平方差公式完全平方公式

合集下载

平方差公式和完全平方公式的转换

平方差公式和完全平方公式的转换

平方差公式和完全平方公式的转换平方差公式和完全平方公式,这两个家伙真是数学里的好兄弟。

想想看,它们就像是两位风格各异的歌手,一个偏爱激情四射的摇滚,一个则钟情于温柔细腻的抒情。

虽说它们的风格不同,但一旦在一起,绝对能唱出和谐的旋律。

你知道的,平方差公式就是 (a^2 b^2 = (a b)(a + b)),而完全平方公式则是 (a^2 + 2ab + b^2 = (a + b)^2)。

听起来像一场数学音乐会,简直让人欲罢不能。

当我们把这两个公式放在一起的时候,恍若看到了两位演员在台上配合默契。

你有没有注意到,平方差公式就像那种神秘的魔法,突然让一个大数变得无影无踪。

比如说,你有一个 (5^2 3^2),这玩意儿你一算,哦吼,变成了 ( (5 3)(5 + 3) = 2 times 8 = 16)。

轻轻松松的,不费吹灰之力,就把复杂的问题变得简单了。

而完全平方公式呢,简直就是数学界的超级奶爸,时刻准备着把复杂的数值归纳整理得整整齐齐。

说到这里,不免让我想起了咱们的生活。

平方差就像那些突如其来的惊喜,让你心情瞬间好起来。

而完全平方呢,就像妈妈做的饭,虽然平淡无奇,却总能让你觉得无比温暖。

想象一下,工作一天后,回到家,看到一碗热腾腾的饭,那种感觉真是无与伦比。

数学也是这样,虽说有时繁琐,但它的美就在于那些隐藏的小技巧,恰好能让你解决问题。

很多人一听到数学就犯怵,其实没必要。

就像你走在街上,偶尔听到有趣的故事,心里其实是能感觉到共鸣的。

平方差和完全平方,就是生活中那种让人愉快的小片段。

你瞧,当你用平方差去计算时,内心的小宇宙在悄悄燃烧。

而用完全平方则像是在慢慢欣赏一幅画,细腻而又悠长,真让人感动。

哎,说到底,数学不就是生活的一部分吗?当你用平方差公式解决问题的时候,心里会不会有种“我真聪明”的感觉?我打赌会有的!而用完全平方公式呢,就像在品味一杯好茶,细细回味。

每个公式都有它独特的魅力,真是让人欲罢不能。

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解平方差公式和完全平方公式是数学中常用的因式分解方法,它们在解题过程中起到了十分重要的作用。

本文将为大家详细介绍这两个公式,帮助大家理解其原理和应用。

首先,我们来了解一下平方差公式。

平方差公式的表达形式为a² - b² = (a + b)(a - b)。

简言之,它告诉我们两个平方数相减的结果可以因式分解为两个因数的乘积:一个因数是两个平方数的和,另一个因数是两个平方数的差。

这个公式可以极大地简化计算,特别是在解方程或因式分解的题目中,往往能起到事半功倍的效果。

那么,我们来看一个应用平方差公式的例子。

假设我们需要将x² - 4x + 4进行因式分解。

我们可以使用平方差公式进行分解,将x² - 4x + 4看作是(a - b)²的形式,其中a为x,b为2。

根据平方差公式,我们可以得到(x - 2)²,也就是x² - 4x + 4的因式分解形式。

通过应用平方差公式,我们可以将一个多项式快速分解为一对平方数的差的乘积。

接下来,我们将介绍完全平方公式。

完全平方公式的表达形式为a² + 2ab + b² = (a + b)²。

它告诉我们一个二次多项式可以因式分解为两个相同的因数的平方。

与平方差公式类似,完全平方公式也可以在解题过程中提供方便。

我们来看一个应用完全平方公式的例子。

假设我们需要将x² + 6x + 9进行因式分解。

根据完全平方公式,我们可以将x² + 6x + 9看作是(a + b)²的形式,其中a为x,b为3。

带入完全平方公式,我们可以得到(x + 3)²,也就是x² + 6x + 9的因式分解形式。

通过应用完全平方公式,我们可以迅速将二次多项式转化为平方的形式。

在实际应用中,平方差公式和完全平方公式可以帮助我们进行因式分解,并简化问题的求解过程。

平方差公式和完全平方公式

平方差公式和完全平方公式

平方差公式:两个数的和乘两个数的差的乘积,等于这两个数的平方差 例1:(X+2)(X-2) (2x+21y) (2x-21y) (a+b-c)(a-b+c)(-3x-2y )(3x-2y) (2x+y-z+10)(2x-y+z+10)练习:1、计算(x-2y )(-2y-x)-(3x+4y)(-3x+4y) (x-2)(16+x 4)(2+x)(4+x 2)(2a+b-c-3d)(2a-b-c+3d) (m+n+p+q )(m-n-p-q )例2: 98×102 982(用平方差公式)练习:103×97 118×122 1032例3:(1+xy2)(1-xy2)(-1-x2y4) (x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8. y=8练习:11、(1-2a)(1+2a)(1+4a2)(1+16a4),其中a=-22、(x-y)(x2+y2)(x4+y4)¨¨¨¨(x16+y16)3、(22+1)(24+1)(28+1)(216+1)完全平方公式:1、两个数和的平方,等于这两个数的平方和,加上这两个数积的2倍。

2、两个数差的平方,等于这两个数的平方和,减去这两个数积的2倍。

例4:(2a+3b)2 598 2 (-m-4n)2 (a-2b)2练习:102289.82 (-2a-b)2例5:()?, 2)()3(.,1,2)2(.)1(,51)1(222222222应为多少则如果的值求若的值求已知znmnmznmxyyxyxaaaa++=+-=+=-+=+练习:1、已知x+y=7,xy=2,求:①2x2+2y2的值;②(x-y)2的值.2、如果x+y=6, xy=7, 那么x2+y2=,(x-y)2=。

3、(09深圳)用配方法将代数式a2+4a-5变形,结果正确的是()A.(a+2)2-1B.(a+2)2-5C.(a+2)2+4D.(a+2)2-94、已知x-1÷x=3,求x2-1÷x25、已知x 2 – 4=0,求代数式x(x+1)2 –x(x 2+x)-x-7的值一、科学记数法:1、绝对值大于10的数:na 10⨯ (1≤a 〈10 ,n 是原数的整数位数减1〉 2、绝对值小于1的数:n a -⨯10 (1≤a 〈10,n 是有效数字前0的个数)1米=1000000微米=100万微米 1米=100000000010亿纳米例6:(1)用科学记数法表示下列各数: 696000000 300000000 0.146 -0.000000017例7:人体内的某种细胞中,每个细胞的面积约为1.9×10-12平方米,在一平方厘米的面积内,一层这样的细胞大约有多少万个? 练习:1、100张100元的新版人民币约0.9 cm 厚,则每张新版100元人民币的厚度为________cm(用科学记数法表示).2、人体内一种细胞的直径为 4.3微米,用科学记数法表示这种细胞的直径为 米。

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解
平方差公式和完全平方公式因式分解
平方差公式和完全平方公式是数学中常用的公式,在因式分解中起到了重要作用。

以下是这两个公式的介绍和因式分解方法:
1. 平方差公式:
平方差公式用于因式分解具有平方项的差的平方。

其公式为:a^2 - b^2 = (a + b)(a - b)。

利用此公式,我们可以将一个差的平方写成两个因数的乘积。

2. 完全平方公式:
完全平方公式用于因式分解一个二次多项式。

其公式为:a^2 + 2ab + b^2 = (a + b)^2。

利用完全平方公式,我们可以将一个二次多项式写成一个完全平方的形式。

因式分解示范:
1. 平方差公式因式分解:
假设我们要因式分解x^2 - 9。

根据平方差公式,我们有:x^2 - 9 = (x + 3)(x - 3)。

2. 完全平方公式因式分解:
假设我们要因式分解x^2 + 6x + 9。

根据完全平方公式,我们有:x^2 + 6x + 9 = (x + 3)^2。

通过使用平方差公式和完全平方公式,我们可以将一个多项式因式分解为乘积的形式。

这两个公式在代数中的应用非常广泛,帮助我们简化表达式,解决方程和证明数学性质等问题。

需要注意的是,因式分解可能会涉及到更复杂的多项式和多步操作。

理解和熟练运用这些公式,可以在数学问题求解中提高效率和准确性。

平方差公式和完全平方公式

平方差公式和完全平方公式

平方差公式与完全平方公式(a+b )2 = a 2+2ab+b 2(a -b )2=a 2-2ab+b2(a+b )(a -b )=a 2-b 2应用1、平方差公式的应用:例1、利用平方差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解:例2、计算:(1)(y x 41--)(y x 41+-) (2)(-m -n )(m -n )(3)(m +n )(n -m )+3m 2(4)(x+y )(x -y )(x 2-y 2)解:例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ 解:应用2、完全平方公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2(3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:例5、利用完全平方公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:试一试:计算:123456789×123456787-1234567882=_______________应用3、乘法公式的综合应用: 例6、计算:(1)(x+5)2-(x+2)(x -2)(2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解: 例7、(1)若4ax x 412++是完全平方式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平方式,则M=_______________ 例8、(1)已知:3a1a =+,则:__________a1a 22=+(2)已知:5a 1a =-,则:__________a 1a 22=+(3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:(1))1011()411)(311)(211(2222---- (2))12()12)(12)(12)(12(32842+++++解:例10、证明:x 2+y 2+2x -2y+3的值总是正的。

平方差公式完全平方公式

平方差公式完全平方公式

平方差公式完全平方公式设a和b是任意实数,则有:(a+b)(a-b)=a²-b²这个公式可以用于将一个平方差分解为两个因式的乘积。

它在代数运算中非常重要,经常用于化简和解方程等计算中。

完全平方公式:完全平方公式是指一个二次多项式可以写成一个完全平方的形式。

设a、b是任意实数,则有:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这两个公式可以将一个二次多项式表示为两个完全平方的和或差。

它们在代数运算中也是非常重要的,并经常用于因式分解和解方程等计算中。

拓展完全平方公式:完全平方公式还可以拓展为三项平方的公式。

设a、b、c是任意实数,则有:(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc(a - b - c)² = a² + b² + c² - 2ab - 2ac + 2bc这两个公式是将一个三次多项式表示为三个完全平方的和或差。

它们在高等代数中很常见,常用于展开和化简多项式。

使用平方差公式的例子:假设我们想要计算7²-3²的结果。

根据平方差公式,可以将(7+3)(7-3)来表示。

即7²-3²=(7+3)(7-3)=10×4=40。

使用完全平方公式的例子:假设我们想要将x²+8x+16分解为两个完全平方的形式。

根据完全平方公式,可以得到x²+8x+16=(x+4)²。

拓展完全平方公式的例子:假设我们想要将x³+12x²+48x+64分解为三个完全平方的形式。

根据拓展完全平方公式,可以得到x³+12x²+48x+64=(x+4)²(x+4)=(x+4)³。

平方差公式和完全平方公式

平方差公式和完全平方公式

第三讲 平方差公式和完全平方公式【名言警句】细节决定成败!【知识点归纳讲解】(一)平方差公式:(a+b)(a-b)=a 2-b 2 两数和与这两数差的积,等于它们的平方差. 特征:①左边:二项式乘以二项式,两数(a 与b )的和与它们差的乘积. ②右边:这两数的平方差. 平方差公式的常见变形:①位置变化:如()()()()22a b b a b a b a b a +-=+-=-②符号变化:如()()()()()2222a b a b b a b a b a b a ---=---+=--=-⎡⎤⎡⎤⎣⎦⎣⎦或()()()()()2222a b a b a b a b a b a b ---=-+-=--=-+ ③系数变化:如()()()()()22ma mb a b m a b a b m a b +-=+-=-(二)完全平方公式()()22222222a b a ab b a b a ab b+=++-=-+ 完全平方公式常见变形:① 符号变化:如()()22222a b a b a ab b --=+=++ ()()22222a b a b a ab b -+=-=-+②移项变化:()()22222222a b a ab b a b a ab b +=++-=-+⇒()()22222222a b a b ab a b a b ab+=+-+=-+⇒()()224a b a b ab +--=【经典例题讲解】(一)平方差公式例1:计算:()()()()2244a b b a b a b a ---+-例2:计算:①(2x+y )(2x-y) ②(y x 3121+)(y x 3121-)③(-x+3y)(-x-3y) ④(2a+b)(2a-b)(4)22b a +.【同步演练】应用平方差公式计算(1)()()a a 2121+- (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+3121312122x x (3)()()y x y x 3232+---例3:某初级中学得到政府投资,进行了校园改造建设,他们的操场原来是长方形,改建后变为正方形,正方形的边长比原来的长方形少6米,比原来的长方形的宽多了6米,问操场的面积比原来大了还是小了?相差多少平方米?(二)完全平方公式例1:已知2291822a b ab a b +==+,,求的值例2:利用完全平方公式计算:(1)1022 (2)1972【同步演练】利用完全平方公式计算:(1)982 (2)2032例3:计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x【同步演练】)3)(3(+---b a b a例4:若22)2(4+=++x k x x ,则k =若k x x ++22是完全平方式,则k =例:5:完全平方公式的推广()2222222a b c a b c ab ac bc ++=+++++()222222222a b c d a b c d ab bc cd ad +++=+++++++附加题:若实数222,,9,a b c a b c ++=满足()()()222a b b c c a -+-+-则代数式的最大值是多少?【课堂检测】 (一)平方差公式 一、填空题1、=--+-)2)(2(y y _______.2、=-+)2)(2(y x y x ______.3、=-+)3121)(3121(b a b a ______. 4、=---))((22x a x a _______. 5、=++-))()((22b a b a b a _______. 6、=-+-))((y x y x _______. 7、=+-----+))(())((y x y x y x y x _______. 8、+xy (_______)-xy (_______)81122-=y x . 二、选择题9、下列各式中,能直接用平方差公式计算的是( ) (A ))22)(2(b a b a +--; (B ))2)(2(a b b a +-; (C ))2)(2(b a b a +--; (D ))2)(2(b a a b ++-.10、下列各式中,运算结果是223625y x -的是( ) (A ))56)(56(x y x y --+- ; (B ))56)(65(x y y x +-; (C ))56)(56(x y x y ++- ; (D ))65)(65(y x y x +--. 三、解答题11.计算)2)(2())((n m n m n m n m -+-+-.12.先化简后求值2),2)(2()2)(2(22-=-+--+x x x x x .13.解方程4)2()1)(1(2=---+x x x x .(二)完全平方公式 一、填空题1、=-+)2)(2(b a b a _______.2、)5(x +-_______225x -=. 用平方差公式计算并填空3、)218(5.75.8+=⨯__ ___4363=. 4、=⨯95105_______.5、=-+22)2()2(y x y x (_______)2. 二、选择题6、=+----))((y x y x _______.( )(A )22y x +-;(B )22y x -;(C )22y x --;(D )22y x +.7、如果16)(2-=+a m a p ,则( )(A )4),4(=+=m a p ; (B )4),4(-=-=m a p (C )4),4(-=+=m a p ; (D )4,4=+-=m a p . 三、解答题8、解不等式x x x x x 3)6()3)(3(>+-+-.9、解方程)1)(1(2)3)(12(+-=+-x x x x .10、先化简后求值)5)(5(2)4)(3(-+-+-x x x x ,其中10-=x11、一个梯形上底是)(b a +㎝,下底是)(b a -㎝,高为)2(b a +㎝,求梯形的面积,若2,215==b a ,求这个梯形的面积.【课后作业】一、填空题(每题2分,共28分)1.(34=⋅a a ____()⨯____34)+=a ; 2.=-⋅-54)()(x y y x _________; 3.()(23=m _____)(_____23)⨯=m ; 4.=-⋅--535)(])([a a _________; 5.=⨯3)87(_________3387⨯=; 6.(8164=y x ______2); 7.已知长方形的长是m 4,它的面积是nm 20,则它的宽是_________;8.=⋅+-222483)41(6y x x y x xy _________;9.=⋅+n m 2)7(_________;10.=+--)()(b a a a b b _________; 11.=++))((t z y x _________; 12.=+++-))()()((4422b a b a b a b a _________; 13.=++-+-))((c b a c b a _________; 14.=--+22)()(b a b a _________. 二、选择题(每题3分,共12分)15.下列各式中正确的是( )(A )222)(b a b a -=-; (B )2222)2(b ab a b a ++=+; (C )222)(b a b a +=+; (D )2222)(b ab a b a +-=+-.16.计算)102.2()105.3(53⨯⨯⨯的结果并用科学记数法表示,正确的结果是( ) (A )770000000;(B )71077⨯;(C )8107.7⨯;(D )7107.7⨯.17.20072006)32()23(⋅-的计算结果是( )(A )23-;(B )32-;(C )32;(D )23.18.下列计算正确的是( )(A )1262432a a a a a =⋅+⋅; (B )252212)2(3bc a c a ab =⋅;(C )322322+=⋅⋅+⋅n n a a a a a a ; (D )432222)21()2(y x y x xy -=-⋅-.三、简答题:(每题6分,共30分)19.计算:4453)()(a a a a -+-20.结果用)(y x -的幂的形式表示62323)(2])[(])[(y x x y y x -+-+-.21.用简便方法计算63720052006)2()81()125.0()8(⨯+-⨯-22.计算453210)2()(b a ab b a +⋅- .23.计算)1()1(22++-++x x x x x . 24.计算))()((22b a b a b a -+-.四、解答题(每题5分,共20分)25.解方程)2(2)2()1(-=++-x x x x x x26.化简并求值31,3),3)(3(==--b a a b b a 其中.27.化简并求值2,)1()12(22-=-++x x x 其中.28.计算2)(c b a --29.综合题(10分,每小题5分)(1)已知一个圆的半径若增加2厘米,则它的面积就增加39平方厘米,求这个圆的直径.(用π的代数式表示这个圆的直径)(2)阅读:若一家商店的销售额10月比9月份增长(减少)10%,则设这家商店9月10月份销售额的增长率为0.1(-0.1);理解:甲、乙两店9月份的销售额均为a万元,在10月到11月这两个月中,甲,问到商店的销售额的平均每月增长率为x,乙商店的销售额平均每月的增长率为x11月底时,甲商店的销售额比乙商店的销售额多多少万元(用a和x的代数式表示结果).【课后作业】家长意见及建议:家长签字:日期:年月日。

平方差公式与完全平方公式

平方差公式与完全平方公式

Word 文档平差公式与完全平公式(a+b )2 = a 2+2ab+b 2(a -b )2=a 2-2ab+b2(a+b )(a -b )=a 2-b 2应用1、平差公式的应用:例1、利用平差公式进行计算: (1)(5+6x )(5-6x ) (2)(x +2y )(x -2y ) (3)(-m +n )(-m -n ) 解:例2、计算:(1)(y x 41--)(y x 41+-) (2)(-m -n )(m -n )(3)(m +n )(n -m )+3m 2(4)(x+y )(x -y )(x 2-y 2)解:例3、计算:(1)103×97 (2)118×122 (3)32203119⨯ 解:应用2、完全平公式的应用: 例4、计算:(1)(2x -3)2(2)(4x+5y )2(3)(y x 21-)2 (4)(-x -2y )2(5)(-x+y 21)2解:例5、利用完全平公式计算:(1)1022 (2)1972 (3)199992-19998×20002解:试一试:计算:123456789×123456787-1234567882=_______________Word 文档应用3、乘法公式的综合应用: 例6、计算:(1)(x+5)2-(x+2)(x -2)(2)(a+b+3)(a+b -3) (3)(a -b+1)(b -a+1)(4)(a+b -c )2解: 例7、(1)若4ax x 412++是完全平式,则:a=________________(2)若4x 2+1加上一个单项式M 使它成为一个完全平式,则M=_______________ 例8、(1)已知:3a1a =+,则:__________a1a 22=+(2)已知:5a 1a =-,则:__________a 1a 22=+(3)已知:a+b=5,ab=6,则:a 2+b 2=_______(4)已知:(a+b )2=7,(a -b )2=3,则:a 2+b 2= ,ab=例9、计算:(1))1011()411)(311)(211(2222----ΛΛ (2))12()12)(12)(12)(12(32842+++++ΛΛ解:例10、证明:x 2+y 2+2x -2y+3的值总是正的。

平方差公式与完全平方差公式

平方差公式与完全平方差公式

平方差公式与完全平方公式平方差公式:22))((b a b a b a -=-+说明:相乘的两个二项式中,a 表示的是完全相同的项,+b 和-b 表示的是互为相反数的两项。

所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。

熟悉公式:(5+6x)(5-6x)中 是公式中的a , 是公式中的b(5+6x)(-5+6x)中 是公式中的a , 是公式中的b(x-2y)(x+2y)中 是公式中的a , 是公式中的b(-m+n)(-m-n)中 是公式中的a , 是公式中的b(a+b+c )(a+b-c)中 是公式中的a , 是公式中的b(a-b+c )(a-b-c)中 是公式中的a , 是公式中的b将下列各式转化成平方差形式(1) 36-x 2 (2)a 2-91b 2 (3) x 2-16y 2 (4) x 2y 2-z 2 (5) (x+2)2-9 (6)(x+a)2-(y+b)2 (7) 25(a+b)2-4(a -b)2例1:计算下列各题1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (a+2b)(a-2b)6. (2x+12)(2x-12)例2:计算下列各题:1、 1998×20022、1.01×0.99 3.(20-19)×(19-89)例3::计算下列各题1、(a+b )(a-b)(a 2+b 2)2、(a+2)(a-2)(a 2+4)3、(x-12)(x 2+ 14)(x+ 12)例4:计算下列各题1、(-2x-y )(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1)5.(b+2a)(2a-b)6.(a+b)(-b+a)例5;计算下列各题1.(a+2b+c )(a+2b-c)2.(a+b-3)(a-b+3)3.(m-n+p)(m-n-p)完全平方公式完全平方公式:2222)(b ab a b a +±=± 注意不要漏掉2ab 项熟悉公式1、a 2+b 2=(a+b)2 =(a-b)22、(a-b )2=(a+b)2 ; (a+b)2=(a-b)23、(a+b)2 +(a-b )2=4、(a+b)2 --(a-b )2=5.将下列各式转化成完全平方式形式(1)a 2-4a +4 (2)a 2-12ab +36b 2 (3)25x 2+10xy +y 2(4)16a 4+8a 2+1 (5) (m +n)2-4(m +n)+4 (6) 16a 4-8a 2+1(7)249114x x --例1:计算下列各题1、2)(y x +2、2)23(y x -3、2)21(b a +4、2)12(--t5、2)313(c ab +- 6、2)2332(y x + 7、2)121(-x 8、(0.02x+0.1y)2 例2:利用完全平方公式计算:(1)1022 (2)1972 (3)982 (4)2032例3:(1)若22)2(4+=++x k x x ,求k 值。

平方差完全平方公式

平方差完全平方公式

【知识点】一、平方差公式:(a+b )(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方之差。

1、即:(a+b )(a-b) = 相同符号项的平方 - 相反符号项的平方2、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。

3、能否运用平方差公式的判定①有两数和与两数差的积 即:(a+b )(a-b)或(a+b )(b-a) ②有两数和的相反数与两数差的积 即:(-a-b )(a-b)或(a+b )(b-a) ③有两数的平方差 即:a 2-b 2 或-b 2+a 2二、完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定 ①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。

即:a 2+2ab+b 2或a 2-2ab+b 2或-a 2-2ab-b 2或 -a 2+2ab-b 2探索练习:1、计算下列各式: (1)()()22-+x x (2)()()a a 3131-+ (3)()()y x y x 55-+2、观察以上算式及其运算结果,你发现了什么规律?3、猜一猜:()()=-+b a b a -平方差公式1、平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b a b a b a -=-+。

2、其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

随堂练习:1、下列各式中哪些可以运用平方差公式计算 (1)()()c a b a -+ (2)()()x y y x +-+ (3)()()ab x x ab ---33 (4)()()n m n m +--2、判断:(1)()()22422b a a b b a -=-+ ( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+x x x ( ) (3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( )3、计算下列各式:(1)()()b a b a 7474+- (2)()()n m n m ---22 (3)()()33221221--+-+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-x x x x4、填空:(1)()()=-+y x y x 3232 (2)()()116142-=-aa(3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab (4)()()229432y x y x -=-+5、求()()()22y x y x y x +-+的值,其中2,5==y x6、计算:(1)()()c b a c b a --+- (2)()()()()()42212122224++---+-x x x x x x【例】运用平方差公式计算:102×98; 59.8×60.2;运用平方差公式计算:完全平方公式探索:一块边长为a 米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种。

平方差公式与完全平方公式知识点总结

平方差公式与完全平方公式知识点总结

平方差公式与完全平方公式知识点总结一、平方差公式(a+b)(a-b)=a2-b2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x+y)(-y+x)=x2-y2② 符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2③ 指数变化,(x2+y2)(x2-y2)=x4-y4④ 系数变化,(2a+b)(2a-b)=4a2-b2⑤ 换式变化,[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z+m)(z+m)=x2y2-(z2+zm+zm+m2)=x2y2-z2-2zm-m2⑥ 增项变化,(x-y+z)(x-y-z)=(x-y)2-z2=(x-y)(x-y)-z2=x2-xy-xy+y2-z2=x2-2xy+y2-z2⑦ 连用公式变化,(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4⑧ 逆用公式变化,(x-y+z)2-(x+y-z)2 =[(x-y+z)+(x+y-z)][(x-y+z)-(x+y-z)] =2x(-2y+2z)=-4xy+4xz完全平方公式活用: 把公式本身适当变形后再用于解题。

这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力。

例1、已知,,求的值。

例2、已知,,求的值。

解:∵ ∴ ∴=∵,∴ 例3 已知,求的值。

解:三、学习乘法公式应注意的问题(一)、注意掌握公式的特征,认清公式中的“两数”、例1 计算(-2x2-5)(2x2-5)分析:本题两个因式中“-5”相同,“2x2”符号相反,因而“-5”是公式(a+b)(a-b)=a2-b2中的a,而“2x2”则是公式中的b、例2 计算(-a2+4b)2分析:运用公式(a+b)2=a2+2ab+b2时,“-a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为(4b-a2)2时,则“4b”是公式中的a,而“a2”就是公式中的b、(解略)(二)、注意为使用公式创造条件例3 计算(2x+y-z+5)(2x-y+z+5)、分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式、例5 计算(2+1)(22+1)(24+1)(28+1)、分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项(2-1),则可运用公式,使问题化繁为简、(三)、注意公式的推广计算多项式的平方,由(a+b)2=a2+2ab+b2,可推广得到:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc、可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍、例6 计算(2x+y-3)2解:原式=(2x)2+y2+(-3)2+22xy+22x(-3)+2y(-3)=4x2+y2+9+4xy-12x-6y、(四)、注意公式的变换,灵活运用变形公式例7 已知:x+2y=7,xy=6,求(x-2y)2的值、例10 计算(2a+3b)2-2(2a+3b)(5b-4a)+(4a-5b)2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便、四、怎样熟练运用公式:熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点、常见的几种变化是:1、位置变化如(3x+5y)(5y-3x)交换3x和5y的位置后即可用平方差公式计算了、2、符号变化如(-2m-7n)(2m-7n)变为-(2m+7n)(2m-7n)后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)3、数字变化如98102,992,912等分别变为(100-2)(100+2),(100-1)2,(90+1)2后就能够用乘法公式加以解答了、4、系数变化如(4m+)(2m-)变为2(2m+)(2m-)后即可用平方差公式进行计算了、(四)、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便、如计算(a2+1)2(a2-1)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便、即原式=[(a2+1)(a2-1)]2=(a4-1)2=a8-2a4+1、对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用、如计算(1-)(1-)(1-)…(1-)(1-),若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错、若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题、即原式=(1-)(1+)(1-)(1+)…(1-)(1+)=… ==、有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab等、用这些变式解有关问题常能收到事半功倍之效、如已知m+n=7,mn=-18,求m2+n2,m2-mn+ n2的值、面对这样的问题就可用上述变式来解,即m2+n2=(m+n)2-2mn=72-2(-18)=49+36=85,m2-mn+ n2= (m+n)2-3mn=72-3(-18)=103、下列各题,难不倒你吧?!1、若a+=5,求(1)a2+,(2)(a-)2的值、2、求(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)+1的末位数字、(答案:1、(1)23;(2)21、2、6 )五、乘法公式应用的五个层次乘法公式:(a+b)(a-b)=a2-b2,(ab)=a22ab+b2,(ab)(a2ab+b2)=a3b3、第一层次──正用即根据所求式的特征,模仿公式进行直接、简单的套用、例1计算 (-2x-y)(2x-y)、、第二层次──逆用,即将这些公式反过来进行逆向使用、例2计算第三层次──活用:根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式、例3化简:(2+1)(22+1)(24+1)(28+1)+1、分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解、解原式=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=216、第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=(a+b)2-2ab,a3+b3=(a +b)3-3ab(a+b)等,则求解分简单、明快、例5已知a+b=9,ab=14,求2a2+2b2的值、解:∵a+b=9,ab=14,∴2a2+2b2=2[(a+b)2-2ab]=2(92-214)=106,第五层次──综合后用:将(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2综合,可得 (a+b)2+(a-b)2=2(a2+b2);(a+b)2-(a-b)2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷、例6计算:(2x+y-z+5)(2x-y+z+5)、解:原式=[(2x+y-z+5)+(2x-y+z+5)]2-[(2x+y-z+5)-(2x-y+z+5)]2=(2x+5)2-(y-z)2=4x2+20x+25-y2+2yz-z2乘法公式的使用技巧:①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦。

平方差公式和完全平方公式推导过程

平方差公式和完全平方公式推导过程

平方差公式和完全平方公式推导过程一、平方差公式的推导过程:我们来推导一下这个公式:首先,可以通过展开(a+b)(a-b)来证明平方差公式:(a + b)(a - b) = a^2 - ab + ab - b^2 = a^2 - b^2若a和b均为实数,分别取a和b的平方根,得到:√a^2=,a√b^2=,b将a和b的平方根替换回原公式中:(√a^2+√b^2)(√a^2-√b^2)=,a,-,b因为平方根是非负的,所以可以去掉绝对值符号:(√a^2+√b^2)(√a^2-√b^2)=a-b由于√a^2+√b^2等于实数a和b的和,同时√a^2-√b^2等于实数a和b的差,所以可以将其替换回原公式:(a+b)(a-b)=a-b因此,我们推导出了平方差公式。

二、完全平方公式的推导过程:完全平方公式是指一个二次多项式可以写成一个完全平方加上一个常数的形式,即a^2 ± 2ab + b^2 = (a ± b)^2我们来推导一下这个公式:首先(a + b)^2 = (a + b)(a + b) = a(a + b) + b(a + b) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2若a和b均为实数,可以发现(a + b)^2等于a^2 + 2ab + b^2,即一个完全平方加上一个常数。

同样地,可以通过展开(a-b)^2来证明完全平方公式:(a - b)^2 = (a - b)(a - b) = a(a - b) - b(a - b) = a^2 - ab - ab + b^2 = a^2 - 2ab + b^2因此,我们得到了完全平方公式的两种形式:a^2 + 2ab + b^2 = (a + b)^2a^2 - 2ab + b^2 = (a - b)^2这两个公式可以用于将二次多项式因式分解为完全平方的形式,或者将完全平方的形式合并为二次多项式。

综上所述,平方差公式和完全平方公式是代数中常见的两个公式,它们的推导过程说明了它们的正确性和适用范围。

平方差完全平方公式的应用

平方差完全平方公式的应用

平方差完全平方公式的应用平方差和完全平方公式是数学中常用的两个重要公式。

在解决代数问题和简化计算过程中,它们具有非常重要的应用。

首先,我们来谈谈平方差公式。

平方差公式是用来将两个数的平方差表示为两个数的乘积的公式。

具体来说,平方差公式可以表达为:\((a+b)(a-b)=a^2-b^2\)。

这个公式的应用非常广泛。

例如,如果我们需要计算数\(a\)和数\(b\)的平方差,我们可以使用平方差公式,将这个表达式转化为\((a+b)(a-b)\)的形式,然后再进行计算。

这样可以简化计算过程,使我们更容易得到结果。

接下来,让我们来谈谈完全平方公式。

完全平方公式是指一个二次多项式可以被写成一个平方的形式。

具体来说,完全平方公式可以表达为:\( a^2 + 2ab + b^2 = (a + b)^2 \)。

完全平方公式的应用非常广泛,特别是在因式分解方程和简化代数表达式时。

例如,如果我们需要因式分解一个二次方程,我们可以应用完全平方公式来简化等式。

一个具体的例子是\(x^2+6x+9\)。

我们可以使用完全平方公式将其转化为\((x+3)^2\)的形式。

在这个例子中,我们可以得到的结果是\((x+3)^2\)。

完全平方公式还可以用来简化代数表达式,使其更易于计算。

例如,如果我们需要计算\((a+3)^2\)和\((a-3)^2\)之间的差异,我们可以应用完全平方公式,将其转化为\(a^2+6a+9\)和\(a^2-6a+9\)的形式。

然后我们可以简化计算过程,更容易得到结果。

总结起来,平方差公式和完全平方公式是数学中常用的两个重要公式。

它们在解题过程中起着非常重要的作用,可以帮助我们简化计算过程,得到更准确的结果。

在实际应用中,我们应该熟练掌握这两个公式,以便在解决代数问题时能够灵活运用。

平方差公式和完全平方公式

平方差公式和完全平方公式

平方差公式和完全平方公式平方差公式是先平方再减a²-b²= (a+b)(a-b)。

完全平方公式是先加减最后是平方(a±b)²=a²±2ab+b²。

平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差,这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。

公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。

该公式需要注意:1.公式的左边是个两项式的积,有一项是完全相同的。

2.右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。

3.公式中的a,b 可以是具体的数,也可以是单项式或多项式。

完全平方公式指两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

为了区别,会叫做两数和的完全平方公式,或叫做两数差的完全平方公式。

这个公式的结构特征:1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2.左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内)。

公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式。

该公式需要注意:1.左边是一个二项式的完全平方。

2.右边是二项平方的和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。

3.不论是(a+b)2还是(a-b)2,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

4.不要漏下一次项。

5.切勿混淆公式。

6.运算结果中符号不要错误。

7.变式应用难,不易于掌握。

平方差公式、完全平方公式

平方差公式、完全平方公式

1平方差公式与完全平方公式1. 平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差。

这个公式叫做乘法的平方差公式()()22b a b a b a -=-+2. 公式的结构特征①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数 ②右边是乘式中两项的平方差(相同项的平方减去相反项的平方) 一.基础部分【题型一】利用平方差公式计算 1. 位置变化:(1)()()x x 2525+-+(2)()()ab x x ab -+符号变化:(3)()()11--+-x x(4)⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-m n n m 321.01.032系数变化:(5)()()n m n m 3232-+(6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--b a b a 213213 指数变化:(7)()()222233x yy x ++-(8)()()22225252b aba --+-2.增项变化(1)()()z y x z y x ++-+- (2)()()939322+++-x x x x3.增因式变化(1)()()()1112+-+x x x(2)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x【题型二】利用平方差公式判断正误 4.下列计算正确的是( )A .()()()()2222425252525y x y x y x y x -=-=-+B .22291)3()1()31)(31(a a a a +=+-=--+-C .()()()()222249232332x y x y x y y x -=-=--- D .()()8242-=-+x x x【题型三】运用平方差公式进行一些数的简便运算例 5.用平方差公式计算.2 (1)397403⨯ (2)41304329⨯(3)1000110199⨯⨯ (4)2008200620072⨯-【题型四】平方差公式的综合运用 6.计算:(1)))(()2)(2(222x y y x y x y x x +-++-- (2)()()()()111142+-++-x x x x【题型五】利用平方差公式进行化简求值与解方程7.化简求值:())32)(32()23(32a b a b b a a b +---+,其中2,1=-=b a .【题型六】逆用平方差公式8.已知02,622=-+=-y x y x ,求5--y x 的值.课堂练习 一、选择1、下列运算正确的是( )A 、223)3)(3(y x y x y x -=-+B 、229)3)(3(y x y x y x -=-- C 、229)3)(3(y x y x y x --=-+- D 、229)3)(3(y x y x y x -=--+- 2、下列算式可用平方差公式的是( )A 、(m+2m )(m-2m)B 、(-m-n )(m+n)C 、(-m-n )(m-n)D 、(m-n )(-m+n) 3、计算2)55)(5151(y y x y x -+-+的结果是( ) A 、x 2B 、-x 2C 、2y 2-x 2D 、x 2-2y 24.计算(a m+b n)(a 2m-b 2n)(a m-b n)正确的是 ( ) A.a 4m-2a 2m b 2n+b 4mB.a 4m-b 4C.a 4m+b 4nD.a 2m+b 2n+2a m b n二、填空题三、解答题7.计算:①)2)(2(b a b a --+- ②2009200720082⨯-③))()((22b a b a b a +-+ ④.,12,222的值求若b a b a b a +=-=-四、用完全平方公式计算:(1)4992 (2)9982 (3)532 (4)88245。

(完整版)完全平方公式和平方差公式

(完整版)完全平方公式和平方差公式

新瑞英无忧晚托七年级数学考试必备讲义
一、课程回顾
完全平方公式:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍。

222()2a b a ab b +=++
222()2a b a ab b -=-+
例:计算22()(2)a b a b +--
完全平方公式逆运算: 2222()a ab b a b ±+=±
例:计算2816x
x -+
平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差。

22()()a b a b a b +-=-
平方差公式逆运算:
22()()a b a b a b -=+- 例:1、计算2249x y -
= + + +
练习:
1、若241x kx ++是一个完全平方式,则k= ;若2412x x k -+是一个完全平方式,则
k= .
2、计算
(1)281x - (2)4416x y - (3)2412x x --
(4)21(99)2- (5)(2-b )(-2-b ) (6)
248(2+1)(2+1)(2+1)(2+1)+1
3、从前有一个很狡猾的地主把一块边长是a 米的正方形地租给一个农民,到了第二年他告诉这个农民说:“我把这块地的一边去掉4米,另一边加上4米,这样你租的地面积并没有变,所以你没有吃亏。

"这个农民想了想,觉得并没有吃亏就答应了。

你同意地主的说法吗?。

三次平方差公式和完全平方公式

三次平方差公式和完全平方公式

三次平方差公式和完全平方公式三次平方差公式是指一个完全立方数与另一个完全立方数之差可以表示为一个完全平方数。

具体来说,三次平方差公式可以表示为:
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
其中,a和b为任意实数。

完全平方公式是指一个整数的平方可以表示为两个连续自然数之差。

具体来说,完全平方公式可以表示为:
n^2 = (n + 1) - (n - 1)
其中,n为任意整数。

拓展部分:
除了上面提到的三次平方差公式和完全平方公式之外,还有其他一些数学公式和恒等式可以用于拓展。

例如:
-完全立方公式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
-平方差公式:a^2 - b^2 = (a + b)(a - b)
-平方和公式:a^2 + b^2 = (a + b)^2 - 2ab
-二次平方差公式:a^4 - b^4 = (a^2 + b^2)(a^2 - b^2)
-奇数完全平方公式:奇数的平方可以表示为奇数之和(n为奇数)。

这些公式和恒等式在数学运算和解题过程中起到了重要的作用,
能够简化计算,推导结论等。

完全平方公式和平方差公式综合应用

完全平方公式和平方差公式综合应用

完全平方公式和平方差公式综合应用对于任意实数a和b,有(a+b)² = a² + 2ab + b²。

平方差公式如下:对于任意实数a和b,有(a-b)² = a² - 2ab + b²。

一、应用问题1:求解方程2x²+8x+8=0。

解析:我们可以将方程进行变形,以便使用完全平方公式。

首先,将方程两边同时减去8,得到:2x²+8x=-8再将方程两边同时除以2,得到:x²+4x=-4观察到该方程中,系数b等于4,我们可以看到b的两倍是4*2=8、因此,我们可以使用完全平方公式。

根据完全平方公式,我们知道这个方程可以写成:(x+2)²=-4+4=0由此可得x+2=±√0x=-2±√0由于根号0等于0,所以x=-2为方程的唯一实数解。

二、应用问题2:求证正整数(n+1)³-n³-1是一个完全平方数。

解析:我们需要证明的是(n+1)³-n³-1是一个完全平方数,即证明存在一个整数x,使得:(n+1)³-n³-1=x²通过平方差公式,我们可以简化上式为:(n+1)³-n³-1=(3n²+3n+1)=(n+1)²因此,我们可以看出,(3n²+3n+1)是一个完全平方数。

三、应用问题3:Rectangle1的长是Square1的边长的2倍,它们的面积相差180平方米。

如果将Square1的边长减少2米,而Rectangle1的长增加5米,则两个图形的面积相等。

求Rectangle1和Square1的边长。

解析:设Square1的边长为x,则Rectangle1的长为2x。

根据题意,可列方程:(2x)^2-x^2=180(相差180平方米)(2x-2)^2=(x+5)^2(面积相等)通过求解上述方程组,我们可以得到Square1的边长为10米,Rectangle1的长为20米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法的平方差公式平方差公式的推导
两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式,22
(a+b)(a-b)=a-b,
平方差公式结构特征:
左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;
①右边是乘式中两项的平方差。

即用相同项的平方减去相反项的平方
熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

(5+6x)(5-6x)中是公式中的a,是公式中的b
(5+6x)(-5+6x)中是公式中的a,是公式中的b
(x-2y)(x+2y)中是公式中的a,是公式中的b
(-m+n)(-m-n)中是公式中的a,是公式中的b
(a+b+c)(a+b-c)中是公式中的a,是公式中的b
(a-b+c)(a-b-c)中是公式中的a,是公式中的b
(a+b+c)(a-b-c)中是公式中的a,是公式中的b
填空:
1、(2x-1)( )=4x2-1
2、(-4x+ )( -4x)=16x2-49y2
第一种情况:直接运用公式
1.(a+3)(a-3)
2..( 2a+3b)(2a-3b)
3. (1+2c)(1-2c)
4.
(-x+2)(-x-2)
5. (2x+1
2
)(2x-
1
2
) 6. (a+2b)(a-2b) 7. (2a+5b)(2a-5b) 8.
(-2a-3b)(-2a+3b)
第二种情况:运用公式使计算简便
1、1998×2002
2、498×502
3、999×1001
4、1.01×0.99
5、30.8×29.2
6、(100-1
3
)×(99-
2
3
) 7、(20-
1
9
)×(19-
8
9

第三种情况:两次运用平方差公式
1、(a+b)(a-b)(a2+b2)
2、(a+2)(a-2)(a2+4)
3、(x- 1
2
)(x2+
1
4
)(x+
1
2
)
第四种情况:需要先变形再用平方差公式
1、(-2x-y )(2x-y)
2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1)
5.(b+2a)(2a-b)
6.(a+b)(-b+a)
7.(ab+1)(-ab+1)
第五种情况:每个多项式含三项
1.(a+2b+c )(a+2b-c)
2.(a+b-3)(a-b+3)
3.x-y+z)(x+y-z)
4.(m-n+p)(m-n-p)
平方差公式(1)
变式训练:1、
2、填空:
(1)()()=-+y x y x 3232 (2)()(
)116142-=-a a (3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab (4)()()229432y x y x -=-+
② 拓展:
1计算:(1)22)()(c b a c b a +--++ (2)()()()()()42212122224++---+-x x x x x x 2.先化简再求值()()()22y x y x y x +-+的值,其中2,5==y x
3.(1)若2212,6,x y x y x y -=+=-则的值是多少?
(2)已知63)122)(122(=-+++b a b a ,则=+b a _的值是多少?
平方差公式(2)
2.下列哪些多项式相乘可以用平方差公式?若可以,请用平方差公式解出
(1)))((c b a c b a +-++ (2)))((c b a c b a -+--
(3)()()c b a c b a --+- (4)(22)(22)a b c a b c +++-
变式训练:
1、248(21)(21)(21)(21)1+++++
2、222222(24100)(1399)+++-+++ 完全平方公式(1)
1.完全平方公式
(a+b)2=a 2+2ab+b 2
(a-b)2=a 2-2ab+b 2
特点:两个公式的左边都是一个二项式的完全平方,仅有一个符号不同; 右边都是二次三项式,其中第一项与第三项是公式左边二项式中的一
项的平方;中间一项是二项式中两项乘积的2倍,二者也仅有一个符号不同.
注意:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

公式变形
1、a 2+b 2=(a+b)2 =(a-b)2
2、(a-b )2=(a+b)2 ; (a+b)2=(a-b)2
3、(a+b)2 +(a-b )2=
4、(a+b)2 --(a-b )2=
一、计算下列各题:
1、2)(y x +
2、2)23(y x -
3、2)2
1(b a + 4、2)12(--t 5、2)313(c ab +- 6、2)2332(y x + 7、2)12
1(-x 8、(0.02x+0.1y)2 二、利用完全平方公式计算:
(1)1022 (2)1972 (3)982 (4)2032
三、计算:
(1)22)3(x x -+ (2)22)(y x y +- (3)()()2
()x y x y x y --+-
四、计算:(1))4)(1()3)(3(+---+a a a a (2)22)1()1(--+xy xy (3))4)(12(3)32(2+--+a a a 五、计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x (3))3)(3(+---b a b a
(4)()()2323x y z x y z +-++
六、拓展延伸 巩固提高
1、若22)2(4+=++x k x x ,求k 值。

2、 若k x x ++22是完全平方式,求k 值。

3、已知13a a
+=,求221a a +的值 1.应用完全平方公式计算:
(1)2(4)m n + (2)21()2
y - (3)2()a b -- (4)2(2)x y -+ 变式训练:
1.下列各式中哪些可以运用完全平方公式计算 ,把它计算出来
(1)()()x y y x +-+ (2)()()a b b a -- (3)()()ab x x ab +--33 (4)
()()n m n m +--
2.计算:(1)2(12)x -- (2)2(21)x -+ (3)()()n m n m +--22 (4)
⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+b a b a 2131213
1 变式议练计算:
(1)])2()2)[(4(2222y x y x y x -++-; (2)22222)()()(y x y x y x ++-(3)))((z y x z y x +--+。

拓展:1.已知31=+x
x ,则=+2
21x x ________________ 2.(2008·成都)已知131-=x y ,那么2323122-+-y xy x 的值是________________
3、已知2216)1(2y xy m x +-+是完全平方公式,则m =
4、若22()12,()16,x y x y xy -=+=则=
变式训练:
(1)2)3(-+b a (2))2)(2(-++-y x y x (3))3)(3(+---b a b a (4)(x+5)2–(x-2)(x-3)
拓展:1、(1)已知2,4==+xy y x ,则2)(y x -=
(2)已知3)(,7)(22=-=+b a b a ,求=+22b a ________,=ab ________
(3)不论b a 、为任意有理数,72422++-+b a b a 的值总是( )
A.负数
B.零
C.正数
D.不小于2
2、(1)已知0132=+-x x ,求221x x +和441x
x +的值。

(2)已知1,3-=-=-c b b a ,求ca bc ab c b a ---++222的值。

(3).已知0966222=++--+y x xy y x ,求y x -的值。

相关文档
最新文档