吸收式热泵工作原理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.按驱动热源划分
(1)蒸汽型热泵 以蒸汽的潜热为驱动热源。
(2)热水型热泵 以热水的显热为驱动热源。 热水包括工业余、废热水、地热水或太阳能热 水。
(3)直燃型热泵 以燃料的燃烧热为驱动热源。 可分为燃油型、燃气型或多燃料型。
(4)余热型热泵 以工业余热为驱动热源。
(5)复合热源型热泵 如热水与直燃型复合、 热水与蒸汽型复合、蒸汽与直燃型复合等形式。
(2)第二类吸收式热泵 也称升温型热泵, 是 利用大量的中温热源热能产生少量的高温有用 热能。即利用中低温热能驱动, 用大量中温热 源和低温热源的热势差,制取热量少于但温度 高于中温热源的热量,将部分中低热能转移到 更高温的品位上,从而提高了热能的利用品位。
5.按溶液循环流程划分
(1)串联式 溶液先进入高压发生器,再进入 低压发生器,然后流回吸收器。
和TS两热源间的卡诺热机效率与工作在TS和T2两个热源间的卡诺逆 循环致冷系数的乘积。)
特点:
➢优点:吸收式热泵装置的优点是可利用较低温度的热能如低压蒸 汽、热水、烟气以及某些工艺气体的余热或太阳能等,对综合利用 热能有实际意义。 ➢缺点是:吸收过程的复杂性,也使得其热能利用系数不高。
使用范围
蒸汽:大于30kpa;热水:高于80; 供冷热量:大于350kw时,采用LiBr吸收式
返回本节
3.3 吸收式热泵的循环及其计算
3.3.1 吸收式热泵循环 3.3.2 单效溴化锂吸收式热泵的循环及其计算 3.3.3 双效溴化锂吸收式热泵的循环及其计算
返回首页
3.3.1 吸收式热泵循环
T
Tg
循环5—6—7—8—5为制
冷循环
Ta
Tc
循环1—2—3—4—1为动 力循环
T0
S
3.3.2 单效溴化锂吸收式热泵的循环及其计算
工作流程与原理:制冷剂循环和溶液循环。
两种二元溶液及特点:氨水溶液和溴化锂水溶液。这
两种二元溶液的致冷温度范围不同,前者在+1~-45℃; 后者致冷温度只能在0℃以上,所以它被广泛应用在空调 热泵中。
概述
性能:吸收式热泵循环的效率也用热能利用系数ξ来衡
量:
ξ=收益/代价=Q2/Q1 (最大的热能利用系数是工作在T1
1.对工质对的要求 吸收式热泵对制冷剂的要求和压缩式热泵基本 相同。 对吸收剂则要求具有一些特别的性质(P73)。
返回本节
3.2.2 溴化锂水溶液的性质
1.溴化锂水溶液的物理性质 一般性质、溶解度、密度、质量定压热容、饱 和蒸气压 表面张力、粘度、热导率 2.溴化锂溶液的热力状态图 压力-温度(p-t)图 、比焓-浓度(h-ξ)图
电力增容困难,无合适热源,要求振动小的建筑,采用 直燃式LiBr吸收式 无其他供热负荷时,不应专配锅炉驱动的LiBr吸收式
类型及特征
一般形式:制热性能系数小;但从消耗初
级能源的能源利用系数来看,燃气吸收式热泵优 于电动机驱动的压缩式热泵,劣于内燃机驱动的 压缩式热泵。te降低时,供热量降的少。
再吸收式热泵:压比小,制热系数小。 两级吸收式热泵:压力差大时,不需
3—发生器;4—冷凝器;5—热交换器
3.1.3 吸收式热泵的热力系数
Qh QaQc
Qg Qg
QaQ gQcTg T gT0TeT eT0cCO c P
3.2 吸收式热泵的工质对
3.2.1 工质对的选择 3.2.2 溴化锂水溶液的性质
返回首页
3.2.1 工质对的选择
吸收式热泵中常用的工质对通常 是二组分溶液 。 1.工质对的种类 以水作为制冷剂 以醇作为制冷剂 以氨作为制冷剂 以氟利昂作为制冷剂
(2)倒串联式 溶液先进入低压发生器,再进 入高压发生器,然后流回吸收器。
(3)并联式 溶液同时进入高压发生器和低压 发生器,然后流回吸收器。
(4)串并联式 溶液同时进入高压发生器和低 压发生器,流出高压发生器的溶液再进入低压 发生器,然后流回吸收器。
6.按机组结构划分
(1)单筒式 机组的主要热交换器布置在一个 筒体内。
1.单效溴化锂吸收式热泵的理论循环
热水(供水)
冷凝器
蒸发器 10
发生器 溶 液 热 交 换 器
吸收器
热水(回水)
比焓(Kj/kg)
气态平衡辅助线 饱和液线
浓度(%)
2.热力计算 确定各循环节点参数 各设备的单位热负荷 各设备的热负荷 热力系数
3.3.3 双效溴化锂吸收式热泵的循环及其计算
1.双效溴化锂吸收式热泵的理论循环
3.1 吸收式热泵概述
3.1.1 吸收式热泵的工作过程 3.1.2 吸收式热泵的分类 3.1.3 吸收式热泵的热力系数
返回首页
3.1.1 吸收式热泵的工作过程
概述
主要特点:用吸收装置替压缩机,消耗热能实现致冷与
供热。
装置:主要由吸收器、水泵、发生器、减压阀、冷凝器、
节流阀、蒸发器、精馏器、分凝器、过冷器、回热器等组 成。
(2)双筒式源自文库机组的主要热交换器布置在二个 筒体内。
(3)三筒式 机组的主要热交换器布置在三个 筒体内。
(4)多筒式 机组的主要热交换器布置在多个 简体内。
(a)
(b)
(c)
(d)
图3—15 单筒型结构布置方式 1—蒸发器;2—吸收器;3—发生器;4—冷凝器
(a)
(b)
(c)
(d)
图3—17 双筒型结构布置方式 1—蒸发器;2—吸收器;
提高高位热源温度实现热泵循环;或在较低的高 温热源温度下实现单级无法实现的循环。
绝热吸收式热泵:有效利用大量的把
温度较低的废热,变废为宝。
3.1.2 吸收式热泵的分类
吸收式热泵的种类繁多,可以按其工质对、 驱动热源及其利用方式、制热目的、溶液循环 流程以及机组结构等进行分类。 1.按工质对划分 (1)水-溴化锂热泵 水为制冷剂,溴化锂为 吸收剂。 (2)氨-水热泵 氨为制冷剂,水为吸收剂。
3.按驱动热源的利用方式划分
(1)单效热泵 驱动热源在机组内被直接利用 一次。
(2)双效热泵 驱动热源在机组内被直接和间 接地利用两次。
(3)多效热泵 驱动热源在机组内被直接和间 接地利用多次。
(4)多级热泵 驱动热源在多个压力不同的发 生器内依次被直接利用。
4.按制热目的划分
(1)第一类吸收式热泵 也称增热型热泵, 是 利用少量的高温热源热能,产生大量的中温有 用热能。即利用高温热能驱动, 把低温热源的 热能提高到中温,从而提高热能的利用效率。
相关文档
最新文档