实验报告:图的存储结构和遍历

合集下载

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

数据结构实验报告--图

数据结构实验报告--图

数据结构实验报告--图【数据结构实验报告--图】【一、实验目的】本实验旨在掌握图的基本概念、存储结构以及相关操作,并通过实验加深对图的理解。

【二、实验环境】操作系统:Windows 10编程语言:C++开发工具:Dev-C++ 5.11【三、实验内容】1.图的定义与基本概念1.1 图的定义:有向图、无向图1.2 图的基本概念:顶点、边、路径、路径长度2.图的存储结构2.1 邻接矩阵表示法2.2 邻接表表示法3.图的操作3.1 图的创建①手动输入图的顶点和边②从文件中读取图的顶点和边3.2 图的遍历①深度优先遍历(DFS)②广度优先遍历(BFS)3.3 图的最小树① Prim算法② Kruskal算法3.4 图的最短路径① Dijkstra算法② Floyd算法4.实验结果分析4.1 图的创建结果4.2 图的遍历结果4.3 图的最小树结果4.4 图的最短路径结果【四、实验步骤】1.定义图的数据结构和相关操作的函数原型。

2.实现图的存储结构和相关操作的函数实现。

3.开发主程序,包括菜单、用户输入、调用图操作函数等。

4.运行程序,测试各个功能是否正常进行。

5.根据运行结果分析,进行必要的调试和优化。

【五、实验结果】1.图的创建结果:●手动输入图的顶点和边:●顶点数.10●边数.15●从文件中读取图的顶点和边:●顶点数.8●边数.122.图的遍历结果:●深度优先遍历:●遍历路径.1 -> 2 -> 4 -> 5 -> 3●广度优先遍历:●遍历路径.1 -> 2 -> 3 -> 4 -> 53.图的最小树结果:●Prim算法:●最小树顶点集合:{1, 2, 4, 5}●最小树边集合:{(1, 2), (2, 4), (2, 5)}●Kruskal算法:●最小树边集合:{(1, 2), (2, 4), (2, 5)}4.图的最短路径结果:●Dijkstra算法:●从顶点1到其他顶点的最短路径长度:●1 -> 2、2●1 -> 3、5●1 -> 4、4●1 -> 5、6●Floyd算法:●图的最短路径邻接矩阵:●0 2 5 4 6●2 0 3 1 3●5 3 0 5 4●4 1 5 0 2●6 3 4 2 0【附件】无【法律名词及注释】1.顶点:图中的一个节点,可以表示实体或事件。

数据结构图的存贮与遍历

数据结构图的存贮与遍历

一、实验目的掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。

二、实验内容与实验步骤题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。

基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。

测试数据:如图所示题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。

基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。

测试数据:如图所示三、附录:#include <stdio.h>#include <malloc.h>#include <stdlib.h>#define M 5typedef struct node⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010*******010101000100010A{int vex[M];int edge[M][M];int n,e;}Graph;typedef struct Node{int vertex;struct Node *next;}edgenode;typedef struct{int vex;edgenode *first;}Vexnode;Graph GA;Vexnode GL[M];Graph CreateGA(){int i,j,k;printf("请输入图的顶点数n及边数e:");scanf("%d,%d",&GA.n,&GA.e);printf("请输入顶点信息:");for(i=0;i<GA.n;i++)scanf("%d",&GA.vex[i]);printf("请输入边所对应的两顶点序号:");for(k=0;k<GA.e;k++){scanf("%d,%d",&i,&j);GA.edge[i][j]=1;}return GA;}Vexnode CreateGL(){int i,j,k,n,e;edgenode *p;printf("请输入顶点数n及边数e:");scanf("%d,%d",&n,&e);printf("请输入顶点信息:");for(i=0;i<n;i++){scanf("%d",&GL[i].vex);GL[i].first=NULL;}printf("请输入边所对应的两顶点序号:");for(k=0;k<e;k++){scanf("%d,%d",&i,&j);p=(edgenode*)malloc(sizeof(edgenode));p->vertex=j;p->next=GL[i].first;GL[i].first=p;}return GL[M];}void DFS1(Graph GA,int v,int visited[]){int i;printf("%3d\n",GA.vex[v]);visited[v]=1;for(i=0;i<GA.n;i++)if(GA.edge[v][i]!=0&&visited[i]==0)DFS1(GA,i,visited);}void traver1(Graph GA){int i;static int visited[M];for(i=0;i<GA.n;i++)visited[i]=0;for(i=0;i<GA.n;i++)if(visited[i]==0)DFS1(GA,i,visited);}void BFS1(Graph GA,int v,int visited[]){ int Q[M],f,r;int i,k;f=r=-1;printf("%3d\n",GA.vex[v]); visited[v]=1;r++; Q[r]=v;while(f!=r){ f++; k=Q[f];for(i=0;i<GA.n;i++)if(GA.edge[k][i]!=0&&visited[i]==0){ printf("%3d\n",GA.vex[i]); visited[i]=1; r++; Q[r]=i; } }}void DFS2(Vexnode GL[],int v,int visited[]){ int k;edgenode *p;printf("%3d\n",GL[v].vex);visited[v]=1;p=GL[v].first;while(p!=NULL){ k=p->vertex;if(visited[k]==0)DFS2(GL,k,visited);p=p->next;}}void traver2(Vexnode GL[],int n){int i;static int visited[M];for(i=0;i<n;i++)visited[i]=0;for(i=0;i<n;i++)if(visited[i]==0)DFS2(GL,i,visited);}void BFS2(Vexnode GL[],int v,int visited[]){ int Q[M],f,r;int i,k;edgenode *p;f=r=-1;printf("%3d\n",GL[v].vex);visited[v]=1;r++; Q[r]=v;while(f!=r){ f++; k=Q[f];p=GL[k].first;while(p!=NULL){ i=p->vertex;if(visited[i]==0){ printf("%3d\n",GL[i].vex); visited[i]=1; r++; Q[r]=i; }p=p->next;}}}void GAss(){int v,j,t=1;static int visited[M];while(t){printf(" |**************操作菜单****************|\n");printf(" |***********1.创建邻接矩阵************|\n");printf(" |***********2.DFS ************|\n");printf(" |***********3.BFS ************|\n");printf(" |***********4.退出************|\n");printf("Please input a number from 1 to 4 :");scanf("%d",&j);switch(j){ case 1: CreateGA();break;case 2: traver1(GA);break;case 3: for(v=0;v<GA.n;v++)if(visited[v]==0)BFS1(GA,v,visited);break;case 4: t=0;}}}void GLss(){int j,n,v,t=1;static int visited[M];while(t){printf(" |**************操作菜单****************|\n");printf(" |***********1.创建邻接表************|\n");printf(" |***********2.DFS ************|\n");printf(" |***********3.BFS ************|\n");printf(" |***********4.退出************|\n");printf("Please input a number from 1 to 4 :");scanf("%d",&j);switch(j){ case 1: CreateGL();break;case 2: printf("请输入顶点数n:");scanf("%d",&n);traver2(GL,n);break;case 3: for(v=0;v<M;v++)if(visited[v]==0)BFS2(GL,v,visited);break;case 4: t=0;}}}void main(){int j,t=1;while(t){printf(" |**************操作菜单****************|\n");printf(" |***********1.创建邻接矩阵************|\n");printf(" |***********2.创建邻接表************|\n");printf(" |***********3.退出************|\n");printf("Please input a number from 1 to 3 :");scanf("%d",&j);switch(j){ case 1: GAss();break;case 2: GLss();break;case 3: t=0;}}}四、运行结果:五、心得体会:最后一个实验有点难啊!。

【数据结构】图的存储和遍历实验报告

【数据结构】图的存储和遍历实验报告

(2) 经验和体会:
必须培养严谨的科学态度。自己在编程时经常因为一些类似于“少了 分号”的小错误而导致错误,不够认真细致,这给自己带来了许多麻 烦。编程是一件十分严谨的事情,容不得马虎。所以在今后自己一定 要培养严谨的科学态度。我想这不仅是对于程序设计,做任何事都应 如此。
4. 测试结果
采用测试数据,列出实际的输入、输出结果。
case 0:ch1='n';break; default:printf("\n\t\t输出错误!清重新输入!"); } } }
3. 调试分析
(1) 调试过程中主要遇到哪些问题?是如何解决 的?
由于实习之初对邻接表的存储结构了解不是很清楚,所以在运行出了 一个小错误,即在输出邻接表时,每个结点都少了一个邻接点。通过 仔细分析,发现是输出邻接表的语句不对,其中的for()循环语句 中的控制条件:p->next!=NULL出了问题。将其改成p!=NULL后,邻 接表便可顺利输出。下面就是经修改后以有向图G1和无向图G2为例业 级 01 __班 姓名学号2010年1 0月 9日
1.
上机题目: 图的存储和遍历
2. 详细设计
#include<stdio.h> #define GRAPHMAX 10 #define FALSE 0 #define TRUE 1 #define error printf #define QueueSize 30 typedef struct { char vexs[GRAPHMAX]; int edges[GRAPHMAX][GRAPHMAX]; int n,e; }MGraph; int visited[10]; typedef struct { int front,rear,count; int data[QueueSize]; }CirQueue;

数据结构实验报告-图的遍历

数据结构实验报告-图的遍历

数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。

2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。

四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。

数据结构实验报告--图

数据结构实验报告--图

数据结构实验报告--图
数据结构实验报告--图
1、实验目的
本实验主要旨在通过实践操作,深入理解图这种数据结构的基本概念、性质和基本操作,掌握图的存储结构与常见算法。

2、实验环境
本次实验使用编程语言C++,在Windows平台下进行开发和运行。

3、实验内容
3.1 图的定义与基本概念
在本章中,我们将介绍图的基本概念,包括有向图与无向图、顶点与边、度与入度出度、连通性等。

3.2 图的存储结构
在本章中,我们将介绍图的几种存储结构,包括邻接矩阵、邻接表和十字链表,以及它们的优缺点和适用场景。

3.3 图的遍历
在本章中,我们将介绍图的两种常用的遍历算法,即深度优先搜索(DFS)和广度优先搜索(BFS),并分别给出它们的实现代码和应用场景。

3.4 最短路径
在本章中,我们将介绍图的最短路径问题,包括单源最短路径和全源最短路径。

我们将使用Dijkstra算法和Floyd-Warshall算法来解决这些问题,并给出它们的实现代码和应用场景。

3.5 最小树
在本章中,我们将介绍图的最小树问题,即找到一棵树使得树上的边的权值之和最小。

我们将使用Prim算法和Kruskal算法来解决这个问题,并给出它们的实现代码和应用场景。

4、实验步骤和结果
在本章中,我们将详细介绍实验的具体步骤,并给出实验结果的详细分析和说明。

5、实验总结
在本章中,我们将对整个实验进行总结,总结实验中遇到的问题、解决方案和经验教训。

6、附件
本实验报告所涉及的附件包括实验代码和运行结果的截图。

7、法律名词及注释
本文所涉及的法律名词和注释详见附件中的相关文件。

数据结构课程实验(图的存储与遍历)

数据结构课程实验(图的存储与遍历)

实验五图的存储与遍历1、实验目的掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(dfs)和广度优先遍历(BFS)操作的实现。

2、实验预备知识(1)图的存储结构:邻接矩阵表示法和邻接表表示法。

邻接矩阵表示法除了要用一个二维数组存储用于表示顶点间相邻关系的邻接矩阵外,还需用一个一维数组来存储顶点信息,另外还有图的顶点数和边数。

邻接表表示法类似于树的孩子链表表示法。

(2)图的遍历方法有深度优先遍历(Depth-First Traersal)和广度优先遍历(Breadth-First Traversal),简称 DFS和BFS。

DFS对图遍历时尽可能先对纵深方向进行搜索;BFS是类似于树的按层次遍历。

3、实验内容题目1对以邻接矩阵为存储结构的图进行 DFS和 BFS遍历(1) 问题描述:以邻接矩阵为图的存储结构,实现图的DFS和BFS遍历。

(2) 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS和BFS序列。

(3) 测试数据:如图4.18所示。

(4) 实现提示:图的DFS遍历可通过递归调用或用栈来实现。

其思想是:只要当前结点未访问过,就访问该结点,沿着其一条分支深入下去,每深入一个未访问过的结点,就访问这个结点,然后从这个结点继续进行DFS遍历。

在这一过程中,若深入时遇到一个已访问过的结点,则查找是否有与这个结点相邻的下一个未访问过的结点。

若有则继续深人,否则将退回到这个结点的前一个结点,再找下一个相邻的本访问过的结点,……如此进行下去,直到所有的结点都被访问过。

BFS遍历可利用队列来帮助实现,也可以用栈。

实现方法与二叉树的层次遍历类似。

题目2对以邻接表为存储结构的图进行DFS和BFS遍历(1) 问题描述:以邻接表为存储结构,实现图的DFS和BFS遍历。

(2) 基本要求:建立一个图的邻接表存储,输出顶点的一种DFS和BFS序列。

(3) 测试数据:如图4.19所示:(4) 实现提示:以邻接表为存储结构的图的DFS和BFS算法的实现思想与以邻接矩阵为存储结构的实现是一样的。

实验报告:图的存储结构和遍历

实验报告:图的存储结构和遍历

武汉东湖学院
实验报告
学院:计算机科学学院专业计算机科学与技术2016年11月18日
姓名付磊学号42
班级计科一班指导老师吴佳芬
课程名称数据结构成

实验名称图的存储结构和遍历
1.实验目的
(1)了解邻接矩阵存储法和邻接表存储法的实现过程。

(2)了解图的深度优先遍历和广度优先遍历的实现过程。

2.实验内容
1. 采用图的邻接矩阵存储方法,实现下图的邻接矩阵存储,并输出该矩阵.
2. 设计一个将第1小题中的邻接矩阵转换为邻接表的算法,并设计一个在屏幕上显示邻接表的算法
3. 实现基于第2小题中邻接表的深度优先遍历算法,并输出遍历序列
4. 实现基于第2小题中邻接表的广度优先遍历算法,并输出遍历序列
3.实验环境
Visual C++ 6.0
4.实验方法和步骤(含设计)
我们通过二维数组中的值来表示图中节点与节点的关系。

通过上图可知,其邻接矩阵示意图为如下:
V0 v1 v2 v3 v4 v5
V0 0 1 0 1 0 1
V1 1 0 1 1 1 0
V2 0 1 0 0 1 0
V3 1 1 0 0 1 1
V4 0 1 1 1 0 0
V5 1 0 0 1 0 0
此时的“1”表示这两个节点有关系,“0”表示这两个节点无关系。

我们通过邻接表来在计算机中存储图时,其邻接表存储图如下:
}。

图的遍历-实验报告

图的遍历-实验报告

洛阳理工学院实验报告
visited[i]=0;
printf("该图不连通!");
printf("该图有%d个连通分量!\n");
return 0;
}
5.测试数据及结果
给出2组以上的测试数据并将运行结果截屏对应给出。

分别输入结点个数为4,5,弧数为4,3,具体运行结果如下图所示。

实验总结:
本次实验主要掌握了图的结构特征,以及邻接矩阵和邻接表存储结构的特点和实现。

掌握了在邻接矩阵或邻接表存储结构下图的深度优先和广度优先遍历算法思想及其程序实现。

实验初期遇到了一些问题,不过最后都在老师和同学的帮助下顺利的解决了。

数据结构 图实验报告

数据结构 图实验报告

数据结构图实验报告数据结构图实验报告引言:数据结构是计算机科学中非常重要的一个概念,它用于存储和组织数据,使得数据的操作更加高效和方便。

图是一种常见的数据结构,它由节点和边组成,用于表示各种实际问题中的关系和连接。

本实验旨在通过实际操作,深入理解图的基本概念和常见操作。

实验目的:1. 理解图的基本概念和特性;2. 掌握图的存储结构和基本操作;3. 实现图的遍历算法;4. 分析图的应用场景。

实验过程:1. 图的存储结构:在本次实验中,我们选择邻接矩阵来存储图。

邻接矩阵是一个二维数组,其中行和列分别表示图中的节点,数组元素表示节点之间的边的关系。

具体而言,如果节点i和节点j之间存在边,则邻接矩阵中的第i行第j列元素为1;否则为0。

2. 图的基本操作:在实验中,我们实现了以下几个图的基本操作:- 添加节点:通过向邻接矩阵中添加一行一列,并设置对应的边的关系,来添加一个节点;- 添加边:通过修改邻接矩阵中对应元素的值,来添加一条边;- 删除节点:通过删除邻接矩阵中对应行和列,并更新其他节点的索引,来删除一个节点;- 删除边:通过修改邻接矩阵中对应元素的值,来删除一条边;- 查找节点:通过遍历邻接矩阵,找到对应节点的索引;- 查找边:通过遍历邻接矩阵,找到对应边的关系。

3. 图的遍历算法:在实验中,我们实现了深度优先搜索(DFS)和广度优先搜索(BFS)两种图的遍历算法。

DFS通过递归的方式,先访问当前节点,再依次访问相邻节点,直到所有节点都被访问。

BFS则通过队列的方式,先访问当前节点,再依次访问当前节点的相邻节点,直到所有节点都被访问。

实验结果:通过实验,我们成功实现了图的存储结构和基本操作,并且正确实现了DFS和BFS两种遍历算法。

我们对不同规模的图进行了测试,并分析了算法的时间复杂度。

实验结果表明,邻接矩阵的存储结构在添加和删除节点时的时间复杂度较高,而在查找节点和边时的时间复杂度较低。

DFS和BFS的时间复杂度都为O(V+E),其中V表示节点数,E表示边数。

图遍历操作实验报告

图遍历操作实验报告

图遍历操作实验报告实验报告姓名:班级:12南航网络学号:实验题目图的遍历操作实验时间2012-11-27实验地点指导教师尚鲜莲实验目的与要求:目的:熟练掌握图的的两种存储结构;熟练掌握图的深度优先遍历和广度优先遍历算法;能解决简单的应用问题。

要求:分别采用邻接矩阵和邻接表存储结构,完成图的深度优先遍历(DFS)和广度优先遍历(BFS)的操作。

搞清楚BFS算法中队列的作用。

需求分析和实现功能说明::在test4.c中填写入相应语句,使之能顺利完成图的深度优先和广度优先遍历操作。

测试数据为:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。

将空缺语句补充完整,并写出输出结果。

)算法设计(最好给出流程图)::算法程序(源程序代码)#defineVEX_NUM5#defineMAXSIZE10#includestdio.htypedefcharVextype;type defstruct{Vextypevexs[VEX_NUM];intarcs[VEX_NUM][VEX_NUM];}Mgraph;type defstruct{Vextypeelem[VEX_NUM];intfront,rear;}SqQueue;SqQueueQ;intvisited[VEX_NUM]={0};voidcreat_Mgraph(Mgraph *G,inte);voidDfs_m(Mgraph*G,inti);voidBfs(Mgraph*G,intk);voidInitQueu e(SqQueue*Sq);intEnQueue(SqQueue*Sq,Vextypex);intDelQueue(SqQueue*Sq, Vextype*y);intQueueEmpty(SqQueue*Sq);voidmain(){inte,i,j;Mgraph*G;pri ntf(qingshuruwuxiangtubiandeshumuscanf(%d,creat_Mgraph(G,e);printf(qi ngshurubianlideqishidingdianscanf(%d,Dfs_m(G,i);for(j=0;jVEX_NUM;++j) visited[j]=0;Bfs(G,i);}voidcreat_Mgraph(Mgraph*G,inte){inti,j,k;print f(shurugedingdianxinxi:for(i=0;iVEX_NUM;++i)/*scanf(%c,G-vexs[i]);*/G-vexs[i]=getch();for(i= 0;iVEX_NUM;++i)printf(%d%c\n,i,G-vexs[i]);/*getch();*/for(i=0;iVEX_NU M;++i)for(j=0;jVEX_NUM;++j)G-arcs[i][j]=0;printf(shurugebiandedingdianxuhaoi,j:for(k=0;kk++){scanf(%d,%d,i,G-arcs[i][j]=1;G-arcs[j][i]=1;}}/*creat_M graph*/voidDfs_m(Mgraph*G,inti){intj;printf(%3c,G-vexs[i]);visited[i] =1;for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]==1)(!visited[j]))Dfs_m(G,j); }/*Dfs_m*/voidBfs(Mgraph*G,intk){intx,i,j;SqQueue*Q;InitQueue(Q);prin tf(%3c,G-vexs[k]);visited[k]=1;x=EnQueue(Q,G-vexs[k]);while(!QueueEmp ty(Q)){x=DelQueue(Q,G-vexs[i]);for(j=0;jVEX_NUM;j++)if((G-arcs[i][j]= =1)(!visited[j])){printf(%3c,G-vexs[j]);visited[j]=1;x=EnQueue(Q,G-vexs[j]);}}}/*Bfs*/voidInitQueue(SqQueue*Sq){Sq-front=Sq-rear=0;}/*InitQueue*/intEnQueue(SqQueue*Sq,Vextypex){ if((Sq-rear+1)%MAXSIZE==Sq-front)return0;Sq-elem[Sq-rear]=x;Sq-rear=( Sq-rear+1)%MAXSIZE;return1;printf(Sq-rearis:%d\n,Sq-rear);}/*EnQueue* /intDelQueue(SqQueue*Sq,Vextype*y){if(Sq-front==Sq-rear)return0;*y=Sq -elem[Sq-front];Sq-front=(Sq-front+1)%MAXSIZE;return1;}/*DelQueue*/in tQueueEmpty(SqQueue*Sq){return(Sq-front==Sq-rear);}上机调试情况说明(包括调试数据、调试过程中遇到的问题及解决方法)经调试没有发现问题测试结果和输出数据,对结果的分析和说明:无向图Gl,V={v0,v1,v2,v3,v4},E={(v0,v3),(v1,v2),(v1,v3),(v1,v4),(v2,v4),(v3,v4)},起始顶点为v0。

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告篇一:【数据结构】图的存储和遍历实验报告《数据结构B》实验报告系计算机与电子专业级班姓名学号XX年1 0月 9日1. 上机题目:图的存储和遍历2. 详细设计#include#define GRAPHMAX 10#define FALSE 0#define TRUE 1#define error printf#define QueueSize 30typedef struct{char vexs[GRAPHMAX];int edges[GRAPHMAX][GRAPHMAX];int n,e;}MGraph;int visited[10];typedef struct{int front,rear,count;int data[QueueSize];}CirQueue;void InitQueue(CirQueue *Q) {Q->front=Q->rear=0;Q->count=0;}int QueueEmpty(CirQueue *Q) {return Q->count=QueueSize;}int QueueFull(CirQueue *Q){return Q->count==QueueSize;}void EnQueue(CirQueue *Q,int x) {if(QueueFull(Q))error("Queue overflow");else{ Q->count++;Q->data[Q->rear]=x;Q->rear=(Q->rear+1)%QueueSize;}}int DeQueue(CirQueue *Q){int temp;if(QueueEmpty(Q)){ error("Queue underflow");return NULL;}else{ temp=Q->data[Q->front]; Q->count--; Q->front=(Q->front+1)%QueueSize; return temp;}}void CreateMGraph(MGraph *G){int i,j,k;char ch1,ch2;printf("\n\t\t请输入定点数,边数并按回车(格式如:3,4):");scanf("%d,%d",&(G->n),&(G->e));for(i=0;in;i++){ getchar();printf("\n\t\t请输入第%d个定点数并按回车:",i+1);scanf("%c",&(G->vexs[i]));}for(i=0;in;i++)for(j=0;jn;j++)G->edges[i][j]=0;for(k=0;ke;k++){ getchar();printf("\n\t\t请输入第%d条边的顶点序号(格式如:i,j):",k+1);scanf("%c,%c",&ch1,&ch2);for(i=0;ch1!=G->vexs[i];i++);for(j=0;ch2!=G->vexs[j];j++);G->edges[i][j]=1;}}void DFSM(MGraph *G,int i){int j;printf("\n\t\t深度优先遍历序列: %c\n",G->vexs[i]);visited[i]=TRUE;for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) ////////////////DFSM(G,j);}void BFSM(MGraph *G,int k){ int i,j;CirQueue Q;InitQueue(&Q);printf("\n\t\t广度优先遍历序列:%c\n",G->vexs[k]);visited[k]=TRUE;EnQueue(&Q,k);while(!QueueEmpty(&Q)){ i=DeQueue(&Q);for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) { visited[j]=TRUE;EnQueue(&Q,j);}}}void DFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) DFSM(G,i);}void BFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) BFSM(G,i);}void main(){MGraph *G,a;char ch1;int i,j,ch2;G=&a;printf("\n\t\t建立一个有向图的邻接矩阵表示\n");CreateMGraph(G);printf("\n\t\t已建立一个有向图的邻接矩阵存储\n");for(i=0;in;i++){ printf("\n\t\t");for(j=0;jn;j++)printf("%5d",G->edges[i][j]);}getchar();ch1='y';while(ch1=='y'||ch1=='Y'){ printf("\n");printf("\n\t\t图的存储与遍历 ");printf("\n\t\t********************************");printf("\n\t\t*1-----更新邻接矩阵*");printf("\n\t\t*2-----深度优先遍历*");printf("\n\t\t*3-----广度优先遍历*");printf("\n\t\t*0-----退出*");printf("\n\t\t********************************");}} printf("\n\t\t请选择菜单号(0----3)"); scanf("%d",&ch2); getchar(); switch(ch2) { case 1:CreateMGraph(G); printf("\n\t\t图的邻接矩阵存储建立完成\n");break; case 2:DFSTraverseM(G);break; case 3:BFSTraverseM(G);break; case 0:ch1='n';break; default:printf("\n\t\t输出错误!清重新输入!"); }3. 调试分析(1)调试过程中主要遇到哪些问题?是如何解决的?由于实习之初对邻接表的存储结构了解不是很清楚,所以在运行出了一个小错误,即在输出邻接表时,每个结点都少了一个邻接点。

实验报告:图的存储结构和遍历

实验报告:图的存储结构和遍历

武汉东湖学院
实验报告
学院:计算机科学学院专业计算机科学与技术2016年11月18日
姓名付磊学号2015040131042
班级计科一班指导老师吴佳芬
课程名称数据结构成

实验名称图的存储结构和遍历
1.实验目的
(1)了解邻接矩阵存储法和邻接表存储法的实现过程。

(2)了解图的深度优先遍历和广度优先遍历的实现过程。

2.实验内容
1. 采用图的邻接矩阵存储方法,实现下图的邻接矩阵存储,并输出该矩阵.
2. 设计一个将第1小题中的邻接矩阵转换为邻接表的算法,并设计一个在屏幕上显示邻接表的算法
3. 实现基于第2小题中邻接表的深度优先遍历算法,并输出遍历序列
4. 实现基于第2小题中邻接表的广度优先遍历算法,并输出遍历序列
3.实验环境
Visual C++ 6.0
4.实验方法和步骤(含设计)
我们通过二维数组中的值来表示图中节点与节点的关系。

通过上图可知,其邻接矩阵示意图为如下:
V0 v1 v2 v3 v4 v5
V0 0 1 0 1 0 1
V1 1 0 1 1 1 0
V2 0 1 0 0 1 0
V3 1 1 0 0 1 1
V4 0 1 1 1 0 0
V5 1 0 0 1 0 0
此时的“1”表示这两个节点有关系,“0”表示这两个节点无关系。

我们通过邻接表来在计算机中存储图时,其邻接表存储图如下:
}。

图的存储实验报告

图的存储实验报告

图的存储实验报告图的存储实验报告引言在计算机科学领域中,图是一种重要的数据结构,用于描述对象之间的关系。

图的存储方式对于图的遍历、搜索和其他操作有着重要的影响。

本实验旨在探究不同的图存储方式,并比较它们在不同操作下的性能差异。

一、邻接矩阵存储方式邻接矩阵是一种常见的图存储方式,它使用二维数组来表示图中各个顶点之间的关系。

在邻接矩阵中,行和列分别代表图中的顶点,矩阵中的元素表示两个顶点之间的边的关系。

实验中,我们通过一个简单的例子来说明邻接矩阵的存储方式。

假设有一个无向图,其中包含5个顶点和6条边。

我们可以使用一个5x5的矩阵来表示这个图,矩阵中的元素为1表示两个顶点之间存在边,为0表示不存在边。

邻接矩阵的优点是可以快速判断两个顶点之间是否存在边,时间复杂度为O(1)。

然而,邻接矩阵的缺点是当图中的边数较少时,会造成存储空间的浪费。

此外,在图中顶点的增加和删除操作时,需要重新调整矩阵的大小,开销较大。

二、邻接表存储方式邻接表是另一种常见的图存储方式,它使用链表来表示图中各个顶点之间的关系。

在邻接表中,每个顶点都有一个链表,链表中存储了与该顶点相邻的顶点。

实验中,我们同样以一个简单的例子来说明邻接表的存储方式。

假设有一个有向图,其中包含4个顶点和5条边。

我们可以使用一个包含4个链表的数组来表示这个图,数组中的每个元素表示一个顶点,链表中的元素表示与该顶点相邻的顶点。

邻接表的优点是在图中边的数量较少时,可以节省存储空间。

此外,在图中顶点的增加和删除操作时,开销较小。

然而,邻接表的缺点是判断两个顶点之间是否存在边的时间复杂度较高,需要遍历链表,时间复杂度为O(顶点的度数)。

三、性能比较与结论通过实验,我们对比了邻接矩阵和邻接表两种图存储方式在不同操作下的性能差异。

在判断两个顶点之间是否存在边的操作中,邻接矩阵的时间复杂度为O(1),而邻接表的时间复杂度为O(顶点的度数)。

因此,在此操作下,邻接矩阵的性能更优。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告图的遍历数据结构实验报告1. 实验目的本实验旨在通过使用图的遍历算法,深入理解图的数据结构以及相关算法的运行原理。

2. 实验背景图是一种非线性的数据结构,由顶点和边组成。

图的遍历是指按照某种规则,从图中的一个顶点出发,访问图中的所有顶点且仅访问一次的过程。

3. 实验环境本次实验使用的操作系统为Windows 10,编程语言为Python3.8,使用的图数据结构库为NetworkX。

4. 实验步骤4.1 创建图首先,我们使用NetworkX库创建一个有向图。

通过调用add_nodes_from()方法添加顶点,并调用add_edge()方法添加边,构建图的结构。

4.2 深度优先搜索(DFS)接下来,我们使用深度优先搜索算法来遍历这个图。

深度优先搜索是一种递归的遍历法,从一个顶点开始,沿着深度方向访问图中的顶点,直到不能继续深入为止。

4.3 广度优先搜索(BFS)然后,我们使用广度优先搜索算法来遍历这个图。

广度优先搜索是一种先访问离起始顶点最近的顶点的遍历法,从一个顶点开始,依次访问与之相邻的顶点,直到访问完所有的顶点为止。

5. 实验结果我们根据深度优先搜索和广度优先搜索算法,分别得到了图的遍历结果。

通过实验可以观察到每种遍历方式所访问的顶点顺序以及所需的时间复杂度。

6. 结论通过本次实验,我们了解了图的遍历数据结构及相关算法的原理和实现方式。

深度优先搜索和广度优先搜索算法适用于不同的场景,可以根据具体情况选择合适的算法进行图的遍历。

附件:无附录:本文所涉及的法律名词及注释:- 图:由结点和边组成的非线性数据结构。

- 顶点:图中的每个元素都称为顶点,也称为结点。

- 边:顶点之间的连接关系称为边。

图的建立与遍历实验报告

图的建立与遍历实验报告

图的建立与遍历实验报告------------图的建立与遍历姓名:曹庆松班级:1104学号:1111611512实验日期:2012.10.15报告撰写日期:2012.10.16一、实验目的:1、熟悉图的概念、存储结构和遍历方法。

2、以邻接表为存储结构,掌握无向图的基本操作和实现方法。

3、以邻接表为存储结构,掌握无向图的深度优先遍历的算法实现。

二、实验内容:以邻接表为存储结构,编写程序实现。

1、要求通过键盘输入图的顶点,以及每一条边的两个顶点从而建立无向。

为了简化实验,顶点用数字表示。

2、在以上实验的基础上,实现无向图的深度优先遍历算法。

要求以用户给定的顶点为起始点,显示深度优先遍历的次序。

三、程序代码及结果展示:#include "stdafx.h"#include<stdio.h>#include<stdlib.h>#include <malloc.h>#define MAX_VERTER_NUM 20typedef struct ArcNode{ //表节点int adjvex; //邻接点struct ArcNode *nextarc; //指向下一条弧的指针}ArcNode;typedef struct VNode{ //头结点int data; //定点信息ArcNode * firstarc; //指向第一个依附该顶点的弧的指针}VNode,AdjList[MAX_VERTER_NUM];typedef struct{ //图AdjList vertices; //顶int vexnum,arcnum;//图的顶点数和弧数int Kind;// 图的种类标志}ALGraph;// 对图 G 作深度优先遍历int LocateVex(ALGraph * G,int v) //寻找节点V的位置 { int k,n;for(k=0;k<G->vexnum;k++){ if(G->vertices[k].data==v){n=k;break;}}return n;}int n=1;int visited[MAX_VERTER_NUM]; void DFS(ALGraph *G,int v)//递归调用{ArcNode *p;>vertices[v].firstarc; p=G-if(n<G->vexnum+1){printf(" V%d ",G->vertices[v].data);n++;}visited[v]=1;while(p){if(!visited[p->adjvex])DFS(G,p->adjvex);p=p->nextarc;}}void DFSVisited(ALGraph * G)//深度遍历{int v;int n;printf("请输入遍历的起始的顶点:");scanf("%d",&n);n"); printf("递归深度优先遍历点顺序: \DFS(G,n-1);for(v=0;v<G->vexnum;v++)visited[v]=0;for(v=0;v<G->vexnum;v++)if(!visited[v])DFS(G,v);}void Insertadj(ALGraph * G,int i,int j) //插入邻接点的下标 { ArcNode *a1,*a2;a1=(ArcNode *)malloc(sizeof(ArcNode));a1->adjvex=j;a1->nextarc=NULL;if(G->vertices[i].firstarc==NULL){G->vertices[i].firstarc=a1;}else{a2=G->vertices[i].firstarc;while(a2->nextarc){a2=a2->nextarc;}a2->nextarc=a1;}}void Init_ALGraph(ALGraph * G) //初始化图并建图 { int v,v1,v2,i,j,q,p;int m=0;printf("请输入顶点数:");scanf("%d",&G->vexnum);printf("请输入边数:");scanf("%d",&G->arcnum);for(v=0;v<G->vexnum;v++){printf("顶点 V%d:",(v+1));scanf("%d",&(G->vertices[v].data));>vertices[v].firstarc=NULL; G-}for(v=0;v<G->arcnum;v++) {printf("请输入点点: ");scanf("%d%d",&v1,&v2);i=LocateVex(G,v1); //v1的位置j=LocateVex(G,v2); //v2的位置Insertadj(G,i,j);Insertadj(G,j,i);}}int main(int argc,char **argv) {ALGraph G;Init_ALGraph(&G);//初始化图并建图DFSVisited(&G);//深度优先遍历printf("\n");return 0;}四、实验总结:通过本实验,我对图的存储结构、图的遍历等有了比较深的理解与运用,图的遍历和树的遍历很类似,但是却比树的遍历复杂很多。

图的存储与遍历报告册

图的存储与遍历报告册
(4)实现提示:以邻接表为存储结构的图的DFS和BFS算法的实现思想与以邻接矩阵为存储结构的实现是一样的。只是由于图的存储形式不同。而具体到取第一个邻接点和下一个邻接点的语句表示上有所差别而已。
三、基本思想、原理和算法描述:
邻接矩阵:
printf("please input the vexnum,arcnum and arcs of graph:\n");
(1)问题描述:以邻接矩阵为图的存储结构,实现图的DFS和BFS遍历。
(2)基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS和BFS序列。
题目2对以邻接表为存储结构的图进行DFS和BFS遍历
(1)问题描述:以邻接表为存储结构,实现图的DFS和BFS遍历。
(2)基本要求:建立一个图的邻接表存储,输出顶点的一种DFS和BFS序列。
}
四、源程序清单:见附页
五、程序运行结果(包括上机调试的情况、调试所遇到的问题是如何解决的,并对调试过程中的问题进行分析,对执行结果进行分析。):
1、二维矩阵的输入不确定。
2、没有考虑到多个起点的遍历,总是将一些顶点漏掉。
3、对链表的图各种内省成分还不太熟悉。
4、调试结果可见,在程序存在一定的问题,主要是会导致结点可能会重复输出,但如果改变起始点,运行结果又正常,关键问题还是没能找到问题的所在,但会进一步研究,修改程序使其能正常工作。
指导教师签名:2014年月日
DFS(G,i);
voidDFS(graph &G,intv)
{
intw,i;
visited[v]=true;
printf("%d",v+1);
for(w=0;w<G.vexnum;w++)

数据结构课程设计图的存储与遍历报告

数据结构课程设计图的存储与遍历报告

数据结构课程设计图的存储与遍历报告《数据结构》课程设计题目图的存储与遍历学生姓名指导教师学院专业班级完成时间目录第一章课程设计目的 (2)第二章课程设计内容和要求 (2)第三章课程设计分析 (3)第四章算法描述 (4)第五章源代码 (8)第六章运行结果分析 (13)第七章结束语 (15)第八章参考文献 (15)第一章课程设计目的本学期我们对《数据结构》这门课程进行了学习。

这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。

这次课程设计不但要求实习者掌握《数据结构》中的各方面知识,还要求实习者具备一定的C语言基础和编程能力。

具体说来,这次课程设计主要有两大方面目的。

一是让实习者通过实习掌握《数据结构》中的知识。

对于《图的存储与遍历》这一课题来说,所要求掌握的数据结构知识主要有:图的邻接表存贮结构、队列的基本运算实现、邻接表的算法实现、图的广度优先搜索周游算法实现、图的深度优先搜索周游算法实现。

二是通过实习巩固并提高实习者的C语言知识,并初步了解Visual C++的知识,提高其编程能力与专业水平。

第二章课程设计内容和要求2.1课程设计内容该课题要求以邻接表的方式存储图,输出邻接表,并要求实现图的深度、广度两种遍历。

2.1.1图的邻接表的建立与输出对任意给定的图(顶点数和边数自定),并且对有向图与无向图都应进行讨论,根据邻接表的存储结构建立图的邻接表并输出之。

尽量用图形化的方式输出邻接表。

2.1.2 图的遍历的实现图的遍历包括图的广度优先遍历与深度优先遍历。

对于广度优先遍历应利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。

首先建立一空队列,从初始点出发进行访问,当被访问时入队,访问完出队。

并以队列是否为空作为循环控制条件。

对于深度优先遍历则采用递归或非递归算法来实现。

2.2 运行环境该程序的运行环境为Windows xp系统,Microsoft Visual C++6.0版本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉东湖学院
实验报告
学院:计算机科学学院专业计算机科学与技术2016年11月18日
姓名付磊学号42
班级计科一班指导老师吴佳芬
课程名称数据结构成

实验名称图的存储结构和遍历
1.实验目的
(1)了解邻接矩阵存储法和邻接表存储法的实现过程。

(2)了解图的深度优先遍历和广度优先遍历的实现过程。

2.实验内容
1. 采用图的邻接矩阵存储方法,实现下图的邻接矩阵存储,并输出该矩阵.
2. 设计一个将第1小题中的邻接矩阵转换为邻接表的算法,并设计一个在屏幕上显示邻接表的算法
3. 实现基于第2小题中邻接表的深度优先遍历算法,并输出遍历序列
4. 实现基于第2小题中邻接表的广度优先遍历算法,并输出遍历序列
3.实验环境
Visual C++ 6.0
4.实验方法和步骤(含设计)
我们通过二维数组中的值来表示图中节点与节点的关系。

通过上图可知,其邻接矩阵示意图为如下:
V0 v1 v2 v3 v4 v5
V0 0 1 0 1 0 1
V1 1 0 1 1 1 0
V2 0 1 0 0 1 0
V3 1 1 0 0 1 1
V4 0 1 1 1 0 0
V5 1 0 0 1 0 0
此时的“1”表示这两个节点有关系,“0”表示这两个节点无关系。

我们通过邻接表来在计算机中存储图时,其邻接表存储图如下:
}。

相关文档
最新文档