基于stc89c51单片机温控系统设计与制作学位论文

合集下载

基于单片机的智能温度控制系统设计

基于单片机的智能温度控制系统设计

毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

基于单片机AT89C51的温度控制系统的设计与仿真 毕业设计(论文)

基于单片机AT89C51的温度控制系统的设计与仿真  毕业设计(论文)

目录摘要 (1)第1章绪论 (2)1.1单片机的应用 (2)1.2电热炉控制中的问题 (2)1.3本设计主要内容 (3)第2章编程软件 (4)2.1编程软件K EIL (4)第3章系统硬件结构设计 (5)3.1系统硬件组成 (5)3.2P ROTEUS原理图设计 (5)3.3硬件电路结构 (7)3.3.1 主控制芯片AT89C51原理及其说明 (9)3.3.2 外部时钟电路 (11)3.3.3 测温模块 (11)3.3.4 显示模块 (13)3.3.5 开关模块 (13)3.3.6 报警模块 (14)第4章系统软件设计及调试 (15)4.1系统程序设计 (15)4.1.1 DS18B20测温程序设计 (17)4.1.2 LM016L显示程序设计 (18)第5章总结与展望 (19)5.1总结 (19)5.2展望 (19)参考文献 (20)附录 (21)摘要:电热炉可使用金属发热体或非金属发热体来产生热源,其构造简单,工业电热炉的主要用途是供机械工业对原材料、毛坯、机械零件加热用。

温度控制对于电热炉是至关重要的。

为了更好地控制温度、提高控制质量,选用单总线芯片DS18B20作为温度传感器,进行了基于单片机AT89C51的温度控制系统的设计与仿真。

显示模块选用LCD显示器,控制更为简单,显示更为清晰。

配以键盘模块及由二极管、蜂鸣器组成的报警模块,组合成较为完整的温度控制系统硬件。

选用Proteus软件绘制电路原理图,同时选用软件Keil 进行编程编译,并将Keil与Proteus联调,在Proteus中查看仿真结果,实现温度的自动控制。

关键词:单片机、温度控制、Keil、Proteus仿真第1章绪论1.1 单片机的应用单片机具有体积小、可靠性高、功能强、使用方便、性能价格比高、容易产品化等特点。

国际上从1970年代开始,国内自1980年代以来,单片机已广泛应用于国民经济的各个领域,对各个行业的技术改造和产品的更新换代起重要的推动作用。

基于STC89C51单片机的温度控制报警系统设计

基于STC89C51单片机的温度控制报警系统设计

基于STC89C51单片机的温度控制报警系统设计摘要:本文基于STC89C51单片机设计了一种温度控制报警系统,通过温度传感器检测环境温度,并根据设定的温度范围控制风扇运转并发出报警信号,以实现室内温度自动控制。

本文介绍了系统硬件设计、软件设计以及测试实验,并通过实验数据验证了系统的可行性和稳定性。

关键词:STC89C51单片机;温度控制;报警系统;温度传感器一、引言随着科技的不断发展,自动化控制技术在各个领域得到广泛应用。

温度自动控制是其中的一个重要应用方向。

在家庭、工厂以及医院等场所,温度的合理控制对于人们的身体健康和环境的稳定运转都有着重要的影响。

因此,设计一种基于STC89C51单片机的温度控制报警系统具有重要的研究价值和应用前景。

二、系统设计2.1 系统功能本系统主要功能为:实时检测环境温度,根据设定的温度范围控制风扇运转,并发出报警信号以实现室内温度自动控制。

2.2 系统硬件设计本系统主要硬件设计包括:温度传感器模块、LED指示灯、蜂鸣器、风扇以及STC89C51单片机。

温度传感器模块采用DS18B20型号,通过单总线接口与单片机相连,用于检测室内温度。

LED指示灯用于显示系统状态,包括运行状态和报警状态。

蜂鸣器用于发出报警信号。

风扇用于控制系统温度,实现温度自动控制。

STC89C51单片机负责系统的数据采集、运算和控制。

2.3 系统软件设计本系统的软件设计分为两部分:系统初始化和主程序部分。

系统初始化包括:串口初始化、温度传感器初始化、LED指示灯初始化、蜂鸣器初始化、风扇初始化等,主要用于对系统各个硬件进行初始化设置。

主程序部分包括:温度采集、温度判断、风扇控制和报警控制等。

主要通过程序实现室内温度的采集和判断,并根据设定温度范围控制风扇和报警控制信号等。

三、实验结果在实际测试中,将系统置于模拟室内环境中进行测试,测试数据显示本系统能够实现温度自动控制,并在温度超出设定范围时发出报警信号。

《2024年基于51单片机的温度控制系统设计与实现》范文

《2024年基于51单片机的温度控制系统设计与实现》范文

《基于51单片机的温度控制系统设计与实现》篇一一、引言在现代工业控制领域,温度控制系统的设计与实现至关重要。

为了满足不同场景下对温度精确控制的需求,本文提出了一种基于51单片机的温度控制系统设计与实现方案。

该系统通过51单片机作为核心控制器,结合温度传感器与执行机构,实现了对环境温度的实时监测与精确控制。

二、系统设计1. 硬件设计本系统以51单片机为核心控制器,其具备成本低、开发简单、性能稳定等优点。

硬件部分主要包括51单片机、温度传感器、执行机构(如加热器、制冷器等)、电源模块等。

其中,温度传感器负责实时监测环境温度,将温度信号转换为电信号;执行机构根据控制器的指令进行工作,以实现对环境温度的调节;电源模块为整个系统提供稳定的供电。

2. 软件设计软件部分主要包括单片机程序与上位机监控软件。

单片机程序负责实时采集温度传感器的数据,根据设定的温度阈值,输出控制信号给执行机构,以实现对环境温度的精确控制。

上位机监控软件则负责与单片机进行通信,实时显示环境温度及控制状态,方便用户进行监控与操作。

三、系统实现1. 硬件连接将温度传感器、执行机构等硬件设备与51单片机进行连接。

具体连接方式根据硬件设备的接口类型而定,一般采用串口、并口或GPIO口进行连接。

连接完成后,需进行硬件设备的调试与测试,确保各部分正常工作。

2. 软件编程编写51单片机的程序,实现温度的实时采集、数据处理、控制输出等功能。

程序采用C语言编写,易于阅读与维护。

同时,需编写上位机监控软件,实现与单片机的通信、数据展示、控制指令发送等功能。

3. 系统调试在完成硬件连接与软件编程后,需对整个系统进行调试。

首先,对单片机程序进行调试,确保其能够正确采集温度数据、输出控制信号。

其次,对上位机监控软件进行调试,确保其能够与单片机正常通信、实时显示环境温度及控制状态。

最后,对整个系统进行联调,测试其在实际应用中的性能表现。

四、实验结果与分析通过实验测试,本系统能够实现对环境温度的实时监测与精确控制。

基于STC89C516RD单片机的新型冰箱温控器系统

基于STC89C516RD单片机的新型冰箱温控器系统

基于STC89C516RD单片机的新型冰箱温控器系统
中心议题*基于STC89C516RD 单片机的新型冰箱温控器系统设计解决方案*以STC89C516RD 单片机为控制核心*通过液晶显示当前时间以及由温度传感器采集到的冷藏室、冷冻室以及室外温度
随着对电冰箱在节能、环保、舒适等方面的要求不断提高,越来越多的智能
控制技术引入到电冰箱中。

嵌入式智能家用电器也简称为智能家用电器。

在这种家用电器中,人机界面友好方便,由单片机对家用电器的基本功能进行控制,同时还模拟人的智能活动过程。

在控制过程中结合各种智能活动进行必要的处理,大大提高了家用电器的品质和性能,产生了更加优秀的控制效果,
使人们得到更理想的服务。

1 系统结构
系统以STC89C516RD 单片机为控制核心,采用220 V 电源供电,通过液晶显示当前时间以及由温度传感器采集到的冷藏室、冷冻室以及室外温度。

时间
和各室温度值均可通过按键设置,由于系统集成红外遥控功能,使用者还可以
通过遥控器远程设置时间及各室温度。

系统结构框图如图1 所示。

2 系统硬件实现
2.1 电源模块
在电源模块的设计中,将220 V 交流电压通过一个9 V 变压器进行降压,再通过一个整流桥电路,整流后得到12 V 的直流电压,由于本系统对供电要求不高,只需要5 V,所以再采用一片7805 稳压管产生一个+5 V 的电压供单片机和液晶显示器使用。

电源电路如图2 所示。

tips:感谢大家的阅读,本文由
我司收集整编。

仅供参阅!。

【《基于STC89C51单片机的温控风扇设计》3600字(论文)】

【《基于STC89C51单片机的温控风扇设计》3600字(论文)】

基于STC89C51单片机的温控风扇设计一、引言 (1)二、系统整体设计方案 (1)1硬件需求分析 (1)2系统总体设计方案 (1)三、系统硬件电路设计 (2)1STC89C51单片机的最小系统 (2)21CD1602液晶显示电路设计 (3)3风扇驱动电路的设计 (4)4蜂鸣器电路的设计 (4)5独立按键电路的设计 (5)四、系统软件部分设计 (5)1软件开发环境的介绍 (5)2系统重要函数的介绍 (6)结束语 (6)弁考文献 (7)一、引言在电子信息技术与自动控制技术的持续进步的影响下,电器越来越智能,自动化水平越来越高,各行各业都需要提高产品的可靠性和自动化水准,使产品更加具有优势。

为了满足社会发展所带来的人民的需求,各行各业都应使用更为稳定、合理、高效的设备。

风扇被用于降温已经有很长的历史,但它并未因为存在年限久远、以及空调的出现而被取而代之。

然而,电风扇的优点是便宜、易于使用和占地面积小。

考虑到经济因素的影响,在大多数市场占据市场份额最大的依然是老式传统风扇,尤其是在中小型城市和农村,因为使用电风扇的代价相对于空调更能让普通老百姓接受,但传统电风扇的档位固定,风速模式少,而且无法缺少人的调控,需要人自操作换档,自动化水平较低。

为了使风扇在市场上具更大的领地,成为更多人的降温选择,温控电风扇随之被提出。

传统电风扇的风速调节模式单一,且无法离开人的调节,更不能随温度的浮动而变化。

当室内温度下降时,电风扇仍然持续运转,在温差明显的地区来看这是一个相当大的劣势,不但浪费资源,还对人体的健康产生威胁;传统的电风扇调节风速时通过机械的按钮进行风速调节,噪音过大、功能单一是传统风扇的又一缺点,有碍人们的休息体验,违背人们的日常需求。

因此特别容易影响人们的休息,更加不能满足人们的需求。

温控风扇系统,能够自动控制电风扇的风量,节约电力资源的同时也能够改善用户的体验感,使风扇更加人性化。

而且温控风扇系统在很多场景都有广泛的应用,例如炼铁厂等重工业都需要巨型风扇来散热、电子产品CPU的散热风扇等。

《2024年基于单片机的温度控制系统的研究》范文

《2024年基于单片机的温度控制系统的研究》范文

《基于单片机的温度控制系统的研究》篇一一、引言随着现代科技的快速发展,对温度控制的精度和稳定性的要求也在逐渐提高。

为了满足这一需求,我们提出了一种基于单片机的温度控制系统。

该系统利用单片机的高效处理能力和精确控制能力,实现对温度的实时监测和精确控制。

本文将对该系统的设计、实现及性能进行详细的研究和讨论。

二、系统设计1. 硬件设计本系统主要由单片机、温度传感器、执行器(如加热器或制冷器)以及电源等部分组成。

其中,单片机作为系统的核心,负责接收温度传感器的数据,根据设定的温度值与实际温度值的差值,控制执行器的工作状态,以达到控制温度的目的。

温度传感器选用高精度的数字温度传感器,能够实时监测环境温度,并将数据传输给单片机。

执行器则根据单片机的指令,进行加热或制冷操作。

2. 软件设计软件部分主要包括单片机的程序设计和人机交互界面设计。

单片机程序采用C语言编写,实现温度的实时监测、数据处理、控制算法等功能。

人机交互界面则用于设定目标温度、显示当前温度等信息。

三、系统实现1. 温度采集与处理单片机通过与温度传感器通信,实时获取环境温度数据。

然后,通过A/D转换器将温度数据转换为数字信号,进行数据处理和分析。

2. 控制算法本系统采用PID(比例-积分-微分)控制算法。

PID控制器根据设定温度与实际温度的差值,计算输出控制量,控制执行器的工作状态,从而达到控制温度的目的。

3. 人机交互界面人机交互界面采用LCD显示屏和按键实现。

用户可以通过按键设定目标温度,LCD显示屏实时显示当前温度和设定温度。

四、性能分析1. 精度与稳定性本系统采用高精度的温度传感器和PID控制算法,能够实现较高的温度控制精度和稳定性。

经过实际测试,系统的温度控制精度可达±0.5℃,稳定性良好。

2. 响应速度本系统的响应速度较快,当环境温度发生变化时,单片机能够迅速采集到数据,并通过PID控制算法计算出相应的控制量,控制执行器进行加热或制冷操作,使环境温度尽快达到设定值。

基于stc89c51单片机温控系统设计与制作

基于stc89c51单片机温控系统设计与制作

commonly used circuit, makes the whole design is more complete, more flexible. Keywords: DS18B20; STC89C51; MCU; control; simulation1.绪论1.1 温度控制系统设计的背景及意义随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。

特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。

针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。

温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。

在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一。

比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。

因此,各行各业对温度控制的要求都越来越高。

可见,温度的测量和控制是非常重要的。

单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。

随着温度控制器应用范围的日益广泛和多样,各种适用于不同场合的智能温度控制器应运而生。

1.2 饮水机温度控制系统的目的饮水机的温度控制系统,能有效的利用水资源和电源。

过低的温度或者过高的温度都会使水资源造成浪费,在全球水资源缺乏的今日,我们更应该掌握好水温的控制。

本设计为一个单片机的饮水机的温度控制系统,此系统可以实时检测饮水的水温,并且可以通过液晶管显示饮水机的温度,可以通过键盘对饮水机的水进行加热,当低于设定的温度下限时进行加热,本设计是对温度进行实时监测与控制,设计的系统主要实现了以下功能:1.在液晶显示当前温度的大小,精度为四分之一度,并显示温度控制的上限值和下限值。

基于atc89c51单片机的温度控制系统设计(lcd显示)大学毕设论文

基于atc89c51单片机的温度控制系统设计(lcd显示)大学毕设论文

基于atc89c51单片机的温度控制系统设计(lcd显示)大学毕设论文基于ATC89C51单片机的温度控制系统设计(LCD显示)摘要温度的控制是个恒久的课题。

从古至今,人类生活的许多方面都和温度控制有关,其中尤其是对水温的控制最多。

现代社会,随着科技的发展,对水温控制也越来越精细。

有鉴于此,结合本课题,我选取的控制对象是浴室用水的温度控制。

电热水锅炉是将电能转化为热能的能量转换装置,具有结构简单、无污染和自动化程度高等优点,近年来已成为供热采暖的主要设备。

电热水锅炉,用数学方法建立它的精确的数学模型显然十分困难,因而用传统的控制理论和方法对本系统实施控制有其局限性,而智能控制正是吸收了人们的生活经验、逻辑推理规则和记忆学习的优点,在工程实际中已经取得了很多价值性的成果。

本文最终选择了简单易行的位式控制算法。

在研究电锅炉控制算法的同时,本文还选用了ATC89C51单片机,设计了锅炉温度的硬件电路,包括传感器电路、继电器控制电路、温度显示电路、键盘输入电路,其中传感器分别选用了DS18B20温度传感器和电接点液位传感器,控制电路就是通过继电器来控制加热器,进而控制温度。

显示部分采用了LCD显示屏。

基于硬件电路,又编写了C语言程序,并通过C51和Protues软件联调,进行了仿真调试,获得较为理想的效果。

关键词:温度控制;AT89C51单片机;DS18B20; LCDAbstractTemperature control is a permanent topic.Historically, many aspects of human life and temperature control is concerned, most especially to the water temperature control.Modern society, with the development of science and technology, the water temperature control is becoming more and moredelicate.Because of this, collection of thistopic,Iselect the control object is the bathroomwateremperaturecontrol.Electric boiler is the device that convert electricity into heat, it has the advantages of simple structure, no pollution and has high automatically degree, which has become the main equipment for heating. For the electric boiler, because it is a nonlinear, time-varying, long time-delayed, large inertia and unidirectional risingsystem, it is very difficult to use mathematical method to establish mathematical model and to control this system by using the classical control theory and method. Intelligent control has produced something valuable in engineering practice, because it brings in the good things such as the experience, logical reasoning and memory from people.This paper finally chose a simple type control algorithm.At the same time, we choose the ATC89C51 SCM, and design the hardware circuit of temperature and water level control of electric boiler, which includes the sensor circuit, the relay control circuit, temperature and water level display circuit, keyboard circuit, water level alarm circuit. We choose DS18B20 temperature sensor and the electric contact water level sensor, control circuit can control water level and temperature through the relay controlling solenoid valve and heater.The displaypartadoptsLCD. Based on hardware circuit, we write C language program, and get more ideal control effect through C51 and debugging.Keyword: Temperature control ;AT89C51 SCM; DS18B20 ;LCD目录第一章绪论…………………………………………………………………………错误!未定义书签。

基于单片机(AT89C51)的温度采集控制系统 毕业论文

基于单片机(AT89C51)的温度采集控制系统  毕业论文
The temperature control system can easily achieve temperature measurement, temperature display, etc., and through the keyboard can connect with single-chip microcomputer temperature measurement and control the lower limit of real-time Settings, also can connect to the corresponding peripheral circuit, when receiving a command for SCM environment after testing
系统软件主要由初始化程序、主程序、监控显示程序等组成。其中初始化程序是对单片机的接口工作方式,A/D转换方式等进行设置;显示程序包括对显示模块的初始化、显示方式设定及输出显示;主程序则完成对采集数据进行处理。
该系统应用范围相当广泛,同时采用单片机技术, 由于单片机自身功能强大,因而系统设计简单,工作可靠,抗干扰能力强,也可在此基础上加入通信接口电路,实现与上位机之间的通信。
In this paper, temperature gathering control system takes microcontroller (AT89C51) as the core, from controlling part, display section and temperature measurements (AD590) parts. The system hardware to realize most function through, circuit straightforward, stability of the system is very high.

基于89C51系列单片机系列的温度控制系统

基于89C51系列单片机系列的温度控制系统

目录一. 摘要 (1)二.系统方案设计(硬件部分) (2)三.系统设计 (2)3.1 单片机的选择及基本原理 (2)3.2 温度传感器的工作原理及于单片机连接 (3)3.3 报警电路(包含主电路)设计 (6)3.4 电源电路 (6)3.5 显示电路 (6)四. 系统接线图 (8)五.总结 (8)六.参考文献 (8)摘要随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。

传统的温度检测以热敏电阻为温度敏感元件。

热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。

这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。

本设计选用AT89C52型单片机作为主控制器件,DS18B20作为测温传感器,通过LCD7SEG-MPX8—CA—BLUE实现温度显示。

通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.01℃。

该器件可直接向单片机传输数字信号,便于单片机处理及控制。

通过温度传感器对外界的温度进行检测与监控,然后进行调整,由液晶显示屏显示温度,然后通过四个灯来控制温度,当温度高于某个值和低于某个值时,小灯亮,在其中某个范围内时也可以让其中一个灯亮,通过灯亮来调节温度,从而来实行对温度的监控与调整。

二.系统方案设计(硬件部分)该方案使用stc89C52系列单片机作为核心,以智能温度传感器DS18B20为测量温度的元件,进行温度测量,用1062显示模块将温度显示出来。

设定一个温度上下限,当温度低于下限或高于上限时,将控制使主电路进行动作(加热或制冷),同时使报警电路报警(本方案中将主电路模拟用二极管算入报警电路中),本方案中用两个发光二极管模拟加热和制冷装置的动作,用蜂鸣器和电阻组成报警电路。

其系统框图如下:三.系统设计3.1 单片机的选择及基本原理本方案中选用stc89C52作为本温控系统的核心,功能上STC89C52与教材上介绍的80C51并无太大差别。

单片机温度控制系统毕业设计论文

单片机温度控制系统毕业设计论文

单片机温度控制系统毕业设计论文标题:基于单片机的温度控制系统设计与实现摘要:本论文设计和实现了一种基于单片机的温度控制系统。

该系统利用单片机的强大计算和控制能力,通过传感器采集环境温度,并运用PID控制算法,控制温度在预定的范围内波动。

本系统具有设计灵活、控制精度高、反应迅速等优势,非常适合温度控制领域应用。

关键词:单片机、温度控制、传感器、PID算法第一章引言1.1研究背景随着科技的进步和人们生活质量的提高,温度控制在各个领域都变得日益重要。

例如,家庭中的恒温器、温室中的温度调节、工业生产过程中的温度控制等。

传统的温度控制方法费时费力,且精度和效率较低,因此需要开发一种新的温度控制系统来满足各种需求。

1.2目的和意义本论文旨在设计和实现一种基于单片机的温度控制系统,以提高温度控制的精度和效率,满足不同领域对温度控制的需求。

通过论文的研究,可以为相关领域的温度控制系统设计提供参考,并促进温度控制技术在各个领域的应用。

第二章设计与实现方法2.1系统硬件设计本系统的硬件设计主要包括单片机选择、传感器选择以及执行设备选择等。

选用一款功能强大的单片机,例如ATmega328P,作为系统的核心控制器。

此外,选择一个高精度的温度传感器用于采集环境温度,并根据采集到的数据进行控制。

2.2系统软件设计本系统的软件设计主要包括温度采集与控制算法的设计和实现。

采用PID控制算法,通过单片机进行计算和控制,实现温度控制的闭环反馈。

同时,设计界面友好的人机交互界面,使操作更加简便。

第三章系统测试与分析3.1硬件测试对系统硬件进行测试,包括传感器的准确性测试、单片机的功能性测试以及执行设备的工作状态测试。

通过测试,验证系统的硬件设计的正确性和稳定性。

3.2软件测试对系统的软件进行测试,包括温度控制算法的准确性测试以及人机交互界面的操作测试。

通过测试,验证系统的软件设计的正确性和可靠性。

第四章结果与讨论4.1实验结果通过实验,得到了系统在不同环境下的温度控制效果,并进行数据统计和分析。

基于STC89C51单片机的电加热水装置温度控制系统

基于STC89C51单片机的电加热水装置温度控制系统

基于STC89C51单片机的电加热水装置温度控制系统摘要:本文主要叙述一款基于ST89C51单片机作为控制芯片,ST89C51单片机开发板作为开发环境,应用C51编程语言,制作的电加热水装置温度控制系统。

控制系统的输入端使用DS18B20传感器。

另一个输入端使用可调节停止加热温度与回差值按键的输入;系统输出使用数码管显示输出,及蜂鸣器报警输出。

该种类型控制系统性价比较高,是各行业类似的水、液体、空气加热装置温度控制系统使用频率较高的一种控制方式。

关键词:ST89C51单片机;数码管显示;DS18B20传感器;电加热水装置引言工业生产很多工序离不开加热装置。

如今使用单片机作为加热装置的控制系统变得越来越流行。

在工业用加热、热水循环、管路蒸汽等装置的温度显示、调节与控制上,我们随处可见到单片机的身影。

过去苦于专业知识与信息通讯的壁垒,工厂里如要添置和单片机控制系统或是PLC等相关的热源设备,可能往往不得不寻求专业的自动化设计公司来设计制作。

即便是资历较高电工或是无线电爱好者,虽然可能对继电器、接触器控制会比较熟悉,但由于单片机对电子、电路以及汇编语言编程的专业有一定的基础要求,这类集成度较高的自动化控制电路可能也会让他们却步。

而在信息通讯高度发达的今天,电子电路、单片机、自动化控制技术等课程被上传上了网络,供爱好者或从业者学习、交流。

由此单片机控制技术也不再是很多爱好者的禁区。

工厂里若需要一个电加热水装置,其中所用到的单片机控制系统完全可以借助网络的开源程序,自己应用C51程序语言编写程序,并且进行调试。

本文就结合自己的实践经历,以ST89C51单片机为基础,设计开发的一款“电加热水装置”(下称“装置”)温度控制系统,交流一些设计开发过程中的经验。

1 设计硬件及工作条件鉴于装置的主要功能是加热,首要的就是显示温度。

其次是考虑装置启动必须具备的条件。

在装置启动后,要能够设置启动加热和停止加热的条件。

1.1 显示输出的设计应用开发板上已有的LED数码管显示器,作为温度的显示输出。

毕业论文(设计)-基于单片机stc89c51的温度显示系统的设计

毕业论文(设计)-基于单片机stc89c51的温度显示系统的设计

目录摘要 (3)第一章 (4)引言........................................................................错误!未定义书签。

1.1项目概述.................................................................错误!未定义书签。

1.2设计任务和要求 (4)第二章硬件系统的设计 (5)2.1硬件设计概要 (5)2.2各部分及其实现的功能 (5)2.2.1中央控制芯片 (5)2.2.2温度传感器 (5)2.2.3液晶显示器 (8)2.3主要电路及功能 (11)2.3.1单片机电路 (11)2.32显示电路 (12)2.3.3温度传感器电路 (12)2.3.4升温和降温调节电路 (13)2.3.5温度上下限调节电路 (13)2.3.6报警电路 (14)第三章软件系统的设计 (15)3.1主程序流程图 (15)3.2液晶显示流程图 (16)3.3温度传感器流程图 (17)第四章仿真与调试 (17)4.1硬件调试 (17)4.2软件电路故障与解决办法 (17)4.3软件调试方法 (17)4.4仿真显示成果 (18)第五章实训总结 (20)附录 (21)基于单片机STC89C51的温度显示系统的设计摘要:本设计是基于单片机的温度控制系统,采用DS18B20温度传感器采集所要测量的当前环境温度,通过单片机进行处理并加以显示。

该温度控制系统具有设定温度上下限的功能,通过控制继电器或电机来控制外部加热及制冷装置,从而实现环境温度处于设定温度上下线范围内。

当DS18B20所测量的环境温度低于设定温度下限时,蜂鸣器和指示灯发出报警,控制外部加热装置的继电器动作,使外部加热器工作,直到温度高于温度设定下限时,警报解除。

加热装置停止加热。

当环境温度高于温度上限时,蜂鸣器发出报警,控制外部降温装置的电机动作,使外部降温装置工作,直到环境温度低于温度上限,警报解除,降温装置停止工作(实现对温度在0℃-99℃控制的自动化)。

基于89C51单片机的电阻加热炉温度控制系统设计

基于89C51单片机的电阻加热炉温度控制系统设计

基于89C51单片机的电阻加热炉温度控制系统设计电阻加热炉是一种常见的加热设备,广泛应用于工业生产中的温度控制领域。

为了更好地控制电阻加热炉的温度,提高工业生产效率和产品质量,设计一个基于89C51单片机的温度控制系统具有重要的意义。

随着科技的不断发展和进步,单片机技术在控制系统中得到了广泛的应用。

89C51单片机是一种常见的单片机,具有稳定性高、成本低等优点,适合用于温度控制系统的设计。

本文将基于89C51单片机,设计一个电阻加热炉温度控制系统,探讨系统的原理、设计方法和实现过程,为工业生产提供一种高效可靠的温度控制方案。

首先,本文将对电阻加热炉的工作原理进行简要介绍。

电阻加热炉是利用电阻发热的原理来提高物体的温度的一种加热设备,具有快速升温、温度均匀等优点,广泛应用于金属加热、玻璃淬火等工业生产领域。

然后,本文将阐述温度控制系统的设计思路和需求分析。

在工业生产中,对电阻加热炉的温度要求非常严格,需要一个能够实时监测和调节温度的控制系统来确保产品质量和生产效率。

接着,本文将详细介绍基于89C51单片机的电阻加热炉温度控制系统的设计方案。

设计过程中,将充分考虑系统的稳定性、精确性和实用性,利用89C51单片机的强大功能和灵活性,实现对电阻加热炉温度的准确控制。

同时,本文将分析控制系统的硬件电路设计和软件程序编写过程,确保系统的可靠性和稳定性。

最后,本文将对设计的温度控制系统进行实际测试和性能评估。

通过实验数据的采集和分析,验证系统的温度控制能力和响应速度,评估系统在实际工业生产中的应用效果。

同时,本文将探讨系统存在的问题和改进方向,为日后的研究提供参考和借鉴。

梳理一下本文的重点,我们可以发现,是一个具有实际意义和研究价值的课题。

通过本文的研究,不仅可以提高电阻加热炉的温度控制精度和稳定性,还可以为工业生产提供一个高效可靠的温度控制方案,推动工业生产的数字化转型和智能化发展。

希望本文的研究成果能够为相关领域的科研工作者和工程技术人员提供一定的参考和借鉴,共同推动温度控制技术的发展和应用。

基于STC89C51单片机的智能温度控制系统设计

基于STC89C51单片机的智能温度控制系统设计

基于STC89C51单片机的智能温度控制系统设计一、本文概述随着科技的快速发展和智能化时代的到来,温度控制技术在各个领域中的应用越来越广泛,特别是在工业、农业、医疗、家居等领域,对于温度的精确控制要求日益提高。

传统的温度控制系统往往依赖于复杂的硬件设备和繁琐的操作流程,难以满足现代社会的需求。

因此,开发一种基于STC89C51单片机的智能温度控制系统,旨在通过先进的控制技术实现温度的精确、稳定和高效控制,具有重要的现实意义和应用价值。

本文将对基于STC89C51单片机的智能温度控制系统设计进行全面的探讨。

文章将介绍STC89C51单片机的性能特点及其在温度控制系统中的优势,为后续的设计提供理论基础。

接着,文章将详细阐述系统设计的总体方案,包括硬件设计和软件设计两大部分,以确保系统的稳定性和可靠性。

在硬件设计方面,文章将重点介绍温度传感器、控制器、执行器等关键部件的选型与连接;在软件设计方面,文章将详细介绍温度数据的采集、处理、控制算法的实现以及用户界面的设计。

本文还将对系统的调试与优化过程进行详细的描述,包括硬件调试、软件调试、系统测试等环节,以确保系统在实际应用中能够达到预期的性能指标。

文章将对整个设计过程进行总结,并对未来的研究方向进行展望,以期为推动智能温度控制技术的发展贡献一份力量。

本文旨在设计一种基于STC89C51单片机的智能温度控制系统,通过对其硬件和软件设计的详细介绍,以及系统调试与优化的过程分析,为相关领域的研究人员和实践者提供一种参考和借鉴。

本文也期望能够推动智能温度控制技术在实际应用中的广泛推广和应用,为现代社会的智能化发展贡献一份力量。

二、系统硬件设计系统硬件设计是基于STC89C51单片机的智能温度控制系统的核心部分,主要包括STC89C51单片机、温度传感器、显示模块、控制执行模块以及电源模块等几大部分。

单片机模块:选用STC89C51作为核心控制器,该单片机具有高性能、低功耗、易编程等优点,能够满足系统对温度数据的采集、处理和控制的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

commonly used circuit, makes the whole design is more complete, more flexible. Keywords: DS18B20; STC89C51; MCU; control; simulation1.绪论1.1 温度控制系统设计的背景及意义随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。

特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。

针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。

温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。

在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一。

比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。

因此,各行各业对温度控制的要求都越来越高。

可见,温度的测量和控制是非常重要的。

单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。

随着温度控制器应用范围的日益广泛和多样,各种适用于不同场合的智能温度控制器应运而生。

1.2 饮水机温度控制系统的目的饮水机的温度控制系统,能有效的利用水资源和电源。

过低的温度或者过高的温度都会使水资源造成浪费,在全球水资源缺乏的今日,我们更应该掌握好水温的控制。

本设计为一个单片机的饮水机的温度控制系统,此系统可以实时检测饮水的水温,并且可以通过液晶管显示饮水机的温度,可以通过键盘对饮水机的水进行加热,当低于设定的温度下限时进行加热,本设计是对温度进行实时监测与控制,设计的系统主要实现了以下功能:1.在液晶显示当前温度的大小,精度为四分之一度,并显示温度控制的上限值和下限值。

2.单位转换,把显示温度的单位从摄氏温标与华氏温标进行互换。

3.温度控制,当温度超出上限值就关闭继电器,当温度低于下限值就启动继电器。

4.温度控制的上限和下限的设置,通过矩阵键盘的输入修改上限值和下限值。

5.蜂鸣器报警,当温度超出上限值蜂鸣器进行报警。

1.3 系统总体设计思想方案一:使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

方案二:使用温度传感器,结合单片机电路设计,采用一只DS18B20温度传感器,温度传感器中DS18B20因为体积小、抗干扰能力强和精度高等特点,更适合要求,电路也不复杂,容易读取温度,进行转换。

比较以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计容易实现,而且优越性更高,使用更方便。

故实际设计中拟采用方案二。

2.系统的硬件组成2.1系统的电路设计方框图本系统的电路总体设计框图如图2-1所示,它由三部分组成:①控制部分主芯片采用单片机STC89C51;②显示部分采用LCD1602实现温度显示;③温度采集部分采用DS18B20温度传感器。

图2-1总体设计框图2.2控制部分一、主要功能特性单片机STC89C51,它是一个低功耗,高性能CMOS 8位单片机,片内2个16位定时器/计数器、8KBROM/EPROM 、256B RAM 、6个中断源等,器件采用ATMEL 公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash 存储单元,功能强大的微型计算机的STC89C51可为许多嵌入式控制应用系统供给高性价比的解决方案。

二、STC89C51具有如下特点: (1)、兼容MCS51指令系统(2)8k 可反复擦写(大于1000次)Flash ROM ; (3)32个双向I/O 口; (4)256x8bit 内部RAM ;(5)2个16位可编程定时/计数器中断; (6)时钟频率0-24MHz ;(7)2个串行中断,可编程UART 串行通道; (8)2个外部中断源,共8个中断源; (9)2个读写中断口线,3级加密位;单 片机DS18B20LCD 显示蜂鸣器继电器(10)低功耗空闲和掉电模式,软件设置睡眠和唤醒功能;(11)有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品的需求引脚功能及管脚电压。

三、STC89C51为8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。

功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。

主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。

RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。

VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。

P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,单片机电路用的是单片机最小系统,单片机的P3.7接DS18B20的2号引脚,P1口接矩阵键盘,P2.0控制加热器继电器,P2.7,P2.6,P2.5和P0接LCD显示。

图2-2 STC89C51引脚图2.3 显示部分显示用1602液晶显示器,如图2-3所示。

优点是显示质量高、数字式接口、体积小、重量轻、功耗低。

液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,使其根据输入信号显示相应的内容。

图2-3 1602液晶显示器一、管脚说明1602LCD采用标准的14脚(无背光)或16脚(带背光)接口,如图2-5所示,各引脚接口说明如表2-4所示。

表2-4 引脚接口说明表编号符号引脚说明编号符号引脚说明1 VSS 电源地9 D2 数据2 VDD 电源正极10 D3 数据3 VL 液晶显示偏压11 D4 数据4 RS 数据/命令选择12 D5 数据5 R/W 读/写选择13 D6 数据6 E 使能信号14 D7 数据7 D0 数据15 BLA 背光源正极8 D1 数据16 BLK 背光源负极图2-5 1602管脚第1脚:VSS为地电源。

第2脚:VDD接5V正电源。

第3脚:VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度。

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。

当RS和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14脚:D0~D7为8位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

二、指令说明及时序1602液晶模块内部的控制器共有11条控制指令,如表2-6所示。

表2-6控制命令表序号指令RS R/W D7 D6 D5 D4 D3 D2 D1 D01 清显示0 0 0 0 0 0 0 0 0 12 光标返回0 0 0 0 0 0 0 0 1 *3 置输入模式0 0 0 0 0 0 0 1 I/D S4 显示开/关控制0 0 0 0 0 0 1 D C B5 光标或字符移位0 0 0 0 0 1 S/C R/L * *6 置功能0 0 0 0 1 DL N F * *7 置字符发生存贮器地址0 0 0 1 字符发生存贮器地址8 置数据存贮器地址0 0 1 显示数据存贮器地址9 读忙标志或地址0 1 BF 计数器地址10 写数到CGRAM或DDRAM)1 0要写的数据内容11 从CGRAM或DDRAM读数1 1读出的数据内容1602液晶模块的读写操作、屏幕和光标的操作都是通过指令编程来实现的。

(说明:1为高电平、0为低电平)指令1:清显示,指令码01H,光标复位到地址00H位置。

指令2:光标复位,光标返回到地址00H。

指令3:光标和显示模式设置I/D:光标移动方向,高电平右移,低电平左移S:屏幕上所有文字是否左移或者右移。

高电平表示有效,低电平则无效。

指令4:显示开关控制。

D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示C:控制光标的开与关,高电平表示有光标,低电平表示无光标B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。

指令5:光标或显示移位S/C:高电平时移动显示的文字,低电平时移动光标。

指令6:功能设置命令DL:高电平时为4位总线,低电平时为8位总线N:低电平时为单行显示,高电平时双行显示F: 低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。

指令7:字符发生器RAM地址设置。

指令8:DDRAM地址设置。

指令9:读忙信号和光标地址BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。

指令10:写数据。

指令11:读数据。

2. 4 温度采集部分DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温。

这一部分主要完成对温度信号的采集和转换工作,由DS18B20数字温度传感器及其与单片机的接口部分组成。

数字温度传感器DS18B20把采集到的温度通过数据引脚传到单片机的P1.0口,单片机接受温度并存储。

一、DS18B20的性能特点如下:(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电。

(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。

(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。

(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃。

(6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。

(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快。

相关文档
最新文档