解三角形应用举例教学设计

合集下载

湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计

湘教版数学九年级上册4.4《解直角三角形的应用》(第1课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》是本册教材中的一个重要内容。

在此之前,学生已经学习了直角三角形的性质、勾股定理等知识。

本节课主要让学生掌握解直角三角形的应用,即如何利用直角三角形的性质解决实际问题。

教材通过例题和练习题的形式,引导学生学会运用解直角三角形的方法解决生活中的问题,提高学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形的概念和性质有一定的了解。

但是,他们在解决实际问题时,往往不知道如何将数学知识运用到具体情境中。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.知识与技能目标:使学生掌握解直角三角形的应用方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。

3.情感、态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:解直角三角形的应用方法。

2.难点:如何将实际问题转化为直角三角形问题,并运用解直角三角形的方法解决。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现问题,提出解决方案。

2.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。

3.合作学习法:学生分组讨论,共同解决问题,培养团队合作精神。

六. 教学准备1.教师准备:教材、课件、黑板、直角三角板等教学工具。

2.学生准备:课本、练习本、直角三角板等学习工具。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如测量旗杆高度、房屋面积等,引导学生发现这些问题都可以通过解直角三角形来解决。

从而激发学生的学习兴趣,引入新课。

2.呈现(10分钟)教师展示教材中的例题,引导学生观察题干,分析问题。

然后,教师通过讲解,展示解直角三角形的步骤和方法。

高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》教案

高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》教案

《解三角形应用举例》教案一、教学目标1.知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.2.过程与方法(1)通过解决“底部不可到达的物体高度测量”的问题,初步掌握将实际问题转化为解斜三角形的问题的方法.(2)进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力.3.情感、态度与价值观进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力二、教学重点和难点教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学关键:将实际问题中的高度问题转化为数学问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法,步步改进方法,探求最佳方法.三、教法与学法导航教学方法:本节课是解三角形应用举例的延伸.采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架.通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法.教学形式要坚持“引导——讨论——归纳”,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.作业设计思考题,提供学生更广阔的思考空间.学习方法:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.四、教学过程1.创设情境,导入新课提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.2.主题探究,合作交流例1 如图1,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.图1分析:求AB 长的关键是先求AE ,在△ACE 中,如能求出点C 到建筑物顶部A 的距离CA ,再测出由点C 观察A 的仰角,就可以计算出AE 的长.解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD =a ,测角仪器的高是h ,那么,在△ACD 中,根据正弦定理可得: )sin(sin βαβ-=a AC , h a h AC h AE AB +-=+=+=)sin(sin sin sin βαβαα. 例 2 如图2,在山顶铁塔上B 处测得地面上一点A 的俯角0454'︒=α,在塔底C 处测得A 处的俯角150'︒=β.已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1m ).图2教师:根据已知条件,大家能设计出解题方案吗(给时间给学生讨论思考)?若在△ABD 中求CD ,则关键需要求出哪条边呢?学生:需求出BD 边.教师:那如何求BD 边呢?学生:可首先求出AB 边,再根据∠BAD=α求得.解:在△ABC 中,∠BCA =90°+β,∠ABC =90°-α,∠BAC =αβ-,∠BAD =α.根据正弦定理, )sin(βα-BC =)90sin(β+︒AB.所以 AB =)sin()90sin(βαβ-+︒BC =)sin(cos βαβ-BC .在Rt △ABD 中,得:BD =AB sin ∠BAD =)sin(sin cos βααβ-BC .将测量数据代入上式,得:BD =)1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'''︒︒︒≈177.4(m ).CD =BD -BC ≈177-27.3=150(m ).学生:山的高度约为150 m.教师:有没有别的解法呢?学生:若在.△ACD 中求CD ,可先求出AC .教师:分析得很好,请大家接着思考如何求出AC ?学生:同理,在△ABC 中,根据正弦定理求得.(解题过程略)例3 如图3,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15°的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25°的方向上,仰角为8°,求此山的高度CD (精确到1m ).图3教师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?学生:在△BCD 中教师:在△BCD 中,已知BD 或BC 都可求出CD ,根据条件,易计算出哪条边的长? 学生:BC 边解:在△ABC 中, ∠A =15°,∠C = 25°-15°=10°,根据正弦定理,A BC sin =CAB sin , BC =C A AB sin sin =︒︒10sin 15sin 5≈7.452 4(km ). tan tan81047(m)CD BC DBC BC =⨯∠≈⨯︒≈答:山的高度约为1047m.教材第15页练习第1、2、3题.3.小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.4.课外作业(1)教材第19、20页习题1.2 A 组第6,7,8题(2)为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?答案:20+3320m。

《解直角三角形》教学设计

《解直角三角形》教学设计

《解直角三角形》教学设计(续表)图28-2-5 教师呈现问题并引导学生结合图形,观察已知和的正弦来求∠A的(续表)(续表)【学习目标】 1.知识技能(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.(2) 理解解一个直角三角形的前提条件. 2.解决问题通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.数学思考 让学生思考:为什么一个直角三角形可以解的前提条件是必须有两个元素(其中一个必须为边).从而让学生理解画一个直角三角形的条件.4.情感态度(1) 通过给定具体的两个条件(其中一个为边),让学生们画直角三角形,培养学生合作交流的意识和探索精神.(2)通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯. 【学习重难点】重点:直角三角形的解法.难点: (1)三角函数在解直角三角形中的灵活运用.(2)学生可能不理解在已知的两个元素中,为什么至少有一个是边.课前延伸【知识梳理】(1) 在Rt △ABC 中,∠C =90°,a =3,c =4,则b =. (2) 在Rt △ABC 中,∠C =90°,∠A =28°,那么∠B =__62°__.(3) 在Rt △ABC 中,∠C =90°,a =4,b =5,则sin A =41,cos A =41,tan A =__45__(4) 在Rt △ABC 中,∠C =90°, ∠A =30°,a =6,则c =__12__,b =. (5) 在Rt △ABC 中,∠C =90°,已知c =6, ∠A =50°,则a =__6_sin50°__. (6) 意大利披萨斜塔在建成的时候就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年披萨地区发生地震,这座高54.5米的斜塔在大幅摇摆后依然屹立,但塔顶中心点偏离垂直中心线增至5.2米,请你算出这时塔身中心线与垂直中心线的夹角.课内探究一、 课堂探究1(问题探究,自主学习)(1)在Rt △ABC 中,∠C =90°,c =28, ∠B =60°,解这个直角三角形. (2)在Rt △ACB 中,c =90°,a =30, ∠B =80°, 解这个直角三角形. (3)在Rt △ABC 中,c =90°,a =3,b =3, 解这个直角三角形.二、课堂探究2(分组讨论,合作探究)(1) 画一个直角三角形,使两条直角边分别为3和4.(2) 画一个直角三角形,使一条直角边为3,一个锐角为35°.(3) 画一个直角三角形,使斜边长为8,一个锐角为40°.(4) 画一个直角三角形,使两个锐角分别为30°和60°.各小组比较由(1)(2)(3)(4)画出的直角三角形.讨论1:你觉得给出什么样的条件可以画出一个确定的三角形.讨论2:你觉得确定一个直角三角形需要的元素有什么条件?三、反馈训练1.必做题在Rt△ABC中,∠C=90°,已知b=20, ∠B=35°,解这个直角三角形(结果保留小数);(2)在Rt△ABC中,∠C=90°,已知a=10 3,b=20, 解这个直角三角形.2.选做题在Rt△ABC中,∠C=90°,AC=15, ∠A的平分线AD=10 3,解这个直角三角形.课后提升1. 在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.2. 已知在△ABC中,∠B=60°,∠C=45°,AB=6,求BC长.3. 如图,在两面墙之间有一个底端在点A的梯子,当它靠在一侧墙上时,梯子的顶端在点B处;当它靠在另一侧墙上时,梯子的顶端在点D处.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 2 m.求点B到地面的垂直距离BC.图28-2-9。

教育部参赛__解三角形教学设计__安江华

教育部参赛__解三角形教学设计__安江华

课题: §1.2.1解三角形应用举例1——隔岸求距离新课标人教版A版必修5 授课类型:新授课(第1课时)一、教材分析《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。

比如对于正弦定理、余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

学习了正弦定理、余弦定理后,并用它们来解决实际问题,让学生真正的体会到“数学是有用的”。

二、教学目标(一)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决不可到达点的距离测量问题,了解常用的测量相关术语(二)过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。

其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。

对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正。

(三)情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。

三、教学重点、难点重点:分析测量问题的实际情景,从而找到测量距离的方法,从实际问题中抽象出一个或几个三角形,然后逐个解决三角形,,得到实际问题的解。

难点:根据题意建立数学模型,画出示意图四、教学准备器材三角板、计算器等五、教学过程Ⅰ.课题导入1、[复习旧知]复习提问:什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_30

人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_30

第一课时 1.2 应用举例(一)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.教学重点:熟练运用正弦定理、余弦定理解答有关三角形的测量实际问题.教学难点:根据题意建立解三角形的数学模型.教学过程:一、复习准备:1.在△ABC 中,∠C =60°,a +b =+1),c =,则∠A 为 .2.在△ABC 中,sin A =sin sin cos cos B C B C++,判断三角形的形状. 解法:利用正弦定理、余弦定理化为边的关系,再进行化简二、讲授新课:1. 教学距离测量问题:① 出示例1:如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC =51︒,∠ACB =75︒. 求A 、B 两点的距离(精确到0.1m ).分析:实际问题中已知的边与角? 选用什么定理比较合适?→ 师生共同完成解答. →讨论:如何测量从一个可到达的点到一个不可到达的点之间的距离? ③ 出示例2:如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析得出方法:测量者可以在河岸边选定两点C 、D ,测得CD =a ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.讨论:依次抓住哪几个三角形进行计算?→ 写出各步计算的符号所表示的结论. 具体如下:在∆ADC 和∆BDC 中,应用正弦定理得AC =sin()sin[180()]a γδβγδ+︒-++ =sin()sin()a γδβγδ+++, BC =sin sin[180()]a γαβγ︒-++=sin sin()a γαβγ++. 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =④ 练习:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60︒,∠ACD =30︒,∠CDB =45︒,∠BDA =60︒. (答案:AB .2. 小结:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.三、巩固练习:1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°. A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离. ()2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B在观察站C 南偏东60︒,则A 、B a km )3. 作业:教材P14 练习1、2题.第二课时 1.2 应用举例(二)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m )③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C, BC =sin sin AB A C =5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.第三课时 1.2 应用举例(三)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.教学重点:熟练运用定理.教学难点:掌握解题分析方法.教学过程:一、复习准备:1. 讨论:如何测量一个可到达的点到一个不可到达的点之间的距离?又如何测量两个不可到达点的距离? 如何测量底部不可到达的建筑物高度?与前者有何相通之处?2. 讨论:在实际的航海生活中,如何确定航速和航向?通法:转化已知三角形的一些边和角求其余边的问题二、讲授新课:1. 教学角度的测量问题:① 出示例1:甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.分析:根据题意,如何画图? →解哪个三角形?用什么定理?如何列式?→ 学生讲述解答过程 (答案:630) → 小结:解决实际问题,首先读懂题意,画出图形→再分析解哪个三角形,如何解?② 练习:已知A 、B 两点的距离为100海里,B 在A 的北偏东30°,甲船自A 以50海里/小时的速度向B 航行,同时乙船自B 以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?画出图形,并标记已知和要求的 →解哪个三角形?用什么定理解?如何列式? ③ 出示例2:某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?分析:如何画出方位图? → 寻找三角形中的已知条件和问题? →如何解三角形.→ 师生共同解答. (答案:北偏东8331'︒方向;1.4小时)④ 练习:某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上渔群?2. 小结:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之. (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.三、巩固练习:1. 我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2. 某时刻A 点西400千米的B 处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心,300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A 进入台风圈?A 处在台风圈中的时间有多长?3. 作业:教材P22 习题1.2 A 组 2、3题.第四课时 1.2 应用举例(四)教学要求:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用,能证明三角形中的简单的恒等式.教学重点:三角形面积公式的利用及三角形中简单恒等式的证明. 教学难点:利用正弦定理、余弦定理来求证简单的证明题.教学过程:一、复习准备:1. 提问:接触过哪些三角形的面积公式?2. 讨论:已知两边及夹角如何求三角形面积?二、讲授新课:1. 教学面积公式:①讨论:∆ABC中,边BC、CA、AB上的高分别记为ha 、hb、h c,那么它们如何用已知边和角表示?→如何计算三角形面积?②结论:三角形面积公式,S=12absin C,S=1bcsin A,S=12acsinB③练习:已知在∆ABC中,∠B=30︒,b=6,c求a及∆ABC的面积S.(解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数)④出示例1:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)?分析:由已知条件可得到什么结论?根据三角形面积公式如何求一个角的正弦?→师生共同解答. →小结:余弦定理,诱导公式,面积公式.→讨论:由三边如何直接求面积?(海仑公式)2. 教学恒等式证明:①讨论:射影定理:a = b cos C + c cos B;b = a cos C + c cos A;c = a cos B + b cos A.分析:如何证明第一个式子?证一:右边=22222222222a b c a c b ab c aab ac a+-+-+=== 左边证二:右边= 2R sin B cos C + 2R sin C cos B=2R sin(B+C)=2R sin A= a = 左边→学生试证后面两个.②出示例2:在∆ABC中,求证:(1)222222sin sin;sina b A Bc C++=(2)2a+2b+2c=2(bc cos A+ca cos B+abcosC)分析:观察式子特点,讨论选用什么定理?3. 小结:利用正弦定理或余弦定理,“化边为角”或“化角为边”.三、巩固练习:1. 在△ABC中,若22tantanA aB b=,判断△ABC的形状. (两种方法)2. 某人在M汽车站的北偏西20︒的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶. 公路的走向是M站的北偏东40︒. 开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米. 问汽车还需行驶多远,才能到达M汽车站?(15千米)3. 作业:教材P24 14、15题.。

人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2

人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2

第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。

主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。

因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。

本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。

对加深学生数学源于生活,用于生活的意识做贡献。

二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。

这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。

在某些问题中只要求得到能够实施的测量方法。

学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。

三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。

(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。

(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。

四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。

难点:测量方法的寻找与计算。

五、教学手段计算机,PPT,黑板板书。

六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。

知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。

解三角形应用举例》 教案

解三角形应用举例》 教案

教学过程一、复习预习教师引导学生复习上节内容,并引入本节课程内容二、知识讲解考点1 用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.考点2 实际应用中的常用术语 术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫做仰角,目标视线在水平视线下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的水平夹角叫做方位角.方位角的范围是(0°,360°)方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度例:(1)北偏东m °:(2)南偏西n °:坡角坡面与水平面的夹角设坡角为α,坡度为i ,则i =hl=tan α坡度坡面的垂直高度h 和水平宽度l的比三、例题精析【例题1】【题干】隔河看两目标A与B,但不能到达,在岸边选取相距 3 km的C、D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求两目标A、B之间的距离.【解析】如图,在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,所以AC=CD= 3.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°,由正弦定理知BC= 3 sin 75°sin 60°=6+22.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,所以AB= 5 km,所以A,B两目标之间的距离为 5 km.【题干】某人在塔的正东沿着南偏西60°的方向前进40 m 后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.【解析】如图所示,某人在C 处,AB 为塔高,他沿CD 前进,CD =40,此时∠DBF =45°.过点B 作BE ⊥CD 于E ,则∠AEB =30°.在△BCD 中,CD =40, ∠BCD =30°,∠DBC =135°,由正弦定理,得CD sin ∠DBC =BDsin ∠BCD ,则BD =40sin 30°sin 135°=20 2.∠BDE =180°-135°-30°=15°. 在Rt △BED 中,BE =DB sin 15°=202×6-24=10(3-1).在Rt △ABE 中,∠AEB =30°, 则AB =BE tan 30°=103(3-3).故塔高为103(3-3) m.【题干】如图,在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.【解析】设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =10 3 t 海里,BD =10 t 海里,在△ABC 中,由余弦定理,有BC 2=AB 2+AC 2-2AB ·AC cos A =(3-1)2+22-2(3-1)·2·cos 120°=6.解得BC = 6.又∵BC sin A =AC sin ∠ABC ,∴sin ∠ABC =AC ·sin A BC =2·sin 120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上,∴∠CBD =90°+30°=120°, 在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin 120°103t=12. ∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°,∴∠D =30°,∴BD =BC ,即10t = 6.∴t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.【题干】(2013·广州模拟)在一个特定时段内,以点E 为中心的7海里以内的海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 的北偏东45°且与点A 相距402海里的位置B ,经过40分钟又测得该船已行驶到点A 的北偏东(45°+θ)(其中sin θ=2626,0°<θ<90°)且与点A 相距1013海里的位置C . (1)求该船的行驶速度(单位:海里/时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.【解析】如图所示,AB =402,AC =1013,∠BAC =θ,sin θ=2626.因为0<θ<90°,所以cos θ=1-⎝⎛⎭⎫26262=52626.BC =AB 2+AC 2-2AB ·AC ·cos θ=10 5.所以船的行驶速度为10523=155海里/时.(2)法一:如图所示以A 为原点建立平面直角坐标系,设点B ,C 的坐标分别是B (x 1,y 1),C (x 2,y 2),BC 与x 轴的交点为D .由题设,得x 1=y 1=22AB =40, x 2=AC cos ∠CAD =1013·cos(45°-θ)=30, y 2=AC sin ∠CAD =10 13·sin(45°-θ)=20. 所以过点B ,C 的直线l 的斜率k =2010=2,直线l 的方程为y =2x -40.又点E (0,-55)到直线l 的距离d =|0+55-40|1+4=35<7,所以船会进入警戒水域.法二:如图所示,设直线AE 与BC 的延长线相交于点Q .在△ABC 中,由余弦定理,得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =402×2+102×5-102×132×402×105=31010.所以sin ∠ABC =1-cos 2∠ABC =1-910=1010. 在△ABQ 中,由正弦定理,得AQ =AB ·sin ∠ABCsin 45°-∠ABC=402×101022×21010=40.由于AE =55>40=AQ ,所以点Q 位于点A 和点E 之间,且QE =AE -AQ =15. 过点E 作EP ⊥BC 于点P ,则EP 为点E 到直线BC 的距离.在Rt △QPE 中,PE =QE ·sin ∠PQE =QE ·sin ∠AQC =QE ·sin(45°-∠ABC )=15×55=35<7.所以船会进入警戒水域.四、课堂运用【基础】1.某人向正东方向走x km后,向右转150°,然后朝新方向走3 km,结果他离出发点恰好是 3 km,那么x的值为()A.3B.23C.3或2 3 D.3解析:选C如图所示,设此人从A出发,则AB=x,BC=3,AC=3,∠ABC=30°,由余弦定理得(3)2=x2+32-2x·3·cos 30°,整理得x2-33x+6=0,解得x=3或2 3.2.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50 m B.100 mC.120 m D.150 m解析:选A设水柱高度是h m,水柱底端为C,则在△ABC中,A=60°,AC=h,AB =100,BC=3h,根据余弦定理得,(3h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50 m.3.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1 000 km/h ,飞行员先看到山顶的俯角为30°,经过1 min 后又看到山顶的俯角为75°,则山顶的海拨高度为(精确到0.1 km)( )A .11.4B .6.6C .6.5D .5.6解析:选B ∵AB =1 000×1 000×160=50 0003m , ∴BC =AB sin 45°·sin 30°=50 00032m. ∴航线离山顶h =50 00032×sin 75°≈11.4 km. ∴山高为18-11.4=6.6 km.【巩固】4.2012年10月29日,超级风暴“桑迪”袭击美国东部,如图,在灾区的搜救现场,一条搜救狗从A处沿正北方向行进x m到达B处发现一个生命迹象,然后向右转105°,行进10 m到达C处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x=________.解析:∵由题知,∠CBA=75°,∠BCA=45°,∴∠BAC=180°-75°-45°=60°,∴xsin 45°=10sin 60°.∴x=1063m.答案:1063m5.(2013·铜川模拟)一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是________海里/小时.解析:如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD =CA=10.在直角三角形ABC中,可得AB=5,于是这只船的速度是5=10海里/小时.0.5答案:10【拔高】6.如图,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0),x ∈[0,4]的图象,且图象的最高点为S (3,23);赛道的后一部分为折线段MNP .为保证参赛运动员的安全,限定∠MNP =120°.(1)求A ,ω的值和M ,P 两点间的距离;(2)应如何设计,才能使折线段赛道MNP 最长?解:(1)如图所示,连接MP .依题意,有A =23,T 4=3. ∵T =2πω,∴ω=π6.∴y =23sin π6x . 当x =4时,y =23sin2π3=3,∴M (4,3). 又P (8,0),∴MP =42+32=5km.(2)在△MNP 中,∠MNP =120°,MP =5,设∠PMN =θ,则0°<θ<60°.∵由正弦定理得MP sin 120°=NP sin θ=MN sin 60°-θ, ∴NP =1033sin θ,MN =1033sin(60°-θ), 故NP +MN =1033sin θ+1033sin(60°-θ)=1033⎝⎛⎭⎫12sin θ+32cos θ=1033sin(θ+60°). ∵0°<θ<60°,∴当θ=30°时,NP +MN 最大,即将∠PMN 设计为30°时,才能使折线赛道MNP 最长.7.为扑灭某着火点,现场安排了两支水枪,如图,D 是着火点,A 、B 分别是水枪位置,已知AB =1 5 2 m ,在A 处看到着火点的仰角为60°,∠ABC =30°,∠BAC =105°,求两支水枪的喷射距离至少是多少?解:在△ABC 中,可知∠ACB =45°,由正弦定理得AB sin ∠ACB =AC sin ∠ABC, 解得AC =15 m.又∵∠CAD =60°,∴AD =30,CD =153,sin 105°=sin(45°+60°)=6+24. 由正弦定理得AB sin ∠ACB =BC sin ∠BAC, 解得BC =156+22m. 由勾股定理可得BD =BC 2+CD 2=155+ 3 m ,综上可知,两支水枪的喷射距离至少分别为30 m ,155+ 3 m.课程小结解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.课后作业【基础】1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a kmB.3a kmC.2a kmD .2a km解析:选B 利用余弦定理解△ABC .易知∠ACB =120°,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 120°=2a 2-2a 2×⎝⎛⎭⎫-12=3a 2,故AB =3a .2.(2013·永州模拟)张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( )A .2 2 kmB .3 2 kmC .3 3 kmD .2 3 km解析:选B 如图,由条件知AB =24×1560=6.在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin 30°=ABsin 45°,所以BS =ABsin 45°sin 30°=3 2.3.如图,在湖面上高为10 m 处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)( )A .2.7 mB .17.3 mC .37.3 mD .373 m解析:选C ∵在△ACE 中,tan 30°=CE AE =CM -10AE . ∴AE =CM -10tan 30°m. ∵在△AED 中,tan 45°=DE AE =CM +10AE, ∴AE =CM +10tan 45° m ,∴CM -10tan 30°=CM +10tan 45°, ∴CM =103+13-1=10(2+3)≈37.3 m.【巩固】4某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m ,则折断点与树干底部的距离是________ m.解析:如图,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO =45°,∠AOB =75°,所以∠OAB =60°.由正弦定理知,AOsin 45°=20sin 60°,解得AO =2063 m.答案:20635.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解:作DM ∥AC 交BE 于N ,交CF 于M ,DF =MF 2+DM 2=302+1702=10298,DE =DN 2+EN 2=502+1202=130,EF =BE -FC 2+BC 2=902+1202=150.在△DEF 中,由余弦定理得,cos ∠DEF =DE 2+EF 2-DF 22DE ·EF =1302+1502-102×2982×130×150=1665.【拔高】6.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?解:如图,连接A 1B 2∵由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1A 2·cos 45°=202+(102)2-2×20×102×22=200,∴B 1B 2=10 2.因此,乙船的速度为10220×60=302海里/时.7.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.解:(1)依题意,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB×AC×cos ∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28.=14海里/小时.所以渔船甲的速度为BC2(2)法一:在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得AB sin α=BC sin 120°. 即sin α=AB sin 120°BC =12×3228=3314. 法二:在△ABC 中,因为AB =12,AC =20,BC =28,∠BCA =α,由余弦定理,得cos α=AC 2+BC 2-AB 22AC ×BC, 即cos α=202+282-1222×20×28=1314. 因为α为锐角,所以sin α=1-cos 2 α= 1-⎝⎛⎭⎫13142=3314.。

人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_42

人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_42

《正弦定理》教学设计
一、课标分析
《课程标准》设立“数学探究”、“数学活动”等专题课程,激发学生的数学学习兴趣,培养学生逐步形成积极主动的学习方式;提出数学最大的发展是应用.计算机技术的广泛使用,使得“数学从社会的幕后走到台前”,在某些方面直接为社会创造价值;要求数学不能过度地形式化,将生动活泼的数学思维淹没在形式化的海洋里应该“返朴归真”,揭示数学的本质,“要推理,更要讲道理”.
二、教材分析
《正弦定理》是普通高中课程标准实验教科书必修5中第一章《解三角形》的学习内容.正弦定理是解决有关斜三角形问题以及应用问题的重要定理之一,它将三角形的边和角有机的联系起来,实现了“边”与“角”的互化,从而使“三角函数”与“几何”产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据.
三、学情分析
1.学生在初中已学过解直角三角形的一些知识和方法:
(1)三角函数式,如:
(2)直角三角形三条边长的关系(勾股定理):
2.学生在初中已学过有关任意三角形的一些知识:
(1)大边对大角,小边对小角;
(2)任意两边之和大于第三边,任意两边之差小于第三边;
(3)三角形内角和为180°.
四、教学过程。

《解三角形》教学设计-优秀教案

《解三角形》教学设计-优秀教案

45,C∠.求边长能够很好地激发学生的求知欲望。

在新的问题产生时这个时候也正是产生知识缺陷, 急需新知识的时候教师活动2探究一: 直角三角形边角关系如图:在中, 是最大的角, 所对的斜边是最大的边, 探究边角关系。

探究二: 斜三角形边角关系实验1: 如图, 在等边中, ,对应边的边长, 验证是否成立?实验2: 如图, 在等腰中, , , 对应边的边长, 验证是否成立?实验3:借助多媒体演示, 发现随着三角形的任意变换, 的值相等。

通过这样的一些实验, 我们可以猜想。

学生活动2探究一: 在中, 设, 根据正弦函数定义可得:cbBcaA==∴sin;sincBbAa==∴sinsin又1sin=CCcBbAasinsinsin==∴探究二: 学生通过计算验证结论是否正确探究二:学生通过计算验证结论是否正确活动意图说明从已有的知识结构出发, 不让学生在思维上出现跳跃, 逐层递进, 通过已经熟悉的直角三角形的边角关系的探究作为切入点, 再对特殊的斜三角形进行验证, 过渡到一般的斜三角形边角关系的探究。

让学亲自体验数学实验探究的过程, 逐层递进, 激发学生的求知欲和好奇心, 体会到数学实验的归纳和演绎推理两个侧面。

多媒体技术的引入演示, 让学生更加直观感受到变换, 加深理解。

环节三:教的活动3证明猜想, 得到定理学的活动3分组讨论证明方法并展示活动意图说明经历猜想到证明的过程, 让学生体会到数学新知识得获得仅仅靠猜想和演绎推理是不够的,必须经过严密的数学推导进行证明才可以。

在这个过程中, 也进一步促进学生数学思维思维品质的提升。

7.板书设计(板书完整呈现教与学活动的过程, 最好能呈现建构知识结构与思维发展的路径与关键点。

使用PPT应注意呈现学生学习过程的完整性)课题一、正弦定理定理: 例题练习。

解直角三角形之应用举例

解直角三角形之应用举例

人教版版教材九年级数学28.2.1解直角三角形之应用举例第一课时——教学设计荥阳市贾峪镇第一初级中学朱巍《28.2.1解直角三角形之应用举例》教学设计一、教学内容分析1、教学内容本节课的主要内容是利用直角三角形的边关系解决实际生活中与解直角三角形相关的实际应用题.2、地位与作用本节是在学生掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。

通过本节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。

从而进一步把形和数结合起来,提高分析和解决问题的能力。

它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。

它的学习还蕴涵着深刻的数学思想方法(数形结合、转化),在本节教学中有针对性的对学生进行这方面的能力培养.二、学生情况分析1、知识基础学生已有了直角三角形的相关知识和用勾股定理解直角三角形的认识基础,同时学生刚刚学习了锐角三角函数的定义,并能运用锐角三角函数的知识来解直角三角形。

2、能力基础九年级的学生已经有了将新知运用于新情境的能力,能在教师的引导下进行深刻的思维,解决有深度的问题。

3、困难预设在生活中解决实际问题时,解直角三角形有着广泛的应用。

在实际学习中,学生如何从各种不同的实际问题情境中抽象出解直角三角形的模型,并灵活的利用所学知识解决实际问题,是学生学习的难点,同时要通过相当的练习训练,逐步形成学生解决问题的能力,并能归纳出解决此类问题的一般过程。

三、学习目标分析《数学课程标准(2011年版)》第38页显示本节课的要求为:能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。

根据以上分析,确定本节课的学习目标为:1. 学生能准确、熟练说出与解直角三角形相关的知识;2. 通过练一练,学生能灵活选择适当的边角关系式解直角三角形,解决实际应用题;3. 通过多个练习,学生能归纳出利用解直角三角形的知识解决实际问题的一般过程。

《§3 解三角形的实际应用举例》教学案1

《§3 解三角形的实际应用举例》教学案1

《§3 解三角形的实际应用举例》教学案1教学目标1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。

2、能够运用正弦定理、余弦定理进行三角形边与角的互化。

3、培养和提高分析、解决问题的能力。

教学重点难点1、正弦定理与余弦定理及其综合应用。

2、利用正弦定理、余弦定理进行三角形边与角的互化。

教学过程 一、复习引入1、正弦定理:2sin sin sin a b cR A B C === 2、余弦定理: ,cos 2222A bc c b a -+=⇔bca cb A 2cos 222-+=,cos 2222B ca a c b -+=⇔ca b a c B 2cos 222-+=C ab b a c cos 2222-+=,⇔abc b a C 2cos 222-+=二、例题讲解引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。

解:060=A 075=B ∴045=C由正弦定理知0045sin 1060sin =BC6545sin 60sin 1000==⇒BC 海里750600CBA例1.如图,自动卸货汽车采用液压机构,设计时需要计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为/02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字).分析:这个问题就是在ABC ∆中,已知AB=1.95m ,AC=1.4m ,求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。

解:由余弦定理,得答:顶杠BC 长约为1.89m.解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。

高中数学必修5《解三角形应用举例》教案(4)

高中数学必修5《解三角形应用举例》教案(4)

《解三角形应用举例》教案(4)教学目标1.能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用;2.通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.3.进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力4.让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验.教学重点难点1.重点:推导三角形的面积公式并解决简单的相关题目.2.难点:利用正弦定理、余弦定理来求证简单的证明题.教法与学法1.教法选择:教学形式采用自主探究与尝试指导相结合,引导学生通过分析实践、自主探究、合作交流得出转化问题方法.2.学法指导:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.教学过程一、设置情境,激发学生探索的兴趣三、思维拓展,课堂交流 3AB AC ⋅=.(II )若b c +=,253AB AC ⋅=cos 3,A =bc ∴1sin 2bc A ==)对于5bc =,又5,1b c∴==或1,5b c==,由余弦定理得2222cos20a b c bc A=+-=,25a∴=四、归纳小结,课堂延展教学环节教学过程设计意图师生活动归纳小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状.特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用.回顾解斜三角形的一般题型,便于学生在复习中更深入的思考,更广泛的研究解三角形.由学生谈体会,师生共同归纳总结.巩固创新课堂延展1 .△ABC中,a=2bcosC,则此三角形一定是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案:A2.某城市有一条公路,自西向东经过A点到市中心O点后转向东北方向OB,现要修建一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,现要求市中心O与AB的距离为10 km,问把A、B分别设在公路上离中心O多远处才能使|AB|最短?并求其最短距离.(不要求作近似计算)答案:当AB分别在OA、OB上离O点既能保证全体学生的巩固应用,又兼顾学有余力的学生,同时将探究的空间由课堂延伸到课外.学生课下通过练习,巩固正余弦定理的理解.1.教材地位分析解三角形应用举例(4)是在学习了正弦定理、余弦定理的基础上安排的一节应用举例课程,是在学习了测量距离、高度、角度问题后,有了解三角形方法的初步体验,本节主要介绍了正弦定理和余弦定理在计算三角形面积、判断三角形形状、证明恒等式中的应用.本节课是解三角形应用举例第四阶段,为前面学习测量距离、高度、角度问题做了总结,是前面问题的进一步深化.2.学生现实状况分析通过正弦定理、余弦定理的学习,学生对解斜三角形已经有了直观地认识,能够从图形中找到解三角形的方法.但学生对正弦定理和余弦定理应用范围、应注意的问题缺乏清晰的概念.因此,本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型.另外本节课的证明题体现了前面所学知识的生动运用,要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解.只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点.。

高中数学解三角形教案

高中数学解三角形教案

高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。

二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。

三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。

2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。

3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。

4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。

五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。

六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。

七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。

解三角形应用举例 说课稿 高中数学说课稿

解三角形应用举例 说课稿 高中数学说课稿

解三角形应用举例各位评委各位同学,大家好!我说课的题目是“解三角形应用举例”,选自高中数学必修五第一章第二节。

我以新课标的理念为指导,时刻牢记教什么、怎样教,为什么这样教。

本次说课分为:教材与学情分析、教法与学法、教学过程、评价与反思四个方面。

一、教材与学情分析正弦定理和余弦定理是解决三角形的理论基础,让学生掌握建立“数学模型”的基本思想是本节课的重中之重。

通过对解斜三角形在实际中应用的讲解,让学生体会具体问题已可以转化为抽象的数学问题以及数学知识在生产,生活实际中所发挥的重要的作用。

同时培养学生数学符号表达题意和应用转化思想解决数学问题的能力,提高学生解决实际问题的能力。

激发学生学习数学的兴趣,并让学生体会数学的应用价值。

根据教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,我制定如下三个教学目标:知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题。

思想与方法首先通过情境引入,顺利地导入新课,为以后的几节课做良好铺垫。

其次结合学生的实际情况,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体演示,帮助学生掌握解法,能够类比解决实际问题。

对于开放性题目鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正。

情感和态度价值观激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。

教学重点:探索解三角形的条件,得到实际问题的解。

教学难点:根据题意建立数学模型,画出示意图。

二、教法与学法1、教法选择:根据本节课的教学目标、教材内容及学生的认知特点,我选择创设情境教学法、探究教学法和引导发现法相结合。

以学生自主探究、合作交流为主,教师启发引导为辅。

2、教学组织形式:师生互动、生生互动。

3、学法指导:巴甫洛夫曾指出:“方法是最主要和最基本的东西”,因此学之有法,才能学之有效,学之有趣。

28.2.2解直角三角形应用举例(教案)

28.2.2解直角三角形应用举例(教案)
本节课将通过以下典型例题,引导学生掌握解直角三角形的应用:
(1)在直角三角形中,已知一个锐角和一条直角边,求另一条直角边和另一个锐角。
(2)在直角三角形中,已知两条直角边,求锐角。
(3)运用解直角三角形的方法,解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过解直角三角形的练习,让学生掌握逻辑推理的方法,能够从已知条件出发,逐步推导出未知角度和边长。
2.学生在将实际问题转化为数学模型方面的能力。在实践活动和小组讨论中,部分学生对于如何将实际问题抽象为直角三角形模型感到困惑。为了提高学生的这一能力,我计划在后续教学中加入更多实际情境的案例分析,引导学生学会从问题中提取关键信息,构建数学模型。
3.课堂互动的充分性。在今天的课堂上,我尽量让每个学生都能参与到课堂讨论和实践中,但仍有部分学生显得较为沉默。为了提高课堂互动的充分性,我将在今后的教学中更加关注这些学生,鼓励他们积极参与,表达自己的观点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解解直角三角形的基本概念。解直角三角形是指通过已知条件求解直角三角形中未知角度或边长的方法。它在几何学中具有重要地位,广泛应用于现实生活中的测量问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用解直角三角形的方法测量建筑物的高度。通过这个案例,大家可以看到解直角三角形在实际中的应用。
2.提高学生的几何直观能力:通过观察和分析直角三角形的图形,让学生能够直观地理解直角三角形的性质,并运用这些性质解决问题。
3.增强学生的应用意识:结合实际生活中的例子,培养学生将数学知识应用于解决实际问题的意识,提高学生的数学应用能力。

解三角形的实际应用举例教案

解三角形的实际应用举例教案

1.3.3解三角形应用举例(第三课时)教学目标:(a)知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题(b)过程与方法:本节课是在学习了相关内容后的第三节课,学生已经对解法有了基本的了解,这节课应通过综合训练强化学生的相应能力.除了安排课本上的例1,还针对性地选择了既具典型性有具启发性的2道例题,强调知识的传授更重能力的渗透.课堂中要充分体现学生的主体地位,重过程,重讨论,教师通过导疑、导思让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三.(c)情感与价值:培养学生提出问题、正确分析问题、独立解决问题的能力,并在教学过程中激发学生的探索精神教学重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系教学难点:灵活运用正弦定理和余弦定理解关于角度的问题学法:能否灵活求解问题的关键是正弦定理和余弦定理的选用,有些题目只选用其一,或两者混用,这当中有很大的灵活性,需要对原来所学知识进行深入的整理、加工,鼓励一题多解,训练发散思维.借助计算机等媒体工具来进行演示,利用动态效果,能使学生更好地明辨是非、掌握方法.教学设想:1、设置情境提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题.然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题.2、新课讲授例1、如图,一艘海轮从A出发,沿北偏东75︒的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32︒的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)学生看图思考讲述解题思路;教师根据学生回答归纳分析:首先根据三角形的内角和定理求出AC 边所对的角∠ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB .解:在∆ABC 中,∠ABC=180︒- 75︒+ 32︒=137︒,根据余弦定理, AC=ABC BC AB BC AB ∠⨯⨯-+cos 222=︒⨯⨯⨯-+137cos 0.545.6720.545.6722≈113.15根据正弦定理,CAB BC ∠sin = ABC AC ∠sin ; sin ∠CAB = AC ABCBC ∠sin = 15.113137sin 0.54︒≈0.3255, 所以 ∠CAB =19.0︒, 75︒- ∠CAB =56.0︒答:此船应该沿北偏东56.1︒的方向航行,需要航行113.15n mile例2、在某点B 处测得建筑物AE的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高.师:请大家根据题意画出方位图.生:上台板演方位图(上图)教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评.解法一:(用正弦定理求解)由已知可得在∆ACD 中, AC=BC=30,AD=DC=103, ∠ADC =180︒-4θ, ∴θ2sin 310=)4180sin(30θ-︒ . 因为 sin4θ=2sin2θcos2θ ∴ cos2θ=23,得 2θ=30︒ ∴θ=15︒, ∴在Rt ∆ADE 中,AE=ADsin60︒=15答:所求角θ为15︒,建筑物高度为15m解法二:(设方程来求解)设DE= x ,AE=h在 Rt ∆ACE 中,(103+ x)2 + h 2=302在 Rt ∆ADE 中,x 2+h 2=(103)2 两式相减,得x=53,h=15∴在 Rt ∆ACE 中,tan2θ=x h+310=33 ∴2θ=30︒,θ=15︒ 答:所求角θ为15︒,建筑物高度为15m解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得∠BAC=θ, ∠CAD=2θ,AC = BC =30m , AD = CD =103m在Rt ∆ACE 中,sin2θ=30x ① 在Rt ∆ADE 中,sin4θ=3104, ② ②÷① 得 cos2θ=23,2θ=30︒,θ=15︒,AE=ADsin60︒=15 答:所求角θ为15︒,建筑物高度为15m例3、某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?师:你能根据题意画出方位图?教师启发学生做图建立数学模型分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量.解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x , AB=14x ,AC=9,∠ACB=︒75+︒45=︒120∴(14x) 2= 92+ (10x) 2 -2⨯9⨯10xcos ︒120∴化简得32x 2-30x-27=0,即x=23,或x=-169(舍去) 所以BC = 10x =15,AB =14x =21,又因为sin ∠BAC =AB BC ︒120sin =2115⨯23=1435 ∴∠BAC =3831'︒,或∠BAC =14174'︒(钝角不合题意,舍去), ∴3831'︒+︒45=8331'︒答:巡逻艇应该沿北偏东8331'︒方向去追,经过1.4小时才追赶上该走私船. 评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解3、归纳总结解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.作业:1、我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?(角度用反三角函数表示)提示:归结为已知三角形的两边和它们的夹角,求第三边和其余角的问题. 解:如图,在∆ABC 中由余弦定理得:BC 2=AC 2+ AB 2-2⨯AB ⨯AC ⨯ cos ∠BAC= 202+ 122-2⨯12⨯20⨯ (-21) =784∴ BC=28∴我舰的追击速度为14n mile/h 又在∆ABC 中由正弦定理得:B AC sin = A BC sin , 故 sinB = BC A AC sin = 1435 ∴ B = arcsin 1435 答:我舰的追击速度为14n mile/h ,航行方向为北偏东(︒50-arcsin 1435)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形应用举例(第一课时)
【教材分析】
本节课选自人教A版《必修五》第一章第二节(第一课时),是学习了正弦定理、余弦定理及三角形中的几何计算之后的一节实际应用课,可以说是为正弦定理、余弦定理的应用而设计的,因此本节课的学习具有理论联系实际的重要作用。

在本节课的教学中,用方程的思想作支撑,以具体问题具体分析作指导,引领学生认识问题、分析问题并最终解决问题。

【学情分析】
本节课的教学对象是高二年级的学生。

1.已有的能力:学生已经学习了正弦定理和余弦定理,能够运用解决一些三角形问题,具有了一定的基础。

2.存在的问题:学生在运用正弦定理和余弦定理解三角形的时候不能将实际问题转化成数学问题的问题,构造模型的能力有待提高。

【课型】
实际应用课
【教学方法】
自主探究,合作探究
【教学准备】
多媒体设备,天宫二号成功发射视频,三封信件
【教学目标】
1.知识与技能:①能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解测量的方法和意义
②会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法
2.过程与方法:①采用启发与尝试的方法,让学生在解决实际问题中学会正确识图、画图、想图,帮助学生逐步构建知识框架
②通过解三角形应用的学习,提高解决实际问题的能力;通过解三角形在实际中的应用,体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用
3.情感、态度、价值观:①激发学生学习数学的兴趣,并体会数学的应用价值
②培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力
③进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力
【教学难点】
实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解
【教学过程】(含时间分配)
一、创设情境,明确目标(5分钟)
观看视频。

提出:“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

【学生活动】感受生活中的数学,体会了生活中测量距离的现实需要.
【教师活动】通过实例,引导学生体会生活中的数学无处不在,数学对生活的影响无处不在.数学方法是解决实际问题的一大途径。

实际问题推动数学发展,数学发展推动科学技术发展。

【设计意图】通过视频,让学生体会解三角形在生活中的广泛应用,激发学生对于本堂课内容的浓厚兴趣.
二、实际问题,建立数学模型(25分钟)
例1、如图所示,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。

求A 、B 两点的距离(精确到0.1m)
启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?
启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。

解:根据正弦定理,得
ACB AB ∠sin =ABC
AC ∠sin AB=ABC ACB AC ∠∠sin sin =ABC ACB ∠∠sin sin 55=)
7551180sin(75sin 55︒-︒-︒︒ =︒︒54sin 75sin 55≈ 65.7(m)
答:A 、B 两点间的距离为65.7米
【学生活动】:思考并提出解决这个实际问题的方法。

【教师活动】:在和学生讨论建立数学模型的方法上着重强调可行性。

让学生充分展示自己的见解,营造一个探讨和辩论的氛围,激发学生的创造力。

【设计意图】:“数学源于生活,生活依靠数学,而数学建模问题贴近生活,充满趣味性;使学生更深切地感受到数学与实际的联系,感受到数学问题的广泛,使学生对于学习数学的重要性理解得更为深刻”。

并从中体会数学建模的思想。

例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。

首先需要构造三角形,所以需要确定C 、D 两点。

根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,
∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得 AC =
)](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a BC = )](180sin[sin γβαγ++-︒a = )
sin(sin γβαγ++a
计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离 AB = αcos 222BC AC BC AC ⨯-+
【学生活动】:小组讨论并提出解决这个实际问题的方法。

【教师活动】:让学生充分展示自己的见解,并归纳总结学生的解题方法。

【设计意图】:引导学生寻求在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。

并强化学生的数学建模意识。

互动探究学习活动: 探究载客游轮能否触礁
投出意大利豪华游轮触礁新闻创设一个实际问题的情景。

一轮船在海上由西向东航行,测得某岛M 在A 处的北偏东α角,前进4km 后,测得该岛在β角,已知该岛周围3.5km 范围内有暗礁,现该船继续东行。

(1) 若0
260αβ==,问该船有无触礁危险?如果没有请说明理由;
(2) 如果有危险,那么该船自B 处向东航行多远会有触角危险?
(1)如下图,作MC ⊥AB ,垂足为C ,
由已知α=60°,β=30°,∴∠ABM =120°,∠AMB =30°,
∴BM =AB =4,∠MBC =60°,∴MC =BM ·sin 60°=2
<3.5, ∴该船有触礁的危险.
(2)设该船自B 向东航行至点D 有触礁危险,连接MD ,
则MD =3.5,BM =4,BC =2,MC =2,在△MDC 中,CD ==0.5, ∴BD =1.5 (km).∴该船自B 向东航行1.5 km 会有触礁危险.
【学生活动】:小组讨论我们如何考虑是否会触礁?如何建立数学模型解释这个问题。

让学生建模求解并鼓励用不同方法去求解这个问题。

【教师活动】:让学生充分展示自己的见解。

鼓励学生用不同方法去求解。

【设计意图】:重在学生培养“翻译”的能力,学会分析关系、领悟实质。

弄清问题所述的事件和研究对象;抓住题目中的关键字句,正确把握其含义;根据题意,弄清题中各有关量的数量关系;抓住问题中的主要问题,正确识别其类型。

培养学生将实际问题抽象为数学问题, 从实际问题关系中找出最关键的数量关系,将此关系用有关的量及数字、符号表示出来,体会建模的过程。

三、布置作业(7分钟)
【研究性课题1】
(3)当α与β满足什么条件时,该船没有触角危险
设CM=x,在△MAB中,=,
即=,BM=,
而x=BM·sin∠MBC=BM·cos β=,
∴当x>3.5,>,即>时,该船没有触礁危险.
设计意图:该问题有一定难度留为课下自主合作探究讨论的问题,让课上到课下得到延伸。

同事培养学生自主学习合作交流的能力
【研究性课题2】
地月距离的测法你能想到了吗?
四、打开信封,课堂小节(8分钟)
1、解斜三角形应用题的一般步骤:
2、利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背
景资料中进行加工、抽取主要因素,进行适当的简化。

3、解三角形的应用题时,通常会遇到两种情况:
①已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之;
②已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。

【板书设计】
【教后反思】
1.在探索概念阶段, 学生和老师共同参与完成例1,学生能将实际问题转化为数学模型,解答数学模型,再回到实际问题解决,目标基本达成,但学生的参与度略显不足。

2.在应用概念阶段,通过对解答过程的分析,帮助学生掌握在实际问题中找寻可解三角形的实际过程,这部分完全可以放手给学生分析互评,今后的课堂教学应充分体现学生的自主地位。

相关文档
最新文档