基本均值不等式不等式知识点基础练习1

合集下载

基本不等式知识点和基本题型

基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。

2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。

3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当$a=b$时取“=”。

4、求最值的条件:“一正,二定,三相等”。

5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。

若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。

若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。

若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。

6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。

题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。

2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。

3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。

均值不等式练习题目总结

均值不等式练习题目总结

均值不等式练习题目总结
本文总结了一些常见的均值不等式练题目。

均值不等式是数学中常用的工具,用于比较一组数的大小关系。

在解题过程中,我们可以使用不等式的性质和特点来帮助求解。

一、算术平均值和几何平均值
1. 题目:已知两个正数a和b,证明:(a + b) / 2 ≥ √(ab)
解析:这是算术平均值和几何平均值不等式的基本形式,根据不等式的性质,我们可以将等式两边平方,然后进行变形和推导,最终得到证明结果。

2. 题目:已知n个正数a1, a2, ..., an,证明:(a1 + a2 + ... + an) / n ≥ √(a1 * a2 * ... * an)
解析:这是n个正数的算术平均值和几何平均值不等式,我们可以使用数学归纳法来证明。

先证明n=2的情况,然后假设n=k成立,再推导n=k+1的情况,最终得到证明结果。

二、均值不等式的应用
1. 题目:已知正数a,b,证明:(a + b)² / 4 ≥ ab
解析:这是均值不等式的应用题,我们可以使用算术平均值和几何平均值不等式来证明。

根据不等式的性质和变形,我们可以将等式转化为相等的形式进行比较,最终得到证明结果。

2. 题目:已知正数a,b,证明:(a + b)³ / 8 ≥ a²b
解析:这是均值不等式的应用题,同样使用算术平均值和几何平均值不等式来证明。

根据不等式的性质和变形,我们可以将等式转化为相等的形式进行比较,最终得到证明结果。

以上题目只是一部分均值不等式的练题目,通过练以上题目,可以加深对均值不等式的理解和运用能力,为解决更复杂的数学问题奠定基础。

均值不等式练习题

均值不等式练习题

均值不等式知识点:二、习题讲解:例1: (1)求y = x+Z(x>O)的最小值(2)求y = x + 2(x ≥ 2)的最小值X(3)己知x>2,求y = x+ —的最小值x-2变式训练:41.已知x>o,求y = 2- X -一的最大值X2.当x>-l时,求f(x)= x+ —的最小值x + 13•已知xv-∙求函数y=4x-2+—-一的最上值4 4x-54•己知JU b. c ∈ R »求证:a2 +b2 + c2≥ ab+bc+ acy= 2-3x--(x>0)的最大值是2-4石5・X6.y = ZxH—-—,x>3x-37.y = 2sinx÷-—,xu(O,τr)Sin X例2: (1)已知OVXV丄,求y =ZX(I-2x)的最衣值2 2(2)已知:a、b都是正数,Ka + b = l, α=a÷i, β = b+-f求a+β的最小值a b变式训练:1.己知OVXV 求函数y =x(l - 3x)的最大值2.当0 Cx <4时,求y =χ(8 - 2x)的最人值。

3.设0 <xv扌,求函数y = 4x(3-2x)的最人值。

4已知Ovxvl,求函数y =Jx(I-X)的最大值.:o<x<-,求怖数y = Jx(2-3x)5. 36若x+2y = l,则2x + 4y的最小值是_______7.已知x,yeRJ且满足- + ∑ = 1,则Xy的绘大值为__________2.设x ∈f θ,-1,则函数y = 2血x + 1的最小值为2 丿 sin2x5 Z X Y - — 4x+ S3.己知Xnz 则f(x)=-~~ 的最小值2 2x-4 y=手宀的最小值是4. √X 2 + 2IK X 2 + 7x+10 “ 一… 求y= (x>-l)的值域。

χ- + 56求函数y =-==的值域。

7•设x ,y,z 为正实数.且满足x-2y+3z = 0 •则的最小值例 4:己知a,b,cwR+,且a + b+c = l∙求证:丄 + —+ - ≥9变式训练:1 41.己知a >0,b >0,a +b= 2 >则y = — +二的最小值是 2正数x 5y 满足X +2y = l,求l∕x+l∕ y 的最小值。

(完整版)基本(均值不等式)不等式知识点-基础练习1

(完整版)基本(均值不等式)不等式知识点-基础练习1

日期:2012- 时间:
三、但愿有一天你会记起,我曾默默地,毫无希望地爱过你。

我这扇门曾为你打开,只为你一人打开,现在,我要把它关上了。

四、你看我的时候我装做在看别处,你在看别处的时候我在看你。

五、陆上的人喜欢寻根究底,虚度很多的光阴。

冬天担忧夏天的迟来,夏天担心冬天的将至。

所以你们不停到处去追求一个遥不可及,四季如夏的地方,我并不羡慕。

六、没想到的是,一别竟是一辈子了。

七、朋友们都羡慕我,其实羡慕他们的人是我。

爱你,很久了,等你,也很久了,现在,我要离开你了,比很久很久还要久……
八、Do something today that your future self will thank you for. 从现在开始,做一些让未来的你感谢现在的自己的事。

二十九、看着别人的故事,流着自己的眼泪。

三十、你唯一会认认真真读完一个人的日志和心情,想尽一切办法去了解的只有两个人。

一个是你喜欢的人,另一个是你喜欢的人喜欢的人。

三十一、失去一段感情,你感觉心痛,当你心痛过后,那时你才会发现,你失去的只是你心中的依赖,当你学会孤独的坚强,一切又会再次美好起来。

去珍惜那个读懂你的人,要好好去疼爱她。

均值不等式知点讲解及习题

均值不等式知点讲解及习题

第三节:基本不等式1、 基本不等式:(1)如果a 、b 是正数,那么(当且仅当a=b 时取“=”)(2)对基本不等式的理解:a >0,b >0,a,b 的算术平均数是a+b/2,几何平均数是_________.叙述为:两个正数的算术平均数不小于他们的几何平均数 2、 基本不等式的推广:注意:用基本不等式求最值的要点是:一正 、二定 、三相等三个正数的均值不等式: n 个正数的均值不等式: 3、四种均值的关系两个正数a 、b 的调和平均数、几何平均数、算术平均数、均方根之间的关系是:4. 最值定理设x >0,y >0,由x+y ≥ (1)若积xy=P(定值),则和x+y 有最小值 ;(2)若和x+y=S(定值),则积xy 有最大值 即:积定和最小,和定积最大.2a b+≥ab).(22,R ,)4().(2,R ,)3().(2R,,)2()"",00(,0R,)1(222222等号时取当且仅当则若时取等号当且仅当则若时取等号当且仅当则若取时当且仅当则若b a b a b a b a b a ab b a b a b a ab b a b a a a a a =⎪⎭⎫ ⎝⎛+≥+∈=≥+∈=≥+∈==≥≥∈++.2211222b a b a ab b a +≤+≤≤+xy2P 222⎪⎭⎫ ⎝⎛S .33abc c b a ≥++.....n....2121n n n a a a a a a ≥+++(不等式的证明)例1、证明基本不等式(跟踪训练) 例2、(跟踪训练)例3、若x >0,y >0,x+y=1. 求证:2a b +≥,,: 2.ba ab ab+≥已知都是正数求证9)11)(11(≥++yx(跟踪训练)若a 、b 、c 是不全相等的正数,求证:(利用基本不等式求最值) 例3、(跟踪训练1)(跟踪训练2)若x 、y ∈ ,则x+4y=1,求x .y 的最大值+R .lg lg lg 2lg 2lg 2lg c b a c a b c b a ++>+++++例4、若正数a,b 满足求a+b的最小值(跟踪训练1)若正实数x,y满足xy=2x+y+6,求xy的最小值。

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点汇总与例题讲解(题型超全)

基本不等式知识点总结与例题讲解一、本节知识点 (1)基本不等式.(2)利用基本不等式求最值.(3)基本不等式的拓展——三个正数的基本不等式. 二、本节题型(1)利用基本不等式求最值. (2)利用基本不等式证明不等式. (3)基本不等式的实际应用. (4)与基本不等式有关的恒成立问题. 三、知识点讲解知识点 基本不等式(均值不等式) 一般地,∈∀b a ,R ,有22b a +≥ab 2.当且仅当b a =时,等号成立.特别地,当0,0>>b a 时,分别用b a ,代替上式中的b a ,,可得2ba +≥ab . 当且仅当b a =时,等号成立. 通常称不等式2b a +≥ab 为基本不等式(也叫均值不等式),其中2ba +叫做正数b a ,的算术平均数,ab 叫做正数b a ,的几何平均数.基本不等式表明: 两个正数的算术平均数不小于它们的几何平均数.注意 重要不等式22b a +≥ab 2与基本不等式2ba +≥ab 成立的条件是不一样的.前者b a ,为任意实数,后者b a ,只能是正数.但两个不等式中等号成立的条件都是b a =.基本不等式的变形(1)b a +≥ab 2,ab ≤22⎪⎭⎫⎝⎛+b a .其中∈b a ,R +,当且仅当b a =时,等号成立.(2)当0>a 时,a a 1+≥2,当且仅当a a 1=,即1=a 时,等号成立; 当0<a 时,aa 1+≤2-,当且仅当1-=a 时,等号成立.实际上,当0<a 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+a a a a 11. ∵()⎪⎭⎫ ⎝⎛-+-a a 1≥2,∴()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--a a 1≤2-,即a a 1+≤2-.当且仅当a a 1-=-,即1-=a (0<a )时,等号成立. (3)当b a ,同号时,b a a b +≥2,当且仅当b a =时,等号成立;当b a ,异号时,baa b +≤2-,当且仅当b a -=时,等号成立.(4)不等式链: ba 112+≤ab ≤2ba +≤222b a +(0,0>>b a ,当且仅当b a =时,等号成立.)其中,ba 112+,ab ,2b a +,222b a +分别叫做正数b a ,的调和平均数、几何平均数、算术平均数、平方平均数. 知识点 利用基本不等式求最值设0,0>>y x ,则有(1)若S y x =+(和为定值),则当y x =时,积xy 取得最大值42S ;(∵∈∀y x , R +,有xy ≤22Sy x =+,∴xy ≤42S .) 和定积最大.(2)若P xy =(积为定值),则当y x =时,和y x +取得最小值P 2. (∵∈∀y x , R +,有y x +≥xy 2,∴y x +≥P 2.)积定和最小.说明 上述结论可简记为: 和定积最大,积定和最小.即两个正数的和为定值时,可求出其积的最大值;两个正数的积为定值时,可求出其和的最小值.利用基本不等式求最值时,必须满足三个条件,即:一正、二定、三相等. 一正: 各项都必须为正数;二定: 和或积为定值.当和为定值时,积有最大值,当积为定值时,和有最小值; 三相等: 等号能取到,即取得最值的条件能满足.(1)对于函数()x x x f 4+=,当0>x 时,xx 4+≥44242==⋅x x ,即()x f ≥4,当x x 4=,即2=x 时,等号成立;当0<x 时,()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--=+x x x x 44≤4-,()x f ≤4-,当2-=x 时,等号成立.由此可见,对于函数()xx x f 4+=,0>x 和0<x 的最值情况是不一样的. (2)当230<<x 时,求()x x 23-的最大值时,x 23-与x 的和不是定值,无法利用基本不等式求最值,此时可对原式进行等价变形,变形为()()x x x x 2232123⋅-=-,即可求出其最大值.∵()()x x x x 2232123⋅-=-≤89232122232122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛+-⨯x x∴()x x 23-的最大值为89,当且仅当x x 223=-,即43=x 时,取得最大值.(3)求21222+++x x 的最小值时,虽然22+x 与212+x 都是正数,且乘积为定值1,但是当=+22x 212+x 时,有122=+x ,显然是不成立的,所以此时不能用基本不等式求其最小值.知识点 基本不等式的拓展——三个正数的基本不等式一般地,∈∀c b a ,,R +,有3cb a ++≥3abc . 当且仅当c b a ==时,等号成立.上面的不等式表明:三个正数的算术平均数不小于它们的几何平均数.设0,0,0>>>z y x ,则有(1)若M xyz =,则当z y x ==时,和z y x ++取得最小值为33M ;(2)若N z y x =++,则当z y x ==时,积xyz 取得最大值273N .关于三个正数的不等式链若c b a ,,均为正数,则有cb a 1113++≤3abc ≤3c b a ++≤3222c b a ++.当且仅当c b a ==时,等号成立.n 个正数的基本不等式对于n 个正数n a a a a ,,,,321 ,则有na a a a n++++ 321≥n n a a a a 321.当且仅当n a a a a ==== 321时,等号成立.上面的不等式表明: 对于n 个正数(n ≥2)的算术平均数不小于它们的几何平均数.四、例题讲解例1. 若0,0>>b a ,证明: ba 112+≤ab ≤2b a +≤222b a +.分析: 本题即要求证明两个正数的不等式链. 证明: ∵0,0>>b a∴()ab b a b a 22-+=-≥0∴b a +≥ab 2 ∴ab ≤2ba +(当且仅当b a =时,等号成立) ∴211b a +≥abab b a 1111==⋅∴ba 112+≤ab (当且仅当b a =时,等号成立).∵22b a +≥ab 2∴2222b a b a +++≥ab 222b a ++ ∴()222b a +≥()2b a +∴()2224⎪⎭⎫ ⎝⎛+=+b a b a ≤()2422222b a b a +=+,即22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴根据正数可开方性得:22⎪⎭⎫ ⎝⎛+b a ≤222b a +. ∴2ba +≤222b a +(当且仅当b a =时,等号成立).综上所述,ba 112+≤ab ≤2ba +≤222b a +.例2. 函数xx y 41+-=(0>x )的最小值为_________,此时=x _________. 解: ∵0>x∴1441-+=+-=xx x x y ≥3142142=-=-⋅x x ,即y ≥3.当且仅当xx 4=,即2=x 时,取等号. ∴当2=x 时,函数x x y 41+-=(0>x )取得最小值3.例3. 已知3>a ,求34-+a a 的最小值.分析: 当利用基本不等式求最值时,若两项的乘积为定值(常数),可求出两项和的最小值.当然,某些式子需要进行适当的变形,但要注意三个必须满足的条件:一正、二定、三相等.解: ∵3>a ,∴03>-a .∴334334+-+-=-+a a a a ≥()733432=+-⋅-a a ,当且仅当343-=-a a ,即5=a 时,等号成立. ∴34-+a a 的最小值为7. 例4. 已知1>x ,且1=-y x ,则yx 1+的最小值是_________. 解: ∵1=-y x ,∴1+=y x .∵1>x ,∴01>+y ,∴0>y . ∴11111++=++=+y y y y y x ≥3112=+⋅yy . 当且仅当yy 1=,即1=y 时,等号成立. ∴yx 1+的最小值是3. 另解: ∵1=-y x ,∴1-=x y .∵1>x ,∴01>-=x y ∴1111111+-+-=-+=+x x x x y x ≥()311112=+-⋅-x x . 当且仅当111-=-x x ,即2=x 时,等号成立. ∴yx 1+的最小值是3. 例5. 已知0,0>>y x ,且12=+y x ,求yx 11+的最小值. 解: ∵12=+y x ,0,0>>y x∴y x x y y y x x y x y x ++=+++=+232211≥223223+=⋅+yx x y . 当且仅当yxx y =2,且12=+y x ,即221,12-=-=y x 时,等号成立.∴yx11+的最小值为223+.点评 本题若由()y x y x y x 21111+⎪⎭⎫ ⎝⎛+=+≥2422112=⋅⋅xy yx ,得y x 11+的最小值为24,则结论是错误的,错因是连续使用基本不等式时,忽视了等号成立的条件一致性.所以有下面的警示.易错警示 连续两次(多次)使用基本不等式时,应注意保证等号成立的条件是否相同. 例6. 已知0,0>>y x ,且191=+yx ,求y x +的最小值. 解: ∵0,0>>y x ,191=+yx ∴()x y y x x y y x y x y x y x ++=+++=⎪⎭⎫⎝⎛++=+91099191≥169210=⋅+x y y x . 当且仅当x y y x =9,且191=+yx ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.另解(消元法): ∵191=+yx ,∴9-=y yx∵0,0>>y x ,∴09>-y y,∴9>y . ∴999919999+-+-+=+-+-=+-=+y y y y y y y y y x 99910-+-+=y y ≥()16999210=-⋅-+y y . 当且仅当999-=-y y ,且9-=y y x ,即12,4==y x 时,等号成立. ∴y x +的最小值为16.例7. 若正数y x ,满足xy y x 53=+,则y x 43+的最小值是 【 】(A )524 (B )528 (C )5 (D )6解: ∵xy y x 53=+,∴15351=+xy . ∵y x ,均为正数∴()x y y x x y y x x y y x y x 5125351351254595353514343++=+++=⎪⎭⎫ ⎝⎛++=+ ≥5562513512532513=⨯+=⋅+x y y x . 当且仅当x y y x 51253=,且xy y x 53=+,即21,1==y x 时,等号成立. ∴y x 43+的最小值是5. ∴选择答案【 C 】.例8.(1)已知45>x ,求代数式54124-+-x x 的最小值; (2)已知45<x ,求代数式54124-+-x x 的最大值.分析: 本题考查利用基本不等式求代数式的最值.注意三个必须满足的条件:一正、二定、三相等.解:(1)∵45>x ,∴054>-x . ∴35415454124+-+-=-+-x x x x ≥()53541542=+-⋅-x x . 当且仅当54154-=-x x ,即23=x 时,等号成立. ∴代数式54124-+-x x 的最小值为5;(2)∵45<x ,∴054<-x .∴34514535415454124+⎥⎦⎤⎢⎣⎡-+--=+-+-=-+-x x x x x x ≤()1323451452=+-=+-⋅--xx 当且仅当x x 45145-=-,即1=x 时,等号成立,54124-+-x x 取得最大值1.例9. 已知实数0,0>>b a ,且11111=+++b a ,则b a 2+的最小值是【 】 (A )23 (B )22 (C )3 (D )2解: ∵11111=+++b a ∴()()11111=+++++b a a b ,整理得:1=ab .∵0,0>>b a∴b a 2+≥221222222=⨯==⋅ab b a . 当且仅当b a 2=,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22. ∴选择答案【 B 】.另解: ()()31212-+++=+b a b a .∵0,0>>b a ,11111=+++b a ∴()()[]()132112111111131212⨯-+++++++=⎪⎭⎫ ⎝⎛+++-+++=+a b b a b a b a b a ()11211+++++=a b b a ≥()22112112=++⋅++a b b a . 当且仅当()11211++=++a b b a ,且11111=+++b a ,即22,2==b a 时,等号成立. ∴b a 2+的最小值是22.例10. 设0,0>>y x ,且53=+y x ,则yx 311++的最小值为 【 】 (A )23(B )2 (C )32 (D )3 解: ∵53=+y x∴()813=++y x ,∴()18813=++yx .∵0,0>>y x ∴()()()8318819833118813311+++++=⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡++=++x y y x y x y x y x ()()4318819++++=x y y x ≥()()234383243188192=+⨯=++⋅+x y y x . 当且仅当()()18819+=+x y y x ,且53=+y x ,即4,31==y x 时,等号成立. ∴y x 311++的最小值为23. ∴选择答案【 A 】.另解: ∵53=+y x ,∴x y 35-=.∵0,0>>y x ,∴⎩⎨⎧>->0350x x ,解之得:350<<x .∴x 的取值范围为⎪⎭⎫⎝⎛35,0.()()52383518353113112++-=-+=-++=++x x x x x x y x . 设()31631352322+⎪⎭⎫ ⎝⎛--=++-=x x x x f ∵⎪⎭⎫ ⎝⎛∈35,0x ,∴()⎥⎦⎤⎝⎛∈316,0x f . ∴当31=x 时,233168311min ==⎪⎭⎫⎝⎛++y x . ∴选择答案【 A 】.例11. 代数式11072+++x x x (1->x )的最小值为 【 】(A )2 (B )7 (C )9 (D )10分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: 可设()()n x m x x x ++++=++1110722. ∴()1071222++=+++++x x n m x m x∴⎩⎨⎧=++=+10172n m m ,解之得:⎩⎨⎧==45n m . ∴()()415110722++++=++x x x x . ∴()()514114151110722++++=+++++=+++x x x x x x x x ∵1->x ,∴01>+x ∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立. ∴代数式11072+++x x x (1->x )的最小值为9. ∴选择答案【 C 】.另解: ()()()[]()[]1411115211072+++++=+++=+++x x x x x x x x x ()()5141141512++++=+++++=x x x x x . ∵1->x ,∴01>+x∴5141++++x x ≥()951412=++⋅+x x . 当且仅当141+=+x x ,即1=x 时,等号成立,91107min2=⎪⎭⎫ ⎝⎛+++x x x . ∴选择答案【 C 】.例12. 求函数222163x x y ++=的最小值. 解: ∵022>+x∴()62162321632222-+++=++=xx x x y ≥()638621623222-=-+⋅+x x . 当且仅当()2221623x x +=+,即2334-±=x 时,等号成立.638min -=y . 例13. 已知函数()xa x x f +=4(0,0>>a x )在3=x 时取得最小值,则=a ______. 解: ∵0,0>>a x ∴()xa x x f +=4≥a x a x 442=⋅. 当且仅当x a x =4,即2a x =时,等号成立,函数()x f 取得最小值a 4. ∴32=a ,解之得:36=a . 实际上,函数()⎪⎪⎪⎪⎭⎫ ⎝⎛+=+=x a x x a x x f 444(0,0>>a x ),当24a a x ==时,函数()x f 取得最小值.所以32=a ,从而求得36=a . 例14. 设正实数y x ,满足xy y x =+2,若y x m m 222+<+恒成立,则实数m 的取值范围是_____________.分析: 利用基本不等式可求出y x 2+的最小值.要使y x m m 222+<+恒成立,只需()min 222y x m m +<+即可.解: ∵y x ,为正实数,xy y x =+2∴1212=+=+x y xy y x ∴()y x x y y x x y y x y x y x ++=+++=+⎪⎭⎫ ⎝⎛+=+442422122≥8424=⋅+y x x y 当且仅当yx x y =4,即2,4==y x 时,等号成立.∴()82min =+y x .∵y x m m 222+<+恒成立∴只需()min 222y x m m +<+即可∴822<+m m ,解之得:24<<-m .∴实数m 的取值范围是()2,4-.例15. 已知()()x x x f 22-=(10<<x ),求()x f 的最大值.分析: 当两个正数的和为定值S 时,这两个正数的乘积在两个正数相等时取得最大值,简称为:和定积最大.本题中,观察到()2222=-+x x 为定值,故考虑用基本不等式求函数()x f 的最大值,但要对原解析式解析等价变形.解: ∵10<<x ,∴022>-x∴()()()x x x x x f 2222122-⋅=-=≤211212222212=⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 222-=,即21=x 时,等号成立. ∴()x f 的最大值为21. 另解: ∵10<<x ,∴022>-x∴()()()x x x x x f -⋅=-=1222≤2121221222=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x -=1,即21=x 时,等号成立. ∴()x f 的最大值为21. 例16. 求代数式12-x x (1<x )的最大值. 分析: 形如edx c bx ax +++2的式子可化为()()t x f n x mf ++的形式. 解: ∵1<x ,∴01>-x .∴()()21111111*********+-+-=-++=-+-+=-+-=-x x x x x x x x x x x ()2111+⎥⎦⎤⎢⎣⎡-+--=x x ≤()02221112=+-=+-⋅--x x 当且仅当xx -=-111,即0=x 时,等号成立. ∴代数式12-x x (1<x )的最大值为0. 注意 使用基本不等式法求最值时,一定要满足三个条件:一定、二正、三相等. 例17. 已知210<<x ,求()x x y 2121-=的最大值. 解: ∵210<<x ,∴021>-x . ∴()()x x x x y 212412121-⋅=-=≤161214122124122=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛-+⨯x x . 当且仅当x x 212-=,即41=x 时,等号成立. ∴161max =y . 例18. 设210<<m ,若m m 2121-+≥k 恒成立,则k 的最大值为_________. 分析: 只需min2121⎪⎭⎫ ⎝⎛-+m m ≥k 即可,这样问题就转化为求m m 2121-+的最小值的问题.解: ()()m m m m m m m m 211212212121-=-+-=-+. ∵210<<m ,∴021>-m ∴()()m m m m 212211211-⋅=-≥84121122122112=⨯=⎪⎭⎫ ⎝⎛-+⨯m m . 当且仅当m m 212-=,即41=m 时,等号成立.(注意,当210<<m 时,()0212>-m m ) ∴mm 2121-+的最小值为8.∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8. 另解: ∵210<<m ,∴021>-m ∴()[]221214221212122121+-+-+=⎪⎭⎫ ⎝⎛-+-+=-+m m m m m m m m m m m m m m 212144-+-+=≥82121424=-⋅-+m m m m . 当且仅当m m m m 21214-=-,即41=m 时,等号成立. ∴mm 2121-+的最小值为8. ∵mm 2121-+≥k 恒成立 ∴k ≤8,k 的最大值为8.例19. 若对任意0>x ,132++x x x ≤a 恒成立,则实数a 的取值范围是_________. 解: ∵0>x ∴311132++=++x x x x x ≤513213121=+=+⋅xx 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∵对任意0>x ,132++x x x ≤a 恒成立 ∴a ≥max213⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 例20. 已知0,0>>y x ,y x xy 2+=,若xy ≥2-m 恒成立,则实数m 的最大值是__________.分析: 可求出m 的取值范围,根据范围确定其最大值.这种方法叫做不等分析法.解: ∵y x xy 2+= ∴1122=+=+yx xy y x . ∵0,0>>y x ∴xyy x 22122=⋅≤112=+y x ∴xy8≤1,∴xy ≥8. 当且仅当y x 12=,即2,4==y x 时,等号成立.()8min =xy . ∵xy ≥2-m 恒成立∴2-m ≤()min xy ,即2-m ≤8,解之得:m ≤10.∴实数m 的最大值是10.例21. 若不等式xa x 29+≥1+a (常数0>a )对一切正实数x 恒成立,求实数a 的取值范围.解: ∵0>x ,0>a ∴xa x 29+≥a x a x 6922=⋅. 当且仅当x a x 29=,即3a x =时,等号成立. ∴a x a x 69min 2=⎪⎭⎫ ⎝⎛+. ∵xa x 29+≥1+a 对一切正实数x 恒成立 ∴只需min 29⎪⎭⎫ ⎝⎛+x a x ≥1+a 即可 ∴a 6≥1+a ,解之得:a ≥51.∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,51. 方法总结 解决与不等式恒成立有关的问题,把参数从不等式中分离出来,使不等式的一端是含有参数的代数式,另一端是一个具体的函数,这样就把问题转化为只有一端是参数的不等式的形式,便于问题的解决.例22. 已知b a ,是正实数,且032=-+ab b a ,则ab 的最小值是_________,b a +的最小值是_________.解: ∵032=-+ab b a∴ab b a 32=+,∴13132=+ba . ∵b a ,是正实数 ∴()b a a b b a a b b a b a b a 332131332323132++=+++=+⎪⎭⎫ ⎝⎛+=+ ≥322133221+=⋅+b a a b . 当且仅当ba ab 332=,即312,322+=+=b a 时,等号成立. ∴b a +的最小值为3221+. ∵b a ,是正实数,13132=+b a ∴ab b a 92231322=⋅≤13132=+ba ∴ab ≥98. 当且仅当b a 3132=,即32,34==b a 时,等号成立. ∴ab 的最小值是98. 例23. 已知0,0>>y x ,且32=+y x ,则xy 的最大值是_________,xy y x +3的最小值是_________.解: ∵0,0>>y x ,32=+y x ∴xy y x 2222=⋅≤32=+y x∴xy ≤89,当且仅当y x 2=,即43,23==y x 时,等号成立. ∴xy 的最大值是89. ∵32=+y x ,∴1323=+y x . ∴37322323131323313++=+++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+=+x y y x x y y x y x y x y x xy y x ≥37623732237322+=+=+⋅x y y x . 当且仅当xy y x 32=,即106318,5363-=-=y x 时取等号. ∴xyy x +3的最小值是3762+. 例24. 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是,平方米10元,则该容器的最低总造价是 【 】(A )80元 (B )120元 (C )160元 (D )240元 解: 由题意可知:该容器的底面积为4 m 2,设底面长为x m,则底面宽为x 4m,容器的总造价为y 元.则有804204102420+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⨯⨯+⨯=x x x x y ≥160804220=+⋅⨯x x (元) 当且仅当xx 4=,即2=x 时,等号成立. ∴该容器的最低总造价是160元.∴选择答案【 C 】.例25. 设0,0>>y x ,52=+y x ,则()()xy y x 121++的最小值为_________.解: ∵52=+y x∴()()⎪⎪⎭⎫ ⎝⎛+=+=+=+++=++xy xy xy xy xy xy xyy x xy xy y x 326262122121. ≥34322=⋅⨯xy xy . 当且仅当xy xy 3=,且52=+y x ,即1,3==y x 或23,2==y x 时,等号成立. ∴()()xy y x 121++的最小值为34.注意 注意与下面的例25做比较.例26. 设0,>b a ,且1=+b a ,则abab 1+的最小值为_________. 分析: 利用基本不等式求最值时,一定要满足三个条件:一定、二正、三相等. ∵0,>b a ,∴ab ab 1+≥212=⋅ab ab . 当且仅当ab ab 1=时,等号成立,此时⎪⎩⎪⎨⎧=+=11b a ab ab 无实数解. ∴上面的等号是取不到的,即abab 1+的最小值不是2. 解: ∵0,>b a ,且1=+b a ∴ab ≤212=+b a ,∴ab <0≤41. 设t ab =,则⎥⎦⎤ ⎝⎛∈41,0t . ∵t t y 1+=在⎥⎦⎤ ⎝⎛∈41,0t 上单调递减 ∴4174414114141min =+=+=⎪⎭⎫ ⎝⎛=f y . ∴ab ab 1+的最小值为417. 例27. 设20<<x ,求代数式224x x -的最大值.解: ∵20<<x∴02>-x ∴()()x x x x x x -⋅=-=-2222242≤2222=-+⨯x x 当且仅当x x -=2,即1=x 时,等号成立.∴代数式224x x -的最大值2.例28. 已知0,0,0>>>z y x ,求证:⎪⎭⎫⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥8. 证明: ∵0,0,0>>>z y x ∴x z x y +≥02>x yz ,y z y x +≥02>yxz ,z y z x +≥02>z xy . 当且仅当z y x ==时,上面三个等号同时成立.∴⎪⎭⎫ ⎝⎛+x z x y ⎪⎭⎫ ⎝⎛+y z y x ⎪⎭⎫ ⎝⎛+z y z x ≥888==⋅⋅xyzxyz xyz xy xz yz . 当且仅当z y x ==时,等号成立.例29. 已知0,0,0>>>c b a ,且1=++c b a .求证:cb a 111++≥9. 证明: ∵0,0,0>>>c b a ,1=++c b a ∴cc b a b c b a a c b a c b a ++++++++=++111 ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b 3 ≥922232223=+++=⋅+⋅+⋅+cb bc c a a c b a a b 当且仅当c b a ==时,等号成立.例30. 已知正数b a ,满足4=+b a ,求3111+++b a 的最小值. 解: ∵4=+b a ∴()()831=+++b a .∵b a ,均为正数∴()()[]31813111+++=+++b a b a ⎪⎭⎫ ⎝⎛+++++++=⎪⎭⎫ ⎝⎛+++113311813111a b b a b a ⎪⎭⎫ ⎝⎛++++++=13318141a b b a ≥21133128141=++⋅++⨯+a b b a . 当且仅当1331++=++a b b a ,即1,3==b a 时,等号成立. ∴3111+++b a 的最小值为21. 例31. 若实数2,1>>b a ,且满足062=-+b a ,则2211-+-b a 的最小值为______. 解: ∵062=-+b a∴()()2212=-+-b a .∵2,1>>b a ,∴02,01>->-b a . ∴()()[]212212211-+-=-+-b a b a ⎪⎭⎫ ⎝⎛-+-2211b a()()⎥⎦⎤⎢⎣⎡--+--+=⎥⎦⎤⎢⎣⎡+--+--+=12214212212214221a b b a a b b a≥()4122142212=--⋅--⨯+a b b a . 当且仅当()12214--=--a b b a ,即3,23==b a 时,等号成立. ∴2211-+-b a 的最小值为4. 例32. 已知0,0>>y x ,且21131=++y x ,则y x +的最小值为 【 】 (A )5 (B )6 (C )7 (D )8 (参见例9)解: ()33-++=+y x y x .∵0,0>>y x ,且21131=++y x∴()⎪⎭⎫⎝⎛++=-++=+y x y x y x 131233()[]33-++y x ⎪⎭⎫ ⎝⎛++++=-⎪⎭⎫ ⎝⎛+++++=y x x yy x x y 3321313312≥533221=+⋅+⨯+yx x y . 当且仅当yx x y 33+=+,即4,1==y x 时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.另解: ∵21131=++y x ,∴31211+-=x y . 整理得:()()2141412132++=+++=++=x x x x x y . ∵0,0>>y x ∴1141214++++=+++=+x x x x y x ≥()511412=++⋅+x x . 当且仅当141+=+x x ,即1=x (此时4=y )时,等号成立. ∴y x +的最小值为5. ∴选择答案【 A 】.点评 在利用基本不等式求最值时,根据需要有时要对关键条件进行变形,或对要求最值的代数式进行变形,以使和为定值或积为定值. 例33. 已知0>>y x ,求()y x y x -+42的最小值.分析: 注意到()x y x y =-+,所以()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+,这样就消去了字母y ,因此()y x y x -+42≥2216x x +≥4.当且仅当2216,xx y x y =-=时,等号成立.解: ∵0>>y x∴()y x y -<0≤()4222x y x y =⎥⎦⎤⎢⎣⎡-+(当且仅当y x y -=时,等号成立) ∴()[]42maxx y x y =-,()22min16444x x y x y ==⎥⎦⎤⎢⎣⎡-. ∴()y x y x -+42≥2216xx +≥816222=⋅x x .当且仅当2216x x =,y x y -=,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.另解: ∵0>>y x ,∴()0>-y x y .∵()[]22y x y x -+=≥()y x y -4(这里,ab ≤22⎪⎭⎫⎝⎛+b a )(当且仅当y x y -=时,等号成立) ∴()y x y x -+42≥()()y x y y x y -+-44≥()()8442=-⋅-y x y y x y .(当且仅当()()y x y y x y -=-44,即()1=-y x y 时,等号成立)当且仅当()1,=--=y x y y x y ,即1,2==y x 时,等号成立. ∴()y x y x -+42的最小值是8.例34. 若b a >,且2=ab ,求证:ba b a -+22≥4.证明: ∵b a >,∴0>-b a .∵2=ab∴()ba b a b a ab b a b a b a -+-=-+-=-+42222≥()442=-⋅-b a b a .当且仅当ba b a -=-4,即13,13-=+=b a 或13,13--=+-=b a 时,等号成立.∴ba b a -+22≥4.例35. 已知b a ,为正数,求证:b a 41+≥()ba ++21222. 证明: ∵b a ,为正数,∴02>+b a .∴()b a a b b a a b b a b a 86482241++=+++=+⎪⎭⎫ ⎝⎛+ ≥()()21222232246826+=+=+=⋅+baa b . 当且仅当baa b 8=,即a b 22=时,等号成立. ∴b a 41+≥()ba ++21222.(这里,02>+b a ) ★例36. 若10<<x ,0,0>>b a .求证:xb x a -+122≥()2b a +. 分析: 注意到()11=-+x x 这一隐含条件. 证明: ∵10<<x ,∴01>-x .∴()[]()2222222211111b x x a x x b a x b x a x x x b x a +-+-+=⎪⎭⎫ ⎝⎛-+-+=-+ ≥()()22222222112b a ab b a xx a x x b b a +=++=-⋅-++. 当且仅当()x x a x x b -=-1122,即b a ax +=时,等号成立. ∴xb x a -+122≥()2b a +. 例37. 已知c b a ,,均为正数.求证:ccb a b bc a a a c b 33222332-++-++-+≥3. 证明: ∵c b a ,,均为正数∴ccb a b bc a a a c b 33222332-++-++-+ 33223332213231232132-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=-++-++-+=c b b c c a a c b a a b cb c a b c b a a c a b≥336332232332222=-=-⋅+⋅+⋅cb bc c a a c b a a b . 当且仅当cbb c c a a c b a a b 3223,33,22===,即c b a 32==时,等号成立. ∴c c b a b b c a a a c b 33222332-++-++-+≥3. 例38. 已知0,0>>y x ,y yx x -=-812,则y x +2的最小值为 【 】 (A )2 (B )22 (C )23 (D )4分析: 注意到02>+y x ,根据题目所给条件的特点可先求出()[]min22y x +,然后开方即可得到()min 2y x +,而()()⎪⎭⎫ ⎝⎛++=+y x y x y x 81222.解: ∵y yx x -=-812,∴y x y x 812+=+.∵0,0>>y x ,∴02>+y x .∴()()y x y x +=+222⎪⎭⎫ ⎝⎛+y x 81x y y x x y y x ++=+++=16108162 ≥1816210=⋅+xyy x . 当且仅当xyy x =16,即22,22==y x (x y 4=)时,等号成立. ∴()22y x +的最小值为18. ∴y x +2的最小值为2318=. ∴选择答案【 C 】.例39. 已知0,0>>b a ,且8=+b a ,则ba ab43+的最大值是_________. 解: ∵0,0>>b a ,8=+b a∴()a b b a a b b a b a b a b a ab b a b a ab 452414424148131434343++=+++=⎪⎭⎫ ⎝⎛++=+=+=+ ≤38924452442524==+=⋅+abb a . 当且仅当a b b a 4=,即38,316==b a 时,等号成立. ∴b a ab 43+的最大值是38. 例40. 已知93,0,0=++>>xy y x y x ,则y x 3+的最小值为_________. 解: ∵93=++xy y x ,∴39+-=x xy . ∵0,0>>y x ∴()()633633336336333933-+++=-++=+++-+=+-+=+x x x x x x x x x x y x ≥()6612633632=-=-+⋅+x x . 当且仅当3363+=+x x ,即1,3==y x 时,等号成立. ∴y x 3+的最小值为 6. 点评: 上面的方法为消去元y 后,利用基本不等式求得最值.例41. 已知x 为正实数,且1222=+y x ,求21y x +的最大值. 解: ∵x 为正实数∴()⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=+22122212112222222y x y x y x y x≤423221122221222=+⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⨯y x .当且仅当22122y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 另解: ∵1222=+y x ,∴2222=+y x .∵x 为正实数∴()()()22222221222122111y x y x y x y x +=+⋅=+=+ ≤()4232122221222212222222=+⨯=++⨯=⎥⎦⎤⎢⎣⎡++⨯y x y x . 当且仅当2212y x +=,即22,23±==y x 时,等号成立. ∴21y x +的最大值为423. 例42. 求函数131-++-=x x x y 的最大值.解: 设1-=x t ,则t ≥0,∴12+=t x . ∴41312++=-++-=t t tx x x y .当0=t ,即1=x 时,0=y ; 当0>t ,即1>x 时,141++=t t y ≤511421=+⋅tt . 当且仅当tt 4=,即5,2==x t 时,取等号. ∴当1>x 时,函数131-++-=x x x y 的最大值为51.综上所述,函数131-++-=x x x y 的最大值为51.例43. 设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,代数式zy x 212-+的最大值为 【 】 (A )0 (B )1 (C )49(D )3 解: ∵04322=-+-z y xy x ,∴2243y xy x z +-=.∵z y x ,,为正实数 ∴341431432222-+=+-=+-=x y y x xy y xy x y xy x xy z xy ≤13421=-⋅xy y x .当且仅当xyy x 4=,即y x 2=时,等号成立,此时22y z =. ∴1112122122212222+⎪⎭⎫⎝⎛--=+-=-+=-+y y y y y y z y x ≤1 ∴当1=y 时,zy x 212-+的最大值为1. ∴选择答案【 B 】.例44. 若正数y x ,满足3039422=++xy y x ,则xy 的最大值是 【 】(A )34 (B )35 (C )2 (D )45解: ∵xy y x 39422++≥xy xy xy xy y x 153123322=+=+⋅⋅∴xy 15≤30,∴xy ≤2. ∴xy 的最大值是2. ∴选择答案【 C 】.例45. 设0,0>>b a ,且ba kb a +++11≥0恒成立,则实数k 的最小值等于 【 】 (A )0 (B )4 (C )4- (D )2-解: ∵ba kb a +++11≥0恒成立∴k ≥()abb a 2+-恒成立.(这里,注意0>+b a )只需k ≥()max2⎥⎦⎤⎢⎣⎡+-ab b a 即可,此时()ab b a 2+取得最小值. ∵0,0>>b a ∴()abb a 2+≥()4422==ababab ab ,当且仅当b a =时,等号成立. ∴()abb a 2+-≤4-,∴()4max2-=⎥⎦⎤⎢⎣⎡+-ab b a ∴k ≥4-,即k 的最小值为4-. ∴选择答案【 C 】.例46. 设c b a >>,且c b b a -+-11≥ca m-恒成立,求m 的取值范围; 解: ∵c b a >>,∴0,0,0>->->-c a c b b a .∵c b b a -+-11≥ca m-恒成立 ∴c b ca b a c a --+--≥m 恒成立,只需m ≤min⎪⎭⎫ ⎝⎛--+--c b c a b a c a 即可.∵cb ba b a c b c b c b b a b a c b b a c b c a b a c a --+--+=--+-+--+-=--+--2 ≥422=--⋅--+cb ba b a c b ∴当且仅当b c a 2=+时,等号成立,4min=⎪⎭⎫⎝⎛--+--c b c a b a c a . ∴m ≤4.∴m 的取值范围是(]4,∞-.例47. 对于任意∈x R ,不等式031222>++-x a x 恒成立,求实数a 的取值范围. 解: ∵031222>++-x a x 恒成立∴13222++<x x a 恒成立,只需<a min 22132⎪⎭⎫ ⎝⎛++x x 即可.()⎪⎪⎪⎪⎭⎫⎝⎛+++=+++=+++=++12112111*********2222222x x x x x x x x . 设t x =+12,则[)+∞∈,1t ,⎪⎪⎪⎪⎭⎫ ⎝⎛+=++t t x x 21213222. ∵[)+∞∈,1t ,且()⎪⎪⎪⎪⎭⎫ ⎝⎛+=t t t f 212在⎪⎪⎭⎫⎢⎣⎡+∞,22上单调递增 ∴()()321121min=⎪⎭⎫ ⎝⎛+==f t f ,即3132min22=⎪⎭⎫ ⎝⎛++x x . ∴3<a ,即实数a 的取值范围是()3,∞-.注意 本题不能用基本不等式求最值.当111222+=+x x 时,方程无解.例48. 设0,0>>b a ,5=+b a ,则31+++b a 的最大值为_________. 解: ∵()()()()()31293124312+++=+++++=+++b a b a b a b a≤()()18319=++++a a . 当且仅当31+=+b a ,即23,27==b a 时,取等号. ∴()231+++b a 的最大值为18.∵031>+++b a∴31+++b a 的最大值为2318=.例49. 已知3,2>>y x ,()()432=--y x ,则y x +的最小值是 【 】(A )7 (B )9 (C )5 (D )11解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x ∴()()232-+-y x ≥()()2432==--y x∴25-+y x ≥2,∴y x +≥9. ∴y x +的最小值是9.∴选择答案【 B 】.另解: ∵3,2>>y x ,∴03,02>->-y x .∵()()432=--y x∴()()532+-+-=+y x y x ≥()()95425322=+⨯=+--y x .∴y x +的最小值是9.∴选择答案【 B 】. 例50. 若关于x 的不等式ax x -+4≥5在()+∞∈,a x 上恒成立,则实数a 的最小值为_________.解: ∵()+∞∈,a x ,∴0>-a x .∵ax x -+4≥5恒成立 ∴只需min 4⎪⎭⎫ ⎝⎛-+a x x ≥5即可. ∵a ax a x a x x +-+-=-+44≥()a a a x a x +=+-⋅-442 当且仅当ax a x -=-4,即2+=a x 时,等号成立. ∴a a x x +=⎪⎭⎫ ⎝⎛-+44min ∴a +4≥5,解之得:a ≥1.∴实数a 的最小值为1.例51. 已知0,0>>y x ,且121=+yx ,则y x xy ++的最小值为_________. 解: ∵121=+yx ∴xy y x =+2∴y x y x y x y x xy 232+=+++=++.∵0,0>>y x ∴⎪⎭⎫ ⎝⎛+=+y x y x 2123()y xx y y x x yy x 627462323++=+++=+≥3476227+=⋅+y xx y. 当且仅当y x x y 62=,即23,3323+=+=y x 时,等号成立.∴y x 23+,即y x xy ++的最小值为347+.例52. 已知0,0>>y x ,且053=+-+xy y x ,求xy 的最小值.解: ∵053=+-+xy y x∴xy y x 35=++.∵0,0>>y x∴5++y x ≥52+xy ,即xy 3≥52+xy ∴523--xy xy ≥0 ∴()()531-+xy xy ≥0解之得:xy ≥35.∴xy ≥925,当且仅当35==y x 时,等号成立.∴xy 的最小值为925.例53. 已知z y x ,,为正数,则222z y x yzxy +++的最大值为【 】 (A )1 (B )2 (C )22(D )2解: ∵z y x ,,为正数 ∴⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+++222222222z y y x yz xy z y x yz xy ≤yz xy yz xy 222222⨯+⨯+ ()22212==++=yz xy yzxy . 当且仅当y z x 22==时,等号成立. ∴222z y x yz xy +++的最大值为22. ∴选择答案【 C 】.例54. 设0>>b a ,则()b a a ab a -++112的最小值是 【 】 (A )1 (B )2 (C )3 (D )4解: ∵0>>b a ,∴0>-b a .∴()()()()ab ab b a a b a a b a a ab ab ab a b a a ab a 11111122++-+-=-+++-=-++ ≥()()41212=⋅+-⋅-abab b a a b a a . 当且仅当()()abab b a a b a a 1,1=-=-,即22,2==b a 时,等号成立. ∴()b a a ab a -++112的最小值是4. ∴选择答案【 D 】.例55. 设y x ,都是正数,且()1=+-y x xy .(1)求xy 的最小值;(2)求y x +的最小值.分析: 关于(1)的解决,参见例52.解:(1)∵()1=+-y x xy ∴xy y x =++1. ∵y x ,都是正数 ∴y x ++1≥xy 21+,即xy ≥xy 21+. ∴12--xy xy ≥0. 解之得:xy ≥21+. ∴xy ≥()223212+=+. 当且仅当21+==y x 时,等号成立. ∴xy 的最小值为223+;(2)由(1)知:xy y x =++1. ∵y x ,都是正数∴xy ≤()4222y x y x +=⎪⎭⎫ ⎝⎛+. (当且仅当21+==y x 时取等号) ∴()42y x +≥y x ++1,()()142-+-+y x y x ≥0. ∴()()442-+-+y x y x ≥0. 解之得:y x +≥222+. 当且仅当21+==y x 时,等号成立. ∴y x +的最小值为222+.。

均值不等式专题20道-带答案

均值不等式专题20道-带答案

均值不等式专题20道-带答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(均值不等式专题20道-带答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为均值不等式专题20道-带答案的全部内容。

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______。

5.若直线2ax—by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________。

15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______。

20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式。

基本(均值不等式)不等式知识点-基础练习1

基本(均值不等式)不等式知识点-基础练习1
7.( 2010·梅县)某厂生产某种产品的年固定成本为 250 万元,每生产 x 千件,需另投入成本为 C(x) .当年 产 量 不 足 80 千 件 时 , C(x) 1 x2 10x ( 万 元 ); 当 年 产 量 不 小 于 80 千 件
3 时, C(x) 51x 10000 1450 (万元).每件商品售价为 0.05 万元.通过市场分析,该厂生产的商品能全
3.拓展:若
a
0, b
0
时,
1
2
1
ab a b 2
a2 b2 ,当且仅当 a b 时等号成立.
2
ab
★重难点突破★
1.重点:理解基本不等式 ab a b 等号成立条件,掌握用基本不等式证明不
2
等式 会用基本不等式解决简单的最大(小)值问题. 2.难点:利用基本不等式 ab a b 求最大值、最小值
2
3.重难点:正确运用基本不等式证明不等式,会用基本不等式求某些函数的 最值
二 方法技巧讲解
(1) 灵活运用基本不等式处理不等关系
问题 1. 已知正数 x、y 满足 x+2y=1,求 1 + 1 的最小值. xy
点拨:∵x、y 为正数,且 x+2y=1,
1/7
∴ 1 + 1 =(x+2y)( 1 + 1 )
x2+(3-ab)x+ab=0,则△=(3-ab)2-4ab≥0,
5/7
即 (ab)2-10ab+9≥0,∴ (ab-9)(ab-1)≥0,
∵ab-1=a+b+2>0 成立,∴ ab≥9 . 例 4 【解题思路】因为是轮换对称不等式,可考虑由局部证整体.
[解析] a2 b2 2ab,b2 c2 2bc, a2 c2 2ac,

均值不等式(基本不等式+知识点+例题+习题)pdf版

均值不等式(基本不等式+知识点+例题+习题)pdf版

t
t
t
答案:[2, )
例 2 求函数 y x2 3 的最小值. x2 1
解析:令 x2 1 t,t 1,则 x2 t2 1 ,带入原式化简得 y t 2 2 2 , t
当 t 2 即 t 2 时等号成立. t
答案: 2 2
例 3 已知 x 1,求 f (x) x2 x 1 的最小值. 2x 1
2
2
2 | 10
[不等式] 练习答案:
1
2
38
对勾函数:
形如 f (x) ax b (ab 0) 的函数. x
利用对勾函数性质可解决均值不等式等号不成立时的情况.
性质
a 0,b 0
y
a 0,b 0 y
图像
2 ab
Obxab a NhomakorabeaO
x
-2 ab
定义域
值域 奇偶性 渐近线
{x | x 0}
2
题型四:分离换元法求最值(二次比一次或一次比二次时用)
例 1 求函数 y x2 3 (x 1) 的值域. x 1 2
解析:令 x 1 t,t 3 ,则 x t 1,带入原式得到 y (t 1)2 3 t 4 2 ,
2
t
t
t 4 2 2 t 4 2 2 ,当 t 4 即 t 2 时等号成立.
解析:构造对勾函数 y 3x 12 ,由函数性质可知 x (3, ) 时函数单调递减, x

y
3x
12 x
y(3)
13

答案: (, 13]
练习 1 练习 2
已知 x 0 ,求函数 y x 4 的最小值. x4
已知 x 3,求函数 y 2x 3 的值域. 2x

基本不等式 基础练习题

基本不等式 基础练习题

基本不等式基础练习题1.若两个正实数x,y满足=1,则x+2y的最小值是.2.已知x>0,y>0,且,则2x+3y的最小值为.3.设a>0,b>0.若是2a与2b的等比中项,则的最小值为.4.若两正数a,c满足a+2c+2ac=8,则ac的最大值为.5.已知x>2,则+x的最小值为.6.已知x∈(0,3),则函数y=+的最小值为.7.已知实数x,y满足x2+y2+xy=1,则x+2y的最大值为.8.已知x,y∈R+,且xy2=8,则4x+y的最小值为.9.若实数x,y满足xy=1,则x2+2y2的最小值为.10.若正数x,y满足2x+y﹣3=0,则的最小值为.11.已知f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是.12.已知a,b都是正实数,函数y=2ae x+b的图象过点(0,1),则的最小值是.13.已知正数x,y满足x+2y=2,则的最小值为.14.已知a>b>0,ab=1,则的最小值为.15.设x、y均为正实数,且,则xy的最小值为.16.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是.17.已知x,y∈R*且+=1,则xy的最小值是.18.已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.19.已知log2x+log2y=1,则x+y的最小值为.20.已知正实数x,y满足(x﹣1)(y+1)=16,则x+y的最小值为.21.已知x,y∈R,且x+2y=1,则2x+4y的最小值是.22.己知x>0,y>0,且x+y++=5,则x+y的最大值是.23.若正数x,y满足x+3y=5xy,则x+y的最小值为.24.已知a,b,c,d∈R,且a2+b2=2,c2+d2=2,则ac+bd的最大值为.25.已知x>0,y>0,且x+2y=xy,则log4(x+2y)的最小值是.26.在等比数列{an }中,若S7=14,正数a,b满足a+b=a4,则ab的最大值为.27.已知函数f(x)=2x﹣1+1过定点A,且点A在直线l:mx+ny=1(m>0,n>0)上,则的最小值是.28.实数x、y满足x2+y2=4,则x+y﹣xy的最大值为.a b参考答案与试题解析一.填空题(共30小题)1.(2015•资阳模拟)若两个正实数x,y满足=1,则x+2y的最小值是8.考点:基本不等式.专题:不等式的解法及应用.分析:根据=1可得x+2y=(x+2y)(),然后展开,利用基本不等式可求出最值,注意等号成立的条件.解答:解:∵两个正实数x,y满足=1,∴x+2y=(x+2y)()=4+≥4+2=8,当且仅当时取等号即x=4,y=2,故x+2y的最小值是8.故答案为:8.点评:本题主要考查了基本不等式的应用,解题的关键是“1”的活用,同时考查了运算求解的能力,属于基础题.2.(2013•东莞二模)已知x>0,y>0,且,则2x+3y的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:把代入可得,2x+3y=(2x+3y)()=+29,由基本不等式可得答案.解答:解:由题意可得2x+3y=(2x+3y)()=+29≥2+29=29+6当且仅当,即x=,y=时取等号,故2x+3y的最小值为:故答案为:点评:本题考查基本不等式的应用,把代入原式构造可利用基本不等式的情形是解决问题的关键,属基础题.3.(2015•中山市二模)设a>0,b>0.若是2a与2b的等比中项,则的最小值为4.考点:基本不等式.专题:不等式的解法及应用.分析:利用等比中项的性质、“乘1法”与基本不等式的性质即可得出.解答:解:由题意知,∴的最小值为4.故答案为:4.点评:本题考查了等比中项的性质、“乘1法”与基本不等式的性质,属于基础题.4.(2015•德阳模拟)若两正数a,c满足a+2c+2ac=8,则ac的最大值为2.考点:基本不等式.专题:不等式的解法及应用.分析:两正数a,c满足a+2c+2ac=8,利用基本不等式的性质可得,化为,解出即可.解答:解:∵两正数a,c满足a+2c+2ac=8,∴,化为,∴≤0,解得,∴ac≤2,当且仅当a=2c=2取等号.∴ac的最大值为2.故答案为:2.点评:本题考查了基本不等式的性质、一元二次不等式的解法,属于基础题.5.(2015•恩施州一模)已知x>2,则+x的最小值为4.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质即可得出.解答:解:∵x>2,∴+x=+(x﹣2)+2≥=4,当且仅当x=3时取等号.故答案为:4.点评:本题考查了基本不等式的性质,属于基础题.6.(2015•金家庄区模拟)已知x∈(0,3),则函数y=+的最小值为3.考点:基本不等式.专题:函数的性质及应用.分析:利用,当且仅当时取等号,x,y,m,n都为正数.解答:解:∵x∈(0,3),∴函数y=+≥=3,当且仅当,即x=1时取等号.点评:本题考查了变形利用基本不等式的性质,属于基础题.7.(2015•杭州一模)已知实数x,y满足x2+y2+xy=1,则x+2y的最大值为2.考点:基本不等式.专题:不等式的解法及应用.分析:x+2y=m,则x=m﹣2y代入x2+y2+xy=1,可得3y2﹣3my+m2﹣1=0,利用△≥0,解出即可.解答:解:设x+2y=m,则x=m﹣2y代入x2+y2+xy=1,可得3y2﹣3my+m2﹣1=0,∴△=9m2﹣12(m2﹣1)≥0,解得﹣2≤m≤2,∴x+2y的最大值为2.故答案为:2.点评:本题考查了一元二次方程的实数根与判别式的关系、一元二次不等式的解法,属于基础题.8.(2015•衡阳模拟)已知x,y∈R+,且xy2=8,则4x+y的最小值为6.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:∵xy2=8,∴x=,∵x,y∈R+,∴4x+y=+≥3=6,当且仅当x=,y=4时取等号.∴4x+y的最小值为6.故答案为:6.点评:本题考查了基本不等式的性质,属于基础题.9.(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.考点:基本不等式.专题:不等式的解法及应用.分析:由已知可得y=,代入要求的式子,由基本不等式可得.解答:解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2点评:本题考查基本不等式,属基础题.10.(2014•德州一模)若正数x,y满足2x+y﹣3=0,则的最小值为3.分析:由题意可知2x+y=3,所以想到把要求最小值的式子分子分母同时乘以3,把分子的3同时换成2x+y,展开后利用基本不等式可求最小值.解答:解:由2x+y﹣3=0,得2x+y=3,又∵x,y为正数,所以=.当且仅当x=y时取等号,因为2x+y﹣3=0,所以此时x=y=1.所以的最小值为3.故答案为3.点评:本题考查了基本不等式的应用,训练了学生灵活变形和处理问题的能力,解答此题的关键是对已知条件的灵活运用,属中档题.11.(2014•阳泉二模)已知f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是7.考点:基本不等式;对数的运算性质.专题:计算题.分析:由题意得m>2,n>1,(m﹣2)(n﹣1)=4,再由基本不等式得=2≤=,变形可得m+n的最小值.解答:解:∵f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,m>2,n>1,∴log2(m﹣2)+log2(2n﹣2)=3,log2(m﹣2)2(n﹣1)=3,(m﹣2)2(n﹣1)=8,(m﹣2)(n﹣1)=4,∴=2≤=(当且仅当m﹣2=n﹣1=2时,取等号),∴m+n﹣3≥4,m+n≥7.故答案为:7.点评:本题考查对数的运算性质,基本不等式的应用.考查计算能力.12.(2014•日照一模)已知a,b都是正实数,函数y=2ae x+b的图象过点(0,1),则的最小值是.考点:基本不等式.专题:不等式的解法及应用.分析:把点(0,1)代入函数关系式即可得出a,b的关系,再利用基本不等式的性质即可得出.解答:解:∵函数y=2ae x+b的图象过点(0,1),∴1=2a+b,∵a>0,b>0.∴==3+=,当且仅当,b=时取等号.故答案为.点评:熟练掌握基本不等式的性质是解题的关键.13.(2014•镇江一模)已知正数x,y满足x+2y=2,则的最小值为9.分析:利用“乘1法”和基本不等式即可得出.解答:解:∵正数x,y满足x+2y=2,∴===9,当且仅当x=4y=时取等号.∴的最小值为9.故答案为:9.点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.14.(2014•温州三模)已知a>b>0,ab=1,则的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:本题是基本不等式问题,可以利用a>b>0得到a﹣b>0(正数),再利用条件ab为定值将a2+b2转化为(a﹣b)2与ab,化简后,运用基本不等式解决问题.解答:解:∵a>b>0,ab=1∴a﹣b>0∴=当且仅当a﹣b=时取等号故答案为点评:本题主要考查了基本不等式的应用和转化化归的数学思想,注意不等式成立的条件(一正二定三相等)15.(2014•江西一模)设x、y均为正实数,且,则xy的最小值为16.考点:基本不等式.专题:不等式的解法及应用.分析:将等式左边通分,化简等式后,使用基本不等式,化为关于的一元二次不等式,解出的范围.解答:解:∵x、y均为正实数,且,进一步化简得xy﹣x﹣y﹣8=0.x+y=xy﹣8≥2,令t=,t2﹣2t﹣8≥0,∴t≤﹣2(舍去),或t≥4,即≥4,化简可得xy≥16,∴xy的最小值为16.点评:本题考查基本不等式的应用,体现转化的数学思想,属于基础题.16.(2014•浙江模拟)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是4.考点:基本不等式;简单线性规划的应用.专题:计算题.分析:首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4(当且仅当x=2y时取等号)则x+2y的最小值是 4故答案为:4.点评:此题主要考查基本不等式的用法,对于不等式a+b≥2在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.17.(2014•宿州三模)已知x,y∈R*且+=1,则xy的最小值是8.考点:基本不等式.专题:不等式的解法及应用.分析:由x,y∈R*且+=1,可得(y>2),代入并利用基本不等式即可得出.解答:解:∵x,y∈R*且+=1,∴(y>2)∴xy=y==+4=8,当且仅当y=4(x=2)时取等号.∴xy的最小值是8.故答案为:8.点评:本题考查了基本不等式的性质,属于基础题.18.(2014•苏州一模)已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式即可得出.解答:解:∵正实数x,y满足xy+2x+y=4,∴(0<x<2).∴x+y=x+==(x+1)+﹣3﹣3=﹣3,当且仅当x=时取等号.∴x+y的最小值为.故答案为:.点评:本题考查了基本不等式的性质,属于基础题.19.(2014•宝山区二模)已知log2x+log2y=1,则x+y的最小值为2.考点:基本不等式;对数的运算性质.专题:函数的性质及应用.分析:由log2x+log2y=1,得出xy=2,且x>0,y>0;由基本不等式求出x+y的最小值.解答:解:∵log2x+log2y=1,∴log2(xy)=1,∴xy=2,其中x>0,y>0;点评:本题考查了对数的运算性质以及基本不等式的应用问题,解题时应注意基本不等式的应用条件是什么,是基础题.20.(2014•淮安模拟)已知正实数x,y满足(x﹣1)(y+1)=16,则x+y的最小值为8.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式即可得出.解答:解:∵正实数x,y满足(x﹣1)(y+1)=16,∴,∴x+y==8,当且仅当y=3,(x=5)时取等号.∴x+y的最小值为8.故答案为:8.点评:本题考查了变形利用基本不等式的性质,属于基础题.21.(2014•重庆三模)已知x,y∈R,且x+2y=1,则2x+4y的最小值是.考点:基本不等式.专题:计算题.分析:首先判断2x>0,4y>0,然后知2x+4y≥2 =,即得答案.解答:解:由2x>0,4y>0,∴2x+4y≥2 =.所以2x+4y的最小值为故答案为:.点评:本题考查均值不等式的性质和应用,解题时要注意公式的正确应用.22.(2014•淄博三模)己知x>0,y>0,且x+y++=5,则x+y的最大值是4.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式转化为一元二次不等式,解出即可.解答:解:∵x>0,y>0,且x+y++=5,∴=(x+y)+,令x+y=t>0,上述不等式可化为t2﹣5t+4≤0,解得1≤t≤4,当且仅当x=y=2时取等号.因此t即x+y的最大值为4.故答案为:4.点评:本题考查了基本不等式的性质、一元二次不等式的解法、转化法,属于中档题.专题:常规题型;函数的性质及应用.分析:将x+3y=5xy转化为=1,再由x+y=(x+y),展开后利用基本不等式可求出x+y的最小值.解答:解:∵正数x,y满足x+3y=5xy,∴.∴x+y=(x+y)≥.当且仅当,即时取等号,此时结合x+3y=5xy,得∴x+y≥,可知x+y的最小值为.故答案为.点评:本题为2012年浙江文科试题第(9)题的一个变式.容易做错,应注意等号成立的条件;“1”的替换是一个常用的技巧,应学会灵活运用.24.(2014•咸阳二模)已知a,b,c,d∈R,且a2+b2=2,c2+d2=2,则ac+bd的最大值为2.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式即可得出.解答:解:==2,当且仅当a=c=b=d=1时取等号,∴ac+bd的最大值为2.故答案为:2.点评:本题考查了基本不等式的性质,属于基础题.25.(2014•荆州模拟)已知x>0,y>0,且x+2y=xy,则log4(x+2y)的最小值是.考点:基本不等式.专题:不等式的解法及应用.分析:根据基本不等式求出xy≥8,然后利用对数的基本运算和对数的换底公式进行计算即可.解答:解:∵x>0,y>0,且x+2y=xy,∴x+2y=xy,平方得(xy)2≥8xy,解得xy≥8,∴log4(x+2y)=log4(xy),故答案为:点评:本题主要考查基本不等式的应用以及对数的基本计算,考查学生的计算能力.考点:基本不等式.专题:不等式的解法及应用.分析:利用等比数列的通项公式和基本不等式即可得出.解答:解:设等比数列{a n}的首项为a1,公比为q.∵S7=14=+=a4≥a4×(2+2+2+1),∴a4≤2.∵正数a,b满足a+b=a4,∴2≥a4=a+b,解得ab≤1,当且仅当a=b=1时取等号.此时ab的最大值为1.故答案为:1.点评:本题考查了等比数列的通项公式和基本不等式,属于中档题.27.(2014•淮南二模)已知函数f(x)=2x﹣1+1过定点A,且点A在直线l:mx+ny=1(m>0,n>0)上,则的最小值是4.考点:基本不等式.专题:不等式的解法及应用.分析:利用20=1可得函数f(x)=2x﹣1+1过定点A(1,2),由于点A在直线l:mx+ny=1(m>0,n>0)上,可得m+2n=1.再利用“乘1法”和基本不等式的性质即可得出.解答:解:∵f(1)=20+1=2,∴函数f(x)=2x﹣1+1过定点A(1,2),由点A在直线l:mx+ny=1(m>0,n>0)上,∴m+2n=1.∴=(m+2n)=2+=4,当且仅当m=2n=取等号,∴的最小值是4.故答案为:4.点评:本题考查了指数的运性质和基本不等式的性质,属于中档题.28.(2014•宁波模拟)实数x、y满足x2+y2=4,则x+y﹣xy的最大值为.考点:基本不等式.专题:三角函数的图像与性质.分析:由实数x、y满足x2+y2=4,利用三角函数代换x=2cosθ,y=2sinθ.令t=sinθ+cosθ=(θ∈[0,2π)),,可得2sinθcosθ=t2﹣1.x+y﹣xy=2cosθ+2sinθ﹣4sinθcosθ=,再利用二次函数的单调性即可得出.解答:解:∵实数x、y满足x2+y2=4,∴可设x=2cosθ,y=2sinθ.则t2=1+2sinθcosθ,可得2sinθcosθ=t2﹣1.∴x+y﹣xy=2cosθ+2sinθ﹣4sinθcosθ=2t﹣2(t2﹣1)=,当且仅当时,x+y﹣xy取得最大值为.故答案为:.点评:本题考查了圆的参数方程、三角函数代换、三角函数基本关系式、二次函数的单调性等基础知识与基本技能方法,考查了转化方法和计算能力,属于中档题.29.(2014•济南二模)已知直线ax+by=1经过点(1,2),则2a+4b的取值范围是.考点:基本不等式.专题:不等式的解法及应用.分析:由于直线ax+by=1经过点(1,2),可得a+2b=1.再利用基本不等式和指数的运算性质即可得出.解答:解:∵直线ax+by=1经过点(1,2),∴a+2b=1.∴2a+4b≥==2.当且仅当2a=4b,a+2b=1,即a=,b=时取等号.∴2a+4b的取值范围是.故答案为:.点评:本题考查了基本不等式和指数的运算性质,属于中档题.30.(2013•石景山区二模)已知正数a,b,c满足a+b=ab,a+b+c=abc,则c的取值范围是.考点:基本不等式.专题:不等式的解法及应用.分析:由正数a,b,c满足a+b=ab,利用基本不等式即可得出ab≥4.由a+b+c=abc,变形为即可得出.解答:解:∵正数a,b,c满足a+b=ab,∴,化为,∴,∴ab≥4,当且仅当a=b=2时取等号,∴ab∈[4,+∞).∵a+b+c=abc,∴ab+c=abc,∴c==.∵ab≥4,∴,∴.∴c的取值范围是.故答案为.点评:恰当变形利用基本不等式的性质和不等式的基本性质是解题的关键.。

(完整版)28道基本不等式均值不等式练习题

(完整版)28道基本不等式均值不等式练习题

基本不等式习题1.若,0>>b a 则下列不等式成立的是 ( ) A.ab b a b a >+>>2 B.b ab b a a >>+>2C.ab b b a a >>+>2D.b b a ab a >+>>22.已知点(,)A m n 在直线21x y +=上,其中0mn >,则21m n +的最小值为 ( )A.B.8C.9D.123.已知0,2b a ab >>=,则22a b a b+-的取值范围是( ) A .(],4-∞- B .(),4-∞- C .(],2-∞- D .(),2-∞-4.已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y+的最小值是A .6B .5C .3+.5.设0,1a b >>,若3121a b a b +=+-,则的最小值为A.4+6.若正数,x y 满足35,x y xy +=则34x y +的最小值是( )A.245B.285C.6D.5 8.若0a b >> 且3322a b a b -=-,则+a b 的取值范围是( )A .()0,+∞B .()1,+∞C .()1,2D .41,3⎛⎫ ⎪⎝⎭ 9.若两个正实数y x ,满足141=+y x ,且不等式m m y x 342-<+有解,则实数m 的取值范围是( )A .)4,1(- B .),4()1,(+∞--∞ C .)1,4(- D .),3()0,(+∞-∞10.已知正数,,a b c 满足,,a b ab a b c abc +=++=则c 的取值范围是( )A .⎥⎦⎤ ⎝⎛34,0B .⎥⎦⎤ ⎝⎛34,21C .⎥⎦⎤ ⎝⎛3431,D .⎥⎦⎤ ⎝⎛34,1 11.已知0,0a b >>,如果不等式212m a b a b+≥+恒成立,那么m 的最大值等于( )A .10 B .7 C .8 D .913.正实数a ,b 满足123a b+=,则()()12a b ++的最小值是 . 15.若b a ab b a +=+则)(,log 43log 24的最小值是 . 16.若点()1,1A 在直线022=-+ny mx 上,其中,0>mn 则11m n+的最小值为 . 18.若221a ab b -+=,a ,b 是实数,则a b +的最大值是 .19.若实数,0x y >且1xy =,则2x y +的最小值是 ,2242x y x y++的最小值是 . 20.已知0,0,2,2x y xy x y xy m >>=+≥-若恒成立,则实数m 的最大值为 . 21.0,0>>y x ,112=+yx ,若m m y x 222+>+恒成立,则m 的取值范围是 . 22.已知实数,x y 满足0x y >>,且2x y +=,则1224x y x y ++-的最小值为 . 23.若正实数,a b 满足115a b a b+++=,则a b +的最大值是________. 24.设,0,5a b a b ,1++3a b 的最大值为________.25.已知正数y x ,满足111=+yx ,则1914-+-y y x x 的最小值为 . 26.若0,0>>y x ,且2421=+++y x y x ,则y x 57+的最小值为__________. 27.已知32x ≥,则22211x x x -+-的最小值为 . 28.已知0x >,0y >,1x y +=,则2221x y x y +++的最小值为 .。

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题

高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。

基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。

要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。

均值不等式练习题

均值不等式练习题

均值不等式练习题1. 练习题一已知非零实数a、b满足ab<0,证明(a+b)/2 > √ab.解:我们将证明这个不等式是基于均值不等式的。

首先,根据均值不等式,我们知道对于任意两个正数x和y,有(x + y)/2 ≥ √xy.因此,我们可以推导出(a + b)/2 > √ab.首先,根据已知条件ab < 0,我们可以得出a和b有不同的符号。

假设a>0,b<0,那么我们可以得到√ab = √(a*(-b)) = √(a * -1 * (-b)) = √(a * 1 * b) = √(ab) < 0.另一方面,由于a>0,b<0,所以(a + b)/2 = (a + b)/2 > a/2 + b/2 > √ab + √ab = 2√ab > √ab.综上所述,我们证明了(a + b)/2 > √ab.2. 练习题二已知非零实数a、b、c满足abc = 1,证明a/b + b/c + c/a ≥ a + b + c.解:我们将证明这个不等式是基于均值不等式的。

首先,根据均值不等式,我们知道对于任意三个正数x、y、z,有(x/y + y/z + z/x)/3 ≥ (x + y + z)/(x + y + z),即(x/y + y/z + z/x) ≥ (x + y + z).因此,我们可以推导出(a/b + b/c + c/a)/3 ≥ (a + b + c)/(a + b + c),即(a/b + b/c + c/a) ≥ (a + b + c).首先,根据已知条件abc = 1,我们可以得到a、b、c有不同的符号。

假设a>0,b<0,c>0,那么我们可以得到b/c < 0,c/a > 0,那么a/b +b/c + c/a = a/b + (b/c) + (c/a) > a/√(bc) + (-1) + √(bc)/a = (a^2 - bc)/a√(bc) = (a^2 - 1)/a√(bc) = (a - 1/a)/√(bc).另一方面,由于abc = 1,我们知道√(bc) = 1/√a,所以(a - 1/a)/√(bc)= (a - 1/a)√a = (a^2 - 1)/a ≥ a + b + c.综上所述,我们证明了(a/b + b/c + c/a) ≥ (a + b + c).3. 练习题三已知非零实数a、b满足a+b = 2,证明a^2b^2(a^2+b^2) ≤ 2.解:我们将通过变量替换的方法来证明这个不等式。

均值不等式基础方法15类总结-(原卷版)

均值不等式基础方法15类总结-(原卷版)

专题3 均值不等式基础方法15类总结目录一、热点题型归纳【题型一】对勾型 (2)【题型二】添加常数构造“对勾型” (3)【题型三】“和定求积”型 (3)【题型四】“积定求和”型 (4)【题型五】单元(单变量)分离常数型 (4)【题型六】“常数”因子法: (5)【题型七】“单分母”构造因子法 (6)【题型八】“双分母”构造法 (6)【题型九】有和有积无常数型 (7)【题型十】有和有积有常数型:求“积”型 (8)【题型十一】有和有积有常数型:求“和”型 (8)【题型十二】多元分离型 (9)【题型十三】反解消元型 (9)【题型十四】换元型 (10)【题型十五】较简单的三元均值 (11)培优第一阶——基础过关练 (11)培优第二阶——能力提升练 (13)培优第三阶——培优拔尖练 (14)知识点综述:1.基本不等式::a2+b2≥ 2ab(a,b∈R);2.常用不等式:ab ≤a +b2; (1) 基本不等式成立的条件:a >0,b >0;(2)等号成立的条件:当且仅当a =b .简称为““一正”“二定”“三相等”,三个条件缺一不可. 3.基本不等式的变形:①a +b ≥2ab ,常用于求和的最小值;②ab ≤⎝⎛⎭⎫a +b 22,常用于求积的最大值;4.重要不等式链:a 2+b 22≥ a +b 2≥ab ≥2aba +b;【题型一】对勾型【典例分析】(2021·江苏·高一专题练习)不等式(x -2y )+12x y -≥2成立的前提条件为( ) A .x ≥2yB .x >2yC .x ≤2yD .x <2y【提分秘籍】 基本规律对勾型:1t t +,bat t+ 容易出问题的地方,在于能否“取等”,如1.2sin sin θθθ+,其中锐角(第五章会学习到)2.221x 5x 5+++1.(2022·全国·高一专题练习)若0x >,0y >,则1122x y x y+++的最小值是( ) A .32B .42C .4D .22.(2022·河南驻马店·高一期末)已知a >0,则当19a a+取得最小值时,a 的值为( )A .19B .16C .13D .3【题型二】 添加常数构造“对勾型”【典例分析】(2022·吉林延边·高一期末)已知2x >,则函数()1222y x x =+--的最小值是( ) A .22B .222 C .2 D 2【提分秘籍】 基本规律 对于形如1cx+d ax b ++,则把cx+d 转化为分母的线性关系:c 1ax+b)ax b cd a a ++-+(可消去。

基本(均值不等式)不等式知识点-基础练习1

基本(均值不等式)不等式知识点-基础练习1
2
3.重难点:正确运用基本不等式证明不等式,会用基本不等式求某些函数的
最值
二 方法技巧讲解
(1) 灵活运用基本不等式处理不等关系
问题 1. 已知正数 x、y 满足 x+2y=1,求 1 + 1 的最小值. xy
点拨:∵x、y 为正数,且 x+2y=1,
∴ 1 + 1 =(x+2y)( 1 + 1 )
x
部售完.
(1)写出年利润 L (万元)关于年产量 x (千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
参考答案
例 1【解题思路】利用 2 8 1,构造均值不等式 xy
解析:∵ x y (x y) 1 (x y) ( 2 8 ) 2 8 2 y 8x , x 0, y 0 ,∴ 2 y 0, 8x 0

xy
点拨:
错解 1、因为对 a>0,恒有 a 1 2 ,从而 z= (x 1 )( y 1 ) 4,所以 z 的最小值是 4。
a
xy
错解 2、 z 2 x2 y2 2xy ( 2 xy) 2 2 2 xy 2 2( 2 1) ,所以 z 的最小值是
xy
xy
xy
2( 2 1) 。
则 ab=a+b+3≥2 ab +3,
即 ab 2 ab 3 ≥ 0 ( ab 3)( ab 1) ≥ 0 ab ≥3,
∴ ab≥9 .
解法二 a、b 为正数,∴ ab=a+b+3≥ 33 3ab >0,
两边立方得 a3b3≥34ab a2b2≥34,∵ab>0,∴ab≥9 .
xy
xy

均值不等式常考题型

均值不等式常考题型

均值不等式及其应用【1】一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab ba ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

基本不等式基础知识(题目与答案)

基本不等式基础知识(题目与答案)

基本不等式基础类型题复习一:求下列函数的值域1. y =x +1x(x>0) 2. y =x +1x3. (2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x =-2 ∴值域为(-∞,-2]∪[2,+∞)3.y =3x 2+12x2 解:(1)y =3x 2+12x 2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞) 4求1 (3)3y x x x =+>-的最小值. 5:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

6. 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

7:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立。

均值不等式求值的常用技巧及习题含解答:经典

均值不等式求值的常用技巧及习题含解答:经典

均值不等式求最值的常用技巧及习题(含解答:经典)————————————————————————————————作者:————————————————————————————————日期:利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当 _____________时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”)2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当_________时取“=”) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R +∈,且满足134x y+=,则xy 的最大值为 ________。

解:因为x >0,y>0,所以234343x y x yxy+≥=(当且仅当34x y =,即x=6,y=8时取等号),于是13xy≤, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=1621211211==≥+∴xy y x y x 当且仅当x=y 时等号成立技巧二:配凑项求 例2:已知54x <,求函数14245y x x =-+-的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

日期:2012-时间:测试科目:涉及章节:教师评语:不等是知识点★知识梳理★1.基本形式:a,b 壬 R ,则 a 2 +b 2 H2ab ; a :>0,b 〉0 ,则 a + b > 2/a b ,当且仅当 a =b 时 等号成立.2求最值:当ab为定值时,a +b ,a 2加2有最小值;当a 巾或a 2+b 2为定值时,ab 有最 大值(a>0b>0).3.拓展:若a:>0,b:>0时兰后兰^2^兰J a;b,当且仅当a = b 时等号成立.a b★重难点突破★1.重点:理解基本不等式 后 <宁等号成立条件,掌握用基本不等式证明不 等式 会用基本不等式解决简单的最大(小)值问题 a +b3.重难点:正确运用基本不等式证明不等式,会用基本不等式求某些函数的 最值二方法技巧讲解(1)灵活运用基本不等式处理不等关系1 1 问题1.已知正数X 、y 满足x+2y=1,求丄+」的最小值. X y点拨:••• X 、y 为正数,且x+2y=1 ,学生姓名:任课教师: 试卷审查教师:a +b2•难点:利用基本不等式 届兰亍求最大值、最小值• 1 1/ C 、 / 1 1、••— + —= (x+2y ) (— + —)x y x y=3+岁+- > 3+2*2 , x y当且仅当丝丄,即当x=Q — 1, y=1—时等号成立. x y 2 ••• 1+1的最小值为3+2血. x y (2)注意取等号的条件1 1 问题2.已知两正数x,y 满足x+y=1,则z=(x +—)(y +—)的最小值为 y 点拨:1错解1、因为对a>0,恒有a + - >2,从而z=(xa+-)(y + -^4,所以z 的最小值是4。

x y 错解 2、z =2+xy -2xy =(2 + xy) —2 拥Zxy —2=2(72 —1),所以 z 的最小值是 xy Y xyxy2(72 -1)。

1 1错因分析:解一等号成立的条件是 x=—且y =—很卩x=1且y = 1,与x + y =1相矛盾。

解二等号成x y立的条件是 —=xy,即xy = J 2,与0 C xy <丄相矛盾。

xy 42解析:z= (x + )( 丫+牛亦丄+y+2£ = xy +丄 +(x+y )—2x y=2 +xy_2 ,令t=xy,则 x y xy x y xyxyxy0+72 :「二1,由f(t)=t+Z 在j o,-上单调递减,故当t=-时f(t)=t+2有最小4t V 4」4 t33 1值3",所以当x = y =1时考点1利用基本不等式求最值题型1.当积ab 为定值时,求和a+b 最小值z 有最小值。

4★热点考点题型探析★ (或取值范围)2 8例1 .已知XA O, y>0且满足=1,求x + y的最小值.x y例2.已知x>0,y>0,且3x+4y=12,求Igx+lgy的最大值及此时x、y的值.例3.若正数a, b满足ab=a+b+3,贝U ab的取值范围是考点2利用基本不等式证明题型:用综合法证明简单的不等式例4 已知a,b, C壬R,求证:a2+b2+ c2^ab +bc + ca .强化训练11.若x 一1,则x=—时,x+诂有最小值,最小值为1 12. .(2010华附)已知x,y 壬R*,且X+4y = 1,则的最小值为x y3. 已知一动直线丨与两坐标轴的正半轴围成的三角形的面积的数值比直线这三角形面积的最小值.4. 已知a , b 为正数,求证:若f (X )+2x >0在(0, +处)上恒成立,求a 的取值范围。

7.( 2010梅县)某厂生产某种产品的年固定成本为 250万元,每生产x 千件,需另投入成本为 C (x ).当年 亠 1 2产量不足 80 千件时,C (x ) = — x +10x (万元);当年产量不小于 80千件3, 10000时,C (x )=51x+ ---- -1450(万元).每件商品售价为 0.05万元.通过市场分析,该厂生产的商品能全I 的纵、横截距之和大1,求5.设x>0,y>0且x 丰y,求证(x 31+ y 336.已知函数f(x)=-1 + 2a xx部售完.(1)写出年利润L (万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大则 ab=a+b+3 > ^/ab +3,即 ab -2后-3> 0= (j ab -3)(V ab +1) > 0= T Ob >3,解法二 a 、b 为正数,••• ab=a+b+3> 33'3ab >0, 两边立方得 a 3b 3>34ab= a 2b 2》34,v ab>0,.・.ab >9 . 解法三原条件式变为ab-3=a+b ,••• a 、b 均为正数,故①式两边都为正数,两边平方得 a 2b 2-6ab+9=a 2+b 2+2ab ,2 2 2 2••• a 2+b 2> 2ab ,.・. a 2b 2-6ab+9 > 4ab ,即 a b -10ab+9 > 0, (ab-1)(ab-9) > 0, 由①式可知ab>3,.・.ab > 9 .解法四 把a 、b € R +看作一元二次方程的两个根,此方程为参考答案2 8例1【解题思路】利用 —=1,构造均值不等式x y的疋 2 8 2y8x c c2y 8x 解析:-x +y =(x + y) 1 = (x + y) (—+—)=2+8+— +— , x 〉0, y 〉0 ,二—> 0,— > 0 x yx y xx + y>10+ 2j 16=18,当且仅当 空=竺时等号成立,即y 2=4x 2,. y = 2x ,又- x y x x=6, y =12 •••当 x =6, y=12 时,x + y 有最小值 18.例 2 解析••• x>0 , y>0, 3x+4y=12 , 1•- xy = —,3x *4y<••• lgx+lgy=lgxy < lg3 .:X A 0, y A 0 由<3x +4y =12解得[3x = 4y3.•.当 x=2 , y=—时,2ix- 2Igx+lgy 取得最大值lg3 . 例3解法由a 、b € R +,由重要不等式得 a+b > ^/ab , y +里 1, ••y2 2x +(3-ab)x+ab=0,则△ =(3-ab) -4ab> 0,即(ab)-10ab+9 > 0,A (ab-9)(ab-1) > 0, •/ ab-1=a+b+2>0 成立,二 ab > 9 . 例4【解题思路】因为是轮换对称不等式,可考虑由局部证整体 [解析 \ - a 2+ b2>2ab,b 2 +c 2 >2bc,a 2+c 2 >2ac ,2 2 2相加整理得 a +b +c >ab+bc+ca .当且仅当a = b = c 时等号成立.强化训练3.已知一动直线I 与两坐标轴的正半轴围成的三角形的面积的数值比直线 这三角形面积的最小值.X y1解析: 设直线 I 的方程 一+丄=1 (a>0, b>0),则一ab=a+b + 1 , v a+b>2ab , a b2••• 2ab A 2临+1,即卩(T Ob )2 -4廊一2 A 0,解得 V Ob > 2+76 , ••• iab A 丄(2 +J 6)2,当a=b=2+J 6时,三角形面积的最小值为 5+2 J 6 2 2 4 解析 1 :••• a>0, b>0.务+拓A v b牛+爲Av a两式相加,得+ 需 ++ T a A 2需 + ^/b , V bv a••• ¥+壬 A 7a +拓. V b v a1.若 X >■ _1,则 X = _ 时,X+ 丄 有最小值,最小值为X +11 1 1 x +— = x +1 + -----1 >2(X+1)--- 1x +1 x +1 y x +11即 X=0 时(^― )min =1.x +1 x +1解析:••• X > —1, ••• X +1》0 , =2 —1 =1,当且仅当X +1 = • >0X +11 2. .(2010华附)已知X, y 亡R*,且X +4y = 1, — ________________ 的最小值为 X y解析:v X, y 亡R*,”・.1+丄=X + 4y+ X +4y= 5十色十仝>9,当且仅当 x =〕,y =〕时取等号l 的纵、横截距之和大1,求=(7a +岛)2 •只需 2xy C X 2 +y21 26解析:因为f (X )+ 2x >0在(0, +处)上恒成立,即 一--+a1 1•- - <2(x +丄)a x1解得a <0或a > —41 2 1 27 解析:(1)当 0c x <80 时,L(x) =0.05x1000x —— X —10x —250 =——x +40x —2503 3当 X >80时丄(X)=0.05x1000x-51x-10000 +1450-250 = 1200 -(x +W 000) X X1 2 —X 2+40x-250,0 <x C80 ••• L(x)才 3100001200 -(X + ---- ), x>80 I X⑵当 0 C X <80 时丄-60(+950,此时,当 x =60 时,L(x)取得最大值 L(60) = 950(万元);3 当 X >80时丄(X)=1200—(X+10000)兰 1200 —2(此时,当X = 10000时,即X =100时丄(X )取得最大值1000万元.x解析2.j a> a + b + 2yfaba b ——+ A 品+五• J a5证明: 由x>0,y>0且x M y,要证明1(X 3 +y 3 F <(x 2 + 1y 2F只需(X 3+ y M < (x 2 + y 2) 即 2x 3y3<3x 2y 2(x 2 + y 2)一 + 2x > 0 X •- <4 a1•/ 2(x+丄)的最小值为4xX 10000 =1200-200 = 1000X所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元.。

相关文档
最新文档