matlab数值分析实验三(2)

合集下载

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析MATLAB实验报告引言:数值分析是一门研究利用计算机进行数值计算和解决数学问题的学科。

它在科学计算、工程技术、金融等领域中有着广泛的应用。

本实验旨在通过使用MATLAB软件,探索数值分析的基本概念和方法,并通过实际案例来验证其有效性。

一、插值与拟合插值和拟合是数值分析中常用的处理数据的方法。

插值是通过已知数据点之间的函数关系,来估计未知数据点的值。

拟合则是通过一个函数来逼近一组数据点的分布。

在MATLAB中,我们可以使用interp1函数进行插值计算。

例如,给定一组离散的数据点,我们可以使用线性插值、多项式插值或样条插值等方法,来估计在两个数据点之间的未知数据点的值。

拟合则可以使用polyfit函数来实现。

例如,给定一组数据点,我们可以通过最小二乘法拟合出一个多项式函数,来逼近这组数据的分布。

二、数值积分数值积分是数值分析中用于计算函数定积分的方法。

在实际问题中,往往无法通过解析的方式求得一个函数的积分。

这时,我们可以使用数值积分的方法来近似计算。

在MATLAB中,我们可以使用quad函数进行数值积分。

例如,给定一个函数和积分区间,我们可以使用quad函数来计算出该函数在给定区间上的定积分值。

quad函数使用自适应的方法,可以在给定的误差限下,自动调整步长,以保证积分结果的精度。

三、常微分方程数值解常微分方程数值解是数值分析中研究微分方程数值解法的一部分。

在科学和工程中,我们经常遇到各种各样的微分方程问题。

而解析求解微分方程往往是困难的,甚至是不可能的。

因此,我们需要使用数值方法来近似求解微分方程。

在MATLAB中,我们可以使用ode45函数进行常微分方程数值解。

例如,给定一个微分方程和初始条件,我们可以使用ode45函数来计算出在给定时间范围内的解。

ode45函数使用龙格-库塔方法,可以在给定的误差限下,自动调整步长,以保证数值解的精度。

结论:本实验通过使用MATLAB软件,探索了数值分析的基本概念和方法,并通过实际案例验证了其有效性。

数值分析实验报告心得(3篇)

数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。

通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。

以下是我对数值分析实验的心得体会。

一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。

2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。

3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。

4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。

二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。

(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。

最后,我们将插值多项式与原始函数进行比较,分析误差。

2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。

(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。

最后,比较不同方法的收敛速度和精度。

3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。

(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。

最后,比较不同方法的计算量和精度。

4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。

(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。

matlab数值计算实验报告

matlab数值计算实验报告

matlab数值计算实验报告Matlab数值计算实验报告引言:Matlab是一种广泛应用于科学与工程领域的高级计算机语言和环境,它提供了丰富的函数库和工具箱,方便用户进行数值计算、数据分析和可视化等任务。

本实验报告将介绍我在使用Matlab进行数值计算实验中的一些经验和心得体会。

一、数值计算方法数值计算方法是一种利用数值近似来解决实际问题的方法,它在科学和工程领域具有广泛的应用。

在Matlab中,我们可以利用内置的函数和工具箱来实现各种数值计算方法,例如插值、数值积分、数值微分等。

二、插值方法插值是一种通过已知数据点来推测未知数据点的方法。

在Matlab中,我们可以使用interp1函数来进行插值计算。

例如,我们可以通过已知的一些离散数据点,利用interp1函数来估计其他位置的数值。

这在信号处理、图像处理等领域具有重要的应用。

三、数值积分数值积分是一种通过分割曲线或曲面来近似计算其面积或体积的方法。

在Matlab中,我们可以使用quad函数来进行数值积分计算。

例如,我们可以通过quad函数来计算某个函数在给定区间上的积分值。

这在概率统计、物理学等领域具有广泛的应用。

四、数值微分数值微分是一种通过数值逼近来计算函数导数的方法。

在Matlab中,我们可以使用diff函数来进行数值微分计算。

例如,我们可以通过diff函数来计算某个函数在给定点上的导数值。

这在优化算法、控制系统等领域具有重要的应用。

五、数值求解数值求解是一种通过数值近似来计算方程或方程组的根的方法。

在Matlab中,我们可以使用fsolve函数来进行数值求解计算。

例如,我们可以通过fsolve函数来求解某个非线性方程的根。

这在工程计算、金融分析等领域具有广泛的应用。

六、实验应用在本次实验中,我使用Matlab进行了一些数值计算的应用实验。

例如,我利用插值方法来估计某个信号在给定位置的数值,利用数值积分方法来计算某个曲线下的面积,利用数值微分方法来计算某个函数在给定点的导数值,以及利用数值求解方法来求解某个方程的根。

数值分析实验报告Matlab仿真资料

数值分析实验报告Matlab仿真资料

数值分析实验报告学院:电气工程与自动化学院专业:控制理论与控制工程姓名:李亚学号:61201401622014 年 12 月24日实验一 函数插值方法一、目的和意义1、 学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、 明确插值多项式和分段插值多项式各自的优缺点;3、 熟悉插值方法的程序编制;4、 如果绘出插值函数的曲线,观察其光滑性。

二、实验原理1、 Lagrange 插值公式00,()n ni n k k i i k k i x x L x y x x ==≠⎛⎫-= ⎪-⎝⎭∑∏编写出插值多项式程序;2、 给出插值多项式或分段三次插值多项式的表达式;三、实验要求对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。

试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。

数据如下:(1求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。

(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈)试构造Lagrange 多项式6,和分段三次插值多项式,计算的(1.8)f ,(6.15)f 值。

(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈)四、实验过程1.进入matlab开发环境;2.根据实验内容和要求编写程序,程序如下所示,程序通过运用function 函数编写,生成.m文件。

调用时只需要在命令窗口调用y=Lagrange(A,input)就可以实现任意次数拉格朗日插值法求解。

function y=Lagrange(A,input)[a,b]=size(A);x=input;y=0;for j=1:aMj=1;Nj=1;for k=1:aif(k==j)continue;endMj=Mj*(x-A(k,1));Nj=Nj*(A(j,1)-A(k,1));endy=y+A(j,2)*Mj/Nj;end3.调试程序并运行程序;调用拉格朗日脚本文件对以上两个表格数据求解,表格一对应MATLAB向量A;表格二对应向量I。

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告《数值分析MATLAB实验报告》摘要:本实验报告基于MATLAB软件进行了数值分析实验,通过对不同数学问题的数值计算和分析,验证了数值分析方法的有效性和准确性。

实验结果表明,MATLAB在数值分析领域具有较高的应用价值和实用性。

一、引言数值分析是一门研究利用计算机进行数值计算和分析的学科,其应用范围涵盖了数学、物理、工程等多个领域。

MATLAB是一种常用的数值计算软件,具有强大的数值分析功能,能够进行高效、准确的数值计算和分析,因此在科学研究和工程实践中得到了广泛的应用。

二、实验目的本实验旨在通过MATLAB软件对数值分析方法进行实验验证,探究其在不同数学问题上的应用效果和准确性,为数值分析方法的实际应用提供参考和指导。

三、实验内容1. 利用MATLAB进行方程求解实验在该实验中,利用MATLAB对给定的方程进行求解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。

2. 利用MATLAB进行数值积分实验通过MATLAB对给定函数进行数值积分,比较数值积分结果和解析积分结果,验证数值积分的精度和稳定性。

3. 利用MATLAB进行常微分方程数值解实验通过MATLAB对给定的常微分方程进行数值解,比较数值解和解析解的差异,验证数值解的准确性和可靠性。

四、实验结果与分析通过对以上实验内容的实际操作和分析,得出以下结论:1. 在方程求解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在方程求解方面的高准确性和可靠性。

2. 在数值积分实验中,MATLAB给出的数值积分结果与解析积分结果基本吻合,验证了MATLAB在数值积分方面的高精度和稳定性。

3. 在常微分方程数值解实验中,MATLAB给出的数值解与解析解基本吻合,验证了MATLAB在常微分方程数值解方面的高准确性和可靠性。

五、结论与展望本实验通过MATLAB软件对数值分析方法进行了实验验证,得出了数值分析方法在不同数学问题上的高准确性和可靠性。

基于MATLAB数值分析实验报告

基于MATLAB数值分析实验报告

基于MATLAB数值分析实验报告班级:072115姓名:李凯学号:20111003943实验二:矩阵与向量运算实验目的:在MATLAB里,会对矩阵与向量进行加、减、数乘、求逆及矩阵特征值运算,以及矩阵的LU分解。

设A是一个n×n方阵,X是一个n维向量,乘积Y=AX可以看作是n维空间变换。

如果能够找到一个标量λ,使得存在一个非零向量X,满足:AX=λX (3.1)则可以认为线性变换T(X)=AX将X映射为λX,此时,称X 是对应于特征值λ的特征向量。

改写式(3.1)可以得到线性方程组的标准形式:(A-λI)X=0 (3.2)式(3.2)表示矩阵(A-λI)和非零向量X的乘积是零向量,式(3.2)有非零解的充分必要条件是矩阵(A-λI)是奇异的,即:det(A-λI)=0该行列式可以表示为如下形式:a11–λa12 (1)a21 a22 –λ…a2n =0 (3.3)…………A n1 a n2 …a nn将式(3.3)中的行列式展开后,可以得到一个n阶多项式,称为特征多项式:f(λ)=det(A-λI)=(-1)n(λn+c1λn-1+c2λn-2+…+c n-1λ+c n) (3.4) n阶多项式一共有n个根(可以有重根),将每个根λ带入式(3.2),可以得到一个非零解向量。

习题:求下列矩阵的特征多项式的系数和特征值λj:3 -1 0A= -1 2 -10-1 3解:在MATLAB中输入命令:A=【3 -1 0;-1 2 -1;0 -1 3】;c=poly(A)roots(c)得到:实验四:Lagrange插值多项式实验目的:理解Lagrange插值多项式的基本概念,熟悉Lagrange插值多项式的公式源代码,并能根据所给条件求出Lagrange插值多项式,理解龙格现象。

%功能:对一组数据做Lagrange插值%调用格式:yi=Lagran_(x,y,xi)%x,y:数组形式的数据表%xi:待计算y值的横坐标数组%yi:用Lagrange还擦之算出y值数组function fi=Lagran_(x,f,xi)fi=zeros(size(xi));np1=length(f);for i=1:np1z=ones(size(xi));for j=i:np1if i~=j,z=z.*(xi-x(j))/(x(i)-x(j));endendfi=fi+z*f(i);endreturn习题:已知4对数据(1.6,3.3),(2.7,1.22),(3.9,5.61),(5.6,2.94)。

数值分析实验报告matlab

数值分析实验报告matlab

数值分析实验报告matlab数值分析实验报告引言:数值分析是一门研究利用计算机数值方法解决数学问题的学科,它在科学计算、工程设计、金融分析等领域具有重要的应用价值。

本实验报告旨在通过使用MATLAB软件,探索数值分析的基本原理和方法,并通过实际案例加深对数值分析的理解。

一、误差分析在数值计算中,误差是无法避免的。

误差分析是数值分析中的重要一环,它帮助我们了解数值计算的准确性和稳定性。

在实验中,我们通过计算机模拟了一个简单的数学问题,并分别计算了绝对误差和相对误差。

通过比较不同算法的误差大小,我们可以选择最适合的算法来解决实际问题。

二、插值与拟合插值和拟合是数值分析中常用的方法,它们可以通过已知的数据点来推导出未知数据点的近似值。

在本实验中,我们通过MATLAB的插值函数和拟合函数,分别进行了插值和拟合的实验。

通过比较不同插值和拟合方法的结果,我们可以选择最适合的方法来处理实际问题。

三、数值积分数值积分是数值分析中的重要内容,它可以用来计算曲线下的面积或函数的积分值。

在实验中,我们通过MATLAB的数值积分函数,对一些简单的函数进行了积分计算。

通过比较数值积分和解析积分的结果,我们可以评估数值积分的准确性和稳定性,并选择最适合的积分方法来解决实际问题。

四、常微分方程的数值解法常微分方程是数值分析中的重要内容,它可以用来描述许多自然现象和工程问题。

在实验中,我们通过MATLAB的常微分方程求解函数,对一些简单的微分方程进行了数值解法的计算。

通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。

五、线性方程组的数值解法线性方程组是数值分析中的经典问题,它在科学计算和工程设计中广泛应用。

在实验中,我们通过MATLAB的线性方程组求解函数,对一些简单的线性方程组进行了数值解法的计算。

通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。

数值分析实验报告三

数值分析实验报告三
plot(x,y)
grid
[k,x,wuca,yx]=erfen (﹣1,1,10^-5)
2)运行结果
ans =
0 -1.0000 1.0000 0 1.0000 -11.6321 10.7183 -1.0000
ans =
1.0000 0 1.0000 0.5000 0.5000 -1.0000 10.7183 4.6487
ans =
11.0000 0.0898 0.0908 0.0903 0.0005 -0.0076 0.0033 -0.0021
ans =
12.0000 0.0903 0.0908 0.0906 0.0002 -0.0021 0.0033 0.0006
ans =
13.0000 0.0903 0.0906 0.0905 0.0001 -0.0021 0.0006 -0.0008
ans =
7.0000 0.1256 0.0008 0.0033 0.0262
ans =
8.0000 0.1240 0.0002 0.0016 0.0129
ans =
9.0000 0.1233 0.0000 0.0007 0.0056
ans =
9.0000 0.1233 0.0000 0.0007 0.0056
(2)、Use the iteration method ,the initial value .
2、The equation has two roots near 0.1.
Determine them by means ofNewton’s method.
(with accuracy )
3、用迭代法求方程 附近的一个根。方程写成下
k = 9

Matlab与数值分析实验

Matlab与数值分析实验

>> sum
法 2: >>a=1:100; >>sum=a*a’
法 3: >>n=1;
>>sum=0;
>> while n<=100
sum=sum+n*n;
n=n+1;
end
-6-
>> sum * 选择语句
if expression() statements;
[else statements;]
end 例:编写函数文件 demo3 实现 sgn 函数功能
例 2:编写命令文件 demo1 完成以下操作
-4-
建立数组 a=[1,2,3,...,20],b=[1,3,5,...,39],并求 a,b 内积 操作 1) 主窗口点击新建按钮 2) 在弹出的文本编辑窗口添加 a=1:20 b=1:2:39 sum=a*b'
3) 单击保存按钮 将文件命名为 demo1 保存在例 1 新建文件夹中
4) 在 Command Window 中输入 demo1 并回车 例 3:编写函数文件 demo2,返回输入变量的内积
操作:1) 新建 M 文件,编辑如下: function sum=demo2(a,b) sum=a*b';
2) 保存文件在查询目录下,注意不要修改默认名 3) 在 Command Window 中输入
操作:1)新建 M 文件,并编辑如下 function val=demo3(x) if x>0 val=1; elseif x<0 val=-1; else val=0; end 2) 将文件保存在查询目录内 3) >>demo3(0) >>demo3(90) >>demo3(-12)

数值分析实验报告(Matlab实现)(同名6593)

数值分析实验报告(Matlab实现)(同名6593)

学生实验报告实验课程名称数值分析开课实验室数学与统计学院实验室学院2010 年级数学与应用数学专业班01班学生姓名学号开课时间2012 至2013 学年第一学期end y=x;format short ;% 设置为默认格式显示,显示5位(2) 建立MATLAB 界面利用MA TLAB 的GUI 建立如下界面求解线性方程组:详见程序。

五、 计算实例、数据、结果、分析下面我们对以上的结果进行测试,求解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------725101391444321131243301024321x x x x 输入数据后点击和,得到如下结果:更改以上数据进行测试,求解如下方程组:123443211343212343112341x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦得到如下结果:六、 实验中遇到的问题及解决办法在本实验中,遇到的问题主要有两个:(1) 如何将上述的Gauss 消元法的算法在MA TLAB 中实现针对此问题我借鉴了网上以及 课本上的算法的MATLAB 实现的程序;(2) 如何将建立界面使得可以随意输入想要求解的相关矩阵后就可以直接求解针对此问题,我通过网上的一些关于MA TLAB 的GUI 设计的相关资料,总结经验完成了此项任务。

七、 实验结论通过以上的测试,我们发现以上算法和程序能够求出线性方程组的比较精确解。

八、 参考文献[1]杨大地,王开荣 .2006.数值分析.北京:科学出版社[2]何光辉.2008. 数值分析实验. 重庆大学数理学院数学实验教学中心 [3]百度文库,百度知道教师签名年 月 日详见程序。

五、计算实例、数据、结果、分析下面我们对以上的问题进行测试:输入数据:计算结果如下:当x=2.101时,x=4.234时,同理可以测试(4)中的5的值。

六、实验中遇到的问题及解决办法在本实验中,遇到的问题主要有两个:(3)如何将上述的插值的算法在MA TLAB中实现针对此问题我借鉴了网上以及课本上的算法的MATLAB实现的程序;(4)如何将建立界面使得可以随意输入想要求解的相关矩阵后就可以直接求解针对此问题,我通过网上的一些关于MA TLAB的GUI设计的相关资料,总结经验完成了此项任务。

MATLAB数值分析实验三(线性方程求解及精度分析)

MATLAB数值分析实验三(线性方程求解及精度分析)

佛山科学技术学院实 验 报 告课程名称 数值分析实验项目 数值积分专业班级 机械工程 姓 名 余红杰 学 号 2111505010 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、 掌握程序的录入和matlab 的使用和操作;2、 了解影响线性方程组解的精度的因素——方法与问题的性态。

3、 学会Matlab 提供的“\”的求解线性方程组。

二、实验要求1、按照题目要求完成实验内容;2、写出相应的Matlab 程序;3、给出实验结果(可以用表格展示实验结果);4、分析和讨论实验结果并提出可能的优化实验。

5、写出实验报告。

三、实验步骤1、用LU 分解及列主元高斯消去法解线性方程组a)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x , 输出b Ax =中系数LU A =分解的矩阵L 和U ,解向量x 和)det(A ;用列主元法的行交换次序解向量x 和求)det(A ;比较两种方法所得结果。

2、用列主高斯消元法解线性方程组b Ax =。

(1)、⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x(2)、⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4990.023.116.427.199.103.600.3321x x x 分别输出)det(,,A b A ,解向量x ,(1)中A 的条件数。

分析比较(1)、(2)的计算结果3、线性方程组b Ax =的A 和b 分别为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1095791068565778710A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=31332332b 则解T x ),1,1,1,1(=. 用MATLAB 内部函数求)det(A 和A 的所有特征值和2)(A cond . 若令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+98.99599.6989.998.585604.508.72.71.8710A A δ, 求解b x x A A =++))((δδ,输出向量x δ和2x δ,从理论结果和实际计算两方面分析线性方程组b Ax =解的相对误差22/x xδ以及A 的相对误差/A A δ的关系。

数值分析matlab实验报告

数值分析matlab实验报告

数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。

本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。

二、实验内容(一)误差分析在数值计算中,误差是不可避免的。

通过对给定函数进行计算,分析截断误差和舍入误差的影响。

例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。

(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。

2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。

(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。

2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。

(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。

三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。

```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。

(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。

数值分析matlab数值试验

数值分析matlab数值试验

实验一:误差传播及算法稳定性实验1.21、试验程序:function charpt1_2% 误差传播及算法稳定性实验clc;clear all;promps={'请选择递推关系式,若选E1=1/e,En=1-nEn-1,请输入1,若选EN=0,En-1=(1-En)/n,请输入2:'};I=1;while Iresult=inputdlg(promps,'charpt1_2',1,{'1'});Nb=str2num(char(result));if ((Nb~=1)|(Nb~=2))I=0;endend%%%%%%%%%%%%%%%%%I=1;while Iresult=inputdlg('请输入递推步数 n>=1:','charpt1_2',1,{'10'});steps=str2num(char(result));if (steps>0)&(steps==fix(steps)) %% 如果steps大于0且为整数I=0;endend%%%%%%%%%%%%%%%%%result=inputdlg('请输入计算中所采用的有效数字位数n:','charpt1_2',1,{'5'});Sd=str2num(char(result));format long %% 设置显示精度result=zeros(1,steps); %% 存储计算结果err=result; %% 存储计算的绝对误差值func=result; %% 存储用quadl计算的近似值%%%%%%%%%%%%%%%%%%% 用quadl计算积分近似值for n=1:stepsfun=@(x) x.^n.*exp(x-1);func(n)= quadl(fun,0,1);end%%%%%%%%%%%%%%%%%%% 用自定义算法计算if(Nb==1)digits(Sd);result(1)=subs(vpa(1/exp(1)));for n=2:stepsresult(n)=subs(vpa(1-n*result(n-1)));enderr=abs(result-func);elseif(Nb==2)digits(Sd);result(steps)=0;for n=(steps-1):-1:1result(n)=subs(vpa((1-result(n+1))/(n+1)));enderr=abs(result-func);end%%%%%%%%%%%%%%%%%%% 输出结果数值及图像clf;disp('库函数计算值:');disp(sprintf('%e ',func));disp('递推值:');disp(sprintf('%e ',result));disp('误差值:');disp(sprintf('%e ',err));if(Nb==1)plot([1:steps],result,'-rs',[1:steps],func,':k*',[1:steps],err,'-.bo' );elseif(Nb==2)plot([steps:-1:1],result,'-rs',[steps:-1:1],func,':k*',[steps:-1:1],e rr,'-.bo');endxlabel('第n步');ylabel('计算值');legend('自定义算法结果','库函数计算结果','误差值');grid on2、试验结果:选择递推关系式1,递推步数为10,有效数字为5位,计算结果如下:库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-0011.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708800e-001 1.456000e-0011.264000e-001 1.152000e-001 7.840000e-0022.944000e-001 -1.944000e+000误差值:5.588280e-007 1.117662e-006 3.352927e-006 1.341222e-0056.705713e-005 4.023702e-004 2.816427e-003 2.253226e-002 2.027877e-001 2.027877e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为5位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642400e-001 2.072800e-001 1.708900e-001 1.455300e-001 1.267900e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.117662e-006 3.352927e-006 3.412224e-006 2.942873e-006 1.237016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值选择递推关系式1,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678790e-001 2.642420e-001 2.072740e-001 1.709040e-001 1.454800e-001 1.271200e-001 1.101600e-001 1.187200e-001 -6.848000e-002 1.684800e+000 误差值:4.411720e-007 8.823378e-007 2.647073e-006 1.058778e-0055.294287e-005 3.176298e-004 2.223573e-003 1.778774e-002 1.600923e-001 1.600923e+00012345678910第n 步计算值选择递推关系式2,递推步数为10,有效数字为6位,计算结果如下: 库函数计算值:3.678794e-001 2.642411e-001 2.072766e-001 1.708934e-001 1.455329e-001 1.268024e-001 1.123836e-001 1.009323e-001 9.161229e-002 8.387707e-002 递推值:3.678800e-001 2.642410e-001 2.072770e-001 1.708930e-001 1.455360e-001 1.267860e-001 1.125000e-001 1.000000e-001 1.000000e-001 0.000000e+000 误差值:5.588280e-007 1.176622e-007 3.529274e-007 4.122239e-007 3.057127e-006 1.637016e-005 1.164270e-004 9.322618e-004 8.387707e-003 8.387707e-002第n 步计算值3、结果分析:很明显第二种递推式结果要比第一种好,式1在第七步后有明显误差,而式2在第三步后基本与近似解一致。

数值分析课程设计报告(MATLAB版)

数值分析课程设计报告(MATLAB版)

(2)取右端向量 b 的三位有效数字得 b [1.83 1.08 0.783]T ,求方程组的准确 解 X ,并与 X 的数据 [1 1 1]T 作比较 。说明矩阵的病态性。
算法及相应结果: (1)在 MATLAB 命令窗口里输入如下命令: >> H=[1 1/2 1/3;1/2 1/3 1/4;1/3 1/4 1/5]; b=[11/6 13/12 47/60]'; >> x=H\b 回车得到结果为: x = 1.0000 1.0000 1.0000 (2)紧接着在上题基础上继续输入如下命令: >> c=[1.83 1.08 0.783]'; x1=H\c 回车得到如下结果: x1 = 1.0800 0.5400 1.4400
问题分析:考虑由直线段(2 个点)产生第一个图形(5 个点)的过程,设 P 1 和 P5 分别为原始直线段的两个端点。现在需要在直线段的中间依次插入三个点 。显然, P2 位于 P P2 , P3 , P4 产生第一次迭代的图形(图 1-4) 1 点右端直线段的三分 之一处, P4 点绕 P2 旋转 60 度(逆时针方向)而得到的,故可以处理为向量 P2 P4 经正交变换而得到向量 P2 P3 ,形成算法如下: (1) P2 P 1 (P 5 P 1) / 3 ; (2) P4 P 1 2( P 5 P 1) / 3 ; (3) P3 P2 ( P4 P2 ) AT ; 在算法的第三步中,A 为正交矩阵。
运行结果: 0.0884 0.0580 0.0431 0.0343 0.0285 0.0243 0.0212 0.0188 0.0169 0.0154 0.0141 0.0130 0.0120 0.0112 0.0105 0.0099 0.0094 0.0087 0.0092 0.0042 (2)从 I 30 较粗略的估计值出发,我们不妨取 0.01. 源程序:

matlab数值计算实验报告

matlab数值计算实验报告

matlab数值计算实验报告Matlab数值计算实验报告一、实验目的本次实验的目的是通过使用Matlab软件进行数值计算,掌握Matlab的基本操作和数值计算方法,了解数值计算的基本原理和方法,提高数学建模和计算能力。

二、实验内容本次实验主要包括以下内容:1. Matlab基本操作:包括Matlab软件的安装、启动、界面介绍、基本命令和语法等。

2. 数值计算方法:包括数值积分、数值微分、线性方程组的求解、非线性方程的求解、插值和拟合等。

3. 数学建模:通过实际问题的建模,运用Matlab进行数值计算,得到问题的解答。

三、实验步骤1. Matlab基本操作(1)安装Matlab软件:根据官方网站提供的下载链接,下载并安装Matlab软件。

(2)启动Matlab软件:双击Matlab图标,启动Matlab软件。

(3)界面介绍:Matlab软件界面分为命令窗口、编辑器窗口、工作区窗口、命令历史窗口、变量编辑器窗口等。

(4)基本命令和语法:Matlab软件的基本命令和语法包括数学运算、矩阵运算、逻辑运算、控制语句等。

2. 数值计算方法(1)数值积分:使用Matlab中的quad函数进行数值积分,求解定积分。

(2)数值微分:使用Matlab中的diff函数进行数值微分,求解函数的导数。

(3)线性方程组的求解:使用Matlab中的inv函数和\运算符进行线性方程组的求解。

(4)非线性方程的求解:使用Matlab中的fsolve函数进行非线性方程的求解。

(5)插值和拟合:使用Matlab中的interp1函数进行插值和拟合。

3. 数学建模(1)实际问题的建模:选择一个实际问题,将其转化为数学模型。

(2)运用Matlab进行数值计算:使用Matlab进行数值计算,得到问题的解答。

四、实验结果通过本次实验,我掌握了Matlab的基本操作和数值计算方法,了解了数值计算的基本原理和方法,提高了数学建模和计算能力。

在实际问题的建模和运用Matlab进行数值计算的过程中,我深刻体会到了数学建模和计算的重要性,也发现了Matlab在数学建模和计算中的重要作用。

matlab实验报告

matlab实验报告

matlab实验报告实验名称:MATLAB数值分析实验报告摘要:本实验通过使用MATLAB软件,实现了一些数值分析中重要的算法,包括线性方程组求解、非线性方程求根、数值积分与微分以及常微分方程求解。

在算法实现的过程中,通过观察输出结果验证了算法的正确性和可靠性,并探讨了一些算法实现中需要注意的问题。

1.线性方程组求解线性方程组求解是数值分析中的重要算法之一,是很多数学问题的基础。

本实验中使用了三种求解线性方程组的算法:高斯消元法、LU分解法和共轭梯度法。

在实验中,我们需要注意选取矩阵的条件数,使用一些特殊矩阵,如对角矩阵、三对角矩阵和希尔伯特矩阵等来验证算法的正确性。

2.非线性方程求根非线性方程求根是MATLAB中一个非常实用的函数,能够快速解决大量的非线性方程。

本实验中,我们更深入地探讨了二分法、牛顿法和割线法等算法,通过实现代码,实现了对非线性方程的求解。

同时,对不同的算法进行比较,从而选择合适的算法。

3.数值积分与微分数值积分与微分是宏观物理中需要用到的重要数学问题之一。

本实验中,我们使用了梯形法、辛普森法和龙贝格法等多种数值积分算法实现了函数的数值积分。

同时,也对数值微分的误差和稳定性进行了研究和探讨。

4.常微分方程求解常微分方程求解是MATLAB中最常用的功能之一。

本实验中,我们实现了欧拉法、龙格-库塔法等常微分方程求解算法。

并不断尝试对算法进行改进,提高其效率和精度。

实验结果表明,使用MATLAB实现数值分析算法是非常可靠和高效的。

同时,也需要注意在算法实现中注意问题和选择合适的算法。

matlab数值分析实验报告

matlab数值分析实验报告

matlab数值分析实验报告Matlab数值分析实验报告引言数值分析是一门研究利用计算机进行数值计算和模拟的学科,它在科学计算、工程技术和金融等领域有着广泛的应用。

本次实验报告将介绍在Matlab环境下进行的数值分析实验,包括数值微分、数值积分和线性方程组求解等内容。

一、数值微分数值微分是通过数值方法计算函数的导数,常用的数值微分方法有前向差分、后向差分和中心差分。

在Matlab中,可以使用diff函数来计算函数的导数。

例如,对于函数f(x)=x^2,在Matlab中可以使用如下代码进行数值微分的计算:```matlabsyms x;f = x^2;df = diff(f, x);```二、数值积分数值积分是通过数值方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则和龙贝格积分法。

在Matlab中,可以使用trapz、quad和integral等函数来进行数值积分的计算。

例如,对于函数f(x)=sin(x),可以使用如下代码进行数值积分的计算:```matlabx = linspace(0, pi, 100);y = sin(x);integral_value = trapz(x, y);```三、线性方程组求解线性方程组求解是数值分析中的重要问题,常用的求解方法有高斯消元法和LU 分解法。

在Matlab中,可以使用\操作符来求解线性方程组。

例如,对于线性方程组Ax=b,可以使用如下代码进行求解:```matlabA = [1, 2; 3, 4];b = [5; 6];x = A\b;```四、实验结果与分析在本次实验中,我们分别使用Matlab进行了数值微分、数值积分和线性方程组求解的计算。

通过实验结果可以发现,Matlab提供了丰富的数值计算函数和工具,能够方便地进行数值分析的计算和求解。

数值微分的计算结果与解析解相比较,可以发现数值微分的误差随着步长的减小而减小,但是当步长过小时,数值微分的误差会受到舍入误差的影响。

数值分析matlab上机实验报告

数值分析matlab上机实验报告

数值分析matlab上机实验报告matlab软件实验报告数学上机课实验报告matlab实验报告总结数值分析试卷篇一:《MATLAB与数值分析》第一次上机实验报告标准实验报告(实验)课程名称学生姓名:李培睿学号:2013020904026指导教师:程建一、实验名称《MATLAB与数值分析》第一次上机实验二、实验目的1. 熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算操作。

(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序)2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。

(用.m 文件编写进行符号因式分解和函数求反的程序)3. 掌握Matlab函数的编写规范。

4、掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、三维曲线和面的填充、三维等高线等。

(用.m 文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释)5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。

三、实验内容1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。

并以x,y为坐标显示图像x(n+1) = a*x(n)-b*(y(n)-x(n) ); y(n+1) = b*x(n)+a*(y(n)-x(n) )2. 编程实现奥运5环图,允许用户输入环的直径。

3. 实现对输入任意长度向量元素的冒泡排序的升序排列。

不允许使用sort函数。

四、实验数据及结果分析题目一:①在Editor窗口编写函数代码如下:并将编写的函数文件用“draw.m”储存在指定地址;②在Command窗口输入如下命令:③得到图形结果如下:题目二:①在Editor窗口编写函数代码如下:并将编写的函数文件用“circle.m”储存在指定地址;②再次在Editor窗口编写代码:并将编写的函数文件用“Olympic.m”储存在指定地址;③在Command窗口输入如下指令(半径可任意输入):④按回车执行,将在图形窗口获得五环旗:题目三:①在Editor窗口编写函数代码如下:并用.将编写的函数文件用“qipaofa.m”储存在指定地址;②在Command窗口输入一组乱序数值,则可以得到升序排序结果如下:五、总结及心得体会1. 要熟悉MATLAB编译软件的使用方法,明白有关语法,语句的基本用法,才可以在编写程序的时候游刃有余,不至于寸步难行。

数值分析MATLAB实验报告

数值分析MATLAB实验报告

实验 2.1 多项式插值的震荡现象问题提出:考虑在一个固定的区间上用插值逼近一个函数。

显然Lagrange 插值中使用的节点越多,插值多项式的次数越高,我们自然关心插值多项式的次数增加时,)(x L n 是否也更加靠近被逼近的函数。

Runge 给出的一个例子是极著名并富有启发性的。

设区间[-1,1]上函数.2511)(2xx f +=实验内容:考虑空间[-1,1]的一个等距划分,分点为 nix i 21+-=, =i 0,1,2 ...,n , 则拉格朗日插值多项式为)(2511)(02x l xx L ini n ∑=+=. 其中,n i x l i ,...,2,1,0),(=是n 次Lagrange 插值基函数。

实验要求:(1)选择不断增大的分点数目,...,3,2=n 画出原函数)(x f 及插值多项式函数)(x L n 在[-1,1]上的图像,比较并分析实验结果。

(2)选择其他的函数,例如定义在区间[-5,5]上的函数 ,1)(4xxx h +=)arctan()(x x g =, 重复上述的实验看其结果如何。

首先编写拉格朗日插值函数的Matlab 实现: Matlab 程序为:function y=lagrange(x0,y0,x) %Lagrange 插值 n=length(x0); m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if(j~=k)p=p*(z-x0(j))/(x0(k)-x0(j)); end ends=s+p*y0(k); endy(i)=s; end(1)当函数为.2511)(2xx f +=时, Matlab 程序为:x=linspace(-1,1,100); y=1./(1+25*x.^2); plot(x,y) hold on; for i=2:2:10x0=linspace(-1,1,i+1); y0=1./(1+25*x0.^2); y=laglanri(x0,y0,x); plot(x,y,'r--') hold on end运行结果:结果分析:从图上看到在区间[-1,1]的两端点附近,随着插值点数的增加,插值函数)(x L n 与)(x f 偏离的越远,而且出现了振荡现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东金融学院实验报告
本报告正文部分字体、字号要求:
(1)正文部分5号宋体,23-26磅行距;所有数字、字母必须用times new roman字体,而不是宋体!
(2)程序算法清单全部小5号,times new roman字体,行距为固定值10~12磅;
(3)表格以“表1+说明、表2+说明,…”等标示列在表格的上面,表格中出现的所有字母必须是times new roman字体,文字部分小5号,宋体,行距为固定值10~12磅;
(4)插图或截图以“图1+说明,图2+说明,…”列于插图的下面。

课程名称:基于MATLAB数值分析
四.实验结果(包括程序、图表、结论陈述、数据记录及分析等)
在本次实验中,我使用的被积函数都是θ22sin )(1*4y a c a -=这个形式。

(1)求解第一问结果:
图1被积函数θ
22sin )(1*4y
a
c a -=的曲线图
(2)求解第二问结果:
图2 n=30时复化梯形方法的被积函数图形
图3 n=30时复化simpson 方法的被积函数图形
表1 复化梯形在[0,2]区间等分为2,4,8,16,32,64个区间的求解结果
n I
Error
4 4.870743851190015300e+004 1.4551915228e-011 8 4.870743851190015300e+004 1.4551915228e-011 16 4.870743851190013800e+004 2.9103830457e-011 32 4.870743851190015300e+004
1.4551915228e-011
6 4.870743851190013800e+004 2.9103830457e-011 128 4.870743851190016000e+004 7.2759576142e-012 256
4.870743851190016700e+004
0000000000
表2 复化simpson 在[0,2]区间等分为2,4,8,16,32,64个区间的求解结果
n I
Error
4 4.870743851190014500e+004 -1.4551915228e-011 8 4.870743851190014500e+004 -1.4551915228e-011 16 4.870743851190014500e+004 -1.4551915228e-011 32 4.870743851190015300e+004 -2.1827872843e-011 64 4.870743851190013800e+004 -7.2759576142e-012 128 4.870743851190015300e+004 -2.1827872843e-011 256
4.870743851190013100e+004
0000000000
另外,为了更好直观地分析出它们的计算过程的区别,我们作出了它们等分为不同区间的各个图形。

图4复化梯形和复化Simpson 公式在[0,
2
π
]范围等分为4,8,16,32,64,128,256个区间的求解结果和误差分析 在选取n=30的时候,复化梯形和复化Simpson 公式的结果是4.870743851190015300*104, 而在增加划分区间的时候,得到的结果之间相差并没有太大。

由此,在本次实验中,我们可以认为要求精度在不高的前提下,我们是可以通过划分较少的区间数,降低计算量而得到精确的结果。

附录。

相关文档
最新文档