学习高数的心得体会

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习高数的心得体会

转眼间,大一将要结束了,记得刚开始接触高数的时候,确实

觉得力不从心,不知道该怎么学才能将公式运用自如,渐渐地发现,

其实那些公式并不是死记硬背才行,只要充分理解了各个知识点,遇

到题目可以自己分析出正确的解题思路,就能把题目解出来。所以,

学习高等数学,记忆的负担轻了,但对思维的要求却提高了。每一次

高数课,都是一次大脑的思维训练,都是一次提升理解力的好机会。

还记得当时学习曲面积分的时候,怎么也学不会,看过就往,反

反复复,搞得我真不知道怎样才好,不过现在还好能大体记住曲面积

分的个知识点,各类解法,总结下,曲面积分:

⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰

∑∑

∑∑∑∑

∑++=++±=±=±=++++=ds

R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz z y z y x P dydz z y x P dxdy y x z y x R dxdy z y x R dxdy z y x R dzdx z y x Q dydz z y x P dxdy y x z y x z y x z y x f ds z y x f zx

yz

xy

xy

D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)],(,,[),,(22γβα系:两类曲面积分之间的关号。

,取曲面的右侧时取正号;,取曲面的前侧时取正

号;,取曲面的上侧时取正

,其中:

对坐标的曲面积分:对面积的曲面积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑

∑∑

Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂ds

A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n div )cos cos cos (...,0div ,div )cos cos cos ()(

成:因此,高斯公式又可写,

通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:

—高斯公式的物理意义γβαννγβα

在纠结曲面积分的时候我也注意到了,在理解的基础上对知识点进行总结,会让思路变得清晰而准确。

其实我觉得,高等数学的学习目的不是为了应付考试,因此,我们的学习不能停留在以解出答案为目标。我们必须知道解题过程中每一步的依据。最初,我以为只要把定理内容记住,能做题就行了。然而,渐渐地,我发现如果没有真正明白每个定理的来龙去脉,就不能真正掌握它,更谈不上什么运用自如了。于是,我试着开始认真地学习每一个定理的推导。尽管这个过程并不轻松,但我却认为非常值得。因为只有通过自己去探索的知识,才是掌握得最好的。

前几天在网上看到一个日志感觉挺玩的,就摘下来了:

拉格朗日,傅立叶旁,我凝视你凹函数般的脸庞。

微分了忧伤,积分了希望,我要和你追逐黎曼最初的梦想。

感情已发散,收敛难挡,没有你的极限,柯西抓狂。

我的心已成自变量,函数因你波起波荡。

低阶的有限阶的,一致的不一致的,我想你的皮亚诺余项。

狄利克雷,勒贝格杨,

一同仰望莱布尼茨的肖像,拉贝、泰勒,无穷小量,

是长廊里麦克劳林的吟唱。

打破了确界,你来我身旁,温柔抹去我,

阿贝尔的伤,我的心已成自变量,函数因你波起波荡。

低阶的有限阶的,一致的不一致的,是我想你的皮亚诺余项。

相关文档
最新文档