51单片机IO端口的四种输入输出模式
51单片机 IO 口输入输出方式
51 单片机IO 口输入输出方式传统51单片机IO接口只可以作为标准双向IO接口,如果用其来驱动LED只能用灌电流的方式或是用三极管外扩驱动电路。
灌电流方式:LED正极接VCC,负极接IO口。
IO为高电平是LED两极电平相同,没有电流,LED熄灭;IO为低电平时,电流从VCC流入IO,LED点亮。
但是当你吧LED正极接在IO接口,负极接GND时,将IO接口置于高电平,LED会亮,但因为IO 接口上拉能力不足而使亮度不理想,可以用下面介绍的方式解决这个问题。
推挽工作方式:LED正负极分别接在两个IO口上,然后设置正极IO接口为推挽输出,负极IO接口为标准双向灌电流输入。
推挽方式具有强上拉能力,可以实现高电平驱动LED。
IO口的四种使用方法从I/O口的特性上看,标准51的P0口在作为I/O口使用时,是开漏结构,在实际应用中通常要添加上拉电阻;P1、P2、P3都是准双向I/O,内部有上拉电阻,既可作为输入又可以作为输出。
而LPC900系列单片机的I/O口特性有一定的不同,它们可以被配置成4种不同的工作模式:准双向I/O、推挽输出、高阻输入、开漏。
准双向I/O模式与标准51相比,虽然在内部结构上是不同的,但在用法上类同,比如要作为输入时都必须先写1置成高电平,然后才能去读引脚的电平状态。
!!!!!为什么是这样子?见下面分析。
推挽输出的特点是不论输出高电平还是低电平都能驱动较大的电流,比如输出高电平时可以直接点亮LED(要串联几百欧限流电阻),而在准双向I/O模式下很难办到。
高阻输入模式的特点是只能作为输入使用,但是可以获得比较高的输入阻抗,这在模拟比较器和ADC应用中是必需的。
开漏模式与准双向模式相似,但是没有内部上拉电阻。
开漏模式的优点是电气兼容性好,外部上拉电阻接3V电源,就能和3V逻辑器件接口,如果上拉电阻接5V电源,又可以与5V逻辑器件接口。
此外,开漏模式还可以方便地实现线与逻辑功能。
对于上面疑问的解释,有这样一个资料:高阻态这是一个数字电路里常见的术语,指的是电路的一种输出状态,既不是高电平也不是低电平,如果高阻态再输入下一级电路的话,对下级电路无任何影响,和没接一样,如果用万用表测的话有可能是高电平也有可能是低电平,随它后面接的东西定。
STC51单片机IO口模式快速设置
S T C51单片机I O口模式快速设置-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANSTC51单片机IO口模式的快速设置新型51单片机STC系列,较传统51单片机在性能和速度上有根本性的提高。
速度提高8—12倍;片上RAM大量增加;片上外围模块大量增加,等等。
其中IO口的模式增加为4种(传统51只有1中),以P0口为例:这里,每个端口新增两个寄存器PxM0, PxM1(x=0,1,2,3)。
在设置每一个IO端的模式时都需要对这两个寄存器进行操作。
比如:要将设为推挽输出,设为准双向口,设为高阻输入;设为开路模式,都设为准双向口,那么需要如下的代码:IO_Init(){P0M0=0x30;//0011 0000P0M1=0x90;//1001 0000}这样的设置不便于记忆,很容易写错,且写好的代码可读性差,为此,我们可以通过一个宏定义来解决,具体如下:#define PORT0 0#define PORT1 1#define PORT2 2#define PORT3 3#define BIT0 0#define BIT1 1#define BIT2 2#define BIT3 3#define BIT4 4#define BIT5 5#define BIT6 6#define BIT7 7#define STANDARD 0#define PP_OUT 1#define Z_IN 2#define OD 3#define IOMODE(Port,bit_n,mode) { \switch(Port)\{\case 0:\switch(mode) { \case STANDARD: P0M0&=~(1<<bit_n); P0M1&=~(1<<bit_n); break; \case PP_OUT: P0M0&=~(1<<bit_n); P0M1|= (1<<bit_n); break; \case Z_IN: P0M0|=(1<<bit_n); P0M1&=~(1<<bit_n); break; \case OD: P0M0|=(1<<bit_n); P0M1|=(1<<bit_n); break; \} \break;\case 1:\switch(mode) { \case STANDARD: P1M0&=~(1<<bit_n); P1M1&=~(1<<bit_n); break; \case PP_OUT: P1M0&=~(1<<bit_n); P1M1|= (1<<bit_n); break; \case Z_IN: P1M0|=(1<<bit_n); P1M1&=~(1<<bit_n); break; \case OD: P1M0|=(1<<bit_n); P1M1|=(1<<bit_n); break; \} \break;\case 2:\switch(mode) { \case STANDARD: P2M0&=~(1<<bit_n); P2M1&=~(1<<bit_n); break; \case PP_OUT: P2M0&=~(1<<bit_n); P2M1|= (1<<bit_n); break; \case Z_IN: P2M0|=(1<<bit_n); P2M1&=~(1<<bit_n); break; \case OD: P2M0|=(1<<bit_n); P2M1|=(1<<bit_n); break; \} \break;\case 3:\switch(mode) { \case STANDARD: P3M0&=~(1<<bit_n); P3M1&=~(1<<bit_n); break; \case PP_OUT: P3M0&=~(1<<bit_n); P3M1|= (1<<bit_n); break; \case Z_IN: P3M0|=(1<<bit_n); P3M1&=~(1<<bit_n); break; \case OD: P3M0|=(1<<bit_n); P3M1|=(1<<bit_n); break; \} \break;\}\}有了上面的宏定义,在初始化程序中可以直接这样写IO_Init(){IOMODE(PORT0,BIT7,PP_OUT)IOMODE(PORT0,BIT6, STANDARD)IOMODE(PORT0,BIT5, Z_IN)IOMODE(PORT0,BIT4, OD)IOMODE(PORT0,BIT3, STANDARD)IOMODE(PORT0,BIT2, STANDARD)IOMODE(PORT0,BIT1, STANDARD)IOMODE(PORT0,BIT0, STANDARD)}。
单片机IO口输出模式
5、推挽输出_OUT_PP: 可以输出高,低电平,连接数字器件; 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。
6、开漏输出_OUT_OD:输出端相当于三极管的集电极。 要得到高电平状态需要上拉电阻才行。 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。
7、复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL,SDA)
8、复用功能的开漏输出_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS
1、上拉输入_IPU:上拉就是把电位拉高,比如拉到Vcc。上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!弱强只是上拉电阻的阻值不同,没有什么严格区分。
2、下拉输入_IPD:就是把电压拉低,拉到GND。与上拉原理相似。
3、浮空输入_IN_FLOATING:浮空(floating)就是逻辑器件的输入引脚即不接高电平,也ቤተ መጻሕፍቲ ባይዱ接低电平。一般实际运用时,引脚不建议悬空,易受干扰。
51单片机资料-单片机IO口介绍
20
综上所述:当P0作为I/O口使用时,特别是作 为输出时,输出级属于开漏电路,必须外接 上拉电阻才会有高电平输出;如果作为输入, 必须先向相应的锁存器写“1”,才不会影响 输入电平。
DQ CLK Q
T1
T2 MUX
P0.n P0口 引脚
读引脚
5
驱动场效应管T2栅极接通。故内部总线与P0口同相。由 于输出驱动级是漏极开路电路,若驱动NMOS或其
它拉流负载时,需要外接上拉电阻。P0的输出级可驱动
8个LSTTL负载。
读锁存器
地址/数据 VCC 控制
内部总线 写锁存器
DQ CLK Q
读锁存器
地址/数据 VCC 控制
内部总线 写锁存器
DQ CLK Q
T1
P0.n P0口
T2
引脚
MUX
读引脚
9
P0口必须接上拉电阻;
在读信号之前数据之前,先要向相应的锁存器做写1操作的I/O口 称为准双向口;
三态输入缓冲器的作用:
VCC
(ANL P0,A)
OUTPUT
Q1
P0i
9 01 3
GND
①P1口的一位的结构
它由一个输出锁存器、两个三态输入缓冲器和输出驱
动电路组成----准双向口。
VCC
读锁存器
内部总线 写锁存器
DQ CLK Q
R
P1.n P1口
T
引脚
读引脚
51单片机IO口工作原理
51单片机IO口工作原理51单片机(英文名为8051 Microcontroller)是一种由Intel公司于1980年推出的8位单片机,广泛应用于嵌入式系统中。
作为一种高性能、低功耗的单片机,其周围有多个IO口(Input/Output ports),可以用来实现数字输入、输出、模拟输入、输出等功能。
下面将详细介绍51单片机IO口的工作原理。
1.51单片机的IO口介绍51单片机共有4个8位的IO口,依次为P0、P1、P2和P3、每个IO 口都是一个8位的寄存器,称为端口寄存器(port register),用于和外部设备进行数据通信。
其中,P0是一个具有双重输入和输出特性的端口,可以配置为输入口或输出口;P1和P3是纯输出端口;P2是输入输出混合端口。
2.IO口的工作模式IO口的工作模式由P0、P1、P2和P3的寄存器位来配置。
每个IO口的寄存器位都有对应的功能和控制位,通过设置这些位可以控制IO口的工作模式和输出状态。
2.1输入模式在输入模式下,IO口作为输入口,接受来自外部器件的信号。
通过将对应的寄存器位设置为1,可以将IO口配置为输入模式。
在输入模式下,端口寄存器的位对应的为悬空状态,可以通过主动上拉或下拉方法来确保IO口的状态。
2.2输出模式在输出模式下,IO口作为输出口,通过控制寄存器位的值可以输出高电平或低电平信号。
将对应的寄存器位设置为0,可以将IO口配置为输出模式。
在输出模式下,直接修改端口寄存器的位即可改变IO口的输出状态。
对于纯输出端口,即P1和P3,更方便地改变IO口的状态可以通过直接操作对应的位。
2.3产生中断IO口还可以通过设置为中断产生源的方式来实现中断功能。
在输入模式下,将对应的寄存器位设置为1,即可配置IO口为中断输入。
当IO口检测到中断触发条件(例如边沿触发、电平触发等),会触发相应的中断服务程序(ISR)。
3.IO口的读取和写入操作为了读取和写入IO口的状态,可以直接访问相应的寄存器。
MCS-51单片机IO口详解
单片机IO口结构及上拉电阻MCS-51有4组8位I/O口:P0、P1、P2和P3口,P1、P2和P3为准双向口,P0口则为双向三态输入输出口,下面我们分别介绍这几个口线。
一、P0口和P2口图1和图2为P0口和P2口其中一位的电路图。
由图可见,电路中包含一个数据输出锁存器(D触发器)和两个三态数据输入缓冲器,另外还有一个数据输出的驱动(T1和T2)和控制电路。
这两组口线用来作为CPU与外部数据存储器、外部程序存储器和I/O扩展口,而不能象P1、P3直接用作输出口。
它们一起可以作为外部地址总线,P0口身兼两职,既可作为地址总线,也可作为数据总线。
图1 单片机P0口内部一位结构图图2 单片机P0口内部一位结构图P2口作为外部数据存储器或程序存储器的地址总线的高8位输出口AB8-AB15,P0口由ALE选通作为地址总线的低8位输出口AB0-AB7。
外部的程序存储器由PSEN信号选通,数据存储器则由WR和RD读写信号选通,因为2^16=64k,所以MCS-51最大可外接64kB的程序存储器和数据存储器。
二、P1口图3为P1口其中一位的电路图,P1口为8位准双向口,每一位均可单独定义为输入或输出口,当作为输入口时,1写入锁存器,Q(非)=0,T2截止,内上拉电阻将电位拉至"1",此时该口输出为1,当0写入锁存器,Q(非)=1,T2导通,输出则为0。
图3 单片机P2口内部一位结构图作为输入口时,锁存器置1,Q(非)=0,T2截止,此时该位既可以把外部电路拉成低电平,也可由内部上拉电阻拉成高电平,正因为这个原因,所以P1口常称为准双向口。
需要说明的是,作为输入口使用时,有两种情况:1.首先是读锁存器的内容,进行处理后再写到锁存器中,这种操作即读—修改—写操作,象JBC(逻辑判断)、CPL(取反)、INC(递增)、DEC(递减)、ANL(与逻辑)和ORL(逻辑或)指令均属于这类操作。
2.读P1口线状态时,打开三态门G2,将外部状态读入CPU。
MCS-51系列单片机的基本IO口.
MCS-51单片机P3口的第二功能
引脚 P3.0 P3.1 P3.2 第二功能 RXD(串行口输入) TXD(串行口输出) INT0(外部中断0输入)
P3.3
P3.4 P3.5 P3.6 P3.7
INT1(外部中断1输入)
P1可以驱动4个标准的TTL负载电路; 注意在P1口作为通用的I/O口使用时,在从I/O端口读入数据时,应该首 先向相应的I/O口内部锁存器写“1”。 举例:从P1口的低四位输入数据 MOV MOV P1,#00001111b ;;先给P1口底四位写1 A,P1 ;;再读P1口的底四位
Copyright 2006
并行输入和输出端口P2
P2 口作为通用 I/O 时,准 双向输入输出端口。 P2口作为高8位地址总线 ,AB8-AB15。
P2 口与 P0 一起构成单片 机与外电路相连接的扩展端 口。通常可以用来扩展存储 器、及与其它总线型连接方 式的外设。
P2可以驱动4个标准的TTL 负载电路。
· P3.6外部数据存储器写选通(WR)
· P3.7外部数据存储器读选通(RD)
Copyright 2006
P3口电路中包含有一个数据输出锁存器、两个三态数据输入 缓冲器、一个数据输出的驱动电路和一个输出控制电路。 P3口的功能和驱动能力 P3口可以作为通用的I/O口使用; 可以作为单片机系统的第二功能的输入和输出。 P3口可以驱动4个标准的TTL负载电路。 注意在P3口的使用时,首先要考虑第二功能的要求。 初学者可能对P3口的第二功能的用法有些疑惑,在他们看:
并行输入和输出端口P3
P3 口作为通用 I/O 时,为准双向输入输出 端口。 P3口的第二功能。 · P3.0 串行输入口(RXD) · P3.1 串行输出口(TXD) · P3.2外中断0(INT0) · P3.3外中断1(INT1) · P3.4定时/计数器0的外部输入口(T0) · P3.5定时/计数器1的外部输入口(T1)
单片机常见输入输出模式
单片机的io分为输入输出模式,输出模式如下图:
常见的四种输出模式:
(1)High-impedance output
高阻输出,可以理解为悬空输出,输出状态有外部条件决定;
(2)P-channel open drain output
P沟道开漏输出,输出高电平(1)有驱动能力,输出低电平(0)时,相当于断开。
原因是P沟道MOS,未开启时,电流从漏极(D)通过续流二极管到源极(S),因为漏极为输出电流方向,所以输出高电平(1)驱动能力强。
(3)N-channel open drain output
N沟道开漏输出,输出低电平(0)有驱动能力,输出高电平(1)时,相当于断开。
原因是N沟道MOS,未开启时,电流从源极(S)通过续流二极管到漏极(D),因为漏极为吸收电流方向,所以输出低电平(0)驱动能力强。
(4)CMOS output
CMOS输出:这种模式下,无论输出高低电平都有较强的驱动能力
三种输出模式
(1)High-impedance input
高阻输入:无上拉和无下拉,对外表现出电平不确定性.。
这种方式只用于输入读取。
何元器件,高阻输入不可取,功耗大。
(2)Input with a pull-down resistor
下拉输入:在无外部输入是时,讲电压钳制在低电平;
(3)Input with a pull-up resistor
上拉输入:在无外部输入是时,讲电压钳制在高电平;。
51单片机io口的用法
51单片机io口的用法51单片机是一种经典的单片机系列,广泛应用于各种嵌入式系统中。
其IO口是单片机最基本的输入输出功能,可以用来连接外部设备和实现与外界的交互。
本文将介绍51单片机IO口的用法,并提供相关参考内容,帮助读者更好地理解和应用。
一、51单片机IO口简介51单片机的IO口是通过P0、P1、P2、P3四个寄存器来控制的。
其中P0口为8位双向I/O口,P1、P2、P3口为8位I/O 口,可以通过配置将其设置为输入(IN)或输出(OUT)模式。
在51单片机中,IO口的状态(高电平或低电平)决定了其在电路中的功能。
二、IO口的输入模式通过将IO口设置为输入模式,可以实现对外部信号的读取。
以下是51单片机IO口输入模式的几种常见应用:1. 按键输入:通过将IO口与按键连接,读取按键的状态(按下或松开)。
2. 传感器输入:通过将IO口与传感器连接,读取传感器的输出信号,如光线强度、温度等。
3. 外部信号输入:通过将IO口与其他设备连接,读取外部设备的状态或数据。
在使用IO口作为输入时,需要设置对应端口的引脚为输入模式,并读取相应寄存器的值进行判断。
三、IO口的输出模式通过将IO口设置为输出模式,可以实现对外部设备的控制。
以下是51单片机IO口输出模式的几种常见应用:1. LED显示:通过将IO口与LED连接,控制LED的闪烁、亮灭。
2. 电机驱动:通过将IO口与电机驱动芯片连接,控制电机的转动方向、速度。
3. 继电器控制:通过将IO口与继电器连接,控制继电器的开关状态。
在使用IO口作为输出时,需要设置对应端口的引脚为输出模式,并将相应寄存器的值设置为高电平或低电平。
四、IO口的控制方法有两种常见的方式可以控制51单片机的IO口:位操作和寄存器读写。
1. 位操作:通过对相应寄存器的位进行操作来控制IO口的状态。
例如,要将P1口的第0位设置为高电平,可以使用以下代码:P1_0 = 1;要将P1口的第1位设置为低电平,可以使用以下代码:P1_1 = 0;2. 寄存器读写:通过读写相应寄存器的值来控制IO口的状态。
单片机IO口介绍
P0口和P2的结构 口和P2 4.1.1 P0口和P2的结构
一、P0口的结构
下图为P0口的某位P0.n(n=0~7)结构图,它由一个 输出锁存器、两个三态输入缓冲器和输出驱动电路 及控制电路组成。从图中可以看出,P0口既可以作 为I/O用,也可以作为地址/数据线用。
地址/数据 地址/ 控制 读锁存器
地址/数据 地址/ 控制 读锁存器
T1 P0.n D Q MUX
VCC
内部总线 写锁存器
T2:如果此时该端口的负载恰是一个晶体管基极,且原端 口输出值为1,那么导通了的PN结会把端口引脚高电平拉低;若 此时直接读端口引脚信号,将会把原输出的“1”电平误读为“0” 电平。现采用读输出锁存器代替读引脚,图中,上面的三态缓 冲器就为读锁存器Q端信号而设,读输出锁存器可避免上述可能 发生的错误。** 地址/数据 地址/ 控制 读锁存器
二、P3 P3第二功能(Q=1) P3 此时引脚部分输入(Q=1、W=1) ,部分输出(Q=1、W输出)
第二输出功能 第二输出功能 读锁存器 VCC
。
W
R P3.n P3口
D Q
内部总线 写锁存器
T
CLK Q
引脚
读引脚 第二输入功能 第二输入功能
P3第二功能各引脚功能定义: P3
P3.0:RXD串行口输入 P3.1:TXD串行口输出 P3.2:INT0外部中断0输入 P3.3:INT1外部中断1输入 P3.4:T0定时器0外部输入 P3.5:T1定时器1外部输入 P3.6:WR外部写控制 P3.7:RD外部读控制
地址/数据 地址/ 控制 读锁存器
T1 P0.n D Q MUX
VCC
内部总线 写锁存器
T2
P0口 P0口 引脚
单片机io口的四种工作状态
单片机io口的四种工作状态
单片机的IO口可以处于四种工作状态,分别是输入状态、输出
状态、输入/上拉状态和输入/下拉状态。
1. 输入状态,当IO口处于输入状态时,它可以接收外部信号,并将这些信号传递给单片机的内部电路进行处理。
在输入状态下,
IO口通常扮演着接收外部传感器信号或其他外部设备信号的角色。
2. 输出状态,当IO口处于输出状态时,单片机可以通过IO口
向外部设备发送信号。
这些信号可以用来控制外部设备的工作,比
如驱动LED灯、驱动电机等。
3. 输入/上拉状态,在这种状态下,IO口既可以接收外部信号,又可以通过内部上拉电阻将IO口拉高。
这种状态通常用于连接外部
开关或按钮,当外部开关未连接时,IO口会被上拉到高电平。
4. 输入/下拉状态,与输入/上拉状态相似,IO口在输入/下拉
状态下既可以接收外部信号,又可以通过内部下拉电阻将IO口拉低。
这种状态也通常用于连接外部开关或按钮,当外部开关未连接时,
IO口会被下拉到低电平。
这四种工作状态充分展示了IO口在单片机系统中的灵活性和多功能性,可以满足各种不同的应用需求。
在实际的单片机应用中,我们需要根据具体的需求选择合适的IO口工作状态,以实现所需的功能。
51单片机io口的用法
51单片机是一种常用的微控制器,它的IO口是用来控制外部设备的输入输出口,可以通过编程控制IO口的状态,实现对外设的控制。
下面是51单片机IO口的一些基本用法:
1. 输入口:可以读取外部设备的状态,通常需要连接外部开关、传感器等设备。
在程序中,需要将输入口设置为输入模式,并使用适当的读取指令(如INC、DEC、SBI、CBI等)读取输入口的状态。
2. 输出口:可以控制外部设备的状态,通常需要连接LED灯、电机、继电器等设备。
在程序中,需要将输出口设置为输出模式,并使用适当的写入指令(如MOV、AND、ORR等)设置输出口的状态。
3. 中断口:可以在外部设备发生变化时触发中断,通常需要连接外部中断源,如按键、传感器等设备。
在程序中,需要将中断口设置为中断模式,并编写中断服务程序,以响应中断事件。
4. P0口和P2口:是51单片机中两个常用的IO口,P0口有8个引脚,P2口有4个引脚,通常可以通过设置端口的方式,将多个IO口连在一起,以实现更多的功能。
5. 外部中断:可以在外部设备发生变化时触发中断,通常需要连接外部中断源,如按键、传感器等设备。
在程序中,需要将外部中断设置为触发方式,并编写中断服务程序,以响应中断事件。
需要注意的是,在使用51单片机IO口时,需要注意端口的电平状态,避免出现电平冲突或误操作等问题。
同时,也需要根据具体的应用场景选择合适的IO口和控制方式,以满足系统的需求。
51单片机IO口工作原理
51单片机IO口工作原理单片机(microcontroller)是一种集成了处理器、存储器和输入/输出(I/O)功能的微型计算机芯片。
其中,I/O口是单片机与外部世界进行信息交互的重要通道。
I/O口工作原理包括I/O口的寄存器设置、数据传输、工作模式与端口处理等方面。
I/O口的寄存器设置是指通过对相关寄存器的配置,来实现I/O口的功能选择和特性设置。
在单片机内部,每个I/O口都有对应的控制寄存器,用于控制该口的工作模式、方向、电平状态等。
这些寄存器都是通过特定地址访问的,通过设置相应的位或寄存器值,可以选择输入还是输出模式,选择高电平还是低电平的应用环境。
数据传输是指单片机通过I/O口与外部设备进行数据的输入和输出。
对于输入数据,单片机可以通过对I/O口进行读取,获取外部设备传输给单片机的数据;对于输出数据,单片机通过对I/O口进行写入,将需要传输给外部设备的数据发送出去。
这里的数据可以是数字信号,也可以是模拟信号。
单片机通过I/O口获取或传输这些信号,从而实现与外部设备的通信。
工作模式是指单片机通过配置 I/O 口的相关寄存器,调整 I/O 口的工作状态以满足不同的需求。
常见的 I/O 口工作模式主要有输入模式(input mode)、输出模式(output mode)、双向模式(bi-directional mode)和模拟输入输出模式(analog mode)等。
输入模式是指 I/O 口允许从外部设备读取数据,输出模式是指 I/O 口可以将数据发送到外部设备,双向模式是可以同时进行输入和输出数据,而模拟输入输出模式是用于处理模拟信号。
端口处理是指单片机对I/O口的状态进行处理和控制。
在处理输入数据时,单片机通过读取相应的寄存器或端口状态位来获取外部设备传输给单片机的信号;在处理输出数据时,单片机通过设置相应的寄存器或端口状态位来向外部设备发送信号。
端口处理通常包括读取、写入、设置和清除等操作,通过这些操作可以实现对I/O口的控制和操作。
51单片机IO端口的四种输入输出模式知识讲解
51单片机I O端口的四种输入输出模式51单片机IO端口的四种输入输出模式 (by wuleisly)单片机I O口的使用对所有单片机玩家来说都是“家常便饭”,但是你真的了解I O口吗?你真的能按你的需要配置I O口吗?一、准双向口输出准双向口输出类型可用作输出和输入功能而不需重新配置口线输出状态。
这是因为当口线输出为1时驱动能力很弱,允许外部装置将其拉低。
当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。
(准双向口有3个上拉晶体管适应不同的需要)准双向口读外部状态前,要先锁存为‘1’,才可读到外部正确的状态.二、强推挽输出推挽输出配置的下拉结构与开漏输出以及准双向口的下拉结构相同,但当锁存器为1时提供持续的强上拉。
推挽模式一般用于需要更大驱动电流的情况。
三、仅为输入(高阻)输入口带有一个施密特触发输入以及一个干扰抑制电路。
四、开漏输出配置(若外加上拉电阻,也可读)当口线锁存器为0时,开漏输出关闭所有上拉晶体管。
当作为一个逻辑输出时,这种配置方式必须有外部上拉,一般通过电阻外接到V cc。
如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。
这种方式的下拉与准双向口相同。
开漏端口带有一个施密特触发输入以及一个干扰抑制电路。
关于I/O口应用注意事项:1.有些是I/O口由低变高读外部状态时,读不对,实际没有损坏,软件处理一下即可。
因为1T的8051单片机速度太快了,软件执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,就有可能读不对,正确的方法是在软件设置由低变高后加1到2个空操作指令延时,再读就对了.有些实际没有损坏,加上拉电阻就O K了有些是外围接的是NP N三极管,没有加上拉电阻,其实基极串多大电阻,I/O口就应该上拉多大的电阻,或者将该I/O口设置为强推挽输出. 2.驱动L E D发光二极管没有加限流电阻,建议加1K以上的限流电阻,至少也要加470欧姆以上做行列矩阵按键扫描电路时,实际工作时没有加限流电阻,实际工作时可能出现2个I/O口均输出为低,并且在按键按下时,短接在一起,我们知道一个C MO S电路的2个输出脚不应该直接短接在一起,按键扫描电路中,此时一个口为了读另外一个口的状态,必须先置高才能读另外一个口的状态,而8051单?片机的弱上拉口在由0变为1时,会有2时钟的强推挽高输出电流输出到另外一个输出为低的I/O口,就有可能造成I/O口损坏.建议在其中的一侧加1K限流电阻,或者在软件处理上,不要出现按键两端的I/O口同时为低.一种典型三极管控制电路:如果用弱上拉控制,建议加上拉电阻R1(3.3K~10K),如果不加上拉电阻R1(3.3K~10 K),建议R2的值在15K以上,或用强推挽输出。
51单片机IO口输入输出方式
51 单片机IO 口输入输出方式
传统51 单片机IO 接口只可以作为标准双向IO 接口,如果用其来驱动LED 只能用灌电流的方式或是用三极管外扩驱动电路。
灌电流方式:LED 正极接VCC,负极接IO 口。
IO 为高电平是LED 两极电平相同,没有电流,LED 熄灭;IO 为低电平时,电流从VCC 流入IO,LED 点亮。
但是当你吧LED 正极接在IO 接口,负极接GND 时,将IO 接口置于高电平,LED 会亮,但因为IO 接口上拉能力不足而使亮度不理想,可以用
下面介绍的方式解决这个问题。
推挽工作方式:LED 正负极分别接在两个IO 口上,然后设置正极IO 接口为推挽输出,负极IO 接口为标准双向灌电流输入。
推挽方式具有强上拉能力,可以实现高电平驱动LED。
IO 口的四种使用方法
从I/O 口的特性上看,标准51 的P0 口在作为I/O 口使用时,是开漏结构,在实际应用中通常要添加上拉电阻;P1、P2、P3 都是准双向I/O,内部有上拉电阻,既可作为输入又可以作为输出。
而LPC900 系列单片机的I/O 口特性有一定的不同,它们可以被配置成4 种不同的工作模式:准双向I/O、推挽输出、高阻输入、开漏。
准双向I/O 模式与标准51 相比,虽然在内部结构上是不同的,但在用法上。
51单片机io口工作的基本原理
51单片机io口工作的基本原理单片机(Microcontroller)是一种集成电路芯片,它包含了一个完整的计算机系统,可被程序控制。
在单片机中,IO口(Input/Output Port)是指用于与外部设备进行数据交互的接口。
本文将介绍51单片机IO口工作的基本原理。
一、IO口概述IO口是单片机的重要组成部分,它提供了与外部设备进行数据通信的能力。
在51单片机中,通常使用的IO口是P0、P1、P2和P3。
每个IO口都包含了8个引脚,可以用来连接各种外设,如LED、按键、传感器等。
二、IO口的输入输出模式1. 输入模式:当IO口设置为输入模式时,它可以接收来自外部设备的信号。
在51单片机中,通过将IO口对应的bit位设置为1,可以将该IO口设置为输入模式。
2. 输出模式:当IO口设置为输出模式时,它可以向外部设备发送信号。
在51单片机中,通过将IO口对应的bit位设置为0,可以将该IO口设置为输出模式。
当IO口为输出模式时,我们可以通过设置IO口的电平状态(高电平或低电平)来控制外部设备。
三、IO口的控制方法1. 单独控制:我们可以通过直接对IO口进行操作来实现对外部设备的控制。
在51单片机中,通过修改IO口的电平状态,从而改变引脚的电压值,来达到控制的目的。
2. 组合控制:在某些情况下,我们可能需要同时控制多个IO口,使它们协同工作。
在51单片机中,我们可以通过设置特定的寄存器来实现对多个IO 口的同时控制。
例如,使用P0或P2口作为数据总线,通过设置P0CON或P2CON寄存器来实现对该总线上的多个引脚的控制。
四、IO口的中断功能在实际应用中,我们常常需要根据外部设备的状态来触发特定的操作。
为了实现这一功能,51单片机提供了IO口中断功能。
通过设置中断触发方式和中断掩码,当IO口的电平状态发生变化时,可以触发相应的中断服务程序。
五、IO口的工作原理1. 数据方向控制:在51单片机中,通过特定的寄存器来控制IO口的数据方向。
mcs51单片机IO端口
51系列单片机有4个I/O端口,每个端口都是8位准双向 口,共占32根引脚。每个端口都包括一个锁存器(即专用寄 存器P0~P3)、一个输出驱动器和输入缓冲器。通常把4个端 口笼统地表示为P0~P3。 在无片外扩展存储器的系统中,这4个端口的每一位都 可以作为准双向通用I/O端口使用。在具有片外扩展存储器 的系统中,P2口作为高8位地址线,P0口分时作为低8位地 址线和双向数据总线。 51单片机4个I/O端口线路设计的非常巧妙,学习I/O端口 逻辑电路,不但有利于正确合理地使用端口,而且会给设计 单片机外围逻辑电路有所启发。
T1
读锁存器
内部总线 写锁存器
读引脚
D
Q
P0.n
CLK Q
MUX
T2
P0口 引脚
例如逻辑与指令:ANL
P0,A就属于这类指令。此指令先把 P0上的数据读入CPU,随之与累加器A内的数据按位进行逻辑 与操作,最后再把与的结果送回P0口。这类指令同样适用于 P1~P3口。
对于“读-修改-写”指令,不直接读引脚上的数据而读锁存器
单片机I/O口的使用
对单片机的控制,其实就是对I/O口的控制,无论单片机 对外界进行何种控制,或接受外部的控制,都是通过I/O 口进行的。51单片机总共有P0、P1、P2、P3四个8位双 向输入输出端口,每个端口都有锁存器、输出驱动器和输 入缓冲器。4个I/O端口都能作输入输出口用,其中P0和 P2通常用于对外部存储器的访问。
T1
读锁存器
内部总线 写锁存器
读引脚
D
Q
P0.n
CLK Q
MUX
T2
P0口 引脚
② 输入时----分读引脚或读锁存器
图中上面一个缓冲器并不直接读取端口引脚上的数据,而 是读取锁存器Q端的数据。Q端与引脚处的数据是一致的。结构 上这样安排是为了适应所谓“读-修改-写”类指令的需要。这 类指令的特点是:先读口,随之可能对读入的数据进行修改, 然后再写到端口上。 地址/数据 控制 VCC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51单片机IO端口的四种输入输出模式(by wuleisly)
单片机I O口的使用对所有单片机玩家来说都是“家常便饭”,但是你真的了解I O 口吗?你真的能按你的需要配置I O口吗?
一、准双向口输出
准双向口输出类型可用作输出和输入功能而不需重新配置
口线输出状态。
这是因为当口线
输出为1时驱动能力很弱,允许外部装置将其拉低。
当引脚输出为低时,它的驱动能力很强,
可吸收相当大的电流。
(准双向口有3个上拉晶体管适应不同的需要)
准双向口读外部状态前,要先锁存为…1‟,才可读到外部正确的状态.
二、强推挽输出
推挽输出配置的下拉结构与开漏输出以及准双向口的下拉
结构相同,但当锁存器为1时提供持续的强上拉。
推挽模式一般用于需要更大驱动电流的情况。
三、仅为输入(高阻)
输入口带有一个施密特触发输入以及一个干扰抑制电路。
四、开漏输出配置(若外加上拉电阻,也可读)
当口线锁存器为0时,开漏输出关闭所有上拉晶体管。
当作为一个逻辑输出时,这种配置方式必须有外部上拉,一般通过电阻外接到V c c。
如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。
这种方式的下拉与准双向口相同。
开漏端口带有一个施密特触发输入以及一个干扰抑制电路。
关于I/O口应用注意事项:
1.有些是I/O口由低变高读外部状态时,读不对,实际没有损坏,软件处理一下即可。
因为1T的8051单片机速度太快了,软件执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,就有可能读不
对,正确的方法是在软件设置由低变高后加1到2个空操作指令延时,再读就对了.
有些实际没有损坏,加上拉电阻就OK了
有些是外围接的是NP N三极管,没有加上拉电阻,其实基极串多
大电阻,I/O口就应该上拉多大的电阻,或者将该I/O口设置为强
推挽输出.
2.驱动L E D发光二极管没有加限流电阻,建议加1K以上的限流电阻,至少也要加470欧姆以上
做行列矩阵按键扫描电路时,实际工作时没有加限流电阻,实际工作时可能出现2个I/O口均输出为低,并且在按键按下时,短接在一起,我们知道一个C MOS电路的2个输出脚不应该直接短接在一起,按键扫描电路中,此时一个口为了读另外一个口的状态,必须先置高才能读另外一个口的状态,而8051单?片机的弱上
拉口在由0变为1时,会有2时
钟的强推挽高输出电流输出到另外一个输出为低的I/O口,就有
可能造成I/O口损坏.建议在其中的一侧加1K限流电阻,或者在
软件处理上,不要出现按键两端的I/O口同时为低.
一种典型三极管控制电路:
如果用弱上拉控制,建议加上拉电阻R1(3.3K~10K),如果不加上拉电阻R1(3. 3K~10K),
建议R2的值在15K以上,或用强推挽输出。
典型发光二极管控制电路:
推挽/强上拉口,用拉电流驱动发光二极管
弱上拉/准双向口,用灌电流驱动发光二极管限流电阻尽量大于1K,最小不要小于470Ω
混合电压供电系统3V/5V器件I/O口互连
5V单片机连接 3.3V器件时,为防止 3.3V器件承受不了5V,可将相应的5V单片机I/O口先串一个330Ω的限流电阻到 3.3V器件I/O口,程序初始化时将5V器件的I/O口设置成开漏配置,断开内部上拉电阻,相应的 3.3V器件I/O口外部加10K上拉电阻到 3.3V器件的Vc c,这样高电平是 3.3V,低电平是
0V,输入输出一切正常。
3V单片机连接5V器件时,为防3V器件承受不了5V,如果相应的I/ O口是输入,可在该I/O口上串接一个隔离二极管,隔离高压部分。
外部信号电压高于单片机工作电压时截止,I/O口因内部上拉到高电平,所以读I/O口
状态是高电平;外部信号电压为低时导通,I/O口被钳位在0.7V,小于0.8V时单片机读I/O口状态是低电平。
3V单片机连接5V器件时,为防止3V器件承受不了5V,如果相应的I/O 口是输出,可用一个N P N三极管隔离
如何让I/O口上电复位时为低电平
普通8051单片机上电复位时普通I/O口为弱上拉高电平输出,而很多实际应用要求上电时某
些I/O口为低电平输出,否则所控制的系统(如马达)就会误动作,现S TC12系列单片机由于既有弱
上拉输出又有强推挽输出,就可以很轻松的解决此问题。
现可在S TC12系列单片机I/O口上加一个下拉电阻(1K/2K/3 K),这样上电复位时,虽然单片
机内部I/O口是弱上拉/高电平输出,但由于内部上拉能力有限,而外部下拉电阻又较小,无法
将其拉高,所以该I/O口上电复位时外部为低电平。
如果要将此I/O口驱动为高电平,可将此I/O
口设置为强推挽输出,而强推挽输出时,I/O口驱动电流可达20
mA,故肯定可以将该口驱动为高
电平输出。
PWM输出时I/O口的状态(针对ST C系列)。