用一元二次方程解决增长率问题
用一元二次方程解决增长率问题含答案
用一元二次方程解决增长率问题含答案1.解决增长率问题的一元二次方程1.1 平均变化率问题安徽中考题目:一种药品原价每盒25元,经过两次降价后每盒16元。
设两次降价的百分率都为x,则x满足(D)16(1+2x)=25.阳泉市平定县月考题目:共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆。
设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为(A)1000(1+x)2=1000+440.巴中中考题目:巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售。
若两次下调的百分率相同,求平均每次下调的百分率。
解:设平均每次下调的百分率为x,根据题意,得5000(1-x)2=4050.解得x=10%。
广东中考题目:某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元。
求3月份到5月份营业额的月平均增长率。
解:设3月份到5月份营业额的月平均增长率为x,根据题意,得400×(1+10%)(1+x)2=633.6.解得x=20%。
1.2 市场经济问题泰安中考题目:某种花卉每盆的盈利与每盆的株数有一定的关系。
每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元。
要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是(A)(3+x)(4-0.5x)=15.达州中考题目:新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每售出1件,价格就下降0.5元。
若该童装原价为10元/件,则在售完全部存货后,该童装的平均售价为(A) 9.5元/件。
为了迎接“六一”儿童节,商场决定采取适当的降价措施,每件童装盈利40元。
一元二次方程的应用(增长率问题)
精品资料欢迎下载22.3一元二次方程的应用(1)学习目标:掌握增长率问题中的数量关系,会列出一元二次方程解决增长率问题学习重、难点:重点:利用增长率问题中的数量关系,列出方程解决问题难点:理清增长率问题中的数量关系一、课前预习:1.某厂今年1月份的总产量为100吨,平均每月增长20%,则:二月份总产量为吨;三月份总产量为吨。
(填具体数字)2.某厂今年1月份的总产量为500吨,设平均每月增长率是x ,则:二月份总产量为吨;三月份总产量为吨。
(填含有X的式子)3.某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。
(填具体数字)4.某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。
(填含有X的式子)归纳:平均增长率(或平均减少率)问题:起始量(1+平均增长率)n=现在量。
(n为相距时间)起始量(1-平均减少率)n=现在量。
(n为相距时间)二、新课导学例1.某商店6月份的利润是2500元,要使8月份的利润达到3600元,这两个月利润的月平均增长的百分率是多少?例2.某种手表,原来每只售价96元,经过连续2次降价后,现在每只售价54元,平均每次降价的百分率是多少?精品资料欢迎下载三、随堂检测1.(2012山东青岛)某公司2010年的产值为500万元,2012年的产值为720万元,则该公司产值的年平均增长率为_________________. 2.(2010台州中考) 某种商品原价是100元,经过两次提价后的价格是120元,求平均每次降价的百分率。
设平均每次降价的百分率为x,下列所列方程中正确的是()A、100(1+x)2=120B、100(1-x)2=120C、120(1+x)2=100D、120(1-x)2=100 3.(2010兰州中考)上海世博会的某种纪念品原价是168元,连续两次降价x%后售价为128元。
一元二次方程增长率问题公式
一元二次方程增长率问题公式
一元二次方程平均增长率问题公式:a(1+x)n=b。
(a为起始量,b 为终止量,n为增长的次数,x为平均增长率)
平均增长率中的数量关系:若增长的基数为a,平均增长率为x,则第一次增长后的数量为a(1+x);第二次增长是以a(1+x)为基数的,增长率也为x,故第二次增长后的数量为a(1+x)2。
同样的道理,平均降低率中的数量关系:若降低的基数为a,平均降低率为x,则第一次降低后的数量为a(1-x);第二次降低是以a(1-x)为基数的,降低率也为x,故第二次降低后的数量为a(1-x) 2。
在解决增长(降低)率的问题时,常用的方法技巧是:
通常是利用公式建立方程。
平均增长率公式:a(1+x)n=b。
(a为起始量,b为终止量,n为增长的次数,x为平均增长率);平均降低率公式:a(1-x) n =b。
(a为起始量,b为终止量,n为降低的次数,x为平均降低率)。
解析:本题中考察的是增长率的问题,(1)中设这两年该校植树
棵数的年平均增长率为x,根据第一年及第三年的植树棵数,即可得出关于x的一元二次方程,解之取其正值即可得出结论。
列出的方程为500(1+x)=720,得:x=0.2=20%,x=﹣2.2(不合题意,舍去);(2)中根据第四年植树的棵数=第三年植树的棵数×(1+增长率),即可求出结论。
720×(1+20%)=864(棵)。
严格套用增长率的公式求解即可,但是一定要明确n是多少,也就是一定要确定好年份之间的关系。
解题的关键和所有的方程解应用题是相同的:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算。
一元二次方程实际问题(增长率)
由于升价的百分率不可能是负数,所以x2=-2.1不合题意,舍去
答:每次升价的百分率为10%.
8.小红的妈妈前年存了5000元一年期的定期储 蓄,到期后自动转存.今年到期扣除利息税(利 息税为利息的20%),共取得5145元.求这种储 蓄的年利率.(精确到0.1%) 9.市第四中学初三年级初一开学时就参加课程 改革试验,重视学生能力培养 . 初一阶段就有 48人在市级以上各项活动中得奖,之后逐年增 加,到三年级结束共有 183人次在市级以上得 奖.求这两年中得奖人次的平均年增长率.
2 2 ( 1 x ) 2 ( 1 x ) 9 . 5 则可列方程为 .
2
3.某城区绿地面积不断增加,2011年底的绿地面积为60 公顷,为满足城市发展的需要,计划到2013年底使城区 绿地面积达到72.6公顷,试求2012年,2013年两年绿地 面积的年平均增长率。
解:设2012年,2013年两年绿地面积的年平均增长率为x,根据题意,得 60 (1+x)2=72.6 . (1+x)2=1.21. ∴1+x=±1.1. ∴ x1 = 0.1=10%, x2 =-2.1(不合题意,舍去) 答: 2012年,2013年两年绿地面积的年平均增长率为10%.
n
a (1 x ) b
其中增长取+,降低取-
两年前生产 1吨甲种药品的成本是5000元, 探究 : 随着生产技术的进步,现在生产 1吨甲种药品 的成本是3000元,甲种药品成本的年平均下 降率是多少? 如果:设甲种药品成本的平均下降率为x ,填 表
一年前 两年前 甲 成本(吨/ 成本(吨/元 ) 种 元) 药 (基数量) (第一次下 降) 品 现在 成本(吨/元 ) (第二次下 降)
2、注意: (1)1与x的位置不要调换,增长取“+”, 下降取“-” (2)解这类问题列出的方程一般 用直接开平方法,注意验根,看是否 符合实际意义。
九年级上册数学用一元二次方程解决增长率问题
巩
固
训
练
1.(《名校课堂》21.3第2课时习题)共享单车为市民出行带来了方便,某单车公司第 一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多 440辆.设该公司 第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( A ) A.1000(1+x)2=1000+440 B.1000(1+x)2=440 C.440(1+x)2=1000 D.1000(1+2x)=1000+440 2.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过 严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后, 现在仅卖 98 元 / 瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分 率. 解:设该种药品平均每场降价的百分率是x. 由题意,得200(1-x)2=98. 解得x1=1.7(不合题意舍去),x2=0.3=30%. 答:该种药品平均每场降价的百分率是30%.
名
校
讲
坛
【方法归纳】销售利润问题中常见的公式: ①利润=售价-成本; ②利润率= ×100%.
名
校
讲
坛
跟踪训练2:一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司 规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过 60棵,每 增加1棵,所出售的这批树苗每棵售价均降低 0.5元,但每棵树苗最低售价不得少 于100元,该校最终向园林公司支付树苗款 8800元,请问该校共购买了多少棵树 苗? 解:因为60棵树苗售价为120元×60=7200元<8800元, 所以该校购买树苗超过60棵. 设该校共购买了x棵树苗. 由题意,得x[120-0.5(x-60)]=8800. 解得x1=220,x2=80. 当x=220时,120-0.5×(220-60)=40<100,∴x=220(不合题意,舍去); 当x=80时,120-0.5×(80-60)=110>100,∴x=80. 答:该校共购买了80棵树苗.
用一元二次方程解决问题(平均增长率)
平均增长率 = (终值 - 初值) / 初值 × 100%
计算方法
直接计算法
根据题目给出的数据,直接代入公式 进行计算。
代数法
将平均增长率转化为一元二次方程, 通过解方程求得。
ห้องสมุดไป่ตู้例解析
例1
某企业去年销售额为100万元,今年 销售额增长了20%,求今年的销售额。
解
根据平均增长率公式,今年的销售额 = 100 × (1 + 20%) = 120万元。
解
根据平均增长率公式,5年后GDP = 100 × (1 + 8%)^5 = 146.9亿元。
02
一元二次方程在平均增 长率问题中的应用
建立一元二次方程
确定变量
在平均增长率问题中,通常设初始数 量为A,平均增长率为r,经过时间为t 后的数量为B。
建立方程
方程变形
如果需要求平均增长率r,可以将方程 变形为r = (B/A)^(1/t) - 1。
将方程左边化为完全平 方形式,右边化为常数,
从而求解x。
因式分解法
通过因式分解将方程化 为两个一次方程,从而
求解x。
实例解析
题目
某企业前年缴税30万元,预计 今年缴税36.36万元,那么该企
业缴税的平均增长率为多少?
分析
设该企业缴税的平均增长率为x, 根据题意可以建立一元二次方程 30(1 + x)^2 = 36.36。
根据平均增长率的定义,我们可以建 立一元二次方程B = A(1 + r/100)^t。
解一元二次方程
求解方法
解一元二次方程可以使 用公式法、配方法、因
式分解法等。
公式法
配方法
一元二次方程实际问题1(增长率)
在这个部分,我们来学习一元二次方程的实际应用。这个问题涉及到增长率, 让我们一起来探索吧!
什么是一元二次方程?
一元二次方程是指只有一个未知数的二次方程,可以写成 Ax²+ Bx + C = 0 的形式。
一元二次方程的一般形式是什 么?
一元二次方程的一般形式是 Ax²+ Bx + C = 0,其中 A、B、C 是已知的常数, x 是未知数。
例题3的解法演示
让我们一起来解答实际问题3的例题,并演示如何求解一元二次函数的最大值和最小值。
例题3答案的意义是什么?
例题3的答案可以告诉我们一元二次函数在什么自变量取值下达到最大值和最 小值,帮助我们理解函数的特性。
如何求解一元二次函数的极值?
可以通过求导数和解方程来求解一元二次函数的极值。
实际问题3的例题介绍
我们将通过一个真实的例题来演示如何求解一元二次函数的最大值和最小值。
实际问题3的解题思路
1. 确定已知信息和未知数。 2. 列出一元二次函数。 3. 求导数并解方程得到未知数的值。 4. 计算最大值和最小值。
什么是实际问题?
实际问题是指与现实生活相关的问题,需要用数学方法来解决。
为什么需要将实际问题转化成一元二次 方程?
将实际问题转化成一元二次方程可以使问题更加具体化,便于用数学工具来求解。
实际问题1:增长率是什么?
增长率是指某个变量随时间变化的速度,可以用百分比或小数表示。
如何计算增长率?
增长率可以通过计算某一时间段内变量的变化量与初始值的比值来得到。
例题1的答案可以告诉我们在给定条件下的增长率,帮助我们理解实际问题的变化趋势。
实际问题1的注意点
列一元二次方程 解有关增长率问题
一
元 二 次方 程
器囤铝窜回囤
姆 列一 二次 程解 题的 骤 元 方 应用 步
① 审 审题.
注意 要严格按 以上八个 步
② 找: 找出题 中的所有量 , 分清有 哪些 已知量 、 未知量 哪些
是 要求 的未 知量 和所涉 及 的基本 数量关 系 、 相等关 系.
骤 解 有 关 实 际应 用 题 .
⑥ 解: 解方程 , 出所列方程的解. 求 ⑦ 检验: 注意根的准确性及是否符合实际意义.
、
⑧ 答: 写出答案.
点 拨 ‘ . ‘年 增 长 率 =
・ ,
某 家庭 前 年 人 均 收入 为3 0  ̄ ,到 今 年 人 均 收入 为 00 ;
全竺鉴 二 二
上 一 年 收 入
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 ~ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 润 =销 售 价 一成 本
价. 本题中成本价的变化是一个
生 产 某种 产 品 时 ,原来 的成本 价 是 5 0元 ,销 售 价 为 0
平均增长率问题,而销售价的变 65元 , 市 场预 测 , 产 品 的销 售 价 第 一 个 月将 降 低 2 % , 二 2 经 该 0 第 化是一般增长率问题. 个 月 比第 一个 月 提 高 6 为 了使 两 个 月后 的销售 利 润 不 变 , 产 %, 该 点拔 建立方程的等量关系 品的成 本 价每 月应 平 均降 低百 分之 几 ? 是 “ 两个月后 售 润不 ” , 解 设 平 均每 月成 本 的降 价率 为
(完整版)一元二次方程应用题经典题型汇总含答案
z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
一元二次方程应用题-增长率
实验器材投资上的平均增长率是x,则可列方程
为
.
开启 智慧
某电冰箱厂每个月的产量都比上个月增长的百分数相同 。已知该厂今年4月份的电冰箱产量为5万台,6月份比5月 份多生产了12000台,求该厂今年产量的月平均增长率为 多少?
解 :设该厂今年产量的月平均增长率为x,根据题意,得
5(1 x)2 51 x 1.2.
小结
(1)增长率问题: 平均增长率公式为a(1+x)n=b(a为原来数,x为
平均增长率,n为增长次数,b为增长后的 量.) (2)降低率问题: 平均降低率公式为a(1-x)n=b(a为原来数,x 为平均降低率,n为降低次数,b为降低后 的量.)
• 达标检测
• 1、恒利商厦九月份的销售额为200万元,十月份的销售额 下降了20%,商厦从十一月份起加强管理,改善经营,使 销售额稳步上升,十二月份的销售额达到了193.6万元,求 这两个月的平均增长率.
开启 智慧
2.某公司计划经过两年把某种商品的生产成本降低 19%,那么平均每年需降低百分之几?
解 :设每年平均需降低的百分数为x,根据题意,得
(1 x)2 1 19%.
解这个方程 : (1 x)2 0.81, (1 x) 0.9, x 1 0.9,
x1 1 0.9 10%; x2 1 0.9(不 合 题 意, 舍 去). 答 : 每 年 平 均 需 降 低 的 百 分 数 为10% .
整理得 : 25x2 25x 6 0.
解得 :
x 25 1225 5 7 ,
50
10
x1
5 10
7
0.2
20%;
x2
5 10
7
1.2
0(不合题意, 舍去).
用一元二次方程解决问题(平均增长率)
答:每次降价上缴利税280万元, 其中第一年上缴40万元,求后两年上缴利税的年平 均增长的百分率。
2.某商店4月份销售额为50万元,第二季度的总销售 额为182万元,若5、6两个月的月增长率相同,求 月增长率
1、平均增长(降低)率公式
a(1 x) b
例2:
某产品原来每件600元,由于连续两次降价, 现价为384元,如果两个降价的百分数相同, 求每次降价的百分数。
分析:解设:每次降价的百分数是x。 原价
600
第一次价格 第二次价格
600(1-x) 600(1-x)2
根据题意列方程: 600(1-x)2=384 解之得:x1=0.2 x2=1.8(舍去)
用一元二次方程解决问题(2)
---------平均增长(降低)率
课前热身:
1.某工厂1月份的产值是100万元,2月份的产值比1 120 月份增加了20%,那么2月份的产值是 100×(1+20 %) 万元 , 若3月份的产值比2月份又增加了20 %,那么 3月份的产值是 100×(1+20%)2 万元 144 2.某工厂1月份的产值是a万元, 2月份的产值比1月 份增加的百分数为x,那么2月份的产值是 a(1+x) 万元,若3月份的产值较2月份增加的百分数为x,那么 3月份的产值产值是 a(1+x)2
两次增长后的量=原来的量(1+增长率)2 二.新课 例1.某商店6月份的利润是2500元,要使8月份 的利润达到3600元,平均每月增长的百分率 是多少?
分析: 解:设平均每月增长的百分率是x. 解题感悟: 变一变:按国民经济发展规划要求,2012年 月份 6月份 7月份 8月份 1.为了计算方便、直接求得,可以直接设增长 的社会总产值要比2010年增长21%,求平均 练一练: 的百分率为x。2500 2500(1+x) 2500(1+x)2 利润 某钢铁厂去年1月某种钢的产量为5000吨,3月上升到 每年增长的百分率 7200吨,这两个月平均每个月增长的百分率是多少? 根据题意列方程得: 2500(1+x)2=3600 2.用直接开平方法做更简单,不要将括号打开。 解之得:x1=0.2, x2=-2.2(舍去) (提示:基数为2010年的社会总产值,可视为a) 答:这两个月的平均增长的百分比是20%
一元二次方程实际问题1(增长率)
解:设年平均增长率为x,根据题意, 得1.6 (1+x)2=2.5.
(1+x)2= 25 .∴1+x=±1.25.
∴
x1
=
16
0.25=25%,x2
=-2.25(不合题意,舍去)
答:每年的年平均增长率为25%.
面积增加最多的是
∴ x1 = 0.1=10%,
___2_0__1_0_____年;
(2)为满足城市发展的需要,计 划到2013年底使城区绿地面积达
x2 =-2.1(不合题意,舍 去) 答: 2012年,2013年
2008 2009 2010 2011
到72.6公顷,试求2012年,2013年 两年绿地面积的年平均增长率。
则它们的数量关系可表示为
a(1 x)n b
其中增长取+,降低取-
探究两:年前生产1吨甲种药品的成本是5000元, 随着生产技术的进步,现在生产 1吨甲种药品 的成本是3000元,甲种药品成本的年平均下
降率是多少? 如果:设甲种药品成本的平均下降率为x ,
填表
两年前 甲 成本(吨/ 种 元) 药 (基数量) 品
.
(2)若预计1月、2月、3月的营业额共9.5
万元,
则可列方程为 2 2(1 x) 2(1 x)2 9.5 .
• 增长率问题:
• 3、(2003大连)某房屋开发公司 经过几年的不懈努力,开发建 设住宅面积由2000年4万平方米 ,到2002年的7万平方米。设这 两年该房屋开发公司开发建设 住宅面积的年平均增长率为x , 则可列方程为 ________________;
3、某型号的手机连续两次降价,若两次
降价的百分率为x,手机原来售价1285,
则:
第一次降价后,手机的售价为
应用一元二次方程解决增长率问题
应用一元二次方程解决增长率问题设计思想:孔子的“温故而知新”;奥苏泊尔的“先行组织者”思想;建构主义思想。
设计思路:温故知新,做好铺垫;难点提前突破,水到渠成;错例分析,变式练习,加深理解,实现能力的提高。
整体上,引导学生自我建构自己的知识结构。
教学难点:主要等量关系:原数×(1±增长率)2=新数(在温故环节解决)解方程(在学习直接开方法时提前解决)。
教学重点:主要等量关系:如果连续两次增长(减少),且增长率(降低率)相同,则:原数×(1±增长率)2=新数教学方法:温故(复习法),引导探索(讨论法),错例分析(辨析法),变式应用(练习法)。
教学过程:一、温故1、小明上周花了10元钱,本周比上周多花10%,本周花了多少钱?预计下周比本周多花10%,那么下周预计会花多少钱?本周花的钱数为: 10×(1+10%)=11元下周预计花的钱数为:11×(1+10%)=12.1元或10×(1+10%)2=12.1元2、小强上周花了20元钱,本周比上周少花20%,本周花了多少钱?预计下周比本周少花20%,那么下周预计会花多少钱?本周花的钱数为: 20×(1-20%)=16元下周预计花的钱数为:16×(1-20%)=12.8元或20×(1-20%)2=12.8元3、小结:(1)若增长一次,则:原数×(1±增长率)=新数(2)如果连续两次增长(减少),且增长率(降低率)相同,则:原数×(1±增长率)2=新数二、知新1、学习例题:某市为争创全国文明卫生城市,2009年市政府对市区绿化工程投入资金是2000万元,2011年投入的资金是2420万元,且从2009年到2011年,两年间每年投入资金的年均增长率相同。
(1)求该市对市区绿化工程投入资金的年均增长率;(2)若投入资金的年均增长率不变,那么该市在2013年投入多少万元?分析:设年均增长率为x,由“原数×(1+增长率)2=新数”,得方程:±1.1,所以x1=-2.1(舍),x2=0.1=10%,所以年均增长率为10%,若投入资金的年均增长率不变,那么该市在2013年投入资金为:2420×(1+10%)2=2662万元。
用一元二次方程解决增长率问题
用一元二次方程解决增长率问题一元二次方程是初中数学中的重要知识,也是中考的必考考点之一利用一元二次方程解决实际问题是这一部分中的重点,也是难点,其中增长率问题是主要题型之一为了使同学们对此内容有更为深刻的理解,特采撷几例加以分类说明,与同学们共赏例1、某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助2022年,A市在省财政补助的基础上再投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2022年该市计划投资“改水工程”市投资“改水工程”的年平均增长率分析:对于增长率问题,若增长前的量为a,平均增长率为,经过连续两次增长后的量为b,则a12=b解:设A市投资“改水工程”年平均增长率是,则60012=1176解之,得=或=-(不合题意,舍去)所以,A市投资“改水工程”的年平均增长率为40%例2、某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.分析:对于降低率问题,与增长率问题类似,若降低前的量为a,平均降低率为,经过连续两次降低后的量为b,则a1―2=b解:设每次降价的百分率为,根据题意得:1001-2=81解得:x=,2x=1经检验x=不符合题意,∴==10%2答:每次降价百分率为10%.例3、某商厦二月份的销售额为100万元,三月份销售额下降了20%。
商厦从四月份起改进经营措施,销售额稳步上升,五月份销售额达到万元,试求四、五两个月的平均增长率分析:先算出三月份的销售额为100(1-20%)万元设四、五两个月的平均增长率为,则四月份销售额为100(1-20%)(1+)万元,五月份的销售额为100(1-20%)(1+x)(1+x)=100(1-20%)12万元,于是可列出方程100(1-20%)12=解:设四、五两个月的平均增长率为x,由题意得方程100(1-20%)12=12=即1=±故1=,2=-因为2=-不符实际,舍去,所以==30%,即四、五两个月的平均增长率为%30例4、某市去年9月招收区内初中班学生50名,并计划在明年9月招生结束后,使区内初中班三年招生总人数.......达到450名.若该市区内初中班招生人数平均每年比上年的增长率相同,求这个增长率.分析:若设平均增长率为,去年招收50名,则今年招收501名,明年招收5012名,根据“三年招生总人数.......达到450名”可列方程解题时要特别注意450是三年招生的总人数,而不是某一年的人数.解:设平均增长率为.根据题意列方程:505015012=450,整理得:23-6=0解得:1x =(舍),2137137%x =.≈. 答:平均增长率为137%.温馨提示:这种增长率或降低率的问题在实际生活普遍存在,有一定的模式,正确解答此类问题的关键是掌握好此类问题中的等量关系的确定方法:在存在基础量a 的前提下,若连续增长(或降低)n 次,且平均增长(或降低)率为,则增长后的数量为a1n (或降低后的数量为a1-n ),要特别注意1与的位置不要调换我们可以把它作为一个固定的公式来理解另外,求得结果后还要注意解的合理性,正确取舍下面几题供练习:1、某县为发展教育事业,加强了对教育经费的投入,2022年投入3000万元,预计2022年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.300012=5000 B.30002=5000C.30001%2=5000 D.30001300012=50002、某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________3、某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为,则下列方程中正确的是()A.5512=35B.3512=55C.551-2=35D.351-2=554、某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10% B.19% C.% D.20%参考答案:1、A2、10%3、C4、A。
一元二次方程的应用——-增长率问题
解得:x1=4%,x2=-1.6(不符合题意,故舍去)
答:定期一年的利率是4%.
抽测二: 某科技公司研制成功一种产品,决定向银行贷 款200万元资金用于生产这种产品,贷款的合同 上约定两年到期时,一次性还本付息,利息为本 金的8﹪。该产品投放市场后,由于产销对路, 使公司在两年到期时除还清贷款的本息外,还 盈余72万余。若该公司在生产期间每年比上一 年资金增长的百分数相同,试求这个百分数。
3、某农户种植花生,原来种植的花生亩产量为 200千克,出油率为50%(即每100千克花生可 加工成花生油50千克).现在种植新品种花生后, 每亩收获的花生可加工成花生油132千克,其中 花生出油率的增长率是亩产量增长率的 1/2,求 新品种花生亩产量的增长率。
4、某拖拉机厂今年一月产出甲乙两种型号 的拖拉机一批,其中乙型16台.从二月起,甲 型每月增产10台,乙型每月按相同的增长率 逐月增加,又知二月甲乙两种型号拖拉机的 产量比是3:2,三月甲乙两种型号拖拉机的产 量之和为65台,求乙型拖拉机每月增长率和 甲型拖拉机一月的产量.
能力拓展2
某人购买了1000元债券,定期一年,到期兑换 后他用去了440元,然后把剩下的钱又全部购买了这 种债券,定期仍为一年,到期后他兑现得款624元。 求这种债券的年利率。
解:设定期一年的利率是x,根据题意得:一年时:1000+1000x=1000(1+x)元, 用去440后剩:1000(1+x)-440元,同理两年后是[1000(1+x)-440](1+x)元, 即方程为: [1000(1+x)-440]•(1+x)=624,
当堂演练:
1.某厂今年一月的总产量为500吨,三月的总产量为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用一元二次方程解决增长率问题
一元二次方程是初中数学中的重要知识,也是中考的必考考点之一. 利用一元二次方程解决实际问题是这一部分中的重点,也是难点,其中增长率问题是主要题型之一.为了使同学们对此内容有更为深刻的理解,特采撷几例加以分类说明,与同学们共赏.
例1、某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改
水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上再投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.
(1)求A 市投资“改水工程”的年平均增长率;
(2)略
分析:对于增长率问题,若增长前的量为a, 平均增长率为x ,经过连续两次增长后的量为b ,
则a(1+x)2=b.
解:(1)设A 市投资“改水工程”年平均增长率是x ,则
600(1+x)2=1176
解之,得x =0.4或x =-2.4(不合题意,舍去)
所以,A 市投资“改水工程”的年平均增长率为40%.
(2)略
例2、某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.
分析:对于降低率问题,与增长率问题类似,若降低前的量为a, 平均降低率为x ,经过连续两次降低后的量为b ,则a(1―x)2=b.
解:设每次降价的百分率为x ,根据题意得:
100(1-x)2
=81
解得:1x =0.1,2x =1.9
经检验2x =1.9不符合题意,∴x=0.1=10%
答:每次降价百分率为10%.
例3:某商厦二月份的销售额为100万元,三月份销售额下降了20%。
商厦从四月份起改进
经营措施,销售额稳步上升,五月份销售额达到135.2万元,试求四、五两个月的平均增长率.
分析:先算出三月份的销售额为100(1-20%)万元.设四、五两个月的平均增长率为x ,则
四月份销售额为100(1-20%)(1+x )万元,五月份的销售额为100(1-20%)(1
+x )(1+x )=100(1-20%)(1+x)2万元,于是可列出方程100(1-20%)(1+x)
2=135.2.
解:设四、五两个月的平均增长率为x ,由题意得方程
100(1-20%)(1+x)2=135.2
(1+x)2=1.69
即1+x=±1.3
故x 1=0.3,x 2=-2.3
因为x 2=-2.3不符实际,舍去,所以x=0.3=30%,
即四、五两个月的平均增长率为%30.
例4、某市去年9月招收区内初中班学生50名,并计划在明年9月招生结束后,使区内初中班三年招生总人数.......
达到450名.若该市区内初中班招生人数平均每年比上年的增长率相同,求这个增长率.
分析:若设平均增长率为x, 去年招收50名,则今年招收50(1+x)名,明年招收50(1+x)2名,根据“三年招生总人数.......
达到450名”可列方程.解题时要特别注意450是三年招生的总人数,而不是某一年的人数.
解:设平均增长率为x .
根据题意列方程:50+50(1+x)+ 50(1+x)2=450,
整理得:x 2+3x -6=0
解得:132
x -=(舍),23137137%2x -=≈.≈. 答:平均增长率为137%.
温馨提示:这种增长率(或降低率)的问题在实际生活普遍存在,有一定的模式,正确解答此类问题的关键是掌握好此类问题中的等量关系的确定方法:在存在基础量a 的前提下,若连续增长(或降低)n 次,且平均增长(或降低)率为x ,则增长后的数量为a(1+x)n (或降低后的数量为a(1-x)n ),要特别注意1与x 的位置不要调换.我们可以把它作为一个固定的公式来理解.另外,求得结果后还要注意解的合理性,正确取舍.
下面几题供练习:
1、某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )
A .3000(1+x)2=5000
B .3000x 2=5000
C .3000(1+x%)2=5000
D .3000(1+x)+3000(1+x)2=5000
2、某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________.
3、某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百
分率为x ,则下列方程中正确的是( )
A .55 (1+x )2=35
B .35(1+x )2=55
C .55 (1-x )2=35
D .35(1-x )2=55
4、某种商品零售价经过两次降价后的价格为降价前的81%,
则平均每次降价( )
A .10%
B .19%
C .9.5%
D .20%
参考答案:1、A 2、10% 3、C 4、A。