迟了一段时间,苴上升沿和下降沿都变得缓慢了,如图2—2波形所示,从上开始跃升到丄上升到0.1A,所需时间定义为延迟时间乱,而丄从0.1矗增长到0.9矗的时间为上升时间“从K开始跃降到i.下降到0.9厶s 的时间为存贮时间ts,而几从0.9lcs下降到0.1忑的时间为下降时间如通常称1^=1Atr为三极管开关的“接通时间”,toff=ts+tf称为“断开时间”,形成上述开关特性的主要原因乃是晶体管结电容之故。

晶体管放大电路实验报告

晶体管放大电路实验报告

晶体管放大电路实验报告晶体管放大电路实验报告引言:晶体管是一种半导体器件,广泛应用于电子电路中。

晶体管放大电路是利用晶体管的放大特性,将输入信号放大到更高的电压或电流水平,以实现对信号的增强和处理。

本次实验旨在通过搭建晶体管放大电路,探究其工作原理和性能。

一、实验目的本次实验的目的是通过搭建晶体管放大电路,了解晶体管的基本工作原理和特性,并观察不同参数对电路性能的影响。

二、实验原理晶体管放大电路主要由晶体管、电阻和电容组成。

晶体管分为三个区域:发射区、基区和集电区。

通过控制基区的电流,可以调节晶体管的放大倍数。

电阻和电容则用于稳定电路和滤波。

三、实验步骤1. 准备工作:收集所需材料和仪器,包括晶体管、电阻、电容、电压源和示波器等。

2. 搭建电路:按照实验要求,连接晶体管、电阻和电容,形成放大电路。

3. 调节电压:根据实验要求,调节电压源的输出电压,使其适合晶体管的工作范围。

4. 测量电路参数:使用示波器和万用表等仪器,测量电路中的电压、电流和频率等参数。

5. 观察输出信号:输入不同的信号波形,观察输出信号的放大效果和失真情况。

6. 记录实验数据:准确记录实验过程中的各项数据和观察结果。

四、实验结果与分析通过实验测量和观察,我们得到了一系列数据和图表。

根据这些数据和图表,我们可以得出以下结论:1. 当输入信号的幅度过大时,输出信号可能会出现失真现象,即波形变形或削平。

2. 输入信号的频率越高,输出信号的失真程度越大。

3. 通过调节电路中的电阻和电容数值,可以改变电路的增益和频率响应。

五、实验总结通过本次实验,我们深入了解了晶体管放大电路的工作原理和性能特点。

实验过程中,我们掌握了搭建电路、调节参数和测量数据的方法。

通过观察和分析实验结果,我们进一步认识到晶体管放大电路的优点和局限性。

六、实验改进在实验过程中,我们发现了一些问题和改进的空间:1. 数据测量的准确性有待提高,可以采用更精密的测量仪器和方法。

MOS管i-v特性

MOS管i-v特性

一、实验目的分析mos晶体管i-v特性分析二、实验要求了解结型场效应管和MOS管的工作原理、特性曲线及主要参数三、实验内容1、MOS器件的结构介绍2、MOS的工作原理3、i-v特性曲线图1 原理图1.特性曲线和电流方程输出特性曲线与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。

转移特性曲线转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时i D几乎不随v DS而变化,即不同的v DS所对应的转移特性曲线几乎是重合的,所以可用v DS大于某一数值(v DS>v GS-V T)后的一条转移特性曲线代替饱和区的所有转移特性曲线.i D与v GS的近似关系与结型场效应管相类似。

在饱和区内,i D与v GS的近似关系式为( v GS>V T )式中I DO是v GS=2V T时的漏极电流i D。

2.参数MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压V P,而用开启电压V T表征管子的特性。

MOS管1. 基本结构原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使v GS=0时,在这些正离子产生的电场作用下,漏-源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压v DS,就有电流i D。

如果加上正的v GS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,i D增大。

反之v GS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,i D减小。

当v GS负向增加到某一数值时,导电沟道消失,i D趋于零,管子截止,故称为耗尽型。

沟道消失时的栅-源电压称为夹断电压,仍用V P表示。

与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压V P也为负值,但是,前者只能在v GS<0的情况下工作。

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告单极晶体管放大电路实验报告摘要:本实验通过搭建单极晶体管放大电路,研究晶体管的放大特性。

通过实验数据的测量和分析,得出了晶体管的放大倍数和频率响应等重要参数,并对实验结果进行了讨论。

引言:晶体管是一种重要的电子元件,广泛应用于放大、开关和振荡等电路中。

其中,单极晶体管放大电路是一种常见的放大电路,其具有简单、稳定的特点。

本实验旨在通过搭建单极晶体管放大电路,研究晶体管的放大特性,并对实验结果进行分析和讨论。

实验装置:本实验所使用的装置包括:晶体管、电阻、电容、信号发生器、示波器等。

实验步骤:1. 按照电路图搭建单极晶体管放大电路。

2. 将信号发生器连接到输入端,调节信号发生器的频率和振幅。

3. 将示波器连接到输出端,观察输出信号的波形。

4. 测量输入信号和输出信号的电压,并记录数据。

5. 改变输入信号的频率,重复步骤3和4。

6. 分析实验数据,计算晶体管的放大倍数和频率响应等参数。

实验结果:通过实验测量得到的数据,我们得到了晶体管的放大倍数和频率响应等参数。

在输入信号频率为1kHz时,晶体管的放大倍数为20倍;在输入信号频率为10kHz时,晶体管的放大倍数为15倍。

此外,我们还得到了晶体管的频率响应曲线,发现在低频段时,晶体管的放大倍数较高,而在高频段时,放大倍数逐渐下降。

讨论:通过实验结果的分析,我们可以得出以下结论:1. 单极晶体管放大电路具有一定的放大倍数,可以将输入信号放大到较大的幅度。

2. 晶体管的放大倍数受到输入信号频率的影响,随着频率的增加,放大倍数逐渐下降。

3. 在实际应用中,需要根据需要选择合适的晶体管和电路参数,以满足特定的放大要求。

4. 在设计和搭建放大电路时,需要考虑晶体管的工作点和稳定性等因素,以保证电路的正常工作。

结论:通过本实验,我们研究了单极晶体管放大电路的放大特性,并得出了晶体管的放大倍数和频率响应等重要参数。

实验结果表明,晶体管具有一定的放大能力,但其放大倍数受到输入信号频率的影响。

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告单极晶体管放大电路实验报告摘要:本实验通过搭建单极晶体管放大电路,探究晶体管的放大特性。

实验结果表明,单极晶体管放大电路能够实现信号的放大,但存在一定的失真和功耗。

1. 引言单极晶体管放大电路是一种常见的放大电路,广泛应用于各种电子设备中。

本实验旨在通过搭建单极晶体管放大电路,研究其放大特性和工作原理。

2. 实验原理单极晶体管放大电路由晶体管、电阻和电容组成。

晶体管的三个引脚分别为基极、发射极和集电极。

当基极电流变化时,晶体管的放大特性会使得集电极电流和电压发生变化,从而实现信号的放大。

3. 实验步骤3.1 搭建电路根据实验原理,搭建单极晶体管放大电路。

将晶体管的基极连接到信号源,发射极接地,集电极连接到负载电阻。

3.2 测量输入输出特性曲线通过改变输入信号的幅度,测量输出信号的幅度,并绘制输入输出特性曲线。

实验结果表明,随着输入信号的增大,输出信号也相应增大,但存在一定的失真。

3.3 测量直流工作点通过测量晶体管的电压和电流,确定晶体管的直流工作点。

直流工作点的选择对于放大电路的稳定性和线性度有重要影响。

4. 实验结果与分析通过实验测量,得到了单极晶体管放大电路的输入输出特性曲线。

曲线表明,随着输入信号的增大,输出信号也相应增大,但在较大幅度时,出现了失真现象。

这是因为晶体管的非线性特性导致的。

另外,通过测量直流工作点,我们可以确定晶体管的偏置电压和电流。

偏置电压和电流的选择对于放大电路的性能有重要影响。

如果偏置电压过高或过低,都会导致信号失真和功耗增加。

5. 结论单极晶体管放大电路能够实现信号的放大,但存在一定的失真和功耗。

通过合理选择直流工作点,可以提高放大电路的稳定性和线性度。

6. 讨论与展望本实验只研究了单极晶体管放大电路的基本特性,还可以进一步研究其他类型的放大电路,如共射放大电路和共基放大电路。

此外,可以通过改变电路参数和组件,优化放大电路的性能。

总之,单极晶体管放大电路是一种常见的放大电路,具有重要的应用价值。

晶体管单管放大电路实验报告

晶体管单管放大电路实验报告

晶体管单管放大电路实验报告1. 引言在现代电子技术应用中,晶体管放大电路是一种常见且重要的电路。

本实验旨在通过搭建一个晶体管单管放大电路,探索晶体管的放大特性,并对其进行实际测试和分析。

2. 实验目的•理解晶体管的基本工作原理;•掌握晶体管单管放大电路的搭建方法;•通过实验测量和分析晶体管的放大特性。

3. 实验原理3.1 晶体管基本工作原理晶体管是一种半导体元件,由N型和P型半导体材料组成。

根据控制电极的类型和连接方式,晶体管可以分为三种基本类型:NPN型、PNP型和场效应晶体管。

在NPN型晶体管中,由三个掺杂不同的半导体层构成。

其中,中间层为薄的P型层,两侧为较厚的N型层。

当一个正向电压被施加到基极上时,使得芯片中的P型半导体部分电离,形成少数载流子。

这些载流子会被电场推向集电区,形成一个较大的电流。

3.2 晶体管单管放大电路搭建方法晶体管单管放大电路由晶体管和少量被调谐的无源元件组成,用于将输入信号放大。

其基本搭建方法如下: 1. 将NPN型晶体管按照器件类型正确连接到实验板上的晶体管座位上。

一般来说,电流放大系数较大的三极管被选择为放大电路的晶体管。

2. 选择适当的集电极电阻和基极电阻,并将其与晶体管连接。

3. 连接输入信号源和输出负载,以便对电路进行测试和测量。

3.3 晶体管的放大特性晶体管单管放大电路的主要特性包括电压放大倍数、电流放大倍数和功率放大倍数。

- 电压放大倍数(Av):输入信号经过放大电路后,输出信号电压与输入信号电压的比值。

它可以通过测量电路的输入输出电压,计算得出。

- 电流放大倍数(Ai):输出电流与输入电流的比值,同样可以通过实验测量获得。

- 功率放大倍数(Ap):输出功率与输入功率的比值,可以通过测量输出电压和输出电流,计算得出。

4. 实验器材和元件•1个NPN型晶体管•电阻器•输入信号源•示波器•万用表5. 实验步骤1.按照搭建方法将晶体管连接到实验板上,并连接合适的电阻器。

电子技术实验报告

电子技术实验报告

电子技术实验报告一、实验目的:1.了解并掌握电子技术的基本概念和实验方法;2.学习并熟悉电子元器件的使用方法;3.掌握不同电路的搭建和测试方法。

二、实验原理:本次实验主要涉及到以下几个实验内容:二极管的正向、反向工作状态;晶体管的放大特性;电源、稳压二极管、LED的特性;负反馈放大电路;运放反相、非反相运算放大器的特性。

三、实验器材和器件:1.万用表2.直流电源3.电阻、电容4.二极管、三极管5.LED6.运算放大器四、实验过程:1.实验一:二极管的正向、反向工作状态a.将二极管与万用表连接,测量正向压降和反向电流;b.在实验过程中,依次改变电阻值,观察二极管的亮度和电流变化。

2.实验二:晶体管的放大特性a.搭建共射极(CE)的晶体管放大电路;b.改变输入电压,测量输出电压,并记录数据;c.根据测得的数据,绘制输入输出特性曲线。

3.实验三:电源、稳压二极管、LED的特性a.搭建电源与稳压二极管电路,测量电源输出电压和稳压二极管的电压;b.将LED连接到电路中,测量LED的正向电压和电流;c.根据测得的数据,绘制稳压二极管和LED的特性曲线。

4.实验四:负反馈放大电路a.搭建负反馈电路,调整电路参数,测量反馈系数;b.改变输入信号频率,测量输入输出幅度,并记录数据;c.根据测得的数据,绘制输入输出特性曲线。

5.实验五:运放反相、非反相运算放大器的特性a.搭建反相运放电路,输入不同幅度的信号,测量输出信号;b.搭建非反相运放电路,输入不同幅度的信号,测量输出信号;c.根据测得的数据,绘制输入输出特性曲线。

五、实验结果与分析:1.实验一:二极管的正向、反向工作状态a.根据实验数据,绘制正向工作状态和反向工作状态下的电流-电压特性曲线;b.分析曲线特点,验证理论知识,并说明实验误差。

2.实验二:晶体管的放大特性a.根据实验数据,绘制输入输出特性曲线;b.计算放大倍数,并与理论值进行比较,分析误差产生的原因。

晶体管特性曲线实验报告

晶体管特性曲线实验报告

竭诚为您提供优质文档/双击可除晶体管特性曲线实验报告篇一:Lab3三极管特性实验报告丁俐夫实验报告课程名称:_______________________________指导老师:________________成绩:__________________实验名称:_______________________________实验类型:________________同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1.2.3.4.1.2.3.4.理解三极管的基本结构、工作原理与工作特性理解三极管非门电路的基本原理,会设计基本的三极管非门电路学会测量三极管非门电路的特性理解集成门电路的基本构造,学会测试集成门电路的静态逻辑功能,并测量集成门电路的特性使用万用表或multisim仿真测试三极管的特性利用三极管设计简单的非门电路,测试三极管非门电压传输的特性测量集成门电路的输入输出信号与静态逻辑功能测试集成非门电压传输的特性二、实验内容三、实验原理1.万用表判断三极管类型与极性的方法1)导通法测量类型与极性假定我们并不知道被测三极管是npn型还是pnp型,也分不清各管脚是什么电极。

首先判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用表二极管蜂鸣档位正反向测量,再取1、3电极和2、3电极,分别正反向测量。

在这三次颠倒测量中,必然有一次正反向均不导通,这一次的两极分别为集电极(c)和发射极(e),剩下的一个管脚必然是要寻找的基极(b)。

找到基极后我们可以判断三极管的类型。

将万用表置于二极管蜂鸣档位,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次均导通,则为npn 型,否则为pnp型。

最后判断集电极与发射极。

对npn型二极管用二极管档位,红表笔与基极相连,把红表笔接在基极上,将黑表笔先后接在其余两个极上,有两次读数,大的一次就是发射极。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二晶体三极管放大电路特性分析和研究一、实验目的:1.熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法;2.熟悉仿真软件Multisim的直流工作点分析、交流分析、温度扫描和参数扫描分析方法;3.熟悉便携式虚拟仿真实验平台,掌握基本功能的使用方法;4.通过软件仿真,了解晶体三极管输入特性和输出特性;5.通过软件仿真和硬件实验验证,观测晶体三极管放大电路输出波形与静态工作点的关系,理解静态工作点在晶体管放大电路中的作用,加深对截止失真和饱和失真的认识;6、通过软件仿真和硬件实验验证,掌握晶体三极管静态工作点分析和设计方法;7、信号源内阻对放大器性能的影响。

8、掌握放大器电压放大倍数、输入电阻、输出电阻、频率特性的测试方法。

9、熟悉常用电子仪器的使用。

二、实验预习:复习有关单级放大电路的内容,熟悉基本原理、性能参数及各元件作用。

根据图2.1所示的电路,双极型晶体管2N3904的β≈120,V BE(on)=0.7V。

计算Q1的各极直流电流、直流电压和该单级放大器的电压增益A v。

设电位器调整到25%。

填入表2.1计算栏。

图2.1 晶体三极管静态工作点分析电路表2.1 晶体三极管2N3904静态工作点(R=20KΩ)便携式虚拟仿真实验平台(PocketLab、元器件)、+5V直流稳压电源、数字万用表、信号发生器DF1642C、交流毫伏表DF2710B、双踪数字示波器CS-4125A。

四、实验内容:(一)仿真实验1.根据图2.2(a)所示电路,在Multisim中进行仿真分析,得到晶体管的输出伏安特性。

图2.2 二极管伏安特性实验电路(a) IV分析仪与三极管的连接;(b) 用IV分析仪测得的三极管输出伏安特性曲线仿真任务:二极管选取型号2N3904,用IV分析仪对晶体管的伏安特性进行测量。

仿真设置:根据图2.2(b)所示,点击Sim_Param设置电压扫描范围和电流范围,三极管V_ce 两端电压范围为0~6V,步进50 mV,I_b电流范围为10μA~10 μA,共10步,如图2.3所示。

然后运行Run,可得图2.2(b)。

点击鼠标右键,弹出菜单,选择select trace ID,弹出如图2.4所示下拉菜单,选择所要的I_b,然后移动测量线,便可读出V_ce值和I_c值,填入表2.2中。

根据测得值计算电流放大倍数,填入表中。

图2.3 模拟参数设置图2.4 select trace ID界面表2.2 不同基极电流下的集电极电流和放大倍数2. 根据图2.1所示电路形式,在Multisim中搭建晶体三极管2N3904的直流偏置电路。

仿真设置:Simulate → Analyses → DC Operating Point…,在弹出窗口中(如图2.5)选择需要列出的静态工作各节点电压和各支路电流,然后点击Simulation,进行直流工作点分析。

在弹出的直流工作点窗口(如图2.6)的菜单中选取Tools,再选取Export to Excel,可将输出结果转入到EXCEL中,并填入表2.1中的仿真栏。

或者运行Run,直接读取XMM1、XMM2、XMM3显示的数值,可知基极、集电极和发射极的电压。

图2.5 选取直流工作点图2.6 保存直流工作点3.根据图2.1所示电路形式,在Multisim中搭建晶体三极管2N3904单级放大电路。

加入峰峰值=5mV,频率=1kHz的正弦波。

调整电位器的值约为25%处。

仿真设置:Simulate → Run。

结果查看:采用Agilent示波器XSC1,查看输入、输出两路波形。

双击示波器XSC1器件,出现如图2.7所示的示波器界面。

调整2个通道的显示方式,将它们的波形显示出来,并采用如图所指的测量工具,测试输入,输出波形的峰峰值,计算得到电压增益A v,填入表格2.1。

图2.7 Multisim 安捷伦示波器4.在保持电路工作状态不变的情况下,改变输入信号幅度峰峰值,取Vinpp=5mV,Vinpp=10mV,Vinpp=20mV,Vinpp=30mV,Vinpp=40mV,重新进行瞬态仿真和频谱分析,截取各输入条件下的输入输出波形图和频谱分析图,填入表2.3。

此时在输出端接上频率分析仪如图2.8所示。

图2.8 电路接入频谱分析仪表2.3 不同输入情况下的输入输出波形图思考题:请说明不同输入情况下的输出波形有何差异,并尝试解释其原因。

5.在保持输入信号Vinpp=10mV的情况下,将图2.1中的电位器调到10%,可观察到如图2.9所示的波形。

试问此时输出波形的失真为何失真?其原因是什么?图2.9 放大器输入、输出波形将图2.1中的电位器调到60%,可观察到如图2.10所示的波形。

试问此时输出波形的失真为何失真?其原因是什么?图2.10 放大器输入、输出波形6. 将图2.1中的电位器调到25%,从小到大调节输入信号的幅度,直到输出波形出现失真,此时的输入信号应该是放大器处于目前状态的最大信号,即输入信号的动态范围。

7. 取输入信号仍为Vinpp=5mV,在信号源上串联一个电阻R8,表征信号源内阻,如图2.11所示。

取该电阻为50Ω、1kΩ和13kΩ重新进行仿真,截取不同电阻情况下的输入输出波形图,并估算源电压增益A vs,填入表2.4。

图2.11 信号源内阻表2.4 不同信号源内阻的输入输出波形图2.12所示电路。

重新仿真,观察到什么现象?为什么?改变输入信号幅度,重新获得不失真波形,并测得此时的电压增益,与原电压增益比较,得到何种结果?请解释原因,并将两种增益值填入表2.5。

图2.12 改变C3的位置表2.5 CE1不同接法时的放大器增益(二)基于便携式虚拟仿真平台的硬件实验本实验采用便携式虚拟仿真实验平台和实验室里提供的设备对电路进行有关性能测量。

具体步骤如下:1.电路连接首先根据图2.14在面包板上搭试电路,并将PocketLab的CN2中直流输出端+5V和GND 与电路的电源、地节点连接;PocketLab的CN1中信号输出端S0或S1作为电路的输入信号接C2左侧(也可以用1端口);PocketLab的CN1中输入端C1和C2分别接到电路输入信号端和电阻R5,分别测试输入输出两路信号。

所有连接如图2.14所示。

注意电位器调节到约25%处,即1-3的电阻为35kΩ。

图2.14 硬件连接示意图2.节点电压测量用USB接口线将PocketLab与计算机相连,将PocketLab的CN1中输入端C1和C2与Q1的基极和发射极相连,闭合PocketLab电源开关,在电脑中打开“虚拟实验室”,点击电源开关置“ON”,如显示连接正常,表明PocketLab正常工作。

然后在Function功能中选择直流电压表,在主面板选择直流电压表界面,设定C1、C2的直流偏置为零,点击Set 完成设置;点击ON/OFF开关,处于ON状态,上方将实时显示C1、C2信号的直流电压,可检查晶体管基极和发射极电压是否合适。

同样将PocketLab的CN1中输入端C1和C2与Q1的基极和集电极相连,用直流电压表测量它们的电压,以检查电压值是否合适,确保电路搭试正确。

3.输入信号产生将PocketLab的CN1中输入端C1和C2分别接到电路输入信号端和电阻R5相连,在PocketLab的主面板中选择信号发生器,出现信号发生器界面如图2.15所示,选择输出信号波形为正弦波,频率为1kHz,信号幅度Vpp为5mV,DC Offset=0V。

点击按钮Set,正弦波信号将输出到电路输入端。

图2.15 信号发生器界面4.输入、输出交流波形测试在PocketLab的Function功能栏中选择示波器,在主面板中选择示波器,出现如图2.15所示的示波器操作界面。

选择合适的时间和电压刻度,显示三极管单级放大器的输入、输出波形。

并在窗口中直接读出其输入输出波形的峰峰值,获得其电压增益,填入表格2.6,比较计算值,仿真值和测试值是否一致。

表2.6 晶体三极管放大器增益5、观察放大器输出随输入信号幅度变化根据仿真情况,从小到大逐渐改变发生器所产生信号的幅度,用PocketLab的示波器界面,选择合适的时间和电压刻度,显示三极管单级放大器的输入、输出波形。

6、观察实际的截止失真和饱和失真根据仿真结果,调节电位器R6,让放大电路工作在截止状态或饱和状态,用PocketLab 的示波器界面,选择合适的时间和电压刻度,显示三极管单级放大器的输入、输出波形。

(三)基于实验室的实测实验1、电路连接将图2.14在面包板上搭试电路与PocketLab 脱离,用直流稳压电源+5V 输出端接到该电路的+5V ,电源的地端接到该电路的接地处。

将信号发生器输出端接到放大电路输入端;示波器的CH1和CH2分别接放大电路的输入端和输出端,分别测试放大电路的工作状态。

注意电位器调节到约25%处,即1-3的电阻为35k Ω。

这样基于便携式虚拟仿真的实验与实验室的实验电路状态是一样的,便于不同实验条件下结果的比较。

2、电压放大倍数测量在放大器输入端加入频率为1kHz 的正弦波信号v i ,调节函数发生器的输出信号幅度旋钮使放大器输入电压的峰-峰值约为10mV ,同时用示波器观察放大器输出信号波形。

在输出波形不失真的情况下,用交流毫伏表分别测量表2.7三种情况的输入端信号幅值V i (有效值)和输出信号幅值V o (有效值),并用示波器观察输入信号和输出信号的相位关系。

测量数据记录表2.7中。

表2.7 电压放大倍数测量数据3、输入、输出电阻测量输入电阻和输出电阻是放大器的重要性能指标,输入电阻可以反映放大器从信号源获取信号的能力。

为了测量放大器的输入电阻,按图2.23所示电路在被测放大器与信号源之间串接一个已知电阻,输入交流电压,在放大器正常工作的情况下,用交流毫伏表测出V s 和V i ,则根据输入电阻的定义可得i i ii R i s i V V V R R V I V V R===-只要测得V s 、V i ,且已知电阻R ,就可测得输入电阻R i 。

注意,电阻R 的取值不宜过大或过小,否则会产生较大测量误差。

通常取R 与R i 为同一数量级为好。

KLo (V L )图2.23 放大器输入电阻与输出电阻测量原理电路对于输出电阻R o 的测量,根据图2.23所示电路,在放大器正常工作的条件下,用毫伏表测出输出端不接负载R L 的输出电压V o 和接入负载后的输出电压V L ,则根据LL oo L R V V R R =+即可求得输出电阻(1)oo L LV R R V =- 在测试过程中,应保持R L 接入前后输入信号的大小不变。

根据上述测量原理,在放大器输入端加入频率为1kHz 的正弦波信号v s ,调节函数发生器的输出信号幅度旋钮使放大器输入电压的峰-峰值约为10mV,用示波器观察放大器输出信号波形。

相关文档
最新文档