第1讲 变化率与导数、导数的计算

合集下载

2021年高考数学基础突破——导数与积分:第1讲 变化率与导数

2021年高考数学基础突破——导数与积分:第1讲 变化率与导数

2021年高考数学基础突破——导数与积分第1讲 变化率与导数(同学版,后附老师版)【学问梳理】1.函数()y f x =在x =x 0处的导数(1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()lim limx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 考点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s (1+Δt )-s (1)Δt,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【例3】某物体作直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒 C .8米/秒 D .674米/秒考点3.定义法求函数的导数【例4】.求函数y =x +1x 在x =1处的导数【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法.变式训练1.用定义求函数f (x )=x 2在x =1处的导数.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A. )(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f '【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s (t 0+Δt )-s (t 0)Δt 叫做这段时间内物体的平均速度C .Δs Δt 不肯定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度2.设函数()x f y =,当自变量x 由0x 转变到x x ∆+0时,函数的转变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min )( )A. 03.0B. 03.0-C. 003.0D. 003.0- 4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-35.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-37.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是8.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.9.某物体依据s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开头到4 s 时物体运动的平均速度和4 s 时的瞬时速度.10.求函数f (x )=x x +-2在1x =-四周的平均变化率,并求出在该点处的导数.11.若2)1()(-=x x f ,求(2)f ' .12.)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.2021年高考数学基础突破——导数与积分第1讲 变化率与导数(老师版)【学问梳理】1.函数()y f x =在x =x 0处的导数(1)定义:称函数()y f x =在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yxx ∆→∆→+∆-∆=∆∆为函数()y f x =在x =x 0处的导数,记作0()f x '或0|y x x '=,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 【基础考点突破】考点1.求平均变化率【例1】若一质点按规律28s t =+运动,则在时间段2~2.1中,平均速度是 ( )A .4B .4.1C .0.41D .-1.1解析:v =Δs Δt =(8+2.12)-(8+22)2.1-2=2.12-220.1=4.1,故应选B.【归纳总结】求函数的平均变化率的步骤:(1)求函数的增量21())()(f x f x f x ∆=-;(2)计算平均变化率2121)()()(f x f x f x x x x -∆=∆- 学问点2 瞬时速度与瞬时变化率【例2】自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s (1+Δt )-s (1)Δt,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【解析】 由平均速度的概念知:v =s (1+Δt )-s (1)Δt=5Δt +10.故应选D.【例3】某物体作直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒 B .12516米/秒 C .8米/秒 D .674米/秒【解析】∵ΔsΔt=(4+Δt )2+34+Δt -16-34Δt =Δt 2+8Δt +-3Δt 4(4+Δt )Δt =Δt +8-316+4Δt,∴lim Δt →0Δs Δt =8-316=12516. 故选B.考点3.定义法求函数的导数【例4】.求函数y =x +1x在x =1处的导数【解析】法一 ∵Δy =(1+Δx )+11+Δx -(1+11)=Δx -1+11+Δx =(Δx )21+Δx,∴Δy Δx =Δx1+Δx .∴y ′|x =1=lim Δx →0Δy Δx =lim Δx →0Δx1+Δx=0. 法二 ∵Δy =(x +Δx )+1x +Δx -(x +1x )=Δx -1x +1x +Δx =Δx (x 2+x ·Δx -1)x (x +Δx ),∴y ′=lim Δx →0Δy Δx =lim Δx →0x 2+x ·Δx -1x (x +Δx )=x 2-1x 2=1-1x 2.∴y ′|x =1=1-1=0.【归纳小结】1.求导方法简记为:一差、二化、三趋近.2.求函数在某一点导数的方法有两种:一种是直接求出函数在该点的导数;另一种是求出导函数,再求导数在该点的函数值,此方法是常用方法.变式训练1.用定义求函数f (x )=x 2在x =1处的导数.解析:法一 Δy =f (1+Δx )-f (1)=(1+Δx )2-1=2Δx +(Δx )2,∴ f ′(1)=lim Δx →0ΔyΔx =lim Δx →02Δx +(Δx )2Δx=lim Δx →0 (2+Δx )=2,即f (x )=x 2在x =1处的导数f ′(1)=2.法二Δy =f (x +Δx )-f (x )=(x +Δx )2-x 2=2Δx ·x +(Δx )2,∴Δy Δx =2Δx ·x +(Δx )2Δx=2x +Δx . ∴0()lim(2)2x f x x x x ∆→'=+∆=,∴ (1)2f '=,即f (x )=x 2在x =1处的导数f ′(1)=2.【例5】=∆∆--∆+→∆xx x f x x f 2)()(lim000x ( )A.)(210x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f ' 【解析】00000x 0x 000()()()()limlim =()2()()f x x f x x f x x f x x f x x x x x x ∆→∆→+∆--∆+∆--∆'=∆+∆--∆,故选B. 【基础练习巩固】1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( )A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B .Δs Δt =s (t 0+Δt )-s (t 0)Δt 叫做这段时间内物体的平均速度C .Δs Δt 不肯定与Δt 有关D .lim Δt →0ΔsΔt叫做这段时间内物体的平均速度【解析】D 错误,应为t =t 0时的瞬时速度,选D2.设函数()x f y =,当自变量x 由0x 转变到x x ∆+0时,函数的转变量y ∆为( )A .()x x f ∆+0B .()x x f ∆+0C .()x x f ∆⋅0D .()()00x f x x f -∆+ 2. 解析】D.3.某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在这段时间内气温变化率为(℃/min )( )A. 03.0B. 03.0-C. 003.0D. 003.0-【解析】B4..函数y =x 3在x =1处的导数为( )A .2B .-2C .3D .-3 【答案】C【解析】Δy Δx =(x +Δx )3-x 3Δx =3Δx ·x 2+3(Δx )2·x +(Δx )3Δx =3x 2+3Δx ·x +(Δx )2,∴lim Δx →0ΔyΔx=3x 2,∴y ′|x =1=3.5.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( )A .(1,10)B .(-1,-2)C .(1,-2)D .(-1,10)【答案】 B【解析】 Δy =3(x 0+Δx )2+6(x 0+Δx )-3x 20-6x 0=6x 0·Δx +3Δx 2+6Δx ,∴lim Δx →0ΔyΔx=lim Δx →0(6x 0+3Δx +6)=6x 0+6=0.,∴x 0=-1,y 0=-2.6.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A .2B .-2C .3D .-3【解析】A7.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是 3.【答案】 17.58.一小球沿斜面自由滚下,其运动方程是s (t )=t 2(s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.【答案】 10米/秒【解析】v ′(5)=lim Δt →0s (5+Δt )-s (5)Δt=lim Δt →0(10+Δt )=10.9.某物体依据s (t )=3t 2+2t +4(s 的单位:m)的规律作直线运动,求自运动开头到4 s 时物体运动的平均速度和4 s 时的瞬时速度.【解析】自运动开头到t s 时,物体运动的平均速度v (t )=s (t )t =3t +2+4t,故前4 s 物体的平均速度为v (4)=3×4+2+44=15(m/s).由于Δs =3(t +Δt )2+2(t +Δt )+4-(3t 2+2t +4)=(2+6t )Δt +3(Δt )2.lim Δt →0ΔsΔt=lim Δt →0(2+6t +3·Δt )=2+6t , ∴4 s 时物体的瞬时速度为2+6×4=26(m/s). 10.求函数f (x )=x x +-2在1x =-四周的平均变化率,并求出在该点处的导数.解析:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2, 200(1)(1)2(1)limlim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆. 11.若2)1()(-=x x f ,求)2('f .解析: xx f x x f x y o o ∆-∆+=∆∆)()(x x x f x f ∆---∆+=∆-∆+=22)12()12()2()2(=x x x x ∆+=∆∆+∆222 所以:f ’(2)= 2)2(lim 0=∆+→∆x x12.设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f ,求)(x f y =的表达式.解析:设2)()(m x a x f -=,则2222)(2)(+=-=-='x am ax m x a x f 解得1,1==m a ,所以12)1x ()(22++=-=x x x f 。

变化率与导数

变化率与导数

变化率与导数、导数的运算课前双击巩固1.变化率与导数 (1)平均变化率: 概念 对于函数y=f (x ),f(x 2)-f(x 1)x 2-x 1=Δy Δx 叫作函数y=f (x )从x 1到x 2的 变化率几何 意义 函数y=f (x )图像上两点(x 1,f (x 1)),(x 2,f (x 2))连线的物理 意义 若函数y=f (x )表示变速运动的质点的运动方程,则ΔyΔx 就是该质点在[x 1,x 2]上的 速度(2)导数:概念点x 0处 limΔx→0ΔyΔx =limΔx→0f(x 0+Δx)−f(x 0)Δx,我们称它为函数y=f (x )在 处的导数,记为f'(x 0)或y'|x=x 0,即f'(x 0)=limΔx→0ΔyΔx= lim Δx→0f(x 0+Δx)−f(x 0)Δx区间 (a ,b )当x ∈(a ,b )时,f'(x )=lim Δx→0ΔyΔx =lim Δx→0 叫作函数在区间(a ,b )内的导数几何 意义 函数y=f (x )在点x=x 0处的导数f'(x 0)就是函数图像在该点处切线的 .曲线y=f (x )在点(x 0,f (x 0))处的切线方程是物理 意义 函数y=f (x )表示变速运动的质点的运动方程,则函数在x=x 0处的导数就是质点在x=x时的 速度,在(a ,b )内的导数就是质点在(a ,b )内的 方程2.导数的运算 常用 导数 公式原函数导函数特例或推广常数函数 C'=0(C 为常数)幂函数(x n)'= (n ∈Z )1x'=-1x 2三角函数(sin x)'=,(cos x)'=偶(奇)函数的导数是奇(偶)函数,周期函数的导数是周期函数指数函数(a x)'=(a>0且a≠1) (e x)'=e x对数函数(log a x)'=(a>0且a≠1)(ln x)'=1x,(ln|x|)'=1x四则运算法则加减[f(x)±g(x)]'=(∑i=1nf i(x))'=∑i=1nf'i(x)乘法[f(x)·g(x)]'=[Cf(x)]'=Cf'(x) 除法f(x)g(x)'=(g(x)≠0)1g(x)'=-g′(x)[g(x)]2复合函数导数复合函数y=f[g(x)]的导数与函数y=f(u),u=g(x)的导数之间具有关系y'x=,这个关系用语言表达就是“y对x的导数等于y对u的导数与u对x的导数的乘积”题组一常识题1.[教材改编]向气球中充入空气,当气球中空气的体积V(单位:L)从1 L增加到2 L时,气球半径r(单位:dm)的平均变化率约为.2.[教材改编]已知将1吨水净化到纯净度为x %时所需费用(单位:元)为c(x)=5284100−x(80<x<100),当净化到纯净度为98 %时费用的瞬时变化率为.3.[教材改编] y=sin(πx+φ)的导数是y'=.4.[教材改编]曲线y=xe x-1在点(1,1)处切线的斜率等于.题组二常错题◆索引:平均变化率与导数的区别;求导时不能掌握复合函数的求导法则致错;混淆f'(x 0)与[f (x 0)]',f'(ax+b )与[f (ax+b )]'的区别.5.函数f (x )=x 2在区间[1,2]上的平均变化率为 ,在x=2处的导数为 .6.已知函数y=sin 2x ,则y'= .7.已知f (x )=x 2+3xf'(2),则f (2)= .8.已知f (x )=x 3,则f'(2x+3)= ,[f (2x+3)]'= .课堂考点探究探究点一 导数的运算1(1)函数f (x )的导函数为f'(x ),且满足关系式f (x )=x 2+3xf'(2)-ln x ,则f'(2)的值为( )A.74 B.-74 C.94 D.-94(2)已知f (x )=-sin x2(1−2cos 2x4),则f'(π3)= .[总结反思] (1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆. 式题 (1)函数y=sinx x 的导数为y'= .(2)已知f (x )=(x+1)(x+2)(x+a ),若f'(-1)=2,则f'(1)= . 探究点二 导数的几何意义考向1 求切线方程2 函数f (x )=e x·sin x 的图像在点(0,f (0))处的切线方程是 .[总结反思] (1)曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y-f (x 0)=f'(x 0)(x-x 0);(2)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(3)注意过某点的切线和曲线上某点处的切线的区别. 考向2 求切点坐标3设a∈R,函数f(x)=e x+a·e-x的导函数是f'(x),且f'(x)是奇函数.若曲线y=f(x)的一条切线的斜率是32,则切点的横坐标为( )A.ln 2B.-ln 2C.ln22 D.-ln22[总结反思] f'(x)=k(k为切线斜率)的解即为切点的横坐标.考向3求参数的值4已知曲线C在动点P(a,a2+2a)与动点Q(b,b2+2b)(a<b<0)处的切线互相垂直,则b-a的最小值为( )A.1B.2C.√2D.-√2[总结反思](1)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.(2)注意:①曲线上横坐标的取值范围;②切点既在切线上又在曲线上.强化演练1.【考向1】已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为( )A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=02.【考向3】直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于( )A.2B.-1C.1D.-23.【考向2】已知在平面直角坐标系中,f(x)=aln x+x的图像在x=a处的切线过原点,则a=( )A.1B.eC.1eD.04.【考向2】若曲线y=xln x在点P处的切线平行于直线2x-y+1=0,则点P的坐标是.5.【考向1】函数f(x)=xe x的图像在点P(1,e)处的切线与坐标轴围成的三角形面积为.。

第一节 变化率与导数、导数的计算-高考状元之路

第一节 变化率与导数、导数的计算-高考状元之路

第三章 导数及其应用复习备考资讯考纲点击1.变化率与导数、导数的计算(1)了解导数概念的实际背景.(2)理解导数的几何意义.(3)能根据导数定义求函数xy x y x y c y 1,,,2====的导数. (4)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.2.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(3)会利用导数解决某些实际问题.考情分析1.导数的运算是导数的基本内容,在高考中每年必考,一般一单独命题,而在考查导数应用的同时考查.2.导数的几何意义是高考考查的重点内容,常与解析几何知识交汇命题,多以选择题、填空题的形式出现,有时也出现在解答题中关键的一步.3.利用导数研究函数的单调性、极值、最值以及解决生活中的优化问题,巳成为近几年高考炙手可热的考点。

4.选择题、填空题,侧重于利用导数确定函数的单调性和极值;解答题,侧重于导数与函数、解析几何、不等式、数列的综合应用,一般难度较大,属中高档题,第一节 变化率与导数、导数的计算预习设计 基础备考知识梳理1.函数)(x f y =从1x 到2x 的平均变化率函数)(x f y =从1x 到2x 的平均变化率为若),()(,1212x f x f y x x x -=∆-=∆则平均变化率可表示为2.函数)(x f y =在0x x =处的导数(1)定义;称函数0)(x x x f y ==在处的瞬时变化率 = 为函数)(x f y =在0x x =处的导数,记作,|)(0/0/x x y x f =或即=∆=---ΛAxy x r lim )(0 (2)几何意义:函数)(x f 在点0x 处的导数)(0/x f 的几何意义是在曲线)(x f y =上点 处的 .相应地,切线方程为3.函数)(x f 的导函数称函数=)(/x f 为)(x f 的导函数,导函数有时也记作/y4.基本初等函数的导数公式5.导数运算法则=±/)]()]()[1(x g x f=/)]()()[2(x g x f=/])()()[3(x g x f ).0)((=/x g典题热身1.设,ln )(x x x f =若,2)(0/=x f 则=0x ( )2.e A e B . 22ln .c 2ln .D2.(2011.山东高考)曲线113+=x y 在点P(l ,12)处的切线与y 轴交点的纵坐标是( )9.-A 3.-B 9.C 15.D3.(2010.全国课标卷)曲线123+-=x x y 在点(1,O)处的切线方程为( )1-=⋅x y A 1+-=⋅x y B 22-=⋅x y C 22+-=⋅x y D4.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a1.A 21.B 21.-c 1.-D5.(2011.湖南高考)曲线21cos sin sin -+=x x x y 在点)0,4(πM 处的切线的斜率为 ( ) 21.-A 21.B 22.-c 22.D 课堂设计 方法备考【例1】 已知P ,Q 为抛物线y x 22=上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为__ __.【例2】已知曲线 ⋅+=34313x y (1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程.例3已知函数)(x f y =的图象是折线段ABC ,其中).0,1().5,21()0,0(C B A 函数x x xf y ≤=0)(()1≤的图象与x 轴围成的图形的面积为解题思路解析 由已知可得⎪⎪⎩⎪⎪⎨⎧∈+-∈=],1,21(,1010],21,0[,10)(x x x x x f 则⎪⎩⎪⎨⎧∈+-∈==],1,21(,1010],21,0[,10)(22x x x x x x xf y 画出函数图象,如图所示,所求面积+=⎰+dx x s )10(20+=+-⎰++0321|310)1010(x dx x x +=+-+125|)5310(123x x )41581310()5310(⨯+⨯--+-⋅=45题型三 导数的几何意义及其应用【例3】设函数),,(1a )(z b a bx x x f ∈++=曲线)(x f y =在点(2,,f(2))处的切线方程为.3=y (1)求)(x f 的解析式;(2)证明函数)(x f y =的图像是一个中心对称图形,并求其对技法巧点1.函数求导的方法和步骤求导数时,先化简再求导是运算的基本方法.一般地,分式函数的求导,要先观察函数的结构特征,可否化为整式函数或较简单的分式函数;对数函数的求导,先化为和、差形式,再求导;三角函数求导,先应用三角公式转化为和或差的形式.2.与导数的几何意义有关的两类问题有关导数几何意义的题目一般有两类:一类是求曲线韵切线方程,这类题目要注意审好题,看到底是在某点处的切线还是过某点的切线,在某点处的切线一般有一条,过某点的切线可能有两条或更多;另一类是已知曲线的切线求字母的题目,已知曲线的切线一般转化为两个条件,即原函数一个条件,导函数一个条件,导函数的条件一般不会忽视,但原函数的条件很容易被忽视。

变化率与导数

变化率与导数

变化率与导数
变化率与导数是微积分中的重要概念,它们能够帮助我们准确地表达和计算特定函数在特定点的斜率。

变化率可以定义为一个函数在某一点的变化量与该点前后变化量之比。

其定义式如下:
变化率 = 变化量/原始量
其中,变化量就是位于某一点处曲线上的一段段区域的变化量,而原始量则是位于曲线前后的一段段区域的变化量。

变化率的单位一般用“%”或者“1/X”表示,其中X 代表原始量。

变化率是一个值,用来估计特定函数在特定点处的变化情况。

当我们想要更加精确地表达函数变化情况时,就需要使用导数。

导数是变量x的函数y在x处的一阶微分,也就是某一点处函数的斜率。

它可以用下面的公式来表示:
dy/dx=f'(x)
其中,f'(x) 是函数y关于x的导数,它可以表示函数y在x处的斜率,也就是函数y在x处的变化速率。

因此,导数有助于我们更精确地表达函数的变化情况,它可以表示函数在特定点处的变化速度。

总之,变化率与导数都是微积分中重要的概念,它们都是用来表示函数在特定点处的变化情况。

变化率用来表
示函数在特定点处的变化量与原始量之比,而导数则是根据函数的一阶微分来表示函数在特定点处的斜率,从而表示函数在特定点处的变化速率。

导数与变化率的概念与计算方法

导数与变化率的概念与计算方法

瞬时变化率
定义:瞬时变化 率是指在某一时 刻附近,函数值 随自变量变化的
趋势和快慢
计算方法:通 过求导数来计 算瞬时变化率
几何意义:瞬 时变化率可以 理解为函数图 像在该点的切程学等领域有广 泛的应用,如速 度、加速度等物
理量的计算
变化率的几何意义
变化率描述的是函数图像上两点间距离的相对变化 变化率等于函数图像上切线斜率 变化率可用于分析函数图像的形状和趋势 变化率的概念在导数定义中有着基础地位
热传导:导数可以用来描述热量的传递过程,例如物体温度随时间的变化规律和热传导方程的求 解。
电磁学:导数可以用来描述电场和磁场的变化规律,例如电场强度和磁场强度的计算。
导数在经济分析中的应用
边际分析:导数 用于研究经济活 动中各变量的变 化趋势和极限状 态,帮助决策者 做出最优决策。
弹性分析:导数 用于计算各种经 济指标的弹性, 从而分析各因素 对经济指标的影 响程度。
利用导数求瞬时变化率
定义:导数描述 了函数在某一点 处的切线的斜率
计算方法:通过 求导公式或导数 定义进行计算
应用场景:在物理学、 工程学等领域中,利 用导数求瞬时变化率 具有广泛的应用
注意事项:导数在 某些点可能不存在, 需要注意函数的可 导性
导数与变化率的 应用
导数在几何中的应用
导数在研究曲线上某点的切线 斜率中应用
经济分析:在经济学中, 变化率用于分析经济增 长、通货膨胀和利率等 经济指标的变化情况。
预测模型:在气象学 和统计学中,变化率 用于建立预测模型, 例如预测股票价格和 天气变化趋势。
控制系统:在控制工 程中,变化率用于设 计和分析控制系统, 例如调节汽车发动机 的油门和温度。
感谢您的观看

变化率与导数

变化率与导数

导数的概念
一般地, 函数 y=f(x) 在点x=x0处的瞬时变 化率是
f ( x0 + Dx ) f ( x 0 ) Dy lim lim Dx 0 D x Dx 0 Dx
我们称它为函数 y = f (x)在点x=x0处的导数, 记为 f '(x0)或 y'| x=x0 ,即
f ( x0 + Dx ) f ( x0 ) Dy f ( x0 ) lim lim Dx 0 Dx Dx 0 Dx
Dx 0
曲线在点(x0 , f(x0))处的切线的方程为: y-f (x0) = f '(x0)(x-x0)
例2 求曲线y=f(x)=x2+1在点P(1,2)处的 切线方程.
解:
y
△y
因此,切线方程为
y-2=2(x-1),
P △x
即 y = 2x.
O
1
x
【总结提升】 求曲线在某点处的切线方程的基本步骤: ①求出切点P的坐标;
变化率与导数
平均变化率
我们把式子
f ( x2 ) f ( x1 ) 称为函数 x2 x1
y=f (x)从x1到 x2的平均变化率.
令△x = x2-x1 , △ y = f (x2) -f (x1) ,则
△y f ( x 2 ) f ( x1 ) = △x x 2 x1
平均变化率
例题分析
例2 将原油精练为汽油、柴油、塑胶等各 种不同产品, 需要对原油进冷却和加热. 如果第 x h时, 原油的温度(单位: oC) 为 f(x)=x2-7x+15 (0≤x≤8). 计算第2h 与低6h时原油温度的瞬时变化 率,并说明它们的意义。
解:

第3章第1节 变化率与导数、导数的计算练习和答案

第3章第1节 变化率与导数、导数的计算练习和答案

m
e
e
e
1
1
1
,+∞
- >0,即 m> 即可.故填 e
.
e
e
13.D 解析:当曲线在点 P 处的切线与直线 y=x-2 平行时,所求距离取得最小值.由题意,y=
x2-lnx,x>0,∴y′=2x-1,令
1 y′=2x- =1,得
x=1

1 x=- (舍去),所以点
P

x
x
2
纵坐标为 y=12-0=1.因此曲线 y=x2-lnx 的斜率为 1 的切线方程为 y-1=x-1,即 x-y =0.∴点 P 到直线 y=x-2 的最小距离即切线 x-y=0 与直线 y=x-2 这两条平行线间的距
|0-(-2)|
离,为 d=
= 2,故选 D.
2
14.A
解析:由题意,该三次函数的图像关于原点对称,所以可设三次函数的解析式为 f(x)=ax3 125a+5b=-2,
+bx,则 f′(x)=3ax2+b.由题图可知 f(5)=-2,f′(5)=0,∴ 75a+b=0,
a= 1 ,
125
解得
3 所以 b=- ,
能力提升题组 (建议用时:20 分钟) 13. 已知点 P 是曲线 x2-y-lnx=0 上的任意一点,则点 P 到直线 y=x-2 的最小距离为 ()
A.1
3 B.
2
5 C.
2
D. 2
14.如图,某飞行器在 4 千米高空水平飞行,从距着陆点 A 的水平距离 10 千米处开始下降, 已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( )
y=f(x)= 1 x3-3x,故选 125 5

导数第一节1.1.1-1.1.3

导数第一节1.1.1-1.1.3

P
α
o
x 我们发现,当点 沿着曲线无限接近点P即 当点Q沿着曲线无限接近点 我们发现 当点 沿着曲线无限接近点 即 割线PQ如果有一个极限位置 Δx→0时,割线 如果有一个极限位置 则我 → 时 割线 如果有一个极限位置PT.则我 们把直线PT称为曲线在点 处的切线 们把直线 称为曲线在点P处的切线. 称为曲线在点 处的切线
2 ∆t →0
= −9.8t0 + 6.5
y = f ( x)
处的瞬时变化率怎样表示? 函数在 x = x0 处的瞬时变化率怎样表示
f ( x0 + ∆x) − f ( x0 ) △y lim = lim ∆x→0 △ x ∆x→0 ∆x
导数的定义: 4. 导数的定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
1.1变化率与导数 1.1变化率与导数
1.变化率 1.变化率 一个变量相对于另一个变 量的变化而变化的快慢程度叫 做变化率. 变化率.
问题1 问题 气球膨胀率
3V r (V ) = 3 4π
当空气容量从V 增加到V 气球的平 当空气容量从 1增加到 2时,气球的平 气球的 均膨胀率是多少 均膨胀率是多少? 是多少
练习: 位移s(t)(单位:m)与时间t(单位: s) 的关系为: s(t ) = 3t +1, 求t = 2时的瞬时速度v.
△s s (2 +△t ) − s (2) 解 v = s (2) = lim = lim △ t → 0 △t △t →0 △t

[3(2 +△t) + 1] − (3 × 2 + 1) = lim = lim 3 = 3 △ t→0 △ t →0 2

人教版高数选修2-2第1讲:变化率与导数(教师版)

人教版高数选修2-2第1讲:变化率与导数(教师版)

变化率与导数____________________________________________________________________________________________________________________________________________________________________1、平均变化率的概念、函数在某点处附近的平均变化率;2、理解导数的几何意义;一、变化率问题:知识导入:问题1 气球膨胀率将班内同学平均分成4组,每组发一只气球,各有一位同学负责将气球吹起,其他同学观察气球在吹起过程中的变化,并做好准备回答以下问题:(1)气球在吹起过程中,随着吹入气体的增加,它的膨胀速度有何变化? (2)你认为膨胀速度与哪些量有关系? (3)球的体积公式是什么?有哪些基本量?(4)结合球的体积公式,试用两个变量之间的关系来表述气球的膨胀率问题?总结:可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--h可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )=-4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.1、平均变化率:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3. 则平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆x f 1212)()(x x x f x f --表示什么?直线AB 的斜率二、导数的概念:1、瞬时变化率:从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlim x x f x x f x fx x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()limx f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()lim x f x f x f x x x ∆→-'=-三、导数的几何意义:1、平均变化率与割线的斜率、瞬时变化率与切线的斜率: (一)曲线的切线及切线的斜率: 如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?x 1x 2O yy =f (x )f (x 1) f (x 2) △x = x 2-x 1 △y =f (x 2)-f (x 1)x我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?⑵切线PT 的斜率k 为多少? 容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在0x x =处的导数.(2)曲线在某点处的切线: 1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. 2、导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.类型一:求函数的平均变化率例1、求221y x =+在0x 到0x x +∆之间的平均变化率,并求01x =,12x ∆=时平均变化率的值.思路点拨: 求函数的平均变化率,要紧扣定义式00()()f x x f x y x x+∆-∆=∆∆进行操作. 解析:当变量从0x 变到0x x +∆时,函数的平均变化率为220000()()[2()1][21]f x x f x x x x x x+∆-+∆+-+=∆∆042x x =+∆当01x =,12x ∆=时,平均变化率的值为:141252⨯+⨯=. 总结升华:解答本题的关键是熟练掌握平均变化率的概念,只要求出平均变化率的表达式,其他就迎刃而解.举一反三:【变式1】求函数y=5x 2+6在区间[2,2+x ∆]内的平均变化率。

变化率与导数导数的计算

变化率与导数导数的计算

变化率与导数导数的计算一、变化率与导数的关系在数学中,变化率是指一个量相对于另一个量的变化程度,常用来衡量两个变量之间的关系。

而导数则是描述函数在其中一点上的变化率的概念。

在一个数学函数中,比如说y=f(x),x和y分别代表自变量和因变量。

那么,当x发生微小变化Δx时,对应的y值也会发生一定的变化Δy。

这时,我们可以计算出y随着x的变化而变化的速率,也就是变化率。

变化率可以通过求平均变化率和瞬时变化率来进行计算。

平均变化率指的是通过两个点之间的变化率来计算,可以用Δy/Δx来表示。

而瞬时变化率则是在其中一点上的变化率,通过取Δx趋近于0时的极限来计算,也就是导数。

二、导数的定义与计算导数是用来衡量函数在其中一点上的变化率的数值,用dy/dx来表示。

导数的定义是:f'(x) = lim(Δx→0) (f(x+Δx) - f(x))/Δx导数表示函数f(x)在x点处的瞬时变化率。

导数可以用各种方法进行计算,其中最常用的方法包括求导法则和导数的性质。

1.求导法则(1)常数法则:如果c是一个常数,那么d(c)/dx = 0。

(2)幂法则:如果f(x) = x^n,那么d(f(x))/dx = nx^(n-1)。

(3)和差法则:如果f(x)=u(x) ± v(x),那么d(f(x))/dx =d(u(x))/dx ± d(v(x))/dx。

(4)乘法法则:如果f(x) = u(x)v(x),那么d(f(x))/dx =u(x)d(v(x))/dx + v(x)d(u(x))/dx。

(5)除法法则:如果f(x) = u(x)/v(x),那么d(f(x))/dx =(v(x)d(u(x))/dx - u(x)d(v(x))/dx)/v(x)^2(6)复合函数法则:如果f(x) = g(u(x)),那么d(f(x))/dx =g'(u(x))d(u(x))/dx。

2.导数的性质(1)导数的和差性:(f(x)±g(x))'=f'(x)±g'(x)。

(完整版)变化率与导数及导数的计算

(完整版)变化率与导数及导数的计算

第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。

变化率与导数及导数的计算

变化率与导数及导数的计算

变化率与导数及导数的计算变化率是指其中一物理量在一定时间或空间上的变化幅度。

导数是微积分中用来描述函数变化率的概念。

导数的定义是函数在其中一点的变化率。

在微积分中,导数用于刻画函数曲线上一点的斜率,即曲线在该点的切线的斜率。

导数表示了函数在该点附近的局部变化情况。

若函数y=f(x),则函数f(x)在x=a的导数表示为f'(a)或dy/dx,_x=a。

导数表示了函数y=f(x)在x=a点附近的变化率。

导数可以通过几何方法、物理方法、以及代数方法进行求解。

一、几何解释法通过对函数对应的图像进行观察,可以直观地看出导数的几何意义。

函数y=f(x)在x=a点的导数f'(a)等于函数曲线在x=a点处的切线的斜率。

二、平均变化率和瞬时变化率平均变化率表示了函数的两个点之间的变化情况。

若函数f(x)在区间[a,b]上是连续的,则函数在该区间上的平均变化率为(f(b)-f(a))/(b-a)。

瞬时变化率表示了函数在其中一点的瞬时变化情况。

当间隔变得非常短小,即b趋近于a时,平均变化率趋近于瞬时变化率,即瞬时变化率等于导数。

三、导数的计算方法1.基本导数公式常见的基本导数公式如下:(1)常数函数的导数为零,即d(c)/dx=0,其中c为常数;(2)x的导数为1,即d(x)/dx=1;(3)可加性,即d(u+v)/dx=du/dx+dv/dx,其中u和v是函数;(4)乘性,即d(uv)/dx=udv/dx+vdu/dx,其中u和v是函数。

2.基本函数的导数(1)幂函数的导数:若f(x)=x^n,则f'(x)=nx^(n-1),其中n为常数;(2)指数函数的导数:若f(x)=a^x,则f'(x)=a^x * ln(a),其中a为常数,ln(a)为a的自然对数;(3)对数函数的导数:若f(x)=log_a(x),则f'(x)=1/(x*ln(a)),其中a为常数,ln(a)为a的自然对数;(4)三角函数的导数:若f(x)=sin(x),则f'(x)=cos(x);若f(x)=cos(x),则f'(x)=-sin(x);若f(x)=tan(x),则f'(x)=sec^2(x),其中sec(x)为x的余切。

变化率与导数导数的计算

变化率与导数导数的计算
导数与积分的关系
导数与积分是互逆运算,一个函数的导数与其积分之间的关系可以通过微积分基本定理来表示。
04 导数的应用
导数在几何中的应用
求切线斜率
导数可以用来求曲线在某一点的切线斜率,从而了解曲线在该点的 变化趋势。
研究函数极值
通过求导数并令其为零,可以找到函数的极值点,进而研究函数的 最大值和最小值。
莱布尼茨法则
对于复合函数的 $n$ 阶导数,可以利用莱布尼 茨法则进行计算。
幂级数展开法
对于复杂的函数,可以利用幂级数展开法求得高阶导数。
THANKS FOR WATCHING
感谢您的观看
曲线的凹凸性判断
通过求二阶导数,可以判断曲线的凹凸性,进而了解曲线的弯曲程度。
导数在物理中的应用
速度和加速度的研究
在物理学中,导数可以用来研究物体的速度和加速度, 例如瞬时速度和瞬时加速度。
斜抛运动的研究
通过导数可以研究斜抛物体的运动轨迹,例如研究射 程、射高等。
振动和波动的研究
导数可以用来研究振动和波动的规律,例如振幅、频 率等。
03
导数可以用来研究函数的单调性、极值、拐点等性质。
导数的几何意义
导数的几何意义是函数在某一 点处的切线斜率,即切线与x
轴正方向的夹角正切值。
当导数大于0时,函数在该点 处单调递增;当导数小于0时,
函数在该点处单调递减。
导数的符号变化点为函数的拐 点,即函数图像的凹凸分界点。
导数的计算方法
定义法
隐函数的导数计算
对数求导法
对于形如 $y = f(x)$ 的隐函数,可以通 过两边取对数,转化为显函数进行求导 。
VS
参数方程法
对于参数方程 $x = x(t), y = y(t)$,可以 通过对参数 $t$ 求导来求得隐函数的导数。

高考文科数学导数专题复习

高考文科数学导数专题复习

高考文科数学导数专题复习第1讲 变化率与导数、导数的计算知 识 梳 理1.导数的概念1函数y =fx 在x =x 0处的导数f ′x 0或y ′|x =x 0,即f ′x 0=0lim x ∆→错误!. 2函数fx 的导函数f ′x =0lim x ∆→错误!为fx 的导函数. 2.导数的几何意义函数y =fx 在点x 0处的导数的几何意义,就是曲线y =fx 在点Px 0,fx 0处的切线的斜率,过点P 的切线方程为y -y 0=f ′x 0x -x 0.3.基本初等函数的导数公式4.导数的运算法则若f ′x ,g ′x 存在,则有:考点一 导数的计算例1 求下列函数的导数:1y =e x ln x ;2y =x 错误!;解 1y ′=e x ′ln x +e x ln x ′=e x ln x +e x 错误!=错误!e x .2因为y =x 3+1+错误!, 所以y ′=x 3′+1′+错误!′=3x 2-错误!.训练1 1 已知函数fx 的导函数为f ′x ,且满足fx =2x ·f ′1+ln x ,则f ′1等于A.-eB.-1解析由fx=2xf′1+ln x,得f′x=2f′1+错误!,∴f′1=2f′1+1,则f′1=-1.答案B22015·天津卷已知函数fx=ax ln x,x∈0,+∞,其中a为实数,f′x为fx的导函数.若f′1=3,则a的值为________.2f′x=a错误!=a1+ln x.由于f′1=a1+ln 1=a,又f′1=3,所以a=3.答案23考点二导数的几何意义命题角度一求切线方程例22016·全国Ⅲ卷已知fx为偶函数,当x≤0时,fx=e-x-1-x,则曲线y=fx在点1,2处的切线方程是________.解析1设x>0,则-x<0,f-x=e x-1+x.又fx为偶函数,fx=f-x=e x-1+x,所以当x>0时,fx=e x-1+x.因此,当x>0时,f′x=e x-1+1,f′1=e0+1=2.则曲线y=fx在点1,2处的切线的斜率为f′1=2,所以切线方程为y-2=2x-1,即2x-y=0.答案2x-y=0训练22017·威海质检已知函数fx=x ln x,若直线l过点0,-1,并且与曲线y=fx相切,则直线l的方程为+y-1=0 -y-1=0 +y+1=0 -y+1=02∵点0,-1不在曲线fx=x ln x上,∴设切点为x0,y0.又∵f′x=1+ln x,∴错误!解得x=1,y0=0.∴切点为1,0,∴f′1=1+ln 1=1.∴直线l的方程为y=x-1,即x-y-1=00.答案B命题角度二求切点坐标例32017·西安调研设曲线y=e x在点0,1处的切线与曲线y=错误!x>0上点P处的切线垂直,则P的坐标为________.解析由y′=e x,知曲线y=e x在点0,1处的切线斜率k1=e0=1.设Pm,n,又y=错误!x>0的导数y′=-错误!,曲线y=错误!x>0在点P处的切线斜率k2=-错误!.依题意k1k2=-1,所以m=1,从而n=1.则点P的坐标为1,1.答案1,1训练3若曲线y=x ln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.解析1由题意得y′=ln x+x·错误!=1+ln x,直线2x-y+1=0的斜率为2.设Pm,n,则1+ln m=2,解得m=e,所以n=eln e=e,即点P的坐标为e,e. 答案1e,e命题角度三求与切线有关的参数值或范围例42015·全国Ⅱ卷已知曲线y=x+ln x在点1,1处的切线与曲线y=ax2+a+2x+1相切,则a=________.解析由y=x+ln x,得y′=1+错误!,得曲线在点1,1处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2x-1,即y=2x-1.又该切线与y=ax2+a+2x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8训练41.函数fx=ln x+ax的图象存在与直线2x-y=0平行的切线,则实数a的取值范围是________.函数fx=ln x+ax的图象存在与直线2x-y=0平行的切线,即f′x=2在0,+∞上有解,而f′x=错误!+a,即错误!+a在0,+∞上有解,a=2-错误!,因为a>0,所以2-错误!<2,所以a的取值范围是-∞,2.答案 2-∞,22.点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P 到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-错误!=1,解得x=1或x=-错误!舍去,故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为1,1,点1,1到直线y=x-2的距离等于错误!,∴点P到直线y=x-2的最小距离为错误!.答案D第2讲导数在研究函数中的应用知识梳理函数的单调性与导数的关系函数y=fx在某个区间内可导,则:1若f′x>0,则fx在这个区间内单调递增;2若f′x<0,则fx在这个区间内单调递减;3若f′x=0,则fx在这个区间内是常数函数.考点一利用导数研究函数的单调性例1设fx=e x ax2+x+1a>0,试讨论fx的单调性.解f′x=e x ax2+x+1+e x2ax+1=e x ax2+2a+1x+2=e x ax+1x+2=a e x错误!x+2①当a=错误!时,f′x=错误!e x x+22≥0恒成立,∴函数fx在R上单调递增;②当0<a<错误!时,有错误!>2,令f′x=a e x错误!x+2>0,有x>-2或x<-错误!,令f′x=a e x错误!x+2<0,有-错误!<x<-2,∴函数fx在错误!和-2,+∞上单调递增,在错误!上单调递减;③当a>错误!时,有错误!<2,令f′x=a e x错误!x+2>0时,有x>-错误!或x<-2,令f′x=a e x错误!x+2<0时,有-2<x<-错误!,∴函数fx在-∞,-2和错误!上单调递增;在错误!上单调递减.训练12016·四川卷节选设函数fx=ax2-a-ln x,gx=错误!-错误!,其中a∈R,e=…为自然对数的底数.1讨论fx的单调性;2证明:当x>1时,gx>0.1解由题意得f′x=2ax-错误!=错误!x>0.当a≤0时,f′x<0,fx在0,+∞内单调递减.当a>0时,由f′x=0有x=错误!,当x∈错误!时,f′x<0,fx单调递减;当x∈错误!时,f′x>0,fx单调递增.2证明令sx=e x-1-x,则s′x=e x-1-1.当x>1时,s′x>0,所以e x-1>x,从而gx=错误!-错误!>0.考点二求函数的单调区间例22015·重庆卷改编已知函数fx=ax3+x2a∈R在x=-错误!处取得极值.1确定a的值;2若gx=fx e x,求函数gx的单调减区间.解1对fx求导得f′x=3ax2+2x,因为fx在x=-错误!处取得极值,所以f′错误!=0,即3a·错误!+2·错误!=错误!-错误!=0,解得a=错误!.2由1得gx=错误!e x故g′x=错误!e x+错误!e x=错误!e x=错误!xx+1x+4e x.令g′x<0,得xx+1x+4<0.解之得-1<x<0或x<-4.所以gx的单调减区间为-1,0,-∞,-4.训练2 已知函数fx=错误!+错误!-ln x-错误!,其中a∈R,且曲线y=fx在点1,f1处的切线垂直于直线y=错误!x.1求a的值;2求函数fx的单调区间.解1对fx求导得f′x=错误!-错误!-错误!,由fx在点1,f1处的切线垂直于直线y =错误!x知f′1=-错误!-a=-2,解得a=错误!.2由1知fx=错误!+错误!-ln x -错误!,x>0.则f′x=错误!.令f′x=0,解得x=-1或x=5.但-10,+∞,舍去.当x∈0,5时,f′x<0;当x∈5,+∞时,f′x>0.∴fx的增区间为5,+∞,减区间为0,5.考点三已知函数的单调性求参数例32017·西安模拟已知函数fx=ln x,gx=错误!ax2+2xa≠0.1若函数hx=fx-gx存在单调递减区间,求a的取值范围;2若函数hx=fx-gx在1,4上单调递减,求a的取值范围.解1hx=ln x-错误!ax2-2x,x>0.∴h′x=错误!-ax-2.若函数hx在0,+∞上存在单调减区间,则当x>0时,错误!-ax-2<0有解,即a>错误!-错误!有解.设Gx=错误!-错误!,所以只要a>Gx min.又Gx=错误!错误!-1,所以Gx min=-1.所以a>-1.即实数a的取值范围是-1,+∞.2由hx在1,4上单调递减,∴当x∈1,4时,h′x=错误!-ax-2≤0恒成立,则a≥错误!-错误!恒成立,所以a≥Gx max.又Gx=错误!错误!-1,x∈1,4因为x∈1,4,所以错误!∈错误!,所以Gx max=-错误!此时x=4,所以a≥-错误!.当a=-错误!时,h′x=错误!+错误!x-2=错误!=错误!,∵x∈1,4,∴h′x=错误!≤0,当且仅当x=4时等号成立.∴hx在1,4上为减函数.故实数a的取值范围是错误!.训练3已知函数fx=x3-ax-1.1若fx在R上为增函数,求实数a的取值范围;2若函数fx的单调减区间为-1,1,求a的值.解1因为fx在R上是增函数,所以f′x=3x2-a≥0在R上恒成立,即a≤3x2对x∈R恒成立.因为3x2≥0,所以只需a≤0.又因为a=0时,f′x=3x2≥0,当且仅当x=0时取等号.∴fx=x3-1在R上是增函数.所以实数a的取值范围是-∞,0.2f′x=3x2-a.当a≤0时,f′x≥0,fx在-∞,+∞上为增函数,所以a≤0不合题意.当a>0时,令3x2-a<0,得-错误!<x<错误!,∴fx的单调递减区间为错误!,依题意,错误!=1,即a=3.第3讲导数与函数的极值、最值知识梳理1.函数的极值与导数的关系1函数的极小值与极小值点:若函数fx在点x=a处的函数值fa比它在点x=a附近其他点的函数值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函数的极小值点,fa叫做函数的极小值.2函数的极大值与极大值点:若函数fx在点x=b处的函数值fb比它在点x=b附近其他点的函数值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函数的极大值点,fb叫做函数的极大值.2.函数的最值与导数的关系1函数fx在a,b上有最值的条件:如果在区间a,b上函数y=fx的图象是一条连续不断的曲线,那么它必有最大值和最小值.2求y=fx在a,b上的最大小值的步骤考点一用导数研究函数的极值命题角度一根据函数图象判断极值例1设函数fx在R上可导,其导函数为f′x,且函数y=1-xf′x的图象如图所示,则下列结论中一定成立的是A.函数fx有极大值f2和极小值f1B.函数fx有极大值f-2和极小值f1C.函数fx有极大值f2和极小值f-2D.函数fx有极大值f-2和极小值f2解析由题图可知,当x<-2时,1-x>3,此时f′x>0;当-2<x<1时,0<1-x<3,此时f′x<0;当1<x<2时,-1<1-x<0,此时f′x<0;当x>2时,1-x<-1,此时f′x>0,由此可以得到函数fx在x=-2处取得极大值,在x=2处取得极小值.答案D命题角度二求函数的极值例2求函数fx=x-a ln xa∈R的极值.解由f′x=1-错误!=错误!,x>0知:1当a≤0时,f′x>0,函数fx为0,+∞上的增函数,函数fx无极值;2当a>0时,令f′x=0,解得x=a.又当x∈0,a时,f′x<0;当x∈a,+∞,f′x>0,从而函数fx在x=a处取得极小值,且极小值为fa=a-a ln a,无极大值.综上,当a≤0时,函数fx无极值;当a>0时,函数fx在x=a处取得极小值a-a ln a,无极大值.命题角度三已知极值求参数例3已知关于x的函数fx=-错误!x3+bx2+cx+bc在x=1处有极值-错误!,试求b,c 的值.解∵f′x=-x2+2bx+c,由fx在x=1处有极值-错误!,可得错误!解得错误!或错误!若b=1,c=-1,则f′x=-x2+2x-1=-x-12≤0,fx没有极值.若b=-1,c=3,则f′x =-x2-2x+3=-x+3x-1.当x变化时,fx与f′x的变化情况如下表:∴当x=1时,fx有极大值-错误!,满足题意.故b=-1,c=3为所求.训练1设函数fx=ax3-2x2+x+ca>0.1当a=1,且函数图象过0,1时,求函数的极小值;2若fx在R上无极值点,求a的取值范围.解由题意得f′x=3ax2-4x+1.1函数图象过0,1时,有f0=c=1.当a=1时,f′x=3x2-4x+1.令f′x>0,解得x<错误!或x>1;令f′x<0,解得错误!<x<1.所以函数在错误!和1,+∞上单调递增;在错误!上单调递减.故函数fx的极小值是f1=13-2×12+1+1=1. 2若fx在R上无极值点,则fx在R上是单调函数,故f′x≥0或f′x≤0恒成立.当a=0时,f′x=-4x+1,显然不满足条件;当a≠0时,f′x≥0或f′1≤0恒成立的充要条件是Δ=-42-4×3a×1≤0,即16-12a≤0,解得a≥错误!.综上,a的取值范围是错误!.考点二利用导数求函数的最值例4 2017·郑州模拟已知函数fx=x-k e x.1求fx的单调区间;2求fx在区间0,1上的最小值.解1由fx=x-k e x,得f′x=x-k+1e x,令f′x=0,得x=k-1.当x变化时,fx与f′x的变化情况如下表:所以,fx的单调递减区间是-∞,k-1;单调递增区间是k-1,+∞.2当k-1≤0,即k≤1时,函数fx在0,1上单调递增,所以fx在区间0,1上的最小值为f0=-k,当0<k-1<1,即1<k<2时,由1知fx在0,k-1上单调递减,在k-1,1上单调递增,所以fx在区间0,1上的最小值为fk-1=-e k-1.当k-1≥1,即k≥2时,函数fx在0,1上单调递减,所以fx在区间0,1上的最小值为f1=1-k e.综上可知,当k≤1时,fx min=-k;当1<k<2时,fx min=-e k-1;当k≥2时,fx min=1-k e.训练2设函数fx=a ln x-bx2x>0,若函数fx在x=1处与直线y=-错误!相切,1求实数a,b的值;2求函数fx在错误!上的最大值.解1由fx=a ln x-bx2,得f′x=错误!-2bxx>0.∵函数fx在x=1处与直线y=-错误!相切.∴错误!解得错误!2由1知fx=ln x-错误!x2,则f′x=错误!-x=错误!,当错误!≤x≤e时,令f′x>0,得错误!<x<1,令f′x<0,得1<x<e,∴fx在错误!上单调递增,在1,e上单调递减,∴fx max=f1=-错误!.考点三函数极值与最值的综合问题例5已知函数fx=错误!a>0的导函数y=f′x的两个零点为-3和0.1求fx的单调区间;2若fx的极小值为-e3,求fx在区间-5,+∞上的最大值.解1f′x=错误!=错误!.令gx=-ax2+2a-bx+b-c,由于e x>0.令f′x=0,则gx=-ax2+2a-bx+b-c=0,∴-3和0是y=gx的零点,且f′x与gx的符号相同.又因为a>0,所以-3<x<0时,gx>0,即f′x>0,当x<-3或x>0时,gx<0,即f′x<0,所以fx的单调递增区间是-3,0,单调递减区间是-∞,-3,0,+∞.2由1知,x=-3是fx的极小值点,所以有错误!解得a=1,b=5,c=5,所以fx=错误!.因为fx的单调递增区间是-3,0,单调递减区间是-∞,-3,0,+∞.所以f0=5为函数fx的极大值,故fx在区间-5,+∞上的最大值取f-5和f0中的最大者,又f-5=错误!=5e5>5=f0,所数fx在区间-5,+∞上的最大值是5e5.训练3 2017·衡水中学月考已知函数fx=ax-1-ln xa∈R.1讨论函数fx在定义域内的极值点的个数;2若函数fx在x=1处取得极值,x∈0,+∞,fx≥bx-2恒成立,求实数b的最大值.解1fx的定义域为0,+∞,f′x=a-错误!=错误!.当a≤0时,f′x≤0在0,+∞上恒成立,函数fx在0,+∞上单调递减.∴fx在0,+∞上没有极值点.当a>0时,由f′x<0,得0<x<错误!;由f′x>0,得x>错误!,∴fx在错误!上递减,在错误!上递增,即fx在x=错误!处有极小值.综上,当a≤0时,fx在0,+∞上没有极值点;当a>0时,fx在0,+∞上有一个极值点.2∵函数fx在x=1处取得极值,∴f′1=a-1=0,则a=1,从而fx=x-1-ln x.因此fx≥bx-21+错误!-错误!≥b,令gx=1+错误!-错误!,则g′x=错误!,令g′x=0,得x=e2,则gx在0,e2上递减,在e2,+∞上递增,∴gx min=g e2=1-错误!,即b≤1-错误!.故实数b的最大值是1-错误!.第4讲导数与函数的综合应用考点一利用导数研究函数的性质例12015·全国Ⅱ卷已知函数fx=ln x+a1-x.1讨论fx的单调性;2当fx有最大值,且最大值大于2a-2时,求a的取值范围.解1fx的定义域为0,+∞,f′x=错误!-a.若a≤0,则f′x>0,所以fx在0,+∞上单调递增.若a>0,则当x∈错误!时,f′x>0;当x∈错误!时,f′x<0.所以fx在错误!上单调递增,在错误!上单调递减.2由1知,当a≤0,fx在0,+∞上无最大值;当a>0时,fx在x=错误!取得最大值,最大值为f 错误!=ln错误!+a错误!=-ln a+a-1.因此f 错误!>2a-2等价于ln a+a-1<0.令ga=ln a+a-1,则ga在0,+∞上单调递增,g1=0.于是,当0<a<1时,ga<0;当a>1时,ga>0.因此,a的取值范围是0,1.训练1设fx=-错误!x3+错误!x2+2ax.1若fx在错误!上存在单调递增区间,求a的取值范围;2当0<a<2时,fx在1,4上的最小值为-错误!,求fx在该区间上的最大值.解1由f′x=-x2+x+2a=-错误!错误!+错误!+2a,当x∈错误!时,f′x的最大值为f′错误!=错误!+2a;令错误!+2a>0,得a>-错误!.所以,当a>-错误!时,fx在错误!上存在单调递增区间.2已知0<a<2,fx在1,4上取到最小值-错误!,而f′x=-x2+x+2a的图象开口向下,且对称轴x=错误!,∴f′1=-1+1+2a=2a>0,f′4=-16+4+2a=2a-12<0,则必有一点x0∈1,4,使得f′x0=0,此时函数fx在1,x0上单调递增,在x0,4上单调递减,f1=-错误!+错误!+2a=错误!+2a>0,∴f4=-错误!×64+错误!×16+8a=-错误!+8a=-错误!a=1.此时,由f′x0=-x错误!+x0+2=0x0=2或-1舍去,所以函数fx max=f2=错误!.考点二利用导数研究函数的零点或方程的根例2 2015·北京卷设函数fx=错误!-k ln x,k>0.1求fx的单调区间和极值;2证明:若fx存在零点,则fx在区间1,错误!上仅有一个零点. 1解由fx=错误!-k ln xk>0,得x>0且f′x=x-错误!=错误!.由f′x=0,解得x=错误!负值舍去.fx与f′x在区间0,+∞上的情况如下:所以fx的单调递减区间是0,错误!,单调递增区间是错误!,+∞.fx在x=错误!处取得极小值f错误!=错误!.2证明由1知,fx在区间0,+∞上的最小值为f错误!=错误!.因为fx存在零点,所以错误!≤0,从而k≥e.当k=e时,fx在区间1,错误!上单调递减,且f错误!=0,所以x=错误!是fx 在区间1,错误!上的唯一零点.当k>e时,fx在区间0,错误!上单调递减,且f1=错误!>0,f错误!=错误!<0,所以fx在区间1,错误!上仅有一个零点.综上可知,若fx存在零点,则fx在区间1,错误!上仅有一个零点.训练22016·北京卷节选设函数fx=x3+ax2+bx+c.1求曲线y=fx在点0,f0处的切线方程;2设a=b=4,若函数fx有三个不同零点,求c的取值范围.解1由fx=x3+ax2+bx+c,得f′x=3x2+2ax+b.因为f0=c,f′0=b,所以曲线y=fx 在点0,f0处的切线方程为y=bx+c.2当a=b=4时,fx=x3+4x2+4x+c,所以f′x=3x2+8x+4.令f′x=0,得3x2+8x+4=0,解得x=-2或x=-错误!.当x变化时,fx与f′x的变化情况如下:所以,当c>0且c-错误!<0,存在x1∈-4,-2,x2∈错误!,x3∈错误!,使得fx1=fx2=fx3=0.由fx的单调性知,当且仅当c∈错误!时,函数fx=x3+4x2+4x+c有三个不同零点.考点三导数在不等式中的应用命题角度一不等式恒成立问题例32017·合肥模拟已知fx=x ln x,gx=x3+ax2-x+2.1如果函数gx的单调递减区间为错误!,求函数gx的解析式;2对任意x∈0,+∞,2fx≤g′x+2恒成立,求实数a的取值范围.解1g′x=3x2+2ax-1,由题意3x2+2ax-1<0的解集是错误!,即3x2+2ax-1=0的两根分别是-错误!,1.将x=1或-错误!代入方程3x2+2ax-1=0,得a=-1.所以gx=x3-x2-x +2.2由题意2x ln x≤3x2+2ax-1+2在x∈0,+∞上恒成立,可得a≥ln x-错误!x-错误!,设hx=ln x-错误!x-错误!,则h′x=错误!-错误!+错误!=-错误!,令h′x=0,得x=1或-错误!舍,当0<x<1时,h′x>0,当x>1时,h′x<0,所以当x=1时,hx取得最大值,hx max=-2,所以a≥-2,所以a的取值范围是-2,+∞.训练3已知函数fx=x2-ln x-ax,a∈R.1当a=1时,求fx的最小值;2若fx>x,求a的取值范围.解1当a=1时,fx=x2-ln x-x,f′x=错误!.当x∈0,1时,f′x<0;当x∈1,+∞时,f′x>0.所以fx的最小值为f1=0.2由fx>x,得fx-x=x2-ln x-a+1x>0.由于x>0,所以fx>x等价于x-错误!>a+1.令gx =x-错误!,则g′x=错误!.当x∈0,1时,g′x<0;当x∈1,+∞时,g′x>0.故gx有最小值g1=1.故a+1<1,a<0,即a的取值范围是-∞,0.命题角度二证明不等式例42017·昆明一中月考已知函数fx=ln x-错误!.1求函数fx的单调递增区间;2证明:当x>1时,fx<x-1.1解f′x=错误!-x+1=错误!,x∈0,+∞.由f′x>0得错误!解得0<x<错误!.故fx的单调递增区间是错误!.2证明令Fx=fx-x-1,x∈0,+∞.则有F′x=错误!.当x∈1,+∞时,F′x<0,所以Fx在1,+∞上单调递减,故当x>1时,Fx<F1=0,即当x>1时,fx<x-1.故当x>1时,fx<x-1.训练4 2017·泰安模拟已知函数fx=ln x.1求函数Fx=错误!+错误!的最大值;2证明:错误!+错误!<x-fx;1解Fx=错误!+错误!=错误!+错误!,F′x=错误!,当F′x>0时,0<x<e;当F′x<0时,x>e,故Fx在0,e上是增函数,在e,+∞上是减函数,故Fx max=F e=错误!+错误!.2证明令hx=x-fx=x-ln x,则h′x=1-错误!=错误!,当h′x<0时,0<x<1;当h′x>0时,x>1,故hx在0,1上是减函数,在1+∞上是增函数,故hx min=h1=1.又Fx max=错误!+错误!<1,故Fx<hx,即错误!+错误!<x-fx.。

高考数学一轮复习 第三章 导数及其应用 1 第1讲 变化率与导数、导数的计算教学案

高考数学一轮复习 第三章 导数及其应用 1 第1讲 变化率与导数、导数的计算教学案

第三章导数及其应用知识点最新考纲变化率与导数、导数的计算了解导数的概念与实际背景,理解导数的几何意义.会用基本初等函数的导数公式表和导数运算法则求函数的导数,并能求简单的复合函数的导数(限于形如f(ax+b)的导数).导数在研究函数中的应用了解函数单调性和导数的关系,能用导数求函数的单调区间.理解函数极值的概念及函数在某点取到极值的条件,会用导数求函数的极大(小)值,会求闭区间上函数的最大(小)值.1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f(x0+Δx)-f(x0)Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x -x0).(3)函数f(x)的导函数称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式原函数导函数f(x)=c(c为常数) f′(x)=0f(x)=x n(n∈Q*)f′(x)=nx n-1(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)与[f (x 0)]′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 答案:(1)× (2)× (3)√ (4)× (5)× [教材衍化]1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sinx .2.(选修2-2P18A 组T6改编)曲线y =1-2x +2在点(-1,-1)处的切线方程为________.解析:因为y ′=2(x +2)2,所以y ′|x =-1=2.故所求切线方程为2x -y +1=0. 答案:2x -y +1=03.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3t(t 是时间,s 是位移),则该机器人在t =2时的瞬时速度为________.解析:因为s =t 2+3t ,所以s ′=2t -3t2,所以s ′|t =2=4-34=134.答案:134[易错纠偏](1)求导时不能掌握复合函数的求导法则致误; (2)不会用方程法解导数求值.1.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3,则f ′(x )=________. 解析:f ′(x )=[sin ⎝ ⎛⎭⎪⎫2x +π3]′=cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=2cos ⎝ ⎛⎭⎪⎫2x +π3. 答案:2cos ⎝⎛⎭⎪⎫2x +π32.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2,即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f (x )=-sin x +cos x ,f ′(x )=-cos x -sin x .故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2. 答案:- 2导数的计算求下列函数的导数:(1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =3x e x -2x+e ;(4)y =ln(2x -5).【解】 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x)′ =3x e x ln 3+3x e x -2x ln 2=(ln 3+1)·(3e)x -2xln 2. (4)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5.[提醒] 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.1.已知f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0=( ) A .e 2B .1C .ln 2D .e解析:选B.因为f (x )=x (2 017+ln x ), 所以f ′(x )=2 017+ln x +1=2 018+ln x , 又f ′(x 0)=2 018, 所以2 018+ln x 0=2 018, 所以x 0=1.2.求下列函数的导数: (1)y =x n e x;(2)y =cos x sin x ;(3)y =e xln x ;(4)y =(1+sin x )2. 解:(1)y ′=nxn -1e x+x n e x =xn -1e x(n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x .(3)y ′=e x ln x +e x·1x=e x ⎝ ⎛⎭⎪⎫1x +ln x .(4)y ′=2(1+sin x )·(1+sin x )′ =2(1+sin x )·cos x .导数的几何意义(高频考点)导数的几何意义是每年高考的必考内容,考查题型既有选择题也有填空题,也常出现在解答题的第(1)问中,属中低档题.主要命题角度有:(1)求切线方程;(2)已知切线方程(或斜率)求切点坐标; (3)已知切线方程(或斜率)求参数值. 角度一 求切线方程(1)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.【解析】 (1)因为y ′=2x -1x2,所以在点(1,2)处的切线方程的斜率为y ′|x =1=2×1-112=1, 所以切线方程为y -2=x -1,即y =x +1. (2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0). 又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以切点为(1,0),所以f ′(1)=1+ln 1=1. 所以直线l 的方程为y =x -1. 【答案】 (1)y =x +1 (2)y =x -1 角度二 已知切线方程(或斜率)求切点坐标若曲线y =e-x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.【解析】 设P (x 0,y 0),因为y =e -x, 所以y ′=-e -x,所以点P 处的切线斜率为k =-e -x 0=-2, 所以-x 0=ln 2,所以x 0=-ln 2, 所以y 0=eln 2=2,所以点P 的坐标为(-ln 2,2). 【答案】 (-ln 2,2)角度三 已知切线方程(或斜率)求参数值(1)(2020·宁波调研)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( )A .2B .-1C .1D .-2(2)(2020·绍兴调研)若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a =________.【解析】 (1)依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.(2)依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0ax 0=2ln x 0+1,解得x 0=e ,a =2x 0=2e -12.【答案】 (1)C (2)2e -12(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线的切线方程需注意两点①当曲线y =f (x )在点P (x 0,f (x 0))处的切线垂直于x 轴(此时导数不存在)时,切线方程为x =x 0;②当切点坐标不知道时,应首先设出切点坐标,再求解.1.(2020·杭州七校联考)曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2B .4e 2C .2e 2D .e 2解析:选D.因为y ′=12e 12x ,所以k =12e 12×4=12e 2,所以切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,所以所求面积为S =12×2×|-e 2|=e 2.2.已知函数f (x )=(x 2+ax -1)e x(其中e 是自然对数的底数,a ∈R ),若f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,则a =________.解析:f ′(x )=(x 2+ax -1)′e x +(x 2+ax -1)(e x )′=(2x +a )e x +(x 2+ax -1)e x =[x 2+(a +2)x +(a -1)]e x,故f ′(0)=[02+(a +2)×0+(a -1)]e 0=a -1.因为f (x )在(0,f (0))处的切线与直线x +y -1=0垂直,故f ′(0)=1,即a -1=1,解得a =2.答案:23.(2020·台州高三月考)已知曲线f (x )=xn +1(n ∈N *)与直线x =1交于点P ,设曲线y=f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017的值为________.解析:f ′(x )=(n +1)x n,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1. 所以x 1·x 2·…·x 2 017=12×23×34×…×2 0162 017×2 0172 018=12 018.则log 2 018x 1+log 2 018x 2+…+log 2 018x 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 01812 018=-1.答案:-1两条曲线的公切线若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.【解析】 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x+ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1), 依题意⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=-x2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln 2.【答案】 1-ln 2求两条曲线的公切线的方法(1)利用其中一曲线在某点处的切线与另一条曲线相切,列出关系式求解. (2)利用公切线得出关系式.设公切线l 在y =f (x )上的切点P 1(x 1,y 1),在y =g (x )上的切点P 2(x 2,y 2),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.1.已知函数f (x )=x 2-4x +4,g (x )=x -1,则f (x )和g (x )的公切线的条数为( ) A .三条 B .二条 C .一条D .0条解析:选A.设公切线与f (x )和g (x )分别相切于点(m ,f (m )),(n ,g (n )),f ′(x )=2x-4,g ′(x )=-x -2,g ′(n )=f ′(m )=g (n )-f (m )n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f (x )=8x 3-8x 2+1,f ′(x )=8x (3x -2),原函数在(-∞,0)上单调递增,在⎝ ⎛⎭⎪⎫0,23上单调递减,在⎝ ⎛⎭⎪⎫23,+∞上单调递增,极大值f (0)>0,极小值f ⎝ ⎛⎭⎪⎫23<0,故函数和x 轴有3个交点,方程8n 3-8n 2+1=0有三个解,故切线有3条.故选A.2.曲线f (x )=e x 在x =0处的切线与曲线g (x )=ax 2-a (a ≠0)相切,则过切点且与该切线垂直的直线方程为__________.解析:曲线f (x )在x =0处的切线方程为y =x +1. 设其与曲线g (x )=ax 2-a 相切于点(x 0,ax 20-a ). 则g ′(x 0)=2ax 0=1,且ax 20-a =x 0+1. 解得x 0=-1,a =-12,切点坐标为(-1,0).所以过切点且与该切线垂直的直线方程为y =-1·(x +1),即x +y +1=0.答案:x +y +1=0[基础题组练]1.函数y =x 2cos x 在x =1处的导数是( ) A .0 B .2cos 1-sin 1 C .cos 1-sin 1D .1解析:选B.因为y ′=(x 2cos x )′=(x 2)′cos x +x 2·(cos x )′=2x cos x -x 2sin x ,所以y ′|x =1=2cos 1-sin 1.2.(2020·衢州高三月考)已知t 为实数,f (x )=(x 2-4)(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12D .2解析:选C.依题意得,f ′(x )=2x (x -t )+(x 2-4)=3x 2-2tx -4,所以f ′(-1)=3+2t -4=0,即t =12.3.(2020·温州模拟)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12 B .1C.32D .2解析:选B.因为x 1<x 2<0,f (x )=x 2+2x , 所以f ′(x )=2x +2,所以函数f (x )在点A ,B 处的切线的斜率分别为f ′(x 1),f ′(x 2), 因为函数f (x )的图象在点A ,B 处的切线互相垂直, 所以f ′(x 1)f ′(x 2)=-1. 所以(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0,所以x 2-x 1=12[-(2x 1+2)+(2x 2+2)]≥-(2x 1+2)(2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32,x 2=-12时等号成立.所以x 2-x 1的最小值为1.故选B.4.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7. 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.5.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B.由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.6.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B. 2 C.22D. 3解析:选B.因为定义域为(0,+∞),令y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2.7.已知f (x )=ln x x 2+1,g (x )=(1+sin x )2,若F (x )=f (x )+g (x ),则F (x )的导函数为________.解析:因为f ′(x )=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2, g ′(x )=2(1+sin x )(1+sin x )′=2cos x +sin 2x ,所以F ′(x )=f ′(x )+g ′(x )=x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x .答案:x 2+1-2x 2ln x x (x 2+1)2+2cos x +sin 2x8.(2020·绍兴市柯桥区高三模拟)已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.解析:设切点为(m ,n )(m >0),y =14x 2-3ln x 的导数为y ′=12x -3x ,可得切线的斜率为12m -3m =-12,解方程可得,m =2. 答案:29.(2020·金华十校高考模拟)函数f (x )的定义域为R ,f (-2)=2 018,若对任意的x ∈R ,都有f ′(x )<2x 成立,则不等式f (x )<x 2+2 014的解集为________.解析:构造函数g (x )=f (x )-x 2-2 014,则g ′(x )=f ′(x )-2x <0,所以函数g (x )在定义域上为减函数,且g (-2)=f (-2)-22-2 014=2 018-4-2 014=0,由f (x )<x2+2 014有f (x )-x 2-2 014<0,即g (x )<0=g (-2),所以x >-2,不等式f (x )<x 2+2 014的解集为(-2,+∞).答案:(-2,+∞)10.如图,已知y =f (x )是可导函数,直线l 是曲线y =f (x )在x =4处的切线,令g (x )=f (x )x,则g ′(4)=________. 解析:g ′(x )=⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2.由题图可知,直线l 经过点P (0,3)和Q (4,5), 故k 1=5-34-0=12.由导数的几何意义可得f ′(4)=12,因为Q (4,5)在曲线y =f (x )上,故f (4)=5. 故g ′(4)=4×f ′(4)-f (4)42=4×12-542=-316. 答案:-31611.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18, 即切点坐标为(1,-14)或(-1,-18),切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.12.已知函数f (x )=ax +bx(x ≠0)在x =2处的切线方程为3x -4y +4=0. (1)求a ,b 的值;(2)求证:曲线上任一点P 处的切线l 与直线l 1:y =x ,直线l 2:x =0围成的三角形的面积为定值.解:(1)由f (x )=ax +b x ,得f ′(x )=a -b x2(x ≠0). 由题意得⎩⎪⎨⎪⎧f ′(2)=34,3×2-4f (2)+4=0.即⎩⎪⎨⎪⎧a -b 4=34,5-2⎝ ⎛⎭⎪⎫2a +b 2=0.解得a =1,b =1.(2)证明:由(1)知f (x )=x +1x,设曲线的切点为P ⎝ ⎛⎭⎪⎫x 0,x 0+1x 0,f ′(x 0)=1-1x 20,曲线在P 处的切线方程为y -⎝⎛⎭⎪⎫x 0+1x 0=⎝ ⎛⎭⎪⎫1-1x 20(x -x 0).即y =⎝⎛⎭⎪⎫1-1x20x +2x 0.当x =0时,y =2x 0.即切线l 与l 2:x =0的交点坐标为A ⎝⎛⎭⎪⎫0,2x 0.由⎩⎪⎨⎪⎧y =⎝ ⎛⎭⎪⎫1-1x 20x +2x 0,y =x ,得⎩⎪⎨⎪⎧x =2x 0,y =2x 0,即l 与l 1:y =x 的交点坐标为B (2x 0,2x 0).又l 1与l 2的交点为O (0,0),则所求的三角形的面积为S =12·|2x 0|·⎪⎪⎪⎪⎪⎪2x 0=2.即切线l 与l 1,l 2围成的三角形的面积为定值.[综合题组练]1.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x(x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.(2020·金华十校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 3解析:选D.令f (x )=x 2,f ′(x )=2x ,f (x 0)=x 20,所以直线l 的方程为y =2x 0(x -x 0)+x 20=2x 0x -x 20,因为l 也与函数y =ln x (x ∈(0,1))的图象相切,令切点坐标为(x 1,ln x 1),y ′=1x ,所以l 的方程为y =1x 1x +ln x 1-1,这样有⎩⎪⎨⎪⎧2x 0=1x 1,1-ln x 1=x 20,所以1+ln(2x 0)=x 20,x 0∈(1,+∞),令g (x )=x 2-ln(2x )-1,x ∈(1,+∞),所以该函数的零点就是x 0,又因为g ′(x )=2x -1x =2x 2-1x,所以g (x )在(1,+∞)上单调递增,又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0,从而2<x 0<3,选D.3.(2020·宁波四中高三月考)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上是凸函数的是________(把你认为正确的序号都填上).①f (x )=sin x +cos x ; ②f (x )=ln x -2x ; ③f (x )=-x 3+2x -1;④f (x )=x e x.解析:①中,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎪⎫x +π4<0在区间⎝ ⎛⎭⎪⎫0,π2上恒成立;②中,f ′(x )=1x -2(x >0),f ″(x )=-1x 2<0在区间⎝⎛⎭⎪⎫0,π2上恒成立;③中,f ′(x )=-3x 2+2,f ″(x )=-6x 在区间⎝ ⎛⎭⎪⎫0,π2上恒小于0.④中,f ′(x )=e x +x e x ,f ″(x )=2e x +x e x =e x(x +2)>0在区间⎝⎛⎭⎪⎫0,π2上恒成立,故④中函数不是凸函数.故①②③为凸函数.答案:①②③4.(2020·浙江省十校联合体期末检测)已知函数f (x )=a e x+x 2,g (x )=cos (πx )+bx ,直线l 与曲线y =f (x )切于点(0,f (0)),且与曲线y =g (x )切于点(1,g (1)),则a +b=________,直线l 的方程为________.解析:f ′(x )=a e x+2x ,g ′(x )=-πsin (πx )+b ,f (0)=a ,g (1)=cos π+b =b -1, f ′(0)=a ,g ′(1)=b ,由题意可得f ′(0)=g ′(1),则a =b , 又f ′(0)=b -1-a1-0=a ,即a =b =-1,则a +b =-2; 所以直线l 的方程为x +y +1=0. 答案:-2 x +y +1=05.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,②-2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去).所以k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.④将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4. 6.(2020·绍兴一中月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9. ②由f ′(x )=12得-6x 2+6x +12=12, 解得x =0或x =1.在x =0处,y =f (x )的切线方程为y =12x -11; 在x =1处,y =f (x )的切线方程为y =12x -10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

人教版数学高二教材解读---变化率及导数,导数的计算

人教版数学高二教材解读---变化率及导数,导数的计算

打印版摘要:高考试题关键词:导数的概念和计算,高考链接,陈立田教材解读“变化率及导数,导数的计算”---人教A版选修2-2第一章一、教材主要特点:导数的概念是高中新教材人教A版选修1-1第三章3.1.2的内容,是在学生学习了平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1气球平均膨胀率--→瞬时膨胀率问题2高台跳水的平均速度--→瞬时速度新教材不介绍极限的形式化定义及相关知识,而是用直观形象的逼近方法定义导数。

通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),学生更易于理解。

二、讲授时注意的问题:1.加强知识发生过程的学习学生开始接触的知识,关键是对导数的基本概念、性质等有一个初步的认识,进而达到能够运用由其内容反映出来的数学思想和方法的目点为此,适当介绍有关概念、性质的来龙去脉,对学生了解、把握它们是十分必要的本章的主要概念是导数,教科书在讲述导数的概念时,首先用比较多的篇幅介绍了导数产生的几何背景——光滑曲线的切线的斜率,以及物理背景——瞬时速度,由此引出函数在一点的导数的定义.接下来,又阐述了导数的几何意义,这样处理,符合学生的认识规律,有利于学生正确理解和掌握导数的意义2.降低理论要求,重视数学应用学习导数,要着眼于用导数的知识及其思想方法解决数学学习、日常生活与工作中的问题高中阶段,在导数概念的严谨性、知识的系统性上多花时间与精力,既没有必要也不可能收到明显的效果.因此,与以往高中教材中的导数部分比较,本章在数学应用的内容上适当加强了,而在理论要求上则有所降低本章导数的初步知识中介绍了一此导数公式与求导法则,教材侧重的是公式在求导中的应用,而淡化(或删除了)公式与法则的理论推导.例如,在导数公式中,函数x m的导数公式只给了m是正整数情况下的证明,函数sinx、cosx的导数公式则没有给出证明;(对数函数与指数函数的导数公式没有给出证明,是因为超出了目前的学习范围),在两个函数四则运算的求导法则中,没有给出商的求导法则的证明,没有给出复合函数求导法则的证明(最近册去)这些都表明皆在降低理论要求.打印版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲变化率与导数、导数的计算[学生用书P39]一、知识梳理1.导数的概念(1)函数y=f(x)在x=x0处的导数一般地,称函数y=f(x)在x=x0处的瞬时变化率lim Δx→0f(x0+Δx)-f(x0)Δx=limΔx→0ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=limΔx→0f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=x n(n∈Q*)f′(x)=nx n-1f(x)=sin x f′(x)=cos_xf(x)=cos x f′(x)=-sin_x3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、习题改编1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x .2.(选修2-2P18A 组T6改编)曲线y =1-2x +2在点(-1,-1)处的切线方程为________.解析:因为y ′=2(x +2)2,所以y ′|x =-1=2. 故所求切线方程为2x -y +1=0. 答案:2x -y +1=03.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3t (t 是时间,s 是位移),则该机器人在t =2时的瞬时速度为________.解析:因为s =t 2+3t ,所以s ′=2t -3t 2,所以s ′|t =2=4-34=134.答案:134一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率. ( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线. ( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 二、易错纠偏 常见误区|K(1)求导时不能掌握复合函数的求导法则致误;(2)不会用方程法解导数求值.1.已知函数f (x )=sin ⎝⎛⎭⎫2x +π3,则f ′(x )=________. 解析:f ′(x )=[sin ⎝⎛⎭⎫2x +π3]′=cos ⎝⎛⎭⎫2x +π3·⎝⎛⎭⎫2x +π3′=2cos ⎝⎛⎭⎫2x +π3. 答案:2cos ⎝⎛⎭⎫2x +π3 2.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝⎛⎭⎫π2sin x +cos x ,则f ′⎝⎛⎭⎫π4=________. 解析:因为f (x )=f ′⎝⎛⎭⎫π2sin x +cos x , 所以f ′(x )=f ′⎝⎛⎭⎫π2cos x -sin x , 所以f ′⎝⎛⎭⎫π2=f ′⎝⎛⎭⎫π2cos π2-sin π2, 即f ′⎝⎛⎭⎫π2=-1,所以f (x )=-sin x +cos x , f ′(x )=-cos x -sin x .故f ′⎝⎛⎭⎫π4=-cos π4-sin π4=- 2.[学生用书P40]导数的计算(多维探究) 角度一 根据求导法则求函数的导数求下列函数的导数:(1)y =(3x 2-4x )(2x +1); (2)y =sin x2⎝⎛⎭⎫1-2cos 2x 4; (3)y =3x e x -2x +e ; (4)y =ln xx 2+1;(5)y =ln 2x -12x +1.【解】 (1)因为y =(3x 2-4x )(2x +1) =6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)因为y =sin x 2⎝⎛⎭⎫-cos x 2=-12sin x , 所以y ′=⎝⎛⎭⎫-12sin x ′=-12(sin x )′=-12cos x . (3)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2. (5)y ′=⎝ ⎛⎭⎪⎫ln 2x -12x +1′=[ln(2x -1)-ln(2x +1)]′=[ln(2x -1)]′-[ln(2x +1)]′=12x -1·(2x -1)′-12x +1·(2x +1)′=22x -1-22x +1=44x 2-1.角度二 抽象函数的导数计算已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)=________.【解析】 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=4+3f ′(2)+12=3f ′(2)+92,所以f ′(2)=-94. 【答案】 -94导数的计算技巧(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.1.已知f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:选B.因为f (x )=x (2 019+ln x ), 所以f ′(x )=2 019+ln x +1=2 020+ln x , 又f ′(x 0)=2 020,所以2 020+ln x 0=2 020,所以x 0=1.2.(2020·宜昌模拟)已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B .21-2ln 2C.41-2ln 2D .-2解析:选C.因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.导数的几何意义(多维探究) 角度一 求切线方程(1)(2019·高考全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________.【解析】 (1)因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率k =y ′|x =0=3,所以所求的切线方程为y =3x .(2)因为点(0,-1)不在曲线f (x )=x ln x 上,所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x ,所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1, 即x -y -1=0.【答案】 (1)y =3x (2)x -y -1=0 角度二 求切点坐标(2019·高考江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.【解析】 设A (x 0,ln x 0),又y ′=1x ,则曲线y =ln x 在点A 处的切线方程为y -ln x 0=1x 0(x -x 0),将(-e ,-1)代入得,-1-ln x 0=1x 0(-e -x 0),化简得ln x 0=ex 0,解得x 0=e ,则点A 的坐标是(e ,1).【答案】 (e ,1) 角度三 求参数(1)(2019·高考全国卷Ⅲ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-1(2)(2020·郑州市第一次质量预测)已知函数f (x )=ln x -ax (a ∈R )的图象与直线x +y +1=0相切,则实数a 的值为________.【解析】 (1)因为y ′=a e x +ln x +1,所以y ′|x =1=a e +1,所以曲线在点(1,a e)处的切线方程为y -a e =(a e +1)·(x -1),即y =(a e +1)x -1,所以⎩⎪⎨⎪⎧a e +1=2,b =-1,解得⎩⎪⎨⎪⎧a =e -1,b =-1.(2)设直线x +y +1=0与函数f (x )=ln x -ax 的图象的切点为P (x 0,y 0),因为f ′(x )=1x -a ,所以由题意,得⎩⎪⎨⎪⎧x 0+y 0+1=0f ′(x 0)=1x 0-a=-1f (x 0)=ln x 0-ax 0=y,解得⎩⎪⎨⎪⎧x 0=1y 0=-2a =2.【答案】 (1)D (2)2 角度四 导数与函数的图象(1)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=________.【解析】 (1)不妨设导函数y =f ′(x )的零点依次为x 1,x 2,x 3,其中x 1<0<x 2<x 3,由导函数的图象可知,y =f (x )在(-∞,x 1)上为减函数,在(x 1,x 2)上为增函数,在(x 2,x 3)上为减函数,在(x 3,+∞)上为增函数,从而排除A ,C.y =f (x )在x =x 1,x =x 3处取到极小值,在x =x 2处取到极大值,又x 2>0,排除B ,故选D.(2)由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,所以f ′(3)=-13.因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ), 所以g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1, 所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 【答案】 (1)D (2)0导数几何意义的应用类型及求解思路(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.1.曲线y =e x -1+x 的一条切线经过坐标原点,则该切线方程为________.解析:设切点坐标为(x 0,e x 0-1+x 0),因为y ′=e x -1+1,所以切线的斜率k =e x 0-1+1,故切线方程为y -e x 0-1-x 0=(e x 0-1+1)(x -x 0).因为切线过原点,所以0-e x 0-1-x 0=(e x 0-1+1)(0-x 0),解得x 0=1,将x 0=1代入y -e x 0-1-x 0=(e x 0-1+1)(x -x 0),可得切线方程为y =2x ,故答案为y =2x .答案:y =2x 2.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________.解析:因为y ′=-1-cos x sin 2x ,所以y ′|x =π2=-1.由条件知1a =-1,所以a =-1.答案:-1[学生用书P269(单独成册)][基础题组练]1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C.f ′(x )=(x -a )2+(x +2a )·(2x -2a )=(x -a )·(x -a +2x +4a )=3(x 2-a 2). 2.(2020·安徽江南十校检测)曲线f (x )=1-2ln x x 在点P (1,f (1))处的切线l 的方程为( )A .x +y -2=0B .2x +y -3=0C .3x +y +2=0D .3x +y -4=0解析:选D.因为f (x )=1-2ln x x ,所以f ′(x )=-3+2ln xx 2,所以f ′(1)=-3,又f (1)=1,所以所求切线方程为y -1=-3(x -1),即3x +y -4=0.3.(2020·安徽宣城八校联考)若曲线y =a ln x +x 2(a >0)的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,则a =( )A.124 B .38C.34D .32解析:选B.因为y =a ln x +x 2(a >0),所以y ′=ax +2x ≥22a ,因为曲线的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,所以斜率k ≥3,因此3=22a ,所以a =38.故选B. 4.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )解析:选D.由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故排除A 、C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故排除B.5.(2020·广东佛山教学质量检测(一))若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( )A .-1B .1C .2D .e解析:选C.y =e x 的导数为y ′=e x ,则曲线y =e x 在x =0处的切线斜率k =1,则曲线y =e x 在x =0处的切线方程为y -1=x ,即y =x +1.y =ln x +b 的导数为y ′=1x ,设切点为(m ,n ),则1m=1,解得m =1,则n =2,即有2=ln 1+b ,解得b =2.故选C.6.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________. 解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x , 所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2020·江西重点中学4月联考)已知曲线y =1x +ln x a 在x =1处的切线l 与直线2x +3y=0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a.由于切线l 与直线2x +3y =0垂直,所以⎝⎛⎭⎫-1+1a ·⎝⎛⎭⎫-23=-1,解得a =25.答案:258.若过点A (a ,0)作曲线C :y =x e x 的切线有且仅有两条,则实数a 的取值范围是________.解析:设切点坐标为(x 0,x 0e x 0),y ′=(x +1)e x ,y ′|x =x 0=(x 0+1)e x 0,所以切线方程为y -x 0e x 0=(x 0+1)e x 0(x -x 0),将点A (a ,0)代入可得-x 0e x 0=(x 0+1)e x 0(a -x 0),化简,得x 20-ax 0-a =0,过点A (a ,0)作曲线C 的切线有且仅有两条,即方程x 20-ax 0-a =0有两个不同的解,则有Δ=a 2+4a >0,解得a >0或a <-4,故实数a 的取值范围是(-∞,-4)∪(0,+∞).答案:(-∞,-4)∪(0,+∞)9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,所以a ≠-12. 所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程. 解:(1)可判定点(2,-6)在曲线y =f (x )上.因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,所以x 0=-2,所以y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13.所以直线l 的方程为y =13x ,切点坐标为(-2,-26).(3)因为切线与直线y =-14x +3垂直, 所以切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18),切线方程为y =4(x -1)-14或y =4(x +1)-18.即y =4x -18或y =4x -14.[综合题组练]1.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.故选C.2.(2020·湖北武汉4月调研)设曲线C :y =3x 4-2x 3-9x 2+4,在曲线C 上一点M (1,-4)处的切线记为l ,则切线l 与曲线C 的公共点个数为( )A .1B .2C .3D .4解析:选C.y ′=12x 3-6x 2-18x ,则y ′|x =1=12×13-6×12-18×1=-12, 所以曲线y =3x 4-2x 3-9x 2+4在点M (1,-4)处的切线方程为y +4=-12(x -1),即12x +y -8=0.联立⎩⎪⎨⎪⎧12x +y -8=0,y =3x 4-2x 3-9x 2+4,解得⎩⎪⎨⎪⎧x =1,y =-4或 ⎩⎪⎨⎪⎧x =-2,y =32或⎩⎪⎨⎪⎧x =23,y =0.故切线与曲线C 还有其他的公共点(-2,32),⎝⎛⎭⎫23,0,所以切线l 与曲线C 的公共点个数为3.故选C.3.(2020·安徽淮南二模)设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图象上点P 1,P 2处的切线.l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则A ,B 两点之间的距离是( )A .1B .2C .3D .4解析:选B.设P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),当0<x <1时,f ′(x )=-1x ,当x >1时,f ′(x )=1x, 不妨设x 1∈(0,1),x 2∈(1,+∞),故l 1:y =-1x 1(x -x 1)-ln x 1,整理得l 1:y =-1x 1x -ln x 1+1, l 2:y =1x 2(x -x 2)+ln x 2,整理得l 2:y =1x 2x +ln x 2-1, 所以A (0,1-ln x 1),B (0,ln x 2-1),则|AB |=|2-ln(x 1x 2)|,因为l 1⊥l 2,所以-1x 1·1x 2=-1,所以x 1x 2=1,所以|AB |=2.故选B. 4.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限,则P 0的坐标为________;若直线l ⊥l 1,且l 也过切点P 0,则直线l 的方程为________.解析:由y =x 3+x -2,得y ′=3x 2+1,由已知得3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4.又因为点P 0在第三象限,所以切点P 0的坐标为(-1,-4).因为直线l ⊥l 1,l 1的斜率为4,所以直线l 的斜率为-14. 因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.答案:(-1,-4) x +4y +17=05.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解:(1)由题意得,y ′=-2x +92. 设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,② -2x 1+92=k ,③ 联立①②③得,x 1=2,x 2=-2(舍去).所以k =12. (2)过P 点作切线的垂线,其方程为y =-2x +5.④将④代入抛物线方程得,x 2-132x +9=0. 设Q 点的坐标为(x 2,y 2),则2x 2=9,所以x 2=92,y 2=-4. 所以Q 点的坐标为⎝⎛⎭⎫92,-4. 6.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12. 又f ′(x )=a +b x 2, 于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)证明:设P (x 0,y 0)为曲线上任意一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.。

相关文档
最新文档