六自由度运动平台设计方案

合集下载

六自由度平台控制流程

六自由度平台控制流程

六自由度平台控制流程
一、设计阶段
1.确定平台运动范围
(1)确定平台的工作空间尺寸
(2)确定平台的最大移动范围
2.选择控制系统
(1)确定控制系统的类型
(2)选择适合的控制器
二、运动学建模
1.建立平台的运动学模型
(1)确定平台的坐标系
(2)建立运动学方程
2.运动学分析
(1)分析平台的各个自由度运动关系
(2)计算各关节的运动学参数
三、控制器设计
1.PID控制器设计
(1)确定PID控制器参数
(2)进行闭环控制设计
2.轨迹规划
(1)设计平台的运动轨迹
(2)确定平台的运动速度和加速度
四、软硬件实现
1.编写控制程序
(1)使用编程语言编写控制算法(2)软件实现运动控制
2.硬件连接
(1)连接传感器和执行器
(2)配置控制器和驱动器
五、系统调试
1.运动测试
(1)进行平台的手动控制测试
(2)检查各个自由度的运动是否正常2.控制效果验证
(1)进行自动控制测试
(2)验证控制效果和精度
六、性能优化
1.参数调整
(1)调整控制器参数
(2)优化控制算法
2.系统稳定性分析
(1)进行系统稳定性分析(2)确保平台运动稳定可靠。

六自由度运动平台设计方案

六自由度运动平台设计方案

六自由度运动平台设计方案1概述YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。

2原理样机技术状态2.1原理样机方案2.1.1组成原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。

具体产品组成表见表2.1。

2.1.2结构方案六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,丫,Z,a,B, 丫)的运动,从而可以模拟出各种空间运动姿态。

图1六自由度平台外形图a)球笼联轴器(如图2所示)采用球笼铰链与上平面连接。

球笼铰链结构简单、体积小、运转灵活、易于维护。

初选球笼铰链型号BJB (JB/T6139-1992),公称转矩Tn=2000N/m,工作角度40度,外径D=68mm,轴孔选用圆柱孔d=24mm,总长度L1=148mm ,转动惯量为0.00008kg.m2,重量5kg。

图2球笼联轴器b)虎克铰链(如图3所示)采用虎克铰链与下平面连接。

万向节铰链传动效率高,允许两轴间的角位移大,适用于有大角位移的两轴之间的连接,一般两轴的轴间角最大可达35o~45o,噪音小,对润滑要求不高,传递转矩大,而且使用可靠,因此获得广泛的应用。

图3虎克铰链F固定板的连接(如图4所示)F 固定板与电动缸用法兰连接初选深沟球轴承型号61808 (GB/T276-1994),额定载荷 Cr=5.1kN ,外径D=52mm ,轴承孔选用 d=40mm ,宽 B=7mm ,重量 0.26kg 。

6-DOF运动平台电控系统方案设计及仿真

6-DOF运动平台电控系统方案设计及仿真
AbtatO eb s fh - O ( i dgeso f e o m t npa om, A bsdeetccnr yt s c : nt ai o e6 D F s ere f r d m) o o lfr aC N— ae l r ot l s m r h s t x e i t ci os e
De i n a d S mu a i n o e t i n r lS se s d o - sg n i l t fElc r c Co t o y tm Ba e n 6 — o DOF M o i n Pl t r t a f m o o
C A G J n 皿 L h- u n L hn - n L a g H N i _ ,VZ ik a ,I e g f , U G n a S i ( ote etr o tc ncl nvri , i n7 7 , hn ) N r w s nP l eh i iesy X 0 2 C ia Байду номын сангаасh e y aU t a 1 0
仿真 。详 细介 绍了主控制器和伺服从控制器 的软硬 件设计 。仿真结果 表 明, 控制器 具有 较高 的伺 服性能 , 系统实 时性较 高 , 能够达到运动平 台的动作要求 。 关键 词 : 自由度运动平 台; 六 运动学仿真 ; A C N总线
中图分类 号 : M3 1 T 8 文献标识码 : A 文章编号 :0 4 7 1 (0 2 0 — 0 7 0 1 0 — 0 8 2 1 )2 0 0 — 4
O引 言
德 国人 Seat 16 t r在 95年发 明 了六 自由度 并 联 w 机 构 , 平 台为 一封 闭工 作 平 台 , 主要 由定 平 台 、 该 其 动平 台 、 六根 支 链 以及 若 干关 节 构 成 。支 链 一 般 为 液 压缸 或 电 动缸 , 过 球 铰 虎 克 铰 与 动 、 平 台 相 通 定 联 。六 自由度体 感运 动平 台可提供 三个 正交 方 向 的 平 移 以及 横 滚 、 摆 、 偏 俯仰 三个 转 动 。随着研 究 的不 断深 人 , 自由度 并 联 机 器 人 已广 泛应 用 于 各 种 加 六 工、 装配 行业 , 医学 领域 也得 到应 用 。近年 来发 达 在 国家均投 巨资对 其进 行开 发 和应用 。本 文针 对 现有 的六 自由度 平 台 , 设计 了一 种基 于 C N总 线 的运 动 A 平 台 电控 系统 。本 电控 系统 由 6个伺 服 电动 缸驱 动 控制 器 和一个 主控制 器组 成 C N网络 , A 由上位 机 通 过 U B . 据传输 对 六 自由度 平 台进 行实 时 检 测 S 2 0数

六自由度液压平台系统的设计与有限元分析

六自由度液压平台系统的设计与有限元分析

摘要六自由度运动平台是一种空间运动的模拟器,在其允许的工作范围内可完成任意空间运动的模拟,目前已广泛运用于军事、航天航空、游戏娱乐、汽车制造等领域。

其工作原理:下平台固定,借助六支油缸的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

六自由度运动平台系统是由液压站、工作平台、伺服系统和电气控制系统组成。

液压站包括泵组、蓄能器组、阀组、滤油器组、油箱、冷却器组及附件等。

工作平台是由上平台、下平台、6个虎克铰链、6个球铰链及其他附件等组成。

伺服系统包括伺服放大器、比例伺服阀、伺服油缸、位置传感器、伺服电机等。

电气控制系统包括继电器、按钮、限位开关、熔断器等电气元件。

在本次设计中,首先确定六自由度运动平台系统的工作方式:由液压站提供动力,使液压缸运动,6个液压缸并联运动带动工作平台在空间6自由度的运动;位移传感器将位移信号传送给伺服控制系统,并转换信号控制伺服阀的阀芯运动从而控制液压油的流量,进而控制液压缸的进给量与进给速度;设计电气原理图,控制整个系统的开关、报警、紧急制动等。

本次设计完成内容有:1、工作平台的总设计:确定工作平台的结构并计算自由度确定结构的合理性,再根据参数设计上平台与下平台的大小与结构。

2、根据计算,选定液压缸的型号为:CK F/20-80/56*0400-C406-A-B1E3X1Z3。

3、确定液压原理图,设计液压站,计算相关参数并对相关零件进行选型,以及油箱、油箱盖、阀块的设计。

4、确定伺服系统,根据计算,对相关零件进行选型。

5、设计电气原理图,控制整个系统的开关、报警、紧急制动等。

6、对油箱体理想化后进行有限元分析并得出结论。

关键词:六自由度,液压,六自由度液压平台,有限元分析,液压站目录1 绪论 (1)1.1 课题背景及意义 (1)1.2六自由度平台国内外研究状况 (2)1.3 课题研究方案 (3)2 总方案设计 (5)2.1设计思路 (5)2.2液压站组成设计 (5)2.3工作台组成设计 (8)2.4液压油走向设计 (8)2.5 控制系统设计 (10)3 六自由度工作台结构设计 (11)3.1工作台的总体设计 (11)3.2六自由度平台的合理性分析 (13)3.3上平台与下平台的设计 (13)4 液压缸的选型 (17)4.1确定油缸的最大推力 (18)4.2确定油缸的基本尺寸 (19)4.3确定油缸的工作压力 (20)4.4确定所用位移传感器的类型 (20)4.5确定安装方式 (20)4.6行程的确定 (21)4.7缓冲器的选择 (21)4.8支撑环的选择 (22)4.9密封形式的选择 (22)4.10油口和缓冲调节器的组合位置 (23)4.11阀安装底板 (24)4.12确定液压缸型号 (24)5 液压站的设计 (26)5.1确定液压系统原理图 (26)5.2液压泵的选型 (27)5.3电机的选型 (29)5.4蓄能器的选型 (30)5.5过滤器的选型 (30)5.6冷却器的选型 (31)5.7温度表选型 (31)5.8压力表的选型 (32)5.9液位计的选型 (32)5.10阀块的设计 (32)5.11 油箱的设计 (33)5.12 油箱盖的设计 (35)6 伺服系统的设计 (36)6.1 比例伺服阀的选型 (36)6.2 先导式溢流阀的选型 (37)6.3 伺服放大器的选型 (39)6.4 位移传感器的选型 (39)7 电气原理图的设计 (40)7.1 主电路的设计 (40)7.2 控制电路的设计 (41)8 有限元分析 (43)致谢 (47)参考文献 (48)1 绪论1.1 课题背景及意义六自由度运动平台是一种空间运动的模拟器,在其允许的工作范围内可完成任意空间运动的模拟,目前已广泛运用于军事、航天航空、游戏娱乐、汽车制造等领域。

六自由度平台

六自由度平台

六自由度平台简介六自由度平台是一种具有六个自由度的机械装置,用于模拟某种特定的运动或操作。

它由一个固定的基座和一个可运动的平台组成,平台可以在六个方向上进行运动。

这些方向分别是平移运动的x、y和z轴以及旋转运动的绕x、y和z轴。

工作原理六自由度平台的工作原理基于平台上的六个自由度。

通过控制这些自由度的运动,可以实现平台的任意姿态和位置。

六自由度平台通常由六个执行机构组成,每个执行机构负责控制平台上的一个自由度。

这些执行机构可以是液压马达、电动推杆或转动电机等。

通过改变这些执行机构的运动方式和速度,可以控制平台的姿态和位置。

在六自由度平台上,平台和基座之间通常有一个连接机构。

这个连接机构被设计为可以使平台相对于基座在六个方向上运动,并且能够支持所需的载荷。

常见的连接机构包括球接头、万向节等。

六自由度平台在许多领域都有重要的应用。

以下是一些典型的应用领域:航天航空领域在航天航空领域,六自由度平台可以用于模拟和测试航天器和飞行器的运动和操纵。

通过控制平台的自由度,可以模拟各种姿态和操纵条件,以帮助设计和验证飞行器的控制系统。

机器人领域在机器人领域,六自由度平台可以用于模拟和测试机器人的运动和操作。

通过控制平台的自由度,可以模拟各种机器人的运动和操作场景,以帮助设计和验证机器人的运动控制算法。

模拟训练领域在模拟训练领域,六自由度平台可以用于模拟各种训练场景,如飞行模拟器、驾驶模拟器等。

通过控制平台的自由度,可以模拟各种实际场景下的运动和操作,以帮助训练人员提高技能和应对各种情况。

在医疗领域,六自由度平台可以用于模拟和测试医疗设备的运动和操作。

通过控制平台的自由度,可以模拟各种医疗设备的运动和操作,以帮助医生和护士熟悉设备的使用和操作步骤。

总结六自由度平台是一种具有六个自由度的机械装置,通过控制平台的自由度,可以实现平台的任意姿态和位置。

它在航天航空领域、机器人领域、模拟训练领域和医疗领域等许多领域都有广泛的应用。

基于NI实时控制器的六自由度平台测控系统设计与实现

基于NI实时控制器的六自由度平台测控系统设计与实现

基于 NI实时控制器的六自由度平台测控系统设计与实现摘要:六自由度平台作为一种全新的模拟器,用于航天空间运动姿态方面的模拟和规划,在六自由度平台的行程范围内,可以凭借其强大的功能去重新演绎各种空间运动,有着六种自由运动的维度,通过对六个液压作用气的精确控制和解耦算法,可以实现不同自由度的位子控制。

而本文将着重分析依托NI虚拟器基础上的六自由度平台测控系统,了解该系统运行的可靠性和安全性。

以通用计算机作为核心,在硬件平台基础上,由用户设计定义,具有仿真面板,有测试软件实现测试功能的一种全新计算机仪器系统,也有着强大的功能优势。

关键词:NI实时控制器;六自由度;系统设计前言:六自由度并联运动平台有着结构稳定、效率高且承载能力大等多方面的特点,兴起以来逐渐广泛地应用到如汽车、飞机等一些运动模拟实验设备,也取得了十分理想的成果。

在六自由度运动平台测控系统中,需要积极满足其高时效性和精确度,更要具备极强的图形图像交互功能。

而基于NItime的六自由度运动进程平台测控系统可满足六自由度运动平台实时测控的高要求[1]。

1.基于NI实时控制器的六自由度平台概述及系统结构1.概述六自由度运动平台可以实现对于原有轨迹的在线跟踪和监测,作为一种可以为航空飞行提供飞行模拟或是运动人模拟的机构,在应用到航空航天领域的同时,也能够运用在人们的日常生活中,作为一种娱乐体感游戏的形式出现,有着强大的功能,而本文依托NItime虚拟器分析六自由度运动平台的控制策略,能够缓解以往可靠性、时效性不高等控制问题。

以通用计算机作为核心的应届平台上,可以由用户自定义,且有着以下几点优势,首先使用了基于NItime虚拟仪器后,能够灵活配置各类关卡,增加了硬件的灵活性与多样性。

其次,选择了Lab view开发软件,能够简化传统的软件研发方式,Lab view作为一种新型的图形化编程工具,也是所见即所得的可视化工具,建立了人机界面后能够提供大量的控制对象内容,有利于图形化编程语言的落实。

六自由度汽车驾驶运动模拟器设计

六自由度汽车驾驶运动模拟器设计

摘要汽车驾驶模拟器是一种用于汽车产品开发、“人—车—环境”交通特性研究或驾驶培训的重要工具。

近年来,由于具有安全性高、再现性好、可开发性强、成本低等显著特点,研究开发驾驶模拟器已经成为国内外一个重要发展方向。

本文在查阅国内外大量资料的基础上,结合老师的研究课题主要对六自由度汽车驾驶模拟器液压系统部分进行设计。

六自由度汽车运动模拟器采用液压伺服阀控制液压缸来驱动模拟平台的运动,以实现汽车驾驶模拟器运动姿态模拟。

本文主要进行机械机构的设计、液压伺服系统设计、液压泵站设计和液压缸的设计等。

通过模拟器的机构设计和驱动液压伺服系统设计,结合电气系统能够实现汽车在不同运行状态的模拟,当驾驶员坐在驾驶舱系统的座椅上进行模拟驾驶时,完全能够感受到实际汽车驾驶的各种体感,为实车训练驾驶提供了可替代的模拟平台;本设计也为今后的进一步研究及其在娱乐模拟器、动感电影等产业的实际推广和应用方面奠定了基础。

关键词:汽车驾驶模拟器六自由度运动平台液压伺服系统运动姿态控制AbstractThe Automobile-driving i an important tool which used for the development of auto mobile product and the study of the transportation characteristics of “man-car-environment”or the driver training .In recent years, the study of the automobile-driving simulator used for development has become an important development direction in the world because of the notable characteristics of high safety, well reappearance of scene, easy to develop and low cost.This article is based on searching the large quantity of information about at home and abroad, and combines with the tea cher’s research task which mainly designs the part of 6-dof driving Simulator of hydraulic system .The 6-dof motion simulator adopts valves of hydraulic servo to control actuator to drive the movement of driving simulation platform, and to achieve the movement posture simulation of the automobile driving simulator. This article is mainly about the designing of machine, the system of hydraulic servo, hydraulic pump station, and actuator and so on.According to the designing of agencies of simulator and hydraulic servo system, it can combines the electrical system which can bring out the imitation of cars in different movement conditions, when the driver simulating drive on the seat of cockpit system, you can feel the feeling of driving a true car, and it also offer the simulator platform which can be replaced for true driving training. At the same time, this designing is also establishes for the further researches and the practice extension and use.Keywords:Driving-automobile simulator, 6-dof of motion platform, the system of hydraulic servo, the control of campaign attitude目录1绪论 (1)1.1 引言 (1)1.2 国内外发展现状 (2)1.2.1 国内外研究和发展概述 (2)1.2.2 驾驶模拟器的应用和发展 (3)1.3 课题任务 (5)1.4 论文的主要研究内容 (5)2 运动学及力学分析 (6)2.1 六自由度运动模拟器机构位置反解 (6)2.1.1 坐标系的建立 (6)2.1.2 广义坐标定义 (6)2.1.3 坐标变换矩阵 (7)2.1.4 液压缸铰支点坐标的确定 (8)2.1.5 位置反解 (10)2.2 六自由度运动模拟器机构位置正解 (11)2.3 静力学分析 (11)3 机械及液压部分设计 (12)3.1 运动模拟平台的设计 (12)3.1.1 液压缸内壁D活塞杆直径d的计算 (12)3.1.2 液压缸壁厚和外径的计算 (14)3.1.3 缸盖壁厚的确定 (14)3.1.3 液压缸工作行程的确定 (15)3.1.4缸体长度的确定 (15)3.1.5液压系统的计算 (15)3.2 液压泵站 (17)3.3 铰链的设计 (18)3.4 执行机构单元组成 (21)3.5 电液伺服控制单元与液压系统 (22)3.6 反馈单元 (23)4 电气部分设计 (24)4.1电气原理及接口设计 (24)4.1.1 MCS-51系列单片机的引脚及其功能 (24)4.1.2 单个电液伺服液压缸位置控制电路设计 (26)4.1.3扩展电路 (26)4.2 电气原理图 (27)5 结论 (28)5.1 本文结论 (28)5.2 本文研究工作的不足 (28)参考文献 (29)致谢 (30)1绪论1.1 引言驾驶模拟器是一种用于汽车产品开发、“人-车-环境”交通特性研究或驾驶培训的重要工具。

基于六自由度模拟平台液压控制系统的设计

基于六自由度模拟平台液压控制系统的设计
长度 时 , 唯一 确定 运 动 平 台的 位 置姿 态 。通 过 6个 可
在子系统内修正液压作动筒活塞行程与指令 的偏差 ,
按 给定 台体质 心 的空 间 姿态 计 算 目标 控制 参 量 ; 动力 泵 站是整 个系 统 的动力 源 , 在控 制 及 监 控 系 统 的控 制 下为模拟 驱动 系统 提供 动力 ; 架 主 要 用 于试 验 设 备 机 的安 装 , 受 6套液压 作动 筒控 制 , 液压 作动 筒 的驱 它 在 动下 实现 六 自由度运 动 。
道 , 可联 动又 可成对 或单 独动作 , 既 以便 使该 平 台模 拟
缸体在 空 间的运 动状 态 ; 制及 监 控 系统 主 要 功 能是 控
个 自由度 ( 种 运 动类 型 ) 一 的运 动 。每 个 液 压 缸 的运 动各 由一 电液伺 服 阀控 制 。当 6组 缸各 自取一 定 伸缩

闭环控 制 , 液压 伺 服 系 统 同时 推 动模 拟平 台做 各 6组
种摇摆 , 模拟 实 际环 境 。该 系 统 采用 分 布 式计 算 机 控
y 轴 的旋 转运 动 以及 这 6个 自由度 的复合运 动 , 、 其
灵 活性相 当大 。与 常见 的 串联 运 动机 构 不 同 , 由于该
作 用下 的状况 , 为装备 布 放 回收 获取 可 靠 的试 验数 据
及理论 依据 。 目前 六 自由度 运动 平 台通常 采用 机械 控
图 1 系 统 组 成 结 构
2 液压 控制 系统 的设 计
制 和 电液 控 制 两 种 方 式 , 械 控 制 装 机 功 率 大 、 本 机 成
高, 适用 于小 功率 的 系统 ; 电液 控 制 能 量 密度 大 , 有 具 输 出力 大 、 够集 中控制 等优 点 , 能 故该六 自由度平 台控 制 系统采 用 电液伺 服系 统 。

六自由度运动平台设计方案

六自由度运动平台设计方案

六⾃由度运动平台设计⽅案六⾃由度运动平台设计⽅案1概述YYPT原理样机⽤原库房留存的345⼚的直流电机作为动⼒源,直流驱动器及⼯控机作为控制系统元件,采⽤VB软件进⾏控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等⼏个技术指标⽆法满⾜原规定的指标要求,现在此基础上进⾏优化⽅案的设计。

2 原理样机技术状态2.1 原理样机⽅案2.1.1 组成原理样机采⽤⼯控机作为系统的控制单元,⼯控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采⽤AMC 公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采⽤KH08XX(3)电动缸作为运动平台的六条⽀腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采⽤球笼联轴器,下平台与电动缸连接采⽤虎克铰链⽅式。

具体产品组成表见表2.1。

6 直流电源 12.1.2 结构⽅案六⾃由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接⽽成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个⾃由度(X ,Y ,Z ,α,β,γ)的运动,从⽽可以模拟出各种空间运动姿态。

图1 六⾃由度平台外形图a )球笼联轴器(如图2所⽰)采⽤球笼铰链与上平⾯连接。

球笼铰链结构简单、体积⼩、运转灵活、易于维护。

初选球笼铰链型号BJB (JB/T6139-1992),公称转矩Tn=2000N/m ,⼯作⾓度40度,外径D=68mm ,轴孔选⽤圆柱孔d=24mm ,总长度L1=148mm ,转动惯量为0.00008kg.m 2,重量5kg 。

球笼联轴器电动缸虎克铰链上动平台下静平台图2 球笼联轴器b)虎克铰链(如图3所⽰)采⽤虎克铰链与下平⾯连接。

万向节铰链传动效率⾼,允许两轴间的⾓位移⼤,适⽤于有⼤⾓位移的两轴之间的连接,⼀般两轴的轴间⾓最⼤可达35o~45o,噪⾳⼩,对润滑要求不⾼,传递转矩⼤,⽽且使⽤可靠,因此获得⼴泛的应⽤。

六自由度运动平台施工方案

六自由度运动平台施工方案

六自由度运动平台施工方案一、平台机械结构设计设计概述:六自由度运动平台将采用高强度材料构建,以确保其稳定性和耐用性。

平台结构需能够支持各种动作要求,并提供足够的刚性和稳定性。

动力系统:设计包括电动马达、减速器和传动机构等,用于提供平台所需的动力和精确的运动控制。

传感器配置:安装位置传感器和力传感器,用于实时监测平台的实际位置和受到的力,为控制系统提供反馈。

二、运动控制系统方案控制系统架构:采用基于微处理器的实时控制系统,包括运动控制器、驱动器和电源等。

控制算法:利用先进的控制算法,如PID控制、模糊控制等,确保平台运动的平稳性和精确性。

通信协议:系统内部通信采用高速、稳定的通信协议,确保各组件间的数据交换实时可靠。

三、演示软件功能实现图形用户界面:开发直观、易用的图形用户界面,用于展示平台运动状态、控制参数等。

运动模拟:软件具备模拟运动功能,可在无实际硬件连接的情况下进行模拟测试。

数据记录与分析:软件能够记录平台运动数据,并提供数据分析功能,用于评估系统性能和优化控制策略。

四、交付地点与安装要求交付地点:明确平台的交付地点,确保运输和安装的顺利进行。

安装要求:提供详细的安装说明,包括安装环境要求、安装步骤和注意事项等。

五、软硬件功能要求硬件要求:列出系统所需的硬件配置,包括处理器、内存、存储等。

软件要求:说明系统运行的软件环境,包括操作系统、编程软件等。

六、控制策略实施方案路径规划:设计合理的路径规划算法,确保平台按照预定轨迹准确运动。

实时调整:系统具备实时调整能力,能够根据实时反馈数据对运动轨迹进行微调。

七、调试与测试流程调试步骤:提供详细的调试步骤,包括系统校准、功能测试等。

测试方法:采用多种测试方法,如单元测试、集成测试和系统测试等,确保系统的稳定性和可靠性。

八、安全操作与维护指南安全操作:制定安全操作规范,包括操作人员的资质要求、操作环境的安全条件等。

维护保养:提供设备维护保养建议,包括定期检查、更换易损件等,确保系统长期稳定运行。

解析六自由度运动平台控制系统

解析六自由度运动平台控制系统

解析六自由度运动平台控制系统摘要:经过多年深入的研究,现在的Stewart平台与最初设计的结构稍微有些差别。

目前常见的六自由度运动平台主要利用六个驱动杆作为支撑和驱动机构,每个驱动杆两端分别用球铰和虎克铰连接在动平台和静平台上,通过六个分支的伸缩实现动平台任意位置与姿态的运动。

本文就六自由度运动平台控制系统展开分析。

关键词:六自由度;运动平台;控制系统1.六自由度运动平台结构特点及应用六自由度运动平台是模拟器的关键部件之一,它是一个空间并联运动机构。

理论上说,六自由度并联平台的驱动方式可以有多种,但最佳选择当属液压驱动。

电液伺服驱动的平台有结构简单、空间占用体积小、施力大等优点。

六自由度电液伺服运动平台是一个集多领域技术于一体的运动控制机构,它与空间几何学、运动学、动力学、液压传动、控制理论及应用、计算机软硬件设计与实现等学科都有关联。

这种并联结构在性能上独具特色,它的刚度好,其多支撑结构抗外负载干扰能力强;承载能力强且无误差积累,运行精度高;就实现多自由度运动而言,它的运动复杂性只影响系统的控制软件,各作动器之间的运动耦合小,占地面积小,制造成本低。

当然,六自由度并联运动平台也有不足之处,目前对平台运动位姿进行直接测量仍然比较困难,一般采用由各作动器活塞杆伸缩量进行位姿正解求得,另外平台的工作空间范围较小,姿态变化幅度有限。

除了应用在飞行模拟器上以外,这种平台还广泛应用于其他的军用和民用模拟器领域,如各种潜艇驾驶模拟器和汽车驾驶模拟器。

1994年,华中理工大学和青岛潜艇学院合作研制了一台六自由度潜艇操纵训练模拟器,2000年又为中船总707研究所研制出研发型六自由度潜艇模拟器。

Thomson-CSF仿真与训练公司也分别为军方和民用部门设计了各种卡车驾驶模拟器,其系统模拟的环境是高度逼真的模拟器上一小时的训练效果相当于在真实卡车上受训两小时以上。

在国内,吉林工业大学国家汽车动态模拟实验室(ADSL)较早便从事汽车体感模拟训练研究。

名称海洋实验平台六自由度运动平台

名称海洋实验平台六自由度运动平台

名称:海洋实验平台(六自由度运动平台)
平台组成:平台机械系统、伺服控制系统(包括控制硬件系统及完整控制软件系统)
平台设计参数为:上平板面积2mX3m,负载2吨,
平台驱动方式:电驱动
平台的运动参数:
表内数据为运动参数,在静止条件下要求倾斜角度需达到45度
平台实现功能
1)有可视化操作界面,能通过界面控制系统实现六自由度运动及相关运动的叠加,叠加方式可选择,可修改运动的幅度、频率等参数,可以进行
各自由度间相位调整。

2)具有路径的复现功能,可以实现海浪谱复现。

3)能够实时的监控并反馈平台的位置信息及运动参数,并在界面上显示,具有运动存储功能,能将某一时间段内的运动参数存储及导出。

4)可以对某一空间位置进行锁定,使平台保持某一固定姿态,也可通过在界面输入设定固定姿态的位置及倾角信息。

5)当运动范围指令或者负载重量超出平台安全运行时会发出警报并进行运动限制。

6)带有自动安全保护功能,能防止运动平台失锁和飞转。

设置紧急停机及复位按钮,可以手动停机及复位。

7)备完善的自检功能和安全保护措施。

其他要求:
1)在上平板上根据用户需求设计固定槽、滑轨,可以实现多位置固定。

2)向用户提供优质售后服务,提供硬件维修及软件的技术支持。

六自由度位姿调节平台控制系统设计解读

六自由度位姿调节平台控制系统设计解读

六自由度位姿调节平台控制系统设计专业:机械设计制造及其自动化学生:徐瑞指导老师:朱兴龙完成时期: 2015年6月1日扬州大学机械工程学院摘要六自由度平台在生活和实验设备得到了广泛的应用,例如各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中,在加工业可制成六轴联动机床、灵巧机器人等。

为其他试验设备提供了一个可以进行各种姿态调节的支撑平台,方便其他各种实验的展开。

由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。

同时平台的姿态能够实时调节、精确度自动化程度高等优点。

近些年来,对于六自由度平台的控制得到了关注和研究。

本文将针对实验室现有的调节平台,设计其控制系统,使位置、姿态调节更加方便快捷。

首先需要进行控制系统总体方案论证,确定可行的总体方案。

同时在详细了解实验室现有的调节平台的结构的基础上,根据相应的性能要求确定电机、驱动器、控制器型式,建立了六自由度位姿调节平台的运动学模型,进而建立了六自由度位姿调节平台的运动学方程,设计控制系统线路图,重点考虑电机运动到极限位置时“卡死”问题,设置加以控制,最后采用VC++6.0开发工具,在Windows 环境中对控制软件进行功能开发,实现电动、自动功能,解决电机运动到极限位置时“卡死”问题。

关键字: 六自由度位姿调节平台;极限位置;运动学模型;行程开关ABSTRACTSix degrees of freedom platform and experiment equipment has been widely used in life, such as all kinds of training simulator such as flight simulator, ship simulator, the navy helicopter landing simulation platform, the tank simulator, vehicle driving simulator, the train driving simulator, the earthquake simulator and action movies, entertainment and other fields, even available space spacecraft docking, refueling tanker docking.In processing can be made into six axis linkage machine tool, dexterous robot, etc.For other test equipment provides a can undertake all kinds of posture adjustment support platform, convenient and other various kinds of experiments.Due to the development of the six degrees of freedom motion platform, mechanical, hydraulic, electrical, control, computer, sensors, space motion mathematical model, the real-time signal processing, graphical display, dynamic simulation and so on a series of high-tech fields, therefore the development of the six degrees of freedom motion platform into institutions of higher learning, research institute's iconic symbol of hydraulic and control level.At the same time platform attitude to real-time adjustment, high automation degree of precision.In recent years, the six degree of freedom platform control to get the attention and research.This article will focus on the adjustment of the existing laboratory platform, design of its control system, make position, posture adjustment more convenient and quick.First need to control the system overall scheme demonstration, deciding the overall concept of feasible.In details about the lab at the same time, on the basis of existing to adjust the structure of the platform, according to the requirement of the performance of the corresponding type of motors, drives, controller, set up the kinematics model of six degrees of freedom posture control platform, and then established the kinematics equation of six degrees of freedom posture adjusting platform, design of control system circuit diagram, emphasizing on the electric motor to the limit position "stuck" problem, set control, finally in the software development environment using c language to controlthe function of software development and implementation of electric and automatic functions, solve the electric motor to the limit position "stuck" problem.Key words : six degrees of freedom posture adjusting platform;Limit position;The kinematics model;Travel switch目录摘要·············································································································· ABSTRACT ···································································································第一章引言···································································································1.1课题来源······························································································1.2国内外现状···························································································1.3本文的主要内容·····················································································第二章六自由度位姿调节平台控制系统的总体设计方案···········································2.1原控制系统方案及存在的问题····································································2.2现控制系统方案及解决的问题···································································第三章控制系统设计························································································3.1六自由度调节平台的运动学模型································································3.1.1 D-H方法简介·················································································3.1.2 运动学模型····················································································3.2 硬件设计·····························································································3.2.1电机选型·······················································································3.2.2驱动器选型·····················································································3.2.3控制器选型·····················································································3.2.4传感器选型·····················································································3.2.5控制系统原理图··············································································3.3 软件设计·····························································································3.3.1开发环境介绍·················································································3.3.2软件界面·······················································································3.3.3 程序片段·······················································································第四章结论····································································································参考文献········································································································致谢··············································································································第一章引言1.1课题研究意义本课题是结合视觉测量中标靶、摄像机需要进行位姿和姿态的调整,针对实验室现有的调节平台,设计一种具有六自由度调节平台的控制系统,使位置、姿态调节更加方便快捷,同时针对电机运动到极限位置时“卡死”问题解析解决。

并联六自由度运动平台

并联六自由度运动平台

并联六自由度运动平台1.概述并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。

并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。

图0-1:六自由度及其坐标系定义图我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。

六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。

2.系统组成2.1液压伺服类典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。

液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。

控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。

控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。

2.2 电动伺服类电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增加运动控制单元。

具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。

3.主要技术参数以下参数为液压类平台典型值,具体可按用户要求设计制造。

3.1平台主要参数平台最大负载:静态≥2000KG,动态≥3000KG。

一种六自由度平台创新设计

一种六自由度平台创新设计
分布式驱动: 利用多个液压缸分布式驱动平台,每个液压缸承担部分运动任务,可以分 散负载,降低单个驱动元件的功率要求,延长系统寿命。
六自由度平台
设计内容
设计建模
一种六自由度平台
机构现状
六自由度平台现状
现在的六自由度运动平台多数是六自由度并 联平台。它对平台进行操控,需要六个液压 杆相互配合,复杂的运动控制让它实现高精 度运动控制算法的编写十分困难。运动平台 的各个零部件需要高精度的加工和装配,但 是基于目前的制造工艺技术,六自由度定位 系统通常需要手动组装。
上平台机构简图
设计内容
下平台设计
如图所示,下平台由机架,四根液压杆以及 上平面组成,四根液压杆成正方形垂直固定 在机架上,液压杆与上平面用球铰链连接。
下平台机构简图
设计内容
下平台自由度验算
活动构件:n=5 球铰链:p=4 液压杆:l=4 自由度:F = 3 下平台自由度为3,分别是绕x轴旋转、绕y轴 旋转、以及沿z轴的平移。
六自由度平台
设计内容
上平台设计
如图所示,上平台由方形机架,三根液压杆 以及中间的圆形平台组成,液压杆与机架和 圆形平台用转动副连接。 圆形平台初始位置位于方形机架正中心。 每两根液压杆之间夹角为120°。
上平台机构简图
设计内容
上平台自由度验算
该机构只能做平面内运动。 活动构件:n=4 转动副:p=6 液压杆:l=3 自由度:F = 3 × 4 − 2 × 6 + 3 = 3 上平台自由度为3,分别是沿x轴、y轴平移和 绕z轴的旋转。
六自由度并联平台
设计内容
设计方向
针对六自由度平台的操控难度大和装配要求 高,在此提出一种新的六自由度平台。 该六自由度平台由两个三自由度机构组合形 成,它结构简单,易于组装,大大减少了装 配误差,提高了系统定位精度。而且这种设 计策略将降低操作控制算法的实现难度,同 时还提高系统的稳定性,确保系统具有良好 的动态特性、快速响应和更高的抗外界扰动 性。

六自由度运动平台正解(几何法)

六自由度运动平台正解(几何法)

六自由度运动平台正解(几何法)1. 对上平台(运动平台)进行扩展,示意如下:Pic 1 上平台示意图由于确定一个平面状态只需要三个点,因此获得C1,C2,C3坐标,即可确定平面状态。

如图,h1,h2均为已知量,设L h k /1=,212*h h L +=,),,(i i i i z y x C =。

设下平台各点坐标为),,(i i i i s n m B =,设各轴长为i i i l B A =。

于是问题简化为:已知:L k l B i i ,,,,求解i C 。

2. 建立方程组 2.1 i l 相关对于1l ,分析如下:Pic 2 单轴示意图由图可知:向量3111111111*C C k C B A C C B A B +=+=,即,1111111131313),,(),,(l s z n y m x z z y y x x k=---+---所以:)1......(0])1([])1([])1([21211321132113=---++--++--+l s z k kz n y k ky m x k kx同理有:)6......(0])1([])1([])1([)5......(0])1([])1([])1([)4......(0])1([])1([])1([)3......(0])1([])1([])1([)2......(0])1([])1([])1([2626312631263125253225322532242423242324232323212321232122221222122212=---++--++--+=---++--++--+=---++--++--+=---++--++--+=---++--++--+l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx2.2 L 相关)9......(0)()()()8......(0)()()()7......(0)()()(222322322322312312312221221221=--+-+-=--+-+-=--+-+-L z z y y x x L z z y y x x L z z y y x x 3. 求解3.1 联立方程组(1)-(9),牛顿迭代法解方程组,即可求的i C ,取0>i z ,可得唯一解。

并联六自由度运动平台

并联六自由度运动平台

并联六自由度运动平台1.概述并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。

并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。

图0-1:六自由度及其坐标系定义图我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。

六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。

2.系统组成2.1液压伺服类典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。

液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。

控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。

控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。

2.2电动伺服类电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增加运动控制单元。

具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。

3.主要技术参数以下参数为液压类平台典型值,具体可按用户要求设计制造。

3.1平台主要参数平台最大负载:静态≥2000KG,动态≥3000KG。

六自由度平台

六自由度平台

(一)六自由运动平台介绍六自由度液压平台技术参数六自由度运动平台是由六支油缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只油缸的伸缩运动,完成上平台在空间六个自由度(α,β,γ, X,Y,Z)的运动,从而可以模拟出各种空间运动姿态。

六自由度运动平台涉及到机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理等一系列高科技领域,因此六自由度运动平台是液压和控制领域水平的标志性象征。

主要包括平台的空间运动机构、空间运动模型、液压系统、控制系统。

1 六自由度平台空间机构技术参数六自由度平台结构效果图如图1所示。

图1 六自由度平台六自由度运动平台由上下平台和六个液压油缸组成。

六个液压缸上端点两两组成上平台三个支点,六个液压缸下端点两两组成下平台三个支点。

上下三个支点分别在假设的圆周上,并且是120o等分,既分别是两个等边三角形的顶点。

根据不同的运动范围,油缸的行程和上下平台半径不同。

结构如图2所示。

图2 六自由度平台结构图根据标书要求,六自由度平台结构参数如下:上平台半径: 0.8m;下平台半径:0.85m ;油缸最低行程时上下平台垂直距离:约1.17m;油缸行程:±0.20m。

2 六自由度平台空间运动空间运动的目标是实现平台在空间运动的三个姿态角度和三个平动位移,即俯仰、滚转、偏航、上下垂直运动、前后平移和左右平移,及六个姿态的复合运动姿态。

而空间目标是通过六个液压缸的行程实现的,这就需要一个空间的运动模型完成空间运动的转换,假设空间运动的目标俯仰、滚转、偏航、上下垂直位移、前后平移和左右平移用α,β,γ,X,Y,Z表示,六个油缸的行程用L(i)(i=1、2、3、4、5、6)表示。

整个运动模型如下:L(i)=TT(α,β,γ,X,Y,Z)其中,TT是一个空间转换矩阵模型。

由此实时算出每一运动时刻液压油缸的行程。

液压油缸的理论行程再通过D/A接口的转换,给出实际行程值。

《新型六自由度运动模拟器的性能分析与设计》范文

《新型六自由度运动模拟器的性能分析与设计》范文

《新型六自由度运动模拟器的性能分析与设计》篇一一、引言随着科技的不断进步,模拟器技术在众多领域得到了广泛应用,尤其是在航空航天、军事仿真、机器人研究等领域。

六自由度运动模拟器作为其中的一种重要设备,其性能的优劣直接关系到模拟的准确性和可靠性。

本文将针对新型六自由度运动模拟器的性能进行分析,并探讨其设计方法。

二、新型六自由度运动模拟器概述新型六自由度运动模拟器是一种能够模拟物体在三维空间中六个方向上运动的设备。

这六个方向包括沿X、Y、Z轴的平动以及绕这三个轴的转动。

该设备具有结构紧凑、运动范围大、运动精度高、实时性好等优点,可广泛应用于科研、军事、娱乐等领域。

三、性能分析(一)运动性能分析新型六自由度运动模拟器的运动性能主要表现在其运动范围、运动速度和运动精度等方面。

该设备采用先进的伺服控制系统和电机驱动技术,能够实现快速、准确的运动响应。

同时,其运动范围大,可满足不同场景下的模拟需求。

(二)控制性能分析控制性能是六自由度运动模拟器的关键性能之一。

该设备采用先进的控制算法和传感器技术,能够实现精确的位置控制、速度控制和力控制。

同时,其具有良好的稳定性和抗干扰能力,能够在复杂的环境下保持稳定的运动状态。

(三)可靠性分析可靠性是衡量设备性能的重要指标之一。

新型六自由度运动模拟器采用高精度、高稳定性的硬件和软件设计,具有较高的可靠性。

同时,其具有良好的维护性和可扩展性,方便用户进行维护和升级。

四、设计方法(一)硬件设计新型六自由度运动模拟器的硬件设计主要包括机械结构、传感器和执行器等部分。

其中,机械结构应具有足够的强度和刚度,以承受运动过程中产生的各种力;传感器应具有高精度和高稳定性,以实现精确的位置和力控制;执行器应具有快速响应和高效率的特点,以保证设备的运动性能。

(二)软件设计软件设计是新型六自由度运动模拟器的另一重要部分。

软件应具有友好的人机交互界面,方便用户进行操作和监控;同时,应采用先进的控制算法和传感器数据处理技术,以实现精确的位置控制、速度控制和力控制;此外,还应具有故障诊断和保护功能,以保证设备的安全性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六自由度运动平台设计方案1概述YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。

2 原理样机技术状态2.1 原理样机方案2.1.1 组成原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。

具体产品组成表见表2.1。

6 直流电源 12.1.2 结构方案六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X ,Y ,Z ,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

图1 六自由度平台外形图a )球笼联轴器(如图2所示)采用球笼铰链与上平面连接。

球笼铰链结构简单、体积小、运转灵活、易于维护。

初选球笼铰链型号BJB (JB/T6139-1992),公称转矩Tn=2000N/m ,工作角度40度,外径D=68mm ,轴孔选用圆柱孔d=24mm ,总长度L1=148mm ,转动惯量为0.00008kg.m ²,重量5kg 。

球笼联轴器电动缸虎克铰链上动平台下静平台图2 球笼联轴器b)虎克铰链(如图3所示)采用虎克铰链与下平面连接。

万向节铰链传动效率高,允许两轴间的角位移大,适用于有大角位移的两轴之间的连接,一般两轴的轴间角最大可达35º~45º,噪音小,对润滑要求不高,传递转矩大,而且使用可靠,因此获得广泛的应用。

图3 虎克铰链下固定板的连接(如图4所示)图4 电动缸齿轮盖下固定板与电动缸用法兰连接。

初选深沟球轴承型号61808(GB/T276-1994),额定载荷Cr=5.1kN,外径D=52mm,轴承孔选用d=40mm,宽B=7mm,重量0.26kg。

初选深沟球轴承型号61802(GB/T276-1994),额定载荷Cr=2.1kN,外径D=24mm,轴承孔选用d=15mm,宽B=5mm,重量0.005kg。

上下结构(如图5所示)上铰点分布圆的半径:Ra=432mm下铰点分布圆的半径:Rb=625mm上铰相邻铰之间的距离:da=105mm下铰相邻铰之间的距离:db=120mm图5零位时作动器的长度:L2=777mmc)电动缸基于器部件复用的考虑,YYPT采用某项目3号电动作为运动平台动作执行终端,并可利用库存的六台DC24V直流有刷减速电机为之配套。

电动缸主要技术指标:1)最大推拉力不小于6000N;2)行走速度:18mm/s;3)最大行程:370mm;4)电动缸不自锁;直流有刷减速电机技术指标:1)电压范围:允许在20VDC~28VDC范围内工作;2)额定电压:24VDC;3)最大电流:在额定电压24VDC,额定负载12Nm条件下,电流≤40A。

4)最低转速:在额定电压24VDC,额定负载12Nm条件下,减速器输出转速不小于410rpm;5)额定负载:减速电机额定负载转矩为12Nm;6)工作方式:连续工作时间3min,间隙时间5min;7)电气接口:接口方式采用航空插座,航空插座型号:XCE22F4K1D1,电机出线与插座接线关系为“﹢”接1号针脚,“-”接2号针脚。

2.1.3控制方案控制软件采用位置反解算法,即通过平台的姿态反算六支电动缸的长度,通过PCI-1716接收电阻尺反馈的位置指令,根据计算出来的长度和反馈指令通过PCI-1723向驱动器发送模拟量速度指令,控制电动缸运动到指定长度。

2.2 原理样机技术参数1、超调问题:电动缸运行到位后超调现象比较严重,初步分析为电机特性较差引起的,但不排除算法及PID参数存在问题;2、台体结构晃动:当电动缸处于停止运动后,上台面人为晃动存在时,存在较大晃动量,初步分析原因为上平台使用的球笼联轴器间隙过大造成的。

3 优化方案针对原理样机中出现的问题,在尽量少修改原理样机结构的基础上对其进行优化,使其性能得到提高,并能完成六自由度的摇摆及联动等动作。

3.1 伺服系统优化针对原电机超调现象严重的现状,选择带反馈的伺服电机,使其和配套伺服驱动器构成小闭环,以降低上位控制软件的控制算法的难度。

按照现有结构允许的安装空间只能选择外径在70mm以内的伺服电机及减速器,初选松下MHMD042G1V功率为400W的交流伺服电机作为动力源。

按照电机输出扭矩需要,选择纽士达特型号为PF60-4的减速器,其外径为60mm*60mm,效率为90%。

则电机加减速器的输出扭矩为4.68N.m,转速为750rpm,丝杠导程为6mm,传动箱减速比为2,则电动缸的速度为37.5mm/s,推力不小于600kg满足设计及使用要求。

3.2 控制系统优化根据原理样机中模拟量信号受干扰严重的现象,结合本次设计所选择伺服系统,采用脉冲+方向指令作为控制指令,故需要选择运动控制卡,根据公司现在使用的运动卡,选择深圳众为兴公司型号为ADT-856的运动控制卡作为主控卡。

3.3结构部分优化根据原理样机存在的问题,现将运动平台上平台与电缸连接部分也更改为虎克铰链,用以消除球笼联轴器带来的间隙。

虎克铰链示意图如图3.1所示:图3.1 虎克铰链示意图4 系统组成六自由度运动平台系统由测试软件部分系统、电气控制系统、动力电源系统、运动平台机械台体组成。

运动平台部分的组成结构示意图如图4.1所示。

用户界面负载运动伺服算法模块伺服驱动电动缸×6软件部分电控部分机械部分图4.1 系统组成框图软件部分主要包括用户界面程序、伺服算法程序、PID参数设置程序等。

用户界面程序采用VB或VC编写,界面友好,使用方便,可以接收用户的鼠标和键盘输入,设置工作的模式,运动的曲线类型等(正弦、连续、圆弧等),可以接收外部的指令,使平台在跟随状态下运行。

电控部分的作用是接收控制系统输出的指令数据,并将其传输给伺服驱动器,驱动器将信号放大后控制电机运动,进而带动电动缸运动,并最终使台体实现各种姿态。

包括工控机、运动控制卡、伺服驱动器、伺服电机、电阻尺及相关电器元件等。

机械部分用于支撑负载,包括上平台、上连接铰、下连接铰、电动缸、支撑架、底座等。

平台由电动缸驱动,进行横滚、偏航、俯仰三个姿态和X、Y、Z平移共六个自由度的运动。

5方案设计根据研究计划制定的研究目标及为下一个研究课题进行技术储备,本次设计出了满足原速度载荷要求的同时,在不增加外购件的前提下,进行了高速状态的设计,即传动箱内的齿轮可不带减速器直接连接伺服电机,使电动缸可以高速运动,但此时载荷降低,用以进行六自由度运动平台高速状态的研究。

5.1 机械结构设计本次结构设计在YYPT原理样机基础上进行设计,对原理样机中发现的问题进行优化,同时因为伺服系统更换导致相关结构部分进行更改。

主要更改部分有上平台与电动缸连接方式,电动缸传动箱,电动缸电机端传动齿轮。

5.1.1 上平台与电动缸连接方式原理样机上平台与电动缸连接采用球笼轴承,初样机采用虎克铰链方式进行连接,其更改后的外形图如图5.1所示:图5.1 上平台链接部分外形图5.1.2 电动缸传动箱本次设计选用PF60-4减速器,其减速器输出接口与原减速器相比有更改部分,主要更改部分为连接螺钉分布圆由直径77mm变为直径70mm,止口由直径30mm 变为40mm,其他部分没有变化。

5.1.3电机齿轮本次设计选用PF60-4减速器,其输出轴直径为14mm小于原减速器输出轴直径18mm,同时考虑与减速器及伺服电机能够连接的共用性,所以需要对电机齿轮重新设计加工。

5.1.4 减速器根据选取电机设计需要,减速器选择山东纽士达特公司生产的PF60-4行星减速器,其主要性能参数如表5.1:表5.1 减速器性能参数5.2电控系统主要用于接收用户控制指令,并处理各种反馈信号,产生控制信号,控制伺服作动器做功,最终驱动运动平台完成各种自由度的运动。

本次设计仍采用位置反解算法,通过平台位置计算出各支电动缸的长度,采用运动控制卡作为运动平台的指令发送器件,根据计算出的结果发送6通道的脉冲+方向指令,用以控制6支电动缸进行运动;将伺服电机尾端的编码器数据通过伺服驱动器发送至上位机,通过解算编码器数据可知电动缸当前位置,电阻尺作为电动缸绝对位置检测,用以进行电动缸行程判读,作为电气限位保护使用。

其控制框图如图5.2所示:图5.2 控制框图主要控制元器件进行详细介绍: 5.2.1 伺服电机根据KH08XX (3)缸设计技术书可知,600kg 推力时丝杠需要扭矩为5.732N.m ,缸体部份及齿轮传动部分总效率按照70%计算时,齿轮传动部分减速比为2,减速器输出扭矩为4.1N.m 。

初步选配减速比为4,效率为90%的减速器,则电机端需要转矩 4.1== 1.14.i 40.9T T N m η≈⨯减电,选择松下型号为MHMD042G1V 的伺服电机,其主要参数见表5.2:表5.2 电机性能参数额定扭矩 1.3N.m瞬时最大扭矩 3.8N.m制动力矩不小于1.27N.m编码器20位增量式其转矩特性图如图5.3所示:图5.3 伺服电机转矩特性图5.2.2 伺服驱动器根据所选电机,配伺服驱动器型号为MBDHT2510,其主要性能参数见表5.3:表5.3 伺服驱动器性能参数名称参数备注电压220V AC±10% 50/60Hz控制方式位置控制模式速度控制模式转矩控制模式全闭环控制模式指令输入差分输入(脉冲+方向、脉冲+脉冲)输入频率500k(光电耦合器输入使用时)4M(长线驱动器输入使用时)电子齿轮比1/1000~1000以内选择深圳众为兴公司生产的六轴运动控制卡ADT856,其主要功能为输出六通道脉冲指令,接收六通道编码器反馈数据,其主要参数见表5.4:表5.4 运动控制卡性能参数图5.4 电气连接关系图5.3 控制软件及算法5.3.1 位置解算算法对于并联机构的六自由度平台在运动过程中,要保证运动的实时性和正确性,就需要通过对伸缩杠的精确控制来实现,这就需要引入六自由度平台的实时位置正反解算法。

所谓六自由度平台的位置反解,是指由运动平台的空间姿态求六个伸缩杠的伸缩量。

而六自由度的位置正解,是指有六个伸缩杠的伸缩量来求运动平台的空间姿态。

相关文档
最新文档