化工热力学培训课件

合集下载

第五章化工热力学课件

第五章化工热力学课件
2、稳态流动
①连续 ②质量流率相等(无积累)③热力学性质不随时间变化
1 2 1 2 m(H1 u1 gz1 ) m(H 2 u2 gz2 ) WS Q 0 2 2 u 2 H gz Q Ws 积分、单位质量 2
微分流动过程
dH udu gdz Q Ws
H C p dT
373
813
27.89 4.27110 T dT
3
13386kJ / kmol Cp R S dT dP T P 373 27.89 1.013 3 4.27110 dT 8.314 ln 813 4.052 T 12.083kJ / kmol K
压缩机可以提高流体 的压力,但是要消耗功
枣庄学院 化学化工系
化工热力学
透平机和压缩机
2
H
u
2
gz Q Ws
是!
通常可以忽略
Ws H
是否存在轴功?
是否和环境交换热量? 位能是否变化? 动能是否变化?
不变化或者可以忽略 通常可以忽略
枣庄学院 化学化工系
化工热力学
节流阀 Throttling Valve
无流动功 单位流体
通常势能和动能无变化
d (mU) W Q dU W Q
枣庄学院 化学化工系
化工热力学
5.1 能量平衡方程
能量平衡方程的应用
1 2 1 2 d (mE) m1 (H1 u1 gz1 ) m2 (H 2 u2 gz2 ) WS Q 2 2
g为重力加速度。
1 2 E1 U1 u1 gz1 2
1 2 E2 U 2 u2 gz2 2

化工热力学课件化工专业本科阶段-(8)

化工热力学课件化工专业本科阶段-(8)

解 W idHT0S
W L W s W idT 0S Q
T产生功
Ws Wid
Ws 0.85 WR
HQWs
可逆绝热过程 S1 S2
HWR
25
查过热水表汽表可知,初始状态1.57MPa, 484℃ 时的蒸汽焓、熵值为H1=3437.5kJ/kg, S1=7.5035kJ/(kg·K)
若蒸汽按绝热可逆膨胀,则是等熵过程,当膨胀 至0.0687MPa时,熵为 S´2=S1=7.5035kJ/(kg·K) 查过热水 蒸汽表
交换,例如传热过程也是可逆的
3
流动过程理想功的计算式
对于稳流过程,热一律表达式为:
H12C2gZQWS
忽略动,势能变化
HQWS
若可逆
QT0S
W id HT 0 S (7-41)
稳流过程理想功
4
注意点:
➢不忽略进出口的动能,势能的变化。完整的表达式为:
W id HT 0 S1 2 C 2g Z
➢体系经历一个稳流过程,状态发生变化,即可计算其 理想功,理想功的值决定于体系的始、终态与环境温度, 而与实际变化途径无关。
11
解:100kPa压力下水的沸点约为100℃,有水蒸气
表查得
H1=2676.1kJ/kg, S1=7.3549kJ/(kg·K) 在环境温度(T0=t0+273.15=293.15K)下, 100kPa压力下水的焓和熵为
H0=83.96kJ/kg, 所以加给水的热量为
S0=0.2966 kJ/(kg·K)
➢要区别可逆轴功与理想功这两个概念.WidWSRWc
对绝热过程
WC 0
Wid WSR
对不做轴功的过程 WSR 0
Wid Wc

化工热力学38页PPT文档

化工热力学38页PPT文档
热力学第零定律为建立温度的概念提供了实验基础。根 据第零定律,处于同一热平衡状态的所有体系必定有一宏观 特性是彼此相同的,描述此宏观特性的参数称为温度。可见, 温度是描述体系特性的一个状态函数。
南阳理工学院 生化学院
化工热力学
热力学的分支
第一章 绪 论
⑴工程热力学:十九世纪蒸汽机的发明和相应的科学形成了工程热力学,工 程热力学主要研究功热转换,以及能量利用率的高低。 ⑵化学热力学:化学热力学是应用热力学原理研究有关化学的各类平衡问题, 这在物理化学中是一个很重要的组成部分。离开了热力学原理,许多化学现 象就无法深入探讨下去。化学热力学主要侧重于热力学函数的计算,主要是 H、S、U、F 和G 的计算。 ⑶化工热力学:研究在化学工程中的热力学问题,化工热力学具有化学热力 学和工程热力学的双重特点。它既要解决能量的利用问题,又要研究解决相 际之间质量传递与化学反应方向与限度等问题。
南阳理工学院 生化学院
化工热力学
第一章 绪 论
化工热力学与其他化学工程分支学科的关系
原料
反应
分离提纯
产品
从这一过程可以提出这样几个问题:
反应工程
分离工程
⑴制造原料的获得。 ⑵选择反应工艺条件,设计反应器。
⑶确定分离、提纯方法,设计分离设备。
化工动力学 催化剂工程
化工热力学
针对这几个问题,就要考虑解决它的 办法,原则上为这样的解决途径,我们可
南阳理工学院 生化学院
化工热力学
第一章 绪 论
未来发 展:
热力学作为科技发展和社会进步的基石从来没有动摇过, 并已逐渐深入到材料、生命、能源、信息、环境等前沿领 域。热力学所处理的对象不单单是一般的无机、有机分子, 还包含有链状大分子、蛋白质分子、双亲分子、电解质分 子和离子等,其状态也不局限于常见的汽(气)、液、固三态, 还涉及高温高压、临界和超临界、微孔中的吸附态、液晶 态、微多相态等,这一切都对化工热力学提出了新的要求, 并向着连续热力学,带反应的热力学,高压与临界现象, 界面现象,电解质溶液,膜过程,高分子系统,生物大分 子,不可逆过程热力学,分子热力学,分子模拟等复杂系 统发展。

《化工热力学》课件

《化工热力学》课件
提高产品质量和产量
通过改进热力学过程,可以提高产品的质量和产量,提升企业竞争力。
03
02
01
历史回顾
化工热力学起源于工业革命时期,随着科技的发展和工业的进步,逐渐形成一门独立的学科。
发展趋势
随着环保意识的提高和能源需求的增加,化工热力学将更加注重节能减排、资源循环利用和可再生能源的开发利用。
未来展望
总结词:熵增加
详细描述:热力学第二定律指出,在封闭系统中,自发过程总是向着熵增加的方向进行,即系统总是向着更加混乱无序的状态发展。这个定律对于化工过程具有重要的指导意义,因为它揭示了能量转换和利用的限制,以及不可逆过程的本质。
绝对熵的概念
总结词
热力学第三定律涉及到绝对熵的概念,它指出在绝对零度时,完美晶体的熵为零。这个定律对于化工过程的影响在于,它提供了计算物质在绝对零度时的熵值的方法,这对于分析化学反应的方向和限度具有重要的意义。同时,它也揭示了熵的物理意义,即熵是系统无序度的量度。
总结词
化工过程的能量效率是衡量化工生产经济效益的重要指标,通过提高能量效率,可以降低生产成本并减少环境污染。
能量效率是评价化工过程经济性和环境影响的重要参数。它反映了化工过程中能量转化和利用的效率。提高能量效率意味着减少能源的浪费,降低生产成本,同时减少对环境的负面影响。为了提高能量效率,需要采用先进的工艺技术和设备,加强能源管理,优化操作条件。
《化工热力学》PPT课件
xx年xx月xx日
目 录
CATALOGUE
化工热力学概述热力学基本定律化工过程的能量分析化工过程的热力学分析化工热力学的应用实例
01
化工热力学概述
提高能源利用效率
通过优化化工过程的热力学参数,可以降低能耗,提高能源利用效率。

化工热力学的教学课件

化工热力学的教学课件
热力学中因做功的方式不同,有各种形式的功
机械功、电功、化学功、表面功、磁功体系所
得的功(环境对体系做功)为正值,体系所失
的功(对环境做功)为负值。功不是体系的性
质,不是状态函数,而是和过程所经的途径有
关。在国际单位制中功的单位也用J表示。

第一章 绪 论
——名词、定义、基本概念
5 能、功和热
(3)热:从经验知道,一个热的物体和一个冷的
1593年:伽利略制造出第一只温度计
1784年:有了比热的概念
18世纪末:证明了热不是一种物质
1824年:卡诺提出了理想热机的设想
1738年:伯努利提出了第一个能量守恒实例
提出了热力学第一定律
1824年:焦耳测定了热功当量
第一章 绪 论
——化工热力学的发展简史


1850年:克劳休斯证明了热机效率,提出了热力学第
物体相接触,冷的变热了,而热的变冷了。说
明在它们之间有某种东西在相互传递着,人们
称这种东西为热。当热加到某体系以后,其贮
存的不是热,而是增加了该体系的内能。有人
形象化地把热比作雨,而把内能比作池中的水,
当体系吸热而变为其内能时,犹如雨下到池中
变成水一样体系吸热取正值,放热取负值。

第一章 绪 论
——名词、定义、基本概念
G等)表示。上述三个问题的解决离不开
热力学数据与物性数据
第一章 绪 论
——化工热力学的主要研究内容

提供热力学数据与物性数据:
但是,热力学的有效应用(如过程模
拟与放大),往往由于缺乏热力学基础
数据而发生困难。根据统计,现有十万
种以上的无机化合物和近四百万种有机
化合而热力学性质已研究得十分透彻的

化工热力学的教学课件

化工热力学的教学课件

第四章 溶液的热力学性质
本章要求: 1、掌握化学位、偏摩尔性质、逸度/逸度系数、
活度/活度系数、混合性质变化、超额性质等的 定义和计算 2、掌握溶液的性质及其规律 3、理想溶液与非理想溶液 4、Gibbs-Duhem方程 5、活度系数与超额自由焓的关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——变组成体系热力学性质间关系式
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——偏摩尔性质
第四章 溶液的热力学性质 ——超额性质
第四章 溶液的热力学性质 ——活度系数与组成的关系
第四章 溶液的热力学性质 ——活度系数与组成的关系

化工热力学经典PPT课件

化工热力学经典PPT课件

j
1 2
K j 1
K k 1
z jk 2kT
jk
12 高分子系统的分子热力学
多元系旋节线
A11
Dsp
A21
AK 1,1
A1,K 1
A2,K 1
0
AK 1,K 1
多元系临界点
Dsp 0
D1 A21 Dcri
AK 1,1
DK 1
A2,K 1
0
AK 1,K 1
Aij
2 A~V
● 再填充N1个组分1分子
只要将上式作一变换即可,即:
N2 N1 r2 r1 Nr N1r1
N1r1 0
所有N1个组分1分子的填充方式数为
1
z N1 (z 1) N1 (r1 2) N1N1r1 r1N1r1 NrN1 (r1 1) N1!e N1r1
12 高分子系统的分子热力学
混合物总的填充方式数为
12 高分子系统的分子热力学
胞腔模型
键长1,键角90和180 邻座数6
高分子溶液由立方格子堆 积而成,高分子由r个链节组 成,每个格子可以被高分子的 一个链节或一个溶剂分子占
据,但每个格子并非被高分子 链节或溶剂分子填满,而是留 有一定的空隙。格子的大小是 可以变化的,系统压力愈高, 格子愈小,填充后留下的空隙 也愈小。为可压缩液体,在此 基础上建立的模型能反映压力 变化对系统热力学性质的影响。 可以得到状态方程。
i
12 高分子系统的分子热力学
为简单起见,采用完全随机分布的近似处理:
N11 N1r1z1 / 2 N22 N2r2z2 / 2 N12 N1r1z2 N2r2z1
代入式(1)得
U z N1r1z111 / 2 N2r2z222 / 2 N1r1z212

化工热力学ppt

化工热力学ppt

0.5 1 (0.48 1.57 0.176 2 )(1 Tr0.5 )

SRK方程的特点:与RK方程相比,大大提高了表达气、 液平衡的准确性,使之用于混合物的气液平衡计算,在工 业上得到广泛应用;但是预测液相的摩尔体积不够准确, 其Zc(等于1/3)与实际流体的临界压缩因子相比,还是 偏大。 (4)Peng-Robinson(PR)方程 为了改善RK与SRK方程的不足,Peng和Robinson又提出 了PR状态方程 形式: RT a p V b V (V b) b(V b)
(2)RK方程 RK方程是1949年建立的。 形式
RT a/ T p V b V (V b)
其中的方程常数与vdw方程常数的导出方法类似,与纯物质 的临界参数的关系为
R 2Tc2.5 a 0.42748 pc RTc b 0.08664 pc
RK方程的的特点:与vdw方程相比,其Zc(等于1/3)较 小,故预测流体性质的准确度提高了,但是,对液相P-VT关系的描述准确度还不够高。 (3)Soave-Redilich-Kwong(SRK)方程 1972年,Soave修正了RK方程中常数a,使a不仅与临界参 数有关,还与物质的蒸气压及外界条件温度相关联,建立 了SRK方程。 形式
第二章 流体的P-V-T性质
2.1 引言 1)用途:用流体的P-V-T性质,结合一定的热力学原理式, 可以推算更有用的性质M。这是流体的P-V-T性质的最重 要的用途之一,所以流体的P-V-T性质的研究是重要的基 础工作。 2)获得方法:流体的P-V-T性质的获得,主要通过两种方 法:一是实验测定,存在种种弊端 。虽然至今已经积累 了大量的纯物质及其混合物的P-V-T数据,如水、空气、 氨等,但是实验测定不具有普遍性,如费时、费力又耗 资;测定所有流体的P-V-T数据显然是不现实的,离散的 数据点不便于进行数学处理,难以采用理论的方法获得 数据点以外的或其它的热力学性质;二是用流体的临界 参数、正常沸点、饱和蒸气压等基础数据来预测流体的 P-V-T性质。这是具有实际意义的工作,因为绝大多数的 纯流体的上述基础数据能够在有关手册中查到, 这正是本 章要讨论的,

《高等化工热力学》课件

《高等化工热力学》课件
《高等化工热力学》ppt课件
目录
• 绪论 • 热力学基础 • 化学平衡 • 相平衡 • 热力学在化工过程中的应用 • 结论与展望
01
绪论
热力学的定义与重要性
总结词:基本概念
详细描述:热力学是一门研究热现象的物理学分支,主要关注能量转换和传递过程中的基本规律和性 质。在化工领域,热力学是核心理论基础之一,对于化工过程的优化、设计和改进具有重要意义。
反应过程的优化提供理论支持。
加强与环境、能源等领域的交叉研究,探索化工过程 的绿色化、低碳化、资源化发展路径,为可持续发展
提供科技支撑。
针对复杂化学反应体系的热力学性质和传递特 性进行研究,发展适用于复杂体系的热力学模 型和计算方法。
结合人工智能、大数据等先进技术,发展智能化 的热力学分析和优化工具,提高化工过程的效率 和效益。
谢谢观看
化工过程的节能与减排
节能技术
利用热力学原理,开发和应用节能技术,降低能耗和减少温室气体排放。
减排措施
通过改进工艺和采用环保技术,减少化工过程对环境的污染和排放。
06
结论与展望
高等化工热力学的重要性和应用价值
高等化工热力学是化工学科中的重要分支,它涉及到化学反应、传递过程和热力学的基本原理,是实 现高效、低耗、安全、环保的化工生产的关键。
03
化学平衡
化学平衡的基本概念
化学平衡的定义
在一定条件下,可逆反应的正逆 反应速率相等,反应体系中各物 质的浓度不再发生变化的状态。
平衡常数
在一定温度下,可逆反应达到平衡 时各生成物浓度的系数次幂的乘积 与各反应物浓度的系数次幂的乘积 之比。
平衡态的描述
平衡态是系统内部各组分浓度和能 量达到相对稳定的状态,可以用状 态方程和热力学函数来描述。

2024版化工热力学精ppt课件

2024版化工热力学精ppt课件

化工热力学精ppt课件目录•化工热力学基本概念•流体的热物理性质•化工过程能量分析•相平衡与相图分析•化学反应热力学基础•化工热力学在工艺设计中的应用PART01化工热力学基本概念孤立系统与外界既没有物质交换也没有能量交换的系统。

开放系统与外界既有能量交换又有物质交换的系统。

封闭系统与外界有能量交换但没有物质交换的系统。

热力学系统及其分类热力学基本定律热力学第零定律如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。

热力学第一定律热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

热力学第二定律不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。

状态方程与状态参数状态方程描述系统或它的性质和本质的一系列数学形式。

将系统的物理性质用数学形式表达出来,即建立该系统各状态参数间的函数关系。

状态参数表征体系特性的宏观性质,多数指具有能量量纲的热力学函数(如内能、焓、吉布斯自由能、亥姆霍茨自由能)。

偏微分与全微分概念偏微分在多元函数中,函数对每一个自变量求导数,就是偏导数。

全微分如果函数z = f(x, y) 在(x, y) 处的全增量Δz = f(x + Δx, y + Δy) -f(x, y) 可以表示为Δz = AΔx + BΔy + o(ρ),其中A、B 不依赖于Δx, Δy 而仅与x, y 有关,ρ = √[(Δx)2 + (Δy)2],此时称函数z = f(x, y) 在点(x, y) 处可微,AΔx + BΔy 称为函数z = f(x, y) 在点(x, y) 处的全微分。

PART02流体的热物理性质基于实验数据的经验方法利用已有的实验数据,通过拟合、插值等数学手段,得到纯物质的热物理性质随温度、压力等条件的变化规律。

化工热力学培训课件(ppt 35页)

化工热力学培训课件(ppt 35页)
log P2s 7.9392 1650.4 /(t 226.27) V2 22.888 3.642 102 T 0.685 104 T 2
P i (mmHg )
Vi (cm / mol )
3
t (C)
T (K )
解:由于低压气相理想气体,液相为非理想溶液,
汽液平衡关系为
T 38.45 42.00 46.00 50.00 54.00 58.00 62.33
x 1.00 0.7863 0.5810 0.405 0.254 0.127 0.000
y 1.00 0.9014 0.7728 0.623 0.450 0.249 0.000
65 60 55 50 45
P=53.3kPa
P kPa
s
p1 x1 p2 x2
s s s s
50 40 30 20 10 0 0.0 0.2 0.4 0.6 0.8 1.0
p1 x1 p2 (1 x1 ) ( p1 p2 ) x1 p2
s S
x(y)
(2) 求P=53.3 KPa时的T-x-y数据
(若指定x,则因为T未知,而T与Pis的关系为非线形 关系,求温度时要试差)
γ
汽-液平衡计算回顾:
根据独立变量的指定方案不同可以将汽-液平衡计算分 成以下两大类,即泡、露点计算和平衡闪蒸计算。
泡、露点计算的特点是已知温度、压力、汽相组成、 液相组成四者中的两个,去求另两个。
泡点压力计算: 指定液相组成x和温度T,求汽相组成y和压力P;
泡点温度计算: 指定液相组成x和压力P,求汽相组成y和温度T;
i
变化?
再次计算ΦiV,Ki 和
K x
7.3.3.2 活度系数法计算泡、露点

《化工热力学》PPT课件

《化工热力学》PPT课件
化工热力学
Chemical Engineering thermodynamic s
第四章 流体混合物的热力学性质
本章的学习目的: 通过本章的学习,掌握敞开体系
均相混合物的基本热力学关系及计算
枣庄学院 化学化工系
第四章 流体混合物的热力学性质
本章的知识点与重点
1、掌握变组成体系热力学性质间的关系 2、理解化学位、偏摩尔量、混合物的逸度及逸度系数
• 溶液的摩尔性质
M,如 U、H、S、G、V
• 偏摩尔性质 M i
• 纯组分的摩尔性质
,如 Ui、Hi、Si、Gi、Vi
Mi,如 Ui、Hi、Si、Gi、Vi
4.2 化学位和偏摩尔性质
(3)偏摩尔性质的计算 ⅰ解析法(截距法)

Mi
nM ni
T ,P ,n j
展开
Mi
M
n ni
T ,P,n
M ni
T
,P,n
M xk
T ,P,x
xk ni
n
j
j
j
(4-14)
4.2 化学位和偏摩尔性质
xk
nk n
x k n i
n j
n
n k n i
=0
nj
n
k
n n i
n2
=1 n j
xk ni
n
nk xk
n2
n
j
逐次代入 代入4-14 代入4-13
4.2 化学位和偏摩尔性质
M i
M
k i
xk
M xk
T ,P ,x ji ,k
二元体系
dM M1 M x2 dx2 或
M1
M
x2

化工热力学方法讲座PPT

化工热力学方法讲座PPT

液体活度系数模型
优点:
•有效的关联化学品系统在低压下的性 质; •容易使用无限稀释活度系数数据; •可根据基团贡献进行预测; •许多物系的二元相互作用参数可从 DECHEMA 丛书中查出;
液体活度系数模型
局限性:
• 只能用于液相; • 可用的温度压力范围很窄;
• 对超临界组分需采用亨利常数;
立方型状态方程
• Soave-Redlich-Kwong (1972)
RT a P= v b ( v )( v b )
• Peng-Robinson (1976)
RT a P= v b (v 0.414 b)(v 2.414 b)
立方型状态方程-Φi计算
• PR方程Φi计算
• 换热器设计和核算
– 要求焓值及其它性质计算
• 压缩机、膨胀机设计
– 要求熵值及其它性质计算
• 塔水力学计算,管线阻力降、直径计算
– 要求传递性质计算
热力学方法应用步骤
☆ 确定物系的性质:极性或非极性物质 ☆ 选择适合物系的正确的热力学模型.
1、非极性物质-状态方程法或通用关联式法; 2、极性物质-活度系数法; • 确定该物系的关键二元对. • 核实该关键二元对的相互作用参数. • 估算缺少的其它二元对的相互作用参数.
rises again with increasing temperature Not reliable for extrapolation to high acentric factor because of 4th order dependence on Cannot be applied to polar components
• SIMSCI a(T)

绪论化工热力学-PPT

绪论化工热力学-PPT
活了全世界 10、生物医学工程
4
化工热力学和其她化学工程分支学科间得关系
全流程的 最佳化设 计和控制
吸收 系统 模拟
反应 系统 模拟
精馏 系统 模拟
吸收 塔计 算
反应 器计 算
换热 器计 算
精馏 塔计 算
反应 速度 计算
传质 计算
传热 计算
流体 力学 计算
相平 衡计 算
反应 平衡 计算
物料 平衡 计算
3)注意单位换算 能量:J,Cal,cm3、atm,cm3、bar 压力:kg/m2(工程压力),atm,mmHg,bar, Pa,MPa 温度:K,℃ ,oF,
4)循序渐进
29
四、为何学和如何学好化工热力学
3、教材与习题:
❖ 教材:董新法编,化工热力学,化学工业出版社,2008 ❖ 习题: 陈钟秀,顾飞燕编,化工热力学例题与习题,化学工业出版
15
经典热力学
❖ 无论就是工程热力学还就是化学热力学还 就是化工热力学,她们均就是经典热力学,遵 循经典热力学得三大定律(热力学第一、第 二、第三定律),不同之处就是由于热力学 应用得具体对象不同,决定了各种热力学解 决问题得方法有各自得特点。
16
一、 化工热力学得定义和用途
2、化工热力学得用途
2
化学工程能做什么?
❖ 早期化学工程得主要目标就就是使化学家实验室做出来得化 学反应商品化!
❖ 化学工程就是以化学、物理、生物、数学得基本原理作为基 础,研究化学工业和相关工业中得物质转化、物质形态和物质 组成得一门工程科学
10项顶尖成果 (1983年, AIChE )
1、合成橡胶:1983年,220亿磅/年。二战期间,及时解救了天然 橡胶匮乏得困境
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结合 yi 1 or xi 1 进行泡露点计算
(1) 泡点压力计算
C
P i xiiS PiS /ˆiV i 1
yi
i xiiS PiS ˆiV P
已知:T、 x;求P、y
输入T,x和模型参数
取所有 ˆVi =1
计算PiS,γi和Φis
C
计算 P i xiiS PiS /ˆiV i 1
i Pi s
P
pyi pis xi i 1, 2, , N
对于二元系:
p p1 p2 x1 p1s x2 p2s x1 p1s 1 x1 p2s
=p2S x1 p1s p2s
7.3.3.2.2 中压下的计算方法
中压(0.3-1.0 MPa )是指远离临界点区域的压力
y1 y2 1.026 与1.000差别较大,重新试差
上节课内容: 泡、露点计算
泡点压力计算: 指定液相组成x和温度T,求汽相组成y和压力P;
泡点温度计算: 指定液相组成x和压力P,求汽相组成y和温度T;
露点压力计算: 指定汽相组成y和温度T,求液相组成x和压力P;
露点温度计算: 指定汽相组成y和压力P,求液相组成x和温度T。
状态方程法计算泡点压力框图
.888 3.642102 350 0.685104
2
350
18.5323
P1s 1210.6mmHg
P2s 312.24mmHg
12
V2 V1
exp((12
11) /
RT )
18.5323 42.9534
exp(
1085.13 ) 8.314 350
0.2972
21
42.9534 18.5323
x1
γ2
γ1
y1 P/KPa
0.0000 1.000 1.581 0.0000 24.4
0.2000 1.018 1.341 0.2490 26.5
0.4000 1.076 1.179 0.4234 27.4
0.5000 1.121 1.121 0.5000 27.5
0.6000 1.179 1.076 0.5796 27.4
Ki xi
7.3.3.2 活度系数法计算泡、露点
状态方程法可以适用各种汽-液平衡的情况。前提是 必须有同时能够准确描绘汽相和液相的状态方程,这 一点在同系物或者非理想性小的场合可以满足。
对于非理想性大的体系,多使用采用活度系数法。
此时,相平衡计算的基本公式
Ki
yi xi
i fi0 ˆiV P
fi0
汽-液平衡计算回顾:
根据独立变量的指定方案不同可以将汽-液平衡计算分 成以下两大类,即泡、露点计算和平衡闪蒸计算。
泡、露点计算的特点是已知温度、压力、汽相组成、 液相组成四者中的两个,去求另两个。
泡点压力计算: 指定液相组成x和温度T,求汽相组成y和压力P;
泡点温度计算: 指定液相组成x和压力P,求汽相组成y和温度T;
log P2s 7.9392 1650.4 /(t 226.27) V2 22.888 3.642102T 0.685104T 2
Pis (mmHg) Vi (cm3 / mol) t(C) T (K )
解:由于低压气相理想气体,液相为非理想溶液,
汽液平衡关系为
y1 1x1P1s / P
fi L i xi Pis P Py1 Py2 1x1P1s 2 x2P2s
P1s 24.6KPa
P2s 24.4KPa
P 24.61x1 24.4 2 (1 x1)
y1 1x1P1s / P y2 2 x2P2s / P
γ与x关系已知,据此可以求出γ,不同组成时的P, 然后由相平衡关系,可求出y,结果如下
解: 因为溶液符合拉乌尔定律,即 pi pis xi
系统压力不高,气相可作为理想气体来处理
这是气液平衡中最简单的情况 (1)已知T和Pis,求P-x-y关系,
二元系二相平衡,F=C-π+2=2-2+2=2,
需指定2个参数,T已定,再选定一个 x、y、P均
可以
此处选择x
pi yi p
yi p pis xi
Pis )
例1:二元体系丙酮(1)—乙腈(2)服从拉乌尔(Raoult)定律, 使用下表中的蒸汽压数据绘制50 ℃下的P-x-y图和53.3 KPa下的T-xy图 T ℃ 38.45 42.0 46.0 50.0 54.0 58.0 62.33 P1S kPa 53.3 61.1 70.9 82.0 94.4 108.2 124.9 P2S kPa 21.2 24.6 28.9 33.8 39.3 45.6 53.3
取所有 ˆVi =1, γi=1
计算PiS和ΦiS 计算P
计算 ˆVi
计算xi,,并归一化,计算γi
δγi <ε? 计算P
P C
1

yiˆiV
/
S
ii
Pi
S

i 1
xi
yiˆiV P
S
ii
Pi
S
压 力 计



No
δP<ε?
Yes 输出P和xi
泡点和露点温度计算
T未知,而Φ、γ、Pis均与T有关,较为复杂,迭代。可
/
RT )
21
V1 V2
exp((21
22 )
/
RT
)
由于T 未知,所以要试差,步骤为
如果先给定T,可以求出Pis、ViL,γ的表达式中参数
都已知,则可以直接求解。
取 x1 0.4 设 T 350K
V1
64.509 19.716102
4
350 3.873510
2
350
42.9534
V2
p p p1s x1 p2s x2
p1s x1 p2s 1 x1 p1s p2s x1 p2s
x1
p p2s p1s p2s
y1
p1s p
x1
取一系列T值,求出P1s和P2S,再加上P即可求出x,y
T值的范围为两个纯组分沸点
T 38.45 42.00 46.00 50.00 54.00 58.00 62.33
露点压力计算: 指定汽相组成y和温度T,求液相组成x和压力P;
露点温度计算: 指定汽相组成y和压力P,求液相组成x和温度T。
状态方程法计算泡、露点:
yi Ki xi
Ki ˆiL / ˆiV
活度系数法计算泡、露点:
Ki
yi xi
i fi0 ˆiV P
fi0
Pi
s s i
exp ViL (P RT
y2 2 x2P2s / P
y1 y2 1
而二元系的Wilson方程为
ln 1
ln(x1
12 x2 )
x2
x1
12 12 x2
x2
21 21x1
ln 2
ln(x2
21 x1 )
x1
x1
12 12 x2
x2
21 21x1
12
V2 V1
exp((12
11 )
12 11 1085.13J / mol 12 22 1631.04J / mol
甲醇、水的Antoine公式以及液相体积与温度的关系为
甲醇 log Pis 8.00902 1541.861/(t 236.154) V1 64.509 19.716102T 3.8735104T 2

Pi
s s i
exp ViL (P RT
Pis )
7.3.3.2.1 低压下的计算方法
低压的范围:界线不明确 非极性低压一般指低于几个大气压
对于强缔合的羧酸混合物,如醋酸-水体系,在 25℃及比1 atm低的多的压力下,汽相逸度系数 已经严重的偏离1
特点:汽相的非理想性可以忽略 液相的体积随压力的变化可以忽略不计。 VL<<RT, Poynting校正项等于1
yi
pi s p
xi
x1
y1
P/kPa
0
0
33.8
0.2 0.3775 43.44
0.4 0.6179 53.08
0.6 0.7844 62.72
0.8 0.9066 72.36
1.0 1.0000 82.00
90
80
p
pi
yi p
p xs 70 ii
60
P kPa
p1s x1 p2s x2
计算yi和 ˆVi
再次计算P

yi
i xiiS PiS ˆiV P
点 压 力
C
P i xiiS PiS /ˆiV i 1
计 算


No
δP<ε?
Yes
输出P和yi
露点压力计算 进行露点压力计算时的公式为
P C
1
yiˆiV
/
S
ii
Pi
S
i 1
xi
yiˆiV P
S
ii
Pi
S
输入T,y和模型参数
输入T,xi和状态方程所需参数
Tc、Pc、w等;
给P和Ki赋初值。
输出P 和yi
计算yi初值 yi Ki xi / Ki xi
计算ΦiL,ΦiV,Ki 和
Ki xi
No 调整P Yes
Yes
Ki xi =1?
No
再次计算yi yi Ki xi / Ki xi
Ki xi 变化?
再次计算ΦiV,Ki 和
露点压力计算时的公式 已知汽相组成y和温度T
P C 1
yi / i PiS
相关文档
最新文档