电力系统潮流计算

合集下载

电力系统的潮流计算

电力系统的潮流计算

Z T 1 Z T 2
*
ST1
ZT2SLD
*
*
Scir
ZT1ZT2
*
ST2
ZT1SLD
*
*
Scir
ZT1ZT2
E V A 1 V A 2 V A ( k 1 k 2 )——环路电势 V N H —— 高压侧额定电压
S cir
变比不同的变压器并联运行 时的功率分布
环路电势可由环路的开口电压确定。
Q P L 1 2 V Q 2 1 R 1 2 ( Q b V Q 2 c Q 1 ) R 2 2 ( Q V 1 2 Q b ) R 3 0
得到经济 功率分布:
P 1ecP b(R R 1 2 R R 2 3) R P 3cR 2
简单环网的功率分布
Q 1ecQ b(R R 1 2 R R 2 3) R Q 3cR 2
3.电源初步功率分布方程的一般形式
k*
Sa1i1* ZiSi (V *a * V *b)V NSa1,L DScir
Z
Z
k*
Sbki 1* ZiSi (V *b * V *a)V NSbk,L DScir
Z
Z
沿线有多个负荷的两端供电网络
对于均一网络〔各线段单位长度的阻抗值都相等或各线段的R/X相等〕有:
k*
k
k
k
SiZ0li
Sili
P ili
Q ili
Sa1i 1* Z0l
i 1 l
i 1 l
ji 1 l
k
k
k
Sili
Pili
Qili
Sbk
i1 l
i1 l
ji1 l
结论:在均一电力网中有功功率和无功功率的分布彼此无关。

电力系统的潮流计算

电力系统的潮流计算

第11章 电力系统的潮流计算§11.0 概述§11.1 开式网络的电压和功率分布计算 §11.2 闭式网络潮流的近似计算方法 §11.3 潮流计算的数学模型 §11.4 牛顿一拉夫逊法的潮流计算 §11.5 P-Q 分解法潮流§11.0 概述1、定义:根据给定的运行条件求取给定运行条件下的节点电压和功率分布。

2、意义:电力系统分析计算中最基本的一种:规划、扩建、运行方式安排。

3、所需: ① 根据系统状态得到已知条件:网络、负荷、发电机。

② 电路理论:节点电流平衡方程。

③ 非线性方程组的列写和求解。

4、已知条件: ① 负荷功率LD LD jQ P +② 发电机电压5、历史:手工计算:近似方法(§11.1,§11.2)计算机求解:严格方法§11.1 开式网络的电压和功率分布计算注重概念,计算机发展和电力系统复杂化以前的方法。

1、已知末端功率和未端电压, 见1.11Fig 解说:已知4V 和各点功率434343V X Q R P V +=∆3V 2V 1V 4V11R jx +2R jx +3R jx +23S 4S434343V R Q X P V -=δ34232343)(V V V V V V ∆+≈+∆+=δ)(332424243jX R V Q P S LOSS ++=4333S S S S LOSS ++='由此可见:利用上节的单线路计算公式,从末端开始逐级往上推算。

2、已知末端功率和首端电压以图11.1讲解,已知V 1和各点功率迭代法求解:① 假定末端为额定电压,按上小节方法求得始端功率及全网功率分布 ② 用求得的始端功率和已知的始端电压,计算线路末端电压和全网功率分布 ③ 用第二步求得的末端电压重复第一步计算④ 精度判断:如果各线路功率和节点电压与前一次计算小于允许误差,则停止计算,反之,返回第2步重复计算。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。

它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。

本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。

一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。

潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。

潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。

二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。

直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。

迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。

牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。

三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。

首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。

其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。

此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。

四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。

传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。

因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。

此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。

电力系统潮流计算

电力系统潮流计算
( k 1) x 迭代计算反复进行,通式是:
(k ) f ( x ) (k ) x f ( x ( k ) )
迭代过程的收敛判据为 f ( x ( k ) ) 1
x ( k ) 2

牛顿—拉夫逊法实质上就是切线法,是一种逐步线性化的 方法。牛顿法不仅用于求解单变量方程,它也是求解多变 量非线性方程的有效方法。

(0) (0) (0) (0) f1 ( x1(0) x1(0) , x2 x2 , , xn xn )0 (0) (0) (0) (0) f 2 ( x1(0) x1(0) , x2 x2 , , xn xn )0
(0) (0) (0) (0) f n ( x1(0) x1(0) , x2 x2 , , xn xn )0
牛顿-拉夫逊法潮流计算
一、牛顿—拉夫逊法的基本原理 单变量非线性方程: x=x(0)+ Δx(0) 即 f(x=x(0)+ Δx(0) ) = 0 f(x)=0 (11—29) 解的近似值x(0),它与真解的误差为Δx(0)
展成泰勒级数
f (x
(0)
x ) f ( x ) f ( x )x

f1 (0) xn )0 xn 0 f (0) 2 xn )0 xn 0
(0) f n ( x1(0) , x2 ,
写成矩阵形式:
f n f (0) x1(0) n x2 x1 0 x2 0 f1 x1 0 (0) (0) (0) f1 ( x1 , x2 , , xn ) f 2 (0) (0) (0) f 2 ( x1 , x2 , , xn ) x 1 0 (0) (0) (0) f ( x , x , , x n 1 2 n ) f n x1 0

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行和安排分析的基础,也是现代电力系统科学研究的重要内容之一。

潮流计算主要是根据电力系统终端负荷和电力系统节点的运行状态,计算和分析不同状态下电力系统的各种相关物理量。

电力系统潮流计算的核心目的是为了确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,以此来达到系统的安全、稳定、可靠和经济的运行。

电力系统潮流计算是通过对电力系统运行特征和物理约束的有效分析,来检测b系统安全性、稳定性和经济性,以及发电、负荷、输电线路和变压器等设备状态的检测,从而有效帮助电力系统的运行和控制。

潮流计算可以用来分析电力系统拓扑结构、根据拓扑结构对系统故障进行性检查、以及分析电力系统的安全稳定性等。

电力系统潮流计算的计算方法主要有基于线性代数的潮流计算法、参数拟合法,基于全局优化的潮流计算法,基于负载拟合的潮流计算法等方法。

基于线性代数的潮流计算法主要是根据电力系统的线性约束和Kirchhoff定律来建立电力系统的各种物理参数的数学模型,以此来计算出电力系统的潮流和电压。

参数拟合法是根据电力系统各节点的历史数据来建立负荷模型,然后根据这些模型来拟合出电力系统的潮流和电压。

基于全局优化的潮流计算法则是利用模拟退火和遗传算法等全局优化算法,求解出电力系统的潮流和电压。

潮流计算结果主要应用在电力系统规划设计、电力网络安全分析、发电满足率分析、电网终端负荷预测、电力系统容量及负荷平衡等方面。

电力系统规划设计时,可以利用潮流计算结果,选择合适的设备、制定负荷安排方案,确定电力系统的最佳运行模式,以保证系统的安全可靠。

电力网安全分析中,可以利用潮流计算的结果,检测出电力系统的故障点,以及设备的运行情况,从而有效预防和应对电力系统的安全威胁。

综上所述,电力系统潮流计算是电力系统及其科学研究的重要内容,通过对电力系统的物理参数有效分析,可以帮助电力系统安全、可靠的运行。

潮流计算的核心目的是确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,并且利用潮流计算结果,可以在电力系统规划、安全分析、发电满足率分析、电网终端负荷预测等方面发挥作用。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算引言电力系统潮流计算是电力系统分析中的重要环节。

通过潮流计算,可以确定电力系统中各个节点的电压和电流分布,从而评估系统的稳定性、负载能力以及潮流路径等重要参数。

本文将介绍电力系统潮流计算的基本原理、常用的计算方法以及相关的软件工具。

潮流计算原理电力系统潮流计算基于基尔霍夫电流法和功率-电压关系理论。

在潮流计算中,电力系统被建模为一个复杂的电路网络,其中各个节点表示发电机、负载和变电站等设备。

通过求解节点间的电压和电流,可以得到系统各个节点的电压和电流分布情况。

潮流计算方法直流潮流计算直流潮流计算是潮流计算中最简单和最常用的方法。

在直流潮流计算中,电力系统中的电流和电压被假设为恒定的直流量。

这种方法适用于传输系统和简单的配电网。

直流潮流计算的基本步骤包括建立节点电压方程、定义线路参数、计算线路功率损耗和节点电压。

交流潮流计算交流潮流计算是潮流计算中更为复杂的方法,它考虑了网络中的电压相位差和无功功率流动。

在交流潮流计算中,电力系统的节点电压和变压器的变比可以变化。

这种方法适用于复杂的电力系统,能够更准确地模拟实际情况。

交流潮流计算的基本步骤包括建立节点功率方程、定义节点电压相位差、计算线路功率和节点电压。

潮流计算软件潮流计算是一项复杂且计算量大的工作,需要借助计算机软件来实现。

以下是一些常用的潮流计算软件:1.PSS/E:由Siemens开发的电力系统潮流计算软件,功能强大且广泛使用。

2.PowerWorld Simulator:一款商业化的电力系统仿真软件,可以进行潮流计算、稳定性分析和故障分析等。

3.MATLAB/Simulink:MATLAB提供了强大的数值计算和仿真功能,可以用于电力系统潮流计算和建模。

结论电力系统潮流计算是电力系统分析中的重要环节,可以帮助我们了解系统的运行状态和性能。

直流潮流计算和交流潮流计算是常用的潮流计算方法,可以根据系统的复杂程度和要求选择合适的方法。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统的潮流分布是描述电力系统运行状态的技术术语,它表明电力系统在某一确定的运行方式和接线方式下,系统从电源到负荷各点的电压以及功率分布情况。

对电力系统在各种运行方式下进行潮流计算,可以让我们全面、准确地掌握电力系统中各元件的运行状态,正确地选择电气设备和导线截面,确定合理的供电方案,合理地调整负荷。

通过潮流计算,还可以发现系统中的薄弱环节,检查设备、元件是否过负荷,各节点电压是否满足供电要求,从中发现问题,提出必要的改进措施,实施相应的调压措施、调频措施,保证电力系统运行时各点维持正常的电压水平,保证电力系统运行时频率,并使整个电力系统获得最大的经济性。

一、 电力网元件的电压降落、电压损耗和电压偏移当电力网传输功率时,电流将流过网络元件,由于元件阻抗的存在,会使元件首末两端的电压发生变化。

电压变化程度是衡量电能质量的重要指标之一,所以研究电力网的电压变化规律是很必要的。

1. 电压降落元件首末两端电压的相量差即该元件的电压降落,用ph U ∆表示。

为了分析问题简便起见,我们以集中参数的等值电路来代表电力网元件,并暂时不考虑导纳的影响,网络传输功率的无功为感性,这时元件的等值电路和相量图如图1所示。

U 2U 1S 2S Ij X(a)(b)2ϕphI U 1ph U a2ph U ∆2phδU 图1 集中参数元件的等值电路和相量图(a )等值电路;(b)相量图由图1(b)的相量图中可知,元件首末两端的相量差存在下列关系 1p h 2p hp h p h d (j )U UU I R X-==+ (1) 它实质上就是电流在元件阻抗上的压降,相量图中的三角形abc 就是阻抗压降三角形,ac 边为总的电压降落,ab 边为电阻压降(或电压降落的有功分量),bc 边为电抗压降(或电压降落的无功分量)。

但是,在进行电网潮流计算时,常采取另一种方法来将电压降落相量加以分解,即取ph d U 在参考相量1phU (或2ph U )方向上的投影称为电压降落的纵向分量1ph U ∆(或2ph U ∆),而取ph d U 在与参考相量1ph U (或2ph U )垂直方向上的投影称为电压降落的横向分量1phδU(或2ph δU )。

电力系统分析潮流计算

电力系统分析潮流计算

电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。

其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。

本文将详细介绍电力系统潮流计算的原理、方法和应用。

一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。

潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。

电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。

$V_i$和$\theta_i$表示第i个节点的电压和相角。

$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。

二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。

1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。

直接法的计算速度快,但对系统规模有一定的限制。

2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。

迭代法通过迭代求解潮流方程来计算电力系统的潮流。

迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。

3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。

电力系统的潮流计算

电力系统的潮流计算

电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。

通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。

本文将介绍电力系统潮流计算的基本原理、计算方法和应用。

一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。

潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。

2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。

3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。

二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。

其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。

牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。

快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。

三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。

具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。

2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。

3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。

电力系统的潮流计算

电力系统的潮流计算

QB2
1 2
BV22
线路
S0 (GT jBT )V 2 变压器
S0
P0
jQ0
P0
j
I0% 100
SN
直接用变压器空载试
验数据计算
8
开式网络的电压和功率分布计算
一、已知供电点电压和负荷点功率时的计算方法 ➢ 已知末端的功率和电压:从末端开始依次计算出
电压降落和功率损耗。
➢ 已知电源点的电压和负荷的功率:采取近似的方 法通过叠代计算求得满足一定精度的结果
V1 S ' R
I
jX S '' V2
I
S LD
V1 V2 (R jX )I
5
计算电压降落时,必须用同一端的电压与功率.
V2
V2
P''R Q'' X V2
P'' X Q''R V2
arctg V2
V2 V2
V1
V2
P'R Q'X V1
P'X Q'R V1
arctg V1
Sb SG STc S0c jQB2 jQB3
1
b
2
c
3
d
A
Tb
Tc
Td
SLDb
SG
G
SLDd
16
二、两级电压的开式电力网计算
➢ 计算方法一:包含理想变压器,计算时,经过理
想变压器功率保持不变,两侧电压之比等于实际
变比k。
L-1 b
A
Tc
1 A
b Z'T c' k:1 c
Sc
Sd
VAb

电力系统潮流计算

电力系统潮流计算
潮流计算中心任务
功率 注入
母线 电压
5/75
7.1 潮流计算的基本概念
3) 对潮流计算的要求
收敛可靠性(尤其病态系统) 计算速度(如用于静态安全分析) 内存占用量 可移植性 可扩展性 使用灵活性
6/75
7.2 潮流计算的手工计算
1) 元件的等值电路
线路模型
i
Z
j
Y/2
SA
b
c
A
VA
d Si VN Vd
VA SA
Sb
Sc
Sd
Vi
10/75
7.3 潮流计算的基本原理
1) 潮流计算的基本方程
基本公式 其展开式
I YV 或 V ZI
*
n
Ii Y ijV j j 1
Ii

Si V i


Pi
j Qi
*
Vi
n
Pi
第7章 电力系统潮流计算
一.潮流计算的基本概念 二.潮流计算的手工计算 三. 潮流计算的基本原理 四.极坐标牛顿法潮流计算 五.直角坐标牛顿法潮流计算 六. 其他形式的牛顿法潮流
1/75
第7章 电力系统潮流计算 七.PQ分解法潮流计算 八.导纳矩阵的形成 九. 线性方程组的解法
2/75
思考题
1. 潮流计算的节点分哪几类? 2. 导纳矩阵有哪些元件形成?如何形成? 3. 牛顿法求解非线性方程的原理。 4. 直角坐标和极坐标牛顿法的修正方程? 5. 快速分解法原理?简化假设对计算结果的精度
2 j
2 Qij Q ji
变压器损耗
PT I 2 RT Pij Pji
QT I 2 X T Qij Q ji S0 (GT jBT )Vi2

电力系统潮流计算

电力系统潮流计算
P T e Q T e 2 V eT P f T Q f T V 2 f T
f J xT
极坐标下牛顿
P SP P(V , ) P(V , ) f ( x) SP Q ( V , ) Q Q(V , )
( X X ) P
XP
1)阻抗矩阵的变化 设原输电系统网络的节点阻抗矩阵为x ,支路 k 两 端的节点为i、j。这里的支路是指两节点间各线路的 并联,线路是支路中的一个元件。当支路 增加一条 电抗为 的线路(称追加线路)时,形成新的网络。
应用支路追加原理,新网络的节点阻抗矩阵为
极坐标下牛顿法修正方程:
P T Q T
P V T P V V Q Q V V T V
将极坐标Jacobian矩阵中的电压平方项移出矩阵
' VP H ' VQ M
ˆ ˆ UYU S
ˆ (G jB )U Pi jQi U i ij ij j
ji
i 1, 2, N
所有节点的功率平衡方程

Pi jQi (ei jf i ) (Gij jBij )(e j jf j )
ji
(ei jf i )(ai jbi )
问题

什么是潮流计算?
指在给定电力系统网络拓扑、元件参数和发电、负荷参量条件 下,计算有功功率、无功功率及电压在电力网中的分布。

为什么要进行潮流计算?
电力系统潮流计算的结果是电力系统稳定计算和故障分析的基 础。
如何进行潮流计算? 简单电力网络(开式网络、环形网络、两端供电网络) 潮流计算计算机算法(高斯—赛德尔法、牛顿法、P-Q分解法)

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是一种重要的计算方式,它主要用于计算电力系统分布式负荷和源之间的电力特性,以确定系统负荷和发电源之间的电力分配。

自上世纪80年代以来,随着电力系统越来越动态变化和智能化,电力系统潮流计算的发展就变得越来越重要。

电力系统潮流计算是基于电力系统的物理特性建模和计算,其目的是确定系统的电气特性,以确定系统的运行方式和改善系统效率。

它采用非线性扩展的模型和数学方法,建模和分析电力系统的电力特性,以确定系统发展趋势,满足入口电压和出口电压之间的平衡,为系统安全运行提供依据。

电力系统潮流计算主要分为三类:包括系统潮流分析、支路潮流分析和支路方程式分析。

系统潮流分析是基于负荷分布的潮流分析,主要用于分析和评估系统的负荷和发电源之间的电气特性,满足系统负荷和发电源之间的平衡,为系统安全运行提供分析。

支路潮流分析可以用于分析支路参数对电力系统电力特性的影响,预测改变支路参数后电力系统的变化及其他潮流分析方面的影响。

支路方程式分析是系统潮流计算的重要组成部分,它综合分析每条支路的电流和电压,以确定每条支路的电气特性。

另外,电力系统潮流计算还包括潮流抑制器的分布式潮流计算、无功补偿的潮流计算、复杂网络的潮流计算等。

电力系统潮流计算的发展有助于提高电力系统的安全性和可靠性,保证其正常运行,满足客户的负荷要求。

力系统潮流计算的重要性将更加凸显,因为它能够帮助电力公司分析和管理系统参数,以实现电力系统目标。

随着电力系统技术的不断发展,潮流计算方式也在不断改进,可以更好地满足不断变化的电力系统需求,从而更好地支持电力系统的可靠运行。

为此,电力系统潮流计算的研究和发展也将会继续受到重视。

综上所述,电力系统潮流计算是一种重要的电力系统计算技术,为电力系统的安全运行作出了重要贡献。

它的发展不仅为电力系统的智能化发展提供了重要技术支撑,而且还可以为电力系统的可靠运行提供保障,从而实现电力系统的综合优化。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各中的功率分布以及功率母线上的电压(幅值及相角)、网络损耗等。

电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。

意义:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。

(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。

(3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。

(4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。

总结为在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。

同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。

因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。

在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。

潮流计算的发展史利用电子计算机进行潮流计算从20世纪50年代中期就已经开始。

此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。

对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性电力系统潮流计算属于稳态分析范畴,不涉及系统元件的动态特性和过渡过程。

因此其数学模型不包含微分方程,是一组高阶非线性方程。

电力系统潮流计算

电力系统潮流计算

电力系统潮流计算简介潮流计算是电力系统运行与规划的重要工具之一,通过计算电力系统的节点电压、电流及功率等参数,可以帮助分析系统运行情况、评估电力系统稳定性和负荷承载能力,为电力系统的优化调度和规划提供依据。

本文将介绍电力系统潮流计算的基本原理和常用的数学模型,以及潮流计算的算法和应用。

潮流计算原理电力系统潮流计算是基于电力系统的等值模型进行的。

等值模型是对电力系统的复杂网络结构进行简化,将电力系统视为一组节点和支路的连接图,其中节点表示发电机、变电站和负荷,支路表示输电线路和变压器。

潮流计算的基本原理是基于电力系统的基尔霍夫电流定律和基尔霍夫电压定律,通过建立节点电压和支路功率的方程组,求解方程组得到电力系统中各节点的电压、电流和功率等参数。

潮流计算可以分为直流潮流计算和交流潮流计算两种。

直流潮流计算直流潮流计算是将电力系统视为直流电路进行计算的一种简化方法。

在直流潮流计算中,各节点的电压都假设为恒定值,即不考虑电力系统中的电压相位差。

直流潮流计算可以较准确地求解直流电力系统的电压、电流和功率等参数,常用于电力系统的初始计算和短期稳定计算。

交流潮流计算交流潮流计算是对电力系统的交流特性进行全面分析和计算的方法。

交流潮流计算考虑电力系统中的电压相位差和电流谐波等复杂情况,可以求解电力系统中各节点的电压、电流和功率的精确值。

交流潮流计算常用于电力系统长期稳定计算、电力系统规划和扩容的分析等。

潮流计算数学模型潮流计算的节点电压方程假设电力系统有n个节点,节点的电压记为V i,支路的电流记为I ij。

根据基尔霍夫电流定律和基尔霍夫电压定律,可以得到潮流计算中节点电压方程的数学表达式:$$ \\begin{align*} \\sum_{j=1}^n Y_{ij}V_j &= I_{i}^g - I_{i}^l \\\\ I_{ij} &= Y_{ij} (V_i - V_j) \\end{align*} $$其中,Y ij是节点i和节点j之间的支路导纳,I i g和I i l分别是节点i的总注入电流和总负荷电流。

电力系统的潮流计算

电力系统的潮流计算

第11章电力系统的潮流计算§11.0 概述§11。

1 开式网络的电压和功率分布计算§11。

2 闭式网络潮流的近似计算方法§11.3 潮流计算的数学模型§11。

4 牛顿一拉夫逊法的潮流计算§11.5P—Q分解法潮流§11。

0 概述1、定义:根据给定的运行条件求取给定运行条件下的节点电压和功率分布。

2、意义:电力系统分析计算中最基本的一种:规划、扩建、运行方式安排.3、所需:①根据系统状态得到已知条件:网络、负荷、发电机。

②电路理论:节点电流平衡方程.③非线性方程组的列写和求解.4、已知条件:①负荷功率②发电机电压5、历史:手工计算:近似方法(§11。

1,§11.2)计算机求解:严格方法§11。

1 开式网络的电压和功率分布计算注重概念,计算机发展和电力系统复杂化以前的方法。

1、已知末端功率和未端电压,见解说:已知和各点功率由此可见:利用上节的单线路计算公式,从末端开始逐级往上推算。

以图11.1讲解,已知V1和各点功率迭代法求解:①假定末端为额定电压,按上小节方法求得始端功率及全网功率分布②用求得的始端功率和已知的始端电压,计算线路末端电压和全网功率分布③用第二步求得的末端电压重复第一步计算④精度判断:如果各线路功率和节点电压与前一次计算小于允许误差,则停止计算,反之,返回第2步重复计算.⑤从首端开始计算线路各电压●如果近似精度要求不高,可以不进行迭代,只进行①、⑤计算始可。

3、对并联支路和分支的处理.4、多级电压开式电力网的计算.①折算到一侧进行计算,计算完以后再折算回去②原线路进行计算,碰到理想变压器则进行折算。

③型等值电路。

5、复杂辐射状网络的计算①基本计算步骤图讨论:a、迭代次数b、最近的研究论文②计算机实现a、节点编号(计算顺序)●引出问题●叶节点法:叶节号非叶节点编号方法b、支路返回法讨论:节点编号的工程基础③少量环网的处理方法§11.2 简单闭式网络潮流的近似计算方法简单闭式网络:两端供电网络或环形网络1、近似功率重迭原理:求两端供电网络的功率分布,本节介绍近似方法求电流分布,可以用叠加原理,则:如果忽略损耗,认为各点电压都等于V N,则在以上两式的两边各乘V N,则得到:与电路理迭加原理相对应,这便是近似功率迭加原理,以上公式中功率分为两部分,第一项:由负荷功率和网络参数确定,分别与电源点到负荷点间的阻抗共轭值成反比.第二项:负荷无关,由电势差和网络参数确定,称为循环功率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T1
10.5/121KV 31.5MW PK 148KW P0 38.5KW U K % 10.5 I 0 % 0.8
L
100km r1 0.2Ω/km x1 0.4Ω/km
T2 电抗器
110/11KV 20MW PK 104KW P0 27.5KW U K % 10.5 I 0 % 0.9
kA
一、电网中各元件的等值电路
4、输电线路的等值电路
RL
BL j 2
jX L
j BL 2
RL
jX L
电力线路的等值电路
电力线路的简化等值电路
RL r1 L () X L x1 L () BL b1 L ( S )
x1 0.4/km (架空)
一、电网中各元件的等值电路
1-6 电力系统潮流计算
潮流计算:
计算出电力网中所有回路的功率分布,以及所有节点的 电压分布。
潮流计算的目的:
在规划设计中,用于选择接线方式、导线截面以及选择 各种电器设备。 在运行时,用于确定运行方式、制定检修计划、确定调 整电压的措施。
提供继电保护、自动装置设计与整定所需的数据。
B、已知末端功率、电压,求首端功率
U 1
MVA、MW、Mvar KV
S1 S1 RL
S y1
B j L 2
jX L S2 S2
B j L 2
SZ
S y 2
U 2
P2 jQ2 S2
+S y 2 P2 jQ2 S2 S2
S1 S2 +SZ P 1 jQ1
◆电抗的计算
1 U k 1 % (U k (1 2 ) % U k (1 3 ) % U k ( 2 3 ) %) 2 1 U k 2 % (U k (1 2 ) % U k ( 2 3 ) % U k (1 3 ) %) 2
1 U k 3 % (U k (1 3 ) % U k ( 2 3 ) % U k (1 2 ) %) 2
U 1
MVA、MW、Mvar KV
S1 S1 RL
B j L 2
jX L S2 S2
U 2
j BL 2
dU U1 U2 Ui jUi
U i PR Qi X i Ui Pi X Qi R Ui
2
dU
i 1, 2
Ui
已知末端电压、功率,求首端电压 2 2 U 1 U 2 U 2 U 2 U 2 1 tg U 2 U 2
注意单位
P0 /Pk ---------kW UN ---------KV SN--------MVA
一、电网中各元件的等值电路
2、变压器的等值电路
(3)三绕组变压器
RT 1
jX T 1
RT 2
RT 3
jX T 2
GT
jBT
jX T 3
◆电阻计算(通常绕组量比为100/100/100)
运行时,所发出的无功功率
超前功率因数
二、具有多个电压等级电力网的等值电路
由于三相电路对称,电网的等值电路只画出一相 即可,各元件按照实际接线顺序连接。 但是电网中有变压器,各元件分处不同的电压等 级,求取等值电路时,必须将这些元件的参数归 算到一个事先选定的电压级下。
1、阻抗导纳的折算
2、电源电势的折算
S2 S1 SZ P2 jQ2
2 2 P Q SZ P+jQ 1 2 1 ( R jX ) U1 1 S y1 j BLU12 2 1 2 S y 2 j BLU 2 其中,末端电压由后面的方法求取 2
S2 Sy 2 P2 jQ2 S2
1 pk 1 p( k 1 2) p( k 31) p( k 2 3) 2 1 pk 2 p( k 1 2) p( k 2 3) p( k 31) 2 1 pk 3 p( k 2 3) p( k 31) p( k 1 2) 2
第一章 电力系统概述
第一章 电力系统概述
1- 1 1- 2 1- 3 1- 4 1- 5 1-6 1- 7 1- 8 1-9 电力系统的构成 电力系统联网运行的优越性 电能的质量标准 电力系统的电压等级 电力系统中性点接地方式 电力系统的潮流计算 电力系统的电压调整 电力系统的频率及其控制 电力系统稳定性问题
10.5/121KV 31.5MW PK 148KW P0 38.5KW U K % 10.5 I 0 % 0.8
i 1, 2 i 1, 2
A、已知首端功率、电压,求末端功率
U 1
MVA、MW、Mvar KV
S1 S1 RL
S y1
j BL 2
jX L S2 S2
S y 2
j BL 2
S1 P1 jQ1
U 2
SZ
S1 S1 S y1 P 1 jQ 1
已知首端端电压、功率,求末端电压
U2
U1 U1 U1
U1
U1 U1
2
tg 1

三、简单电力网潮流计算
(二)变压器的潮流计算
S1
U 1
GT
MVA、MW、Mvar KV
S1 R
T
jX T
S2 S2
U 2
jBT
除了并联支路的功率损耗计算 有所差异外,阻抗支路的功率 损耗和分布、电压降落和分布 都与线路相同。
X T1 GT 1 BT 1
Uk % U 10.5 121 = =48.6 ( ) 100 S N 100 31.5 P0 38.5 = =2.6 106 (S) 2 2 1000U N 1000 121 I 0 % S N 0.8 31.5 2 = = 17.2 106 (S) 2 100 U N 100 121
RL
B j L 2
jX L
j BL 2
RT
jX T
GT
jBT
三、简单电力网潮流计算
(一)电力线路的潮流计算 1、电力线路的功率损耗与功率分布
U 1
MVA、MW、Mvar KV
S1 S1 RL
S y1
j BL 2
jX L S2 S2
S y 2
j BL 2
SZ
U 2
Pi 2 Qi2 SZ P+jQ ( R jX ) 2 Ui 1 S yi j BLU i2 2
RL r1 L 0.2 100 20 () X L x1 L 0.4 100 40 ()
三、简单电力网潮流计算
电力网输电线路和变压器在传输功率的过程中都会产生功 率损耗(复功率损耗),包括: 串联阻抗上的损耗:随传输功率的增大而增大(主要)
并联导纳上的损耗:近似与电压平方成正比,与传输功率 无关(次要)。
2、变压器的等值电路
(1)双绕组变压器
RT jX T
GT
jBT
在应用下面的公式计算变压器参数时,用变 压器哪一侧绕组的额定电压,即相当于把变压器 的参数归算到了哪一侧。
PU k RT 1000S
P0 GT 2 1000U N
2 N 2 N
()
(S)
2 Uk % U N XT () 100 S N I0 % SN BT 2 (S) 100 U N
Pk S 2 Uk % S 2 ( ) j SN ( ) n SN 100n SN
I0 % nP0 jn SN 100
ST 0
例题1-2
下图定功率时,线路L末端的电压和功率。 电抗器 G T1 T2 L
10.5KV 25MW cos 0.8 X d % 12.5%
S yT GT jBT U12 GTU12 jBTU12 PyT jQyT
三、简单电力网潮流计算
变压器损耗实用计算
S1
U 1
GT
MVA、MW、Mvar KV
S1 R
T
jX T
S2 S2
设有n台变压器并列运行,则损耗
U 2
S ZT
jBT
▲电力系统中生产、变换、输送、消费电能的 四大部分的特性和数学模型 1.发电机组 2.变压器 3.电力线路(包括电抗器) 4.负荷 ▲电力网络的数学模型
一、电网中各元件的等值电路
1、同步发电机的等值电路
jX G
kV
U
2 Xd % UN XG () 100 S N
EG
MVA
一、电网中各元件的等值电路
二、具有多个电压等级电力网的等值电路
U 121 EG 10.5 K1 10.5 1N 10.5 121(KV ) U2N 10.5
PkU12N 104 1102 RT 2 = =3.15 () 2 1000S N 1000 202
2 2 2 Xd % UN 12.5 10.52 121 2 2 XG K1 ( ) 58.6 X U k % U N = 10.5 110 =63.5 () T2 100 S N 100 25 0.8 10.5 100 S N 100 20 2 2 P U 148 121 P0 27.5 RT 1 k 1N = =2.16 ( ) 2 GT 2 = =2.3 106 (S) 1000 S N 1000 31.52 2 2
二、具有多个电压等级电力网的等值电路
1、阻抗导纳的折算 (1)低压侧参数折算到高压侧
Z ZK
2
(2)高压侧参数折算到低压侧
Y Y 2 K
相关文档
最新文档