初二下学期数学练习题--含答案和解析
初二下学期勾股定理练习题(含答案)
勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .AB二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?AEB5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?小汽车小汽车观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角. 8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.答案:6.5s.15.解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/h>70km/h.答案:这辆小汽车超速了.。
湘教版八年级下学期期末数学试卷 - 含答案
八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=42.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.524.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是.12.若正多边形的一个外角是45°,则该正多边形的边数是.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是.(结果保留两位小数)14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为.18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有.(填写正确的序号)三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是次,组数是组.(3)跳绳次数在100≤x<160范围的学生有人,全班共有人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上,每小题4分,共40分)1.下列条件能确定三角形ABC是直角三角形的是()A.∠A=∠B=∠C B.∠A=40°,∠B=50°C.AB=AC D.AB=2,AC=3,BC=4【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A=∠B=∠C=60°,不是直角三角形,不符合题意;B、∠A=40°,∠B=50°,∠C=90°,是直角三角形,符合题意;C、AB=AC,是等腰三角形,不一定是直角三角形,不符合题意;D、22+32≠42,不是直角三角形,不符合题意;故选:B.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.3.一次数学测试后,某班m名学生的成绩被分为5组,第1~4组的频数分别是10,11,7,12,第5组的频率为0.2,则m的值为()A.40B.48C.50D.52【分析】根据频率公式:频率=即可求解.【解答】解:根据题意,得=0.2,解得m=50.故选:C.4.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,下列结论不一定成立的是()A.AD=BC B.∠DAB=∠BCDC.S△AOB=S△COB D.AC=BD【分析】由平行四边形的性质可求解.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD,∠BAD=∠BCD,AD=BC,AD∥BC,∴S△AOB=S△COB,∴不能得到AC=BD,故选:D.5.在数学活动课上,老师和同学们判断一块地板砖上的四边形图案是否为矩形,下面是某学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否相等C.测量对角线是否相等D.测量对角线是否平分且相等【分析】由矩形的判定定理和平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A、测量对角线是否互相平分,能判定平行四边形,不能判定矩形,故选项A不符合题意;B、测量两组对边是否相等,能判定平行四边形,不能判定矩形,故选项B不符合题意;C、测量对角线是否相等,不能判定平行四边形,更不能判定矩形,故选项C不符合题意;D、测量对角线是否平分且相等,能判定矩形;故选:D.6.一次函数y=(k+3)x+b(k>0,b<0)在平面直角坐标系中的图象大致是()A.B.C.D.【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数的图象经过哪几个象限,本题得以解决.【解答】解:∵一次函数y=(k+3)x+b(k>0,b<0),∴k+3>0,∴该函数图象经过第一、三、四象限,故选:C.7.已知点(﹣4,y1),(2,y2)都在直线y=﹣3x+b上,则y1和y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定【分析】先根据直线y=﹣3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=﹣3x+b,k=﹣3<0,∴y随x的增大而减小,又∵﹣4<2,∴y1>y2.故选:A.8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,BD=3,Q 为AB上一动点,则DQ的最小值为()A.1B.2C.2.5D.【分析】作DH⊥AB于H,根据角平分线的性质得到DH=DC=2,然后根据垂线段最短求解.【解答】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.9.如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A.B.1C.2D.【分析】由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'===4,设CE=C'E=x,在Rt△ABE中,BE=5﹣x,AE=x+4,由勾股定理得:(5﹣x)2+32=(x+4)2,解得:x=1,故选:B.10.2021年4月27日至5月5日湖南省(春季)乡村文化旅游节暨湖南阳明山第十三届“和”文化节在双牌县阳明山和花千谷景区举行,期间吸引了大批游客前往观光.5月1日上午,一辆旅游大巴以40km/h的速度从零陵区某地出发,当大巴车到达途中桐子坳时(大巴车停靠前后速度不变),一私家车从同一地点出发前往阳明山.如图是两车离出发地的距离s(km)与大巴车出发的时间t(h)的函数图象.小明同学根据图象得出以下几个结论:①私家车的速度为60km/h;②大巴车在桐子坳停留了36分钟;③私家车比大巴车早到12分钟;④私家车与大巴车相遇时离景区还有30km;⑤当两车相距6km时,t=2.1或2.7h.其中正确结论的个数是()A.2B.3C.4D.5【分析】由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h),继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),可得私家车的速度为96÷(2.8﹣1.2)=60(km/h),求出大巴车在桐子坳停留后继续行驶和私家车的解析式,可得两车相遇的时间和当两车相距6km时的时间.【解答】解:由图象得:大巴车出发48÷40=1.2(h)停留,则停留了1.8﹣1.2=0.6(h)=36分钟,②正确;私家车的速度为96÷(2.8﹣1.2)=60(km/h),①正确;大巴车继续行驶(96﹣48)÷40=1.2(h)到达阳明山.则大巴车共用时1.8+1.2=3(h),3﹣2.8=0.2(h)=12分钟,③正确;设大巴车在桐子坳停留后继续行驶时离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=kt+b,,解得:,∴s=40t﹣24,设离出发地的距离s(km)与大巴车出发的时间t(h)的函数的解析式为s=k′t+b′,,解得:,∴s=60t﹣72,60t﹣72=40t﹣24,解得:t=2.4,∴家车与大巴车相遇时离景区还有(2.8﹣2.4)×60=24(km),④错误;当两车相距6km时:有一下几种情况a:40t=6,解得:t=0.15,b:60t﹣72﹣(40t﹣24)=6,解得:t=2.7,c:40t﹣24﹣(60t﹣72)=6,解得:t=2.1,∴当两车相距6km时,t=0.15或2.1或2.7h.⑤错误.其中正确的结论有①②③,故选:B.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.函数y=中自变量x的取值范围是x≤5.【分析】根据二次根式的性质列出不等式,求出不等式的取值范围即可.【解答】解:若使函数y=有意义,∴5﹣x≥0,即x≤5.故答案为x≤5.12.若正多边形的一个外角是45°,则该正多边形的边数是8.【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【解答】解:∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.13.德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是 3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是0.17.(结果保留两位小数)【分析】频数即一组数据中出现符合条件的数据的个数,频率=频数÷总数.依据频数的计算公式即可求解.【解答】解:在3.14159265358979423846264338327950288中,“3”出现的次数是6次,所以在这串数字中“3”出现的频率是6÷36≈0.17.故答案为:0.17.14.若点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,则m+n的值是1.【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标相同.据此可得m,n的值.【解答】解:∵点A(1+m,2)与点B(﹣3,1﹣n)关于y轴对称,∴,解得,∴m+n=2﹣1=1,故答案为:1.15.函数y=mx+m+2的图象经过第一、二、四象限,则m的整数解是﹣1.【分析】根据函数y=mx+m+2的图象经过第一、二、四象限,可知k=m<0,b=m+2>0,从而可以求得m的取值范围,然后即可写出m的整数解.【解答】解:∵函数y=mx+m+2的图象经过第一、二、四象限,∴,解得﹣2<m<0,∴m的整数解是﹣1,故答案为:﹣1.16.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=9,则EF的长为9.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理解答即可.【解答】解:在Rt△ABC中,∠ACB=90°,点D为AB的中点,CD=9,∴AB=2CD=2×9=18,∵E,F分别为AC,BC的中点,∴EF是△ABC的中位线,∴EF=AB=9,故答案为:9.17.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为(2,).【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故答案为(2,).18.如图,在边长为2的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),连接AE,BF交于点P,过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④线段MN的最小值为﹣1.其中正确的结论有①②③④.(填写正确的序号)【分析】由正方形的性质及F,E以相同的速度运动,利用SAS证明△ABE≌△BCF,得到AE=BF,∠BAE=∠CBF,再根据∠CBF+∠ABP=90°,可得∠BAE+∠ABP=90°,进而得到AE⊥BF,根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB 为直径的弧,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,根据勾股定理,求出CH的长度,再求出PH的长度,即可求出线段CP的最小值,根据矩形对角线相等即可得到MN.【解答】解:∵动点F,E分别以相同的速度从D,C两点同时出发向C和B运动,∴DF=CE,∵四边形ABCD是正方形,∴AB=BC=CD=2,∠ABC=∠BCD=90°,∴CF=BE,∴△ABE≌△BCF(SAS),故①正确;∴AE=BF,∠BAE=∠CBF,故②正确;∵∠CBF+∠ABP=90°,∴∠BAE+∠ABP=90°,∴∠APB=90°,即AE⊥BF,故③正确;∵点P在运动中始终保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,如图,设AB的中点为H,连接CH交弧于点P,此时CP的长度最小,在Rt△BCH中,CH==,∵PH=AB=1,∴CP=CH﹣PH=﹣1,∵PM∥CD,PN∥BC,∴四边形PMCN是平行四边形,∵∠BCD=90°,∴四边形PMCN是矩形,∴MN=CP=﹣1,即线段MN的最小值为﹣1,故④正确.故答案为:①②③④.三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)如图,在Rt△ABC和Rt△CDE中,∠B=∠D=90°,C为BD上一点,AC=CE,BC=DE.求证:∠BAC=∠DCE.【分析】根据HL证明Rt△ABC≌△Rt△CDE,可得结论.【解答】证明:在Rt△ABC和Rt△CDE中,,∴Rt△ABC≌△Rt△CDE(HL),∴∠BAC=∠DCE.20.(8分)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80a80≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布直方图并求出频数分布表中a的值.(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<160范围的学生有39人,全班共有50人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?【分析】(1)根据频数分布直方图中的数据,可以得到a的值,然后根据频数分布表中的数据,可知140≤x<160这一组的频数,然后即可将频数分布直方图补充完整;(2)根据频数分布表中的数据,可以得到组距和组数;(3)把第3组和第4组,第5组的频数相加可得到跳绳次数在100≤x<160范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.【解答】解:(1)由直方图中的数据可知,a=2,由频数分布表可知,140≤x<160这一组的频数为8,补全的频数分布直方图如图所示,;(2)根据频数分布表得:表中组距是20次,组数是7组.故答案为:20,7;(3)跳绳次数在100≤x<160范围的学生有18+13+8=39(人),全班人数为2+4+18+13+8+4+1=50(人);故答案为:39,50;(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.21.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(5,2),B(3,5),C(﹣1,﹣1).将点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称.(1)请分别写出A',B',C'的坐标;(2)求△A'B'C'的面积.【分析】(1)依据点A向下平移4个单位得到A',将点B向左平移2个单位得到B',点C'与点C关于x轴对称,即可得到A',B',C'的坐标;(2)依据割补法进行计算,即可得出△A'B'C'的面积.【解答】解:(1)如图所示,A'(5,﹣2),B'(1,5),C'(﹣1,1);(2)如图所示,△A'B'C'的面积=6×7﹣﹣﹣=42﹣4﹣9﹣14=15.22.(10分)在等腰△ABC中,AB=AC,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为F.(1)求证:四边形DFCE是平行四边形;(2)若∠ADE=30°,DF=4,求BF的长.【分析】(1)根据三角形的性质得到BF=CF,根据三角形中位线定理得到DE∥BC,DF∥AC,由平行四边形的判定定理即可得到四边形DFCE是平行四边形;(2)由三角形的中位线定理得到DE∥BC,DE=BC,求得DE=BF,根据直角三角形的性质得到OF=DF=2,由勾股定理得到OD,于是得到结论.【解答】(1)证明:∵AB=AC,AF⊥BC,∴BF=CF,∵D,E分别是边AB,AC的中点,∴DE和DF分别是△ABC的中位线,∴DE∥BC,DF∥AC,即DE∥CF,DF∥CE,∴四边形DFCE是平行四边形;(2)解:如图,设AF与DE交于O,∵D,E分别是边AB,AC的中点,∴DE∥BC,DE=BC,∵BF=CF=BC,∴DE=BF,∵AF⊥BC,∴DE⊥AF,∴∠DOF=90°,∵∠ADE=30°,DF=4,∴OF=DF=2,∴OD===2,∵DE∥BC,∴∠ADE=∠B,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴DE=2OD=4.23.(10分)暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.【分析】(1)利用待定系数法求解即可;(2)求出y2与x之间的函数关系式,将x=8分别代入y1、y2关于x的函数解析式,比较即可.【解答】解:(1)根据题意,得:,解得,∴方案一所需费用y1与x之间的函数关系式为y1=18x+30,∴k1=18,b=30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k2=30×0.8=24;∴y2=24x,当游泳8次时,选择方案一所需费用:y1=18×8+30=174(元),选择方案二所需费用:y2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.24.(10分)如图,小明家门前有一块矩形空地ABCD,AB=4m,BC=8m,小明想把这块空地改造成两个停车位,于是小明做了如下操作:①连接BD;②在BC上取一点F,使得∠EDB=∠FDB;③在AD上取一点E,使得AE=CF;④分别取DE,BF的中点M,N.这样小明就成功地改造了两个停车位EBNM和MNFD.(1)求证:四边形BFDE是菱形;(2)请你帮助小明计算出EM的长.【分析】(1)先判定四边形BEDF是平行四边形,再根据FD=FB,即可得出四边形BEDF 是菱形;(2)设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中利用勾股定理列方程,即可得到DE的长,进而得出EM的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠EDB=∠FBD,又∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,又∵∠EDB=∠FDB,∴∠DBF=∠BDF,∴FD=FB,∴四边形BEDF是菱形;(2)解:由题可得AD=BC=8m,∠A=90°,设DE=BE=xm,则AE=(8﹣x)m,在Rt△ABE中,AE2+AB2=BE2,即(8﹣x)2+42=x2,解得x=5,∴DE=5m,又∵M是DE的中点,∴EM=DE=m.25.(12分)已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P 的坐标.【分析】(1)根据直线解析式可得出A、B的坐标;(2)设平移后的解析式,求出点C、点D的坐标,根据S△OCD=24求出b值,即可得直线CD的解析式;(3)根据等腰三角形的判定,分三类讨论,可求点P的坐标.【解答】解:(1)当x=0时,y=4,则B点的坐标为:(0,4);当y=0时,x=﹣3,则点A的坐标为:(﹣3,0);(2)由题意得直线CD的解析式为:y=x+b,∴当x=0时,y=b,则C点的坐标为:(0,b);当y=0时,x=﹣b,则点D的坐标为:(﹣b,0);∵S△OCD=24,∴S△OCD=OC•OD=×|b|×|﹣b|=24,∴b2=64,解得:b=8或﹣8,∴直线CD的解析式为y=x+8或y=x﹣8;(3)①当P A=PB时,点P在线段AB的垂直平分线上,如图:∴AM=BM,PM⊥AB,∵A(﹣3,0),B(0,4),∴AB===5,∵∠AOB=∠AMP=90°,∠OAB=∠MAP,∴△AOB∽△AMP,∴,即,∴AP=,∴OP=AP﹣OA=﹣3=,∴P(,0);②当P A=AB时,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴P A=AB=5,∴OP1=3+5=8,OP2=5﹣3=2,∴P(﹣8,0)或(2;0);②当PB=AB时,点B在线段AP的垂直平分线上,如图:∵A(﹣3,0),B(0,4),∴AB===5,∴PB=AB=5,在Rt△AOB和Rt△POB中,,∴Rt△AOB≌Rt△POB(HL),∴OP=OA=3,∴P(3,0);综上可得点P的坐标为(,0)或(﹣8,0)(2;0)或(3,0).26.(12分)如图①,点E是线段AB延长线上一点,且AB>BE,分别以AB和BE为边作正方形ABCD和BEFG,连接AG,CE.(1)请你直接写出AG与CE的数量与位置关系;(2)将正方形BEFG绕点B顺时针旋转α(0°<α<90°),AG与CE相交于点O,AG 与BC相交于点H,BG与CE相交于点M,如图②,请问(1)中AG与CE的数量与位置关系是否成立?若成立,请证明;若不成立,请说明理由;(3)连接CG,AE,如图③,若AB=4,BE=3,请求出CG2+AE2的值.【分析】(1)延长AG交CE于P,根据SAS证△ABG≌△CBE,可证AG=CE,∠GAB+∠CEB=90°,可证AG⊥CE;(2)连接AC,与(1)同理证AG=CE,根据∠GAB+∠CAG+45°=90°,∠GAB=∠BCE,得∠AOC=90°,即AG与CE的数量与位置关系仍成立;(3)连接AC,EG,根据勾股定理可得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(AB)2+(BE)2,代入数值即可得出.【解答】解:(1)如图①,延长AG交CE于P,在△ABG和△CBE中,,∴△ABG≌△CBE(SAS),∴AG=CE,∠AGB=∠CEB,∵∠AGB+∠GAB=90°,∴∠GAB+∠CEB=90°,∴∠APE=90°,即AG⊥CE;(2)AG与CE的数量与位置关系仍成立,理由如下:连接AC,在△ABG和△CBE中,α,∴△ABG≌△CBE(SAS),∴AG=CE,∠OAB=∠ECB,∵∠OAB+∠CAO+∠DAC=90°,∠DAC=∠ACB,∴∠ECB+∠ACB+∠CAO=90°,∴∠AOC=90°,即AG⊥CE;(3))连接AC,EG,∵四边形ABCD和BEFG都是正方形,AB=4,BE=3,∴AC=AB=4,EG=BE=3,∴由勾股定理得CG2+AE2=AO2+OE2+OC2+OG2=AC2+EG2=(4)2+(3)2=50,即CG2+AE2的值为50.。
知识点详解人教版八年级数学下册第十九章-一次函数专题练习试题(含答案及详细解析)
人教版八年级数学下册第十九章-一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=22、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B 车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y (千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.3、下列函数中,为一次函数的是()A.12yx=B.2y x C.1y=D.1y x=-+4、下列各图中,不能表示y是x的函数的是()A.B.C.D.5、一次函数的一般形式是(k,b是常数)()A.y=kx+b B.y=kx C.y=kx+b(k≠0)D.y=x6、小赵想应聘超市的牛奶销售员,现有甲、乙两家超市待选,每月工资按底薪加上提成合算,甲、乙两超市牛奶销售员每月工资y(元)与员工销售量x(件)之间的关系如图所示,则下列说法错误的是()A.销量小于500件时,选择乙超市工资更高 B.想要获得3000元的工资,甲超市需要的销售量更少C.在甲超市每销售一件牛奶可得提成3元D.销售量为1500件时,甲超市比乙超市工资高出800元7、关于一次函数y=﹣2x+3,下列结论正确的是()A.图象与x轴的交点为(32,0)B.图象经过一、二、三象限C.y随x的增大而增大D.图象过点(1,﹣1)8、已知点A(-2,y1)和B(-1,y2)都在直线y=-3x-1上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定9、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0 B .x <0 C .x <﹣1 D .x >﹣110、如图所示,若一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组1122,y k x b y k x b =+⎧⎨=+⎩的解是( )A .2,3x y =-⎧⎨=⎩B .3,2x y =⎧⎨=-⎩C .2,3x y =⎧⎨=⎩D .2,3x y =-⎧⎨=-⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线23y x =-+,则它与x 轴的交点坐标为________,与坐标轴围成的三角形面积为_______.2、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).3、直线y=2x-3与x轴的交点坐标是______,与y轴的交点坐标是______.4、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.5、直线y=-3x+12与x轴的交点坐标是______.三、解答题(5小题,每小题10分,共计50分)1、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.(1)求这两个函数的表达式;(2)求两直线与y轴围成的三角形的面积.2、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.(1)N95型和一次性成人口罩每箱进价分别为多少元?(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?3、测得一弹簧的长度L(厘米)与悬挂物体的质量x(千克)有下面一组对应值:试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x千克的物体时的弹簧的长度L.(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?(4)若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过多少千克?4、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.5、如图,已知点A(-2,4),B(4,2),C(2,-1).(1)先画出△ABC,再作出△ABC关于x轴对称的图形△A1A1A1,则点A1的坐标为________;(2)P为x轴上一动点,请在图中画出使△PAB的周长最小时的点P,并直接写出此时点P的坐标(保留作图痕迹).---------参考答案-----------一、单选题1、D【解析】【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.2、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤45、45<x≤43、43<x≤2三段求出函数关系式,进而得到当x=43时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x ≤43时,y =60(x -45)+90(x -45)=150x -120; 当43<x ≤2是,y =60x ;由函数解析式的当x =43时,y =150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.3、D【解析】【分析】根据一次函数的定义即可求解.【详解】 A.12y x=不是一次函数, B.2y x 不是一次函数, C.1y =不是一次函数,D.1y x =-+是一次函数故选D .【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.4、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.5、C【解析】【分析】根据一次函数的概念填写即可.【详解】解:把形如y=kx+b((k,b是常数,k≠0)的函数,叫做一次函数,故选:C.【点睛】本题考查了一次函数的概念,做题的关键是注意k≠0.6、D【解析】【分析】根据函数图象分别求得甲、乙两超市每月工资y (元)与员工销售量x (件)之间的函数关系式,根据一次函数的性质逐项分析判断【详解】解:根据函数图性,设甲的解析式为:111y k x b =+,乙的解析式为:222y k x b =+将()()0,1000,500,2500代入111y k x b =+,得11110005002500b k b =⎧⎨+=⎩ 解得1131000k b =⎧⎨=⎩ ∴131000y x =+将()()0,1500,500,2500代入222y k x b =+,得22215005002500b k b =⎧⎨+=⎩解得2221500k b =⎧⎨=⎩ ∴221500y x =+A.根据函数图像可知,当500x <时,12y y <,即选择乙超市工资更高,故该选项正确,符合题意;B.当13000y =时,20003x =,当23000y =时,15007502x ==,20007503<,即想要获得3000元的工资,甲超市需要的销售量更少,故该选项正确,符合题意; C.根据题意,甲超市的工资为131000y x =+,0x =时,1000y =,即底薪为1000元,当500x =时,2500y =,则()250010005003-÷=,即在甲超市每销售一件牛奶可得提成3元,故该选项正确,符合题意;D.当1500x =时,11000315005500y =+⨯=,22150015004500y =⨯+=,55004500=1000-(元), 即销售量为1500件时,甲超市比乙超市工资高出1000元,故该选项不正确,不符合题意; 故选D【点睛】本题考查了一次函数的应用,根据函数图象求得解析式是解题的关键.7、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A 符合题意;利用一次函数图象与系数的关系,可判断出选项B 不符合题意;利用一次函数的性质,可判断出选项C 不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D 不符合题意.【详解】解:A .当y =0时,﹣2x +3=0,解得:x =32,∴一次函数y =﹣2x +3的图象与x 轴的交点为(32,0),选项A 符合题意;B .∵k =﹣2<0,b =3>0,∴一次函数y =﹣2x +3的图象经过第一、二、四象限,选项B 不符合题意;C .∵k =﹣2<0,∴y随x的增大而减小,选项C不符合题意;D.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.故选:A.【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.8、A【解析】【分析】首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系.【详解】解:∵一次函数y=-3x-1中,k=-3<0,∴y随x的增大而减小,∵-2<-1,∴y1>y2.故选:A.【点睛】此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性.9、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.10、A【解析】【分析】根据两个一次函数的交点坐标即可得.【详解】 解:一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点(2,3)P -,∴方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23x y =-⎧⎨=⎩, 故选:A .【点睛】本题考查了利用一次函数的交点确定方程组的解,掌握函数图象法是解题关键.二、填空题1、 3,02⎛⎫ ⎪⎝⎭ 94【解析】【分析】先令y=0即可求出直线与x轴的交点坐标,再令x=0及可求出直线与y轴的交点坐标,由三角形的面积公式即可得出结论.【详解】解:∵令x=0,则y=3,令y=0,则x=32,∴直线y=−2x+3与x轴的交点坐标是(32,0);直线与两坐标轴围成的三角形的面积=12×32×3=94.故答案为:3,02⎛⎫⎪⎝⎭;94【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.3、(32,0)##(1.5,0)(0,﹣3)【解析】【分析】分别根据x、y轴上点的坐标特点进行解答即可.【详解】令y=0,则2x﹣3=0,解得:x32=,故直线与x轴的交点坐标为:(32,0);令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).故答案为(32,0),(0,﹣3).【点睛】本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.4、x>1【解析】【分析】利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.【详解】解:由图可知:不等式kx >﹣x +3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x >1.故此不等式的解集为x >1.故答案为:x >1.【点睛】本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.5、( 4,0)【解析】【分析】令y =0,求出x 的值即可得出结论.【详解】312y x =-+,∴当0y =时,0312x =-+,得4x =,即直线312y x =-+与x 轴的交点坐标为:( 4,0),故答案为( 4,0).【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于令y =0三、解答题1、(1)A =34A ,A =2A −5;(2)A ΔAAA =10【解析】【分析】(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;(2)由点A的坐标及OB的长度即可求得△AOB的面积.【详解】∵A(4,3)∴OA=OB=√32+42=5,∴B(0,-5),设直线OA的解析式为y=kx,则4k=3,k=34,∴直线OA的解析式为A=34A,设直线AB的解析式为A=A′A+A,把A、B两点的坐标分别代入得:{4A ′+A=3A=−5,∴{A ′=2A=−5,∴直线AB的解析式为y=2x-5.(2)A△AAA=12×5×4=10.【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.2、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;(2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;(3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:{10A+20A=32500 30A+40A=87500,解得:{A=2250A=500,答:N95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:2250(1+10%)A+500×80%(80﹣A)≤115000.解得:a≤40.∵a取正整数,0<a≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w,则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.3、(1)A=0.5A+12;(2)17㎝;(3)12千克;(4)不能超过16千克【解析】【分析】(1)观察即可得规律:弹簧称所挂重物质量x与弹簧长度L之间是一次函数关系,然后由待定系数法求解即可;(2)将x=10代入解析式,求出L的值,即可求得答案;(3)将L=18代入求出即可;(4)根据题意列出不等式求解即可.【详解】解:(1) ∵弹簧称所挂重物质量x(kg)与弹簧长度L(cm)之间是一次函数关系,∴设L=kx+b,取点(0,12)与(1,12.5),则{A=12A+A=12.5,解得:{A=12A=0.5,故L与x之间的关系式为A=0.5A+12.(2)将A=10,代入A=0.5A+12,得A=0.5A+12=0.5×10+12=17(cm)∴所挂物体的质量为10千克时,弹簧的长度是17cm(3)将A=18,代入A=0.5A+12,得18=0.5A+12,解得A=12∴若测得弹簧的长度是18厘米,则所挂物体的质量为12千克.(4)∵弹簧的长度不超过20厘米,即L≤20,∴0.5A+12≤20,得A≤16∴若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过16千克. 【点睛】此题考查了一次函数的应用.解题的关键是根据题意求得一次函数的解析式.4、(1)PQ=5cm;(2)t=5;(3)S四边形APQB=30﹣5t+t2.3【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=√AA2+AA2=√(5−A)2+(2A)2,∵t=2,∴PQ=√32+42=5cm,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=12AA⋅AA−12AA⋅AA=12×5×12−12×(5−A)×2A=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.5、(1)作图见解析,(2,1);(2)作图见解析,(2,0).【解析】【分析】(1)在坐标系中标出A、B、C三点,再顺次连接,即为△AAA;根据轴对称的性质找到A、B、C三点关于x轴的对应点A1、A1、A1,再顺次连接,即为△A1A1A1,最后写出A1的坐标即可.(2)根据轴对称的性质结合两点之间线段最短,即可直接连接A1A,即A1A与x轴的交点为点P,再直接写出点P坐标即可.【详解】(1)△AAA和△A1A1A1如图所示,根据图可知A1(2,1).故答案为:(2,1).(2)∵AB长度不变,△AAA的周长=AA+AA+AA,∴只要AA+AA最小即可.如图,连结A1A交x轴于点P,∵两点之间线段最短,∴AA+AA=AA1+AA≥A1A,设A1A解析式为A=AA+A,过A1(-2,-4),B(4,2),代入得,{−4=−2A+A2=4A+A解得:{A=1A=−2,∴A1A的解析式为A=A−2,当A=0时,即0=A−2,解得:A=2.∴点P坐标为 (2,0).当点P坐标为(2,0)时,△AAA周长最短.【点睛】本题主要考查作图-轴对称变换,解题的关键是根据轴对称变换的定义作出变换后的对应点及掌握轴对称的性质.。
难点详解华东师大版八年级数学下册第二十章数据的整理与初步处理综合练习试题(含解析)
八年级数学下册第二十章数据的整理与初步处理综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为()A.3和2 B.4和3 C.5和2 D.6 和22、一组数据分别为:79、81、77、82、75、82,则这组数据的中位数是()A.82B.77C.79.5D.803、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是()A.5 B.4.5 C.25 D.244、一组数据a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是()A.2m-3、2n-3 B.2m-1、4n C.2m-3、2n D.2m-3、4n5、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为()A.86分B.87分C.88分D.89分6、为了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7h,7h B.8h,7.5h C.7h,7.5h D.8h,8h7、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.928、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试.考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是()A.甲班的成绩比乙班的成绩稳定B.甲班成绩优异的人数比乙班多C.甲,乙两班竞褰成绩的众数相同D.小明得94分将排在甲班的前20名9、13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.众数C.平均数D.中位数10、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.2、为了落实教育部提出的“双减政策”,历下区各学校积极研发个性化、可选择的数学作业.一天,小明对他学习小组其他三位同学完成数学作业的时间进行了调查,得到的结果分别为:18分钟,20分钟,25分钟.然后他告诉大家说,我们四个人完成数学作业的平均时间是21分钟.请问小明同学完成数学作业的时间是______分钟.3、某广告公司欲招聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4: 3:1 的比例确定各人的测试成绩,此时谁将被录用?当一组数据中各个数据重要程度不同时,加权平均数能更好地反映这组数据的平均水平.权反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平.解:(1)A的平均成绩为1(725088)70(). 3++=分B的平均成绩为1(857445) 68(). 3++=分C的平均成绩为1(677067)68(). 3++=分因此候选人______将被录用.(2)根据题意,三人的测试成绩如下:A的测试成绩为72450388165.75431⨯+⨯+⨯=++(分)B的测试成绩为85474345175.875431⨯+⨯+⨯=++(分)C的测试成绩为67470367168.125431⨯+⨯+⨯=++(分)因此候选人_____将被录用.4、某单位要招聘1名英语翻译,小亮参加招聘考试的各门成绩如表所示:若把听、说、读、写的成绩按3:3:2:2计算平均成绩,则小亮的平均成绩为_____.5、一组数据:2021,2021,2021,2021,2021,2021的方差是______.6、八年级某班的教室里,三位同学正在为谁的数学成绩好而争论,他们的五次数学成绩分别是: 小华:62;94;95;98;98小明:62;62;98;99;100小丽:40;62;85;99;99他们都认为自己的数学成绩比其他两位同学好, 他们的依据是什么?分析:小华成绩的众数是_____,中位数是_____,平均数是_____;小明成绩的众数是_____,中位数是_____,平均数是_____;小丽成绩的众数是_____,中位数是_____,平均数是_____.解:因为他们之中,小华的_____最大,小明的_____最大,小丽的_____最大,所以都认为自己的成绩比其他两位同学好.7、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是20.6S =小刘,2 1.4S =小李,那么两人中射击成绩比较稳定的是_________.8、对于三个数a ,b ,c ,用{,,}M a b c 表示这三个数的平均数,用min{,,}a b c 表示这三个,数中最小的数.例如:1234{1,2,3}33M -++-==,min{1,2,3}1-=-,如果{3,21,1}min{3,7,25}M x x x x +-=-++,那么x =__________.9、为了庆祝中国共产党成立100周年,某校举行“歌唱祖国”班级合唱比赛,评委将从“舞台造型、合唱音准和进退场秩序”这三项进行打分,各项成绩均按百分制计算,然后再按舞台造型占40%,合唱音准占40%,进退场秩序占20%计算班级的综合成锁.七(1)班三项成绩依次是95分、90分、95分,则七(1)班的综合成绩为________.10、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:将笔试成绩,面试成绩按6:4的比例计入总成绩,则该应聘者的总成绩是______分.三、解答题(5小题,每小题6分,共计30分)1、某数学课外小组开展数学闯关游戏(游戏一共10关),根据活动结果制成如下两幅尚不完整的统计图.(1)求a;(2)计算闯9关的人数并补充完整条形统计图;(3)求数学课外活动小组的平均闯关次数;(4)再加入n名同学闯关,已知这n名同学的闯关次数均大于7,若加入后闯关次数的中位数与原闯关次数的中位数相等,则n最多是________名.2、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.3、2020年东京奥运会于2021年7月23日至8月8日举行,跳水比赛是大家最喜爱观看的项目之一,其计分规则如下:a.每次试跳的动作,按照其完成难度的不同对应一个难度系数H;b.每次试跳都有7名裁判进行打分(0~10分,分数为0.5的整数倍),在7个得分中去掉2个最高分和2个最低分,剩下3个得分的平均值为这次试跳的完成分p;c.运动员该次试跳的得分A=难度系数H×完成分p×3在比赛中,某运动员一次试跳后的打分表为:(1)7名裁判打分的众数是;中位数是.(2)该运动员本次试跳的得分是多少?4、甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写表格;(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?5、12月,我校初2022届学生进行了一次体育机器模拟测试(包含跳绳、立定跳远、实心球三项,共计满分50分).测试完成后,为了解初2022届学生的体育训练情况,在初2022届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:20名女生的测试成绩统计如下:44,47,48,45,50,49,45,60,48,49,50,50,44,50,43,50,44,50,49,45.抽取的20名男生的测试成绩扇形统计图如下:其中,抽取的20名男生的测试成绩中,D组的成绩如下:47,48,48,47,48,48.抽取男生与女生的学生的测试成绩的平均数、中位数、众数如下表所示:(1)根据以上信息可以求出:=a______,b=______,c=______;(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2022届学生中男生有700人,女生有900人,(规定49分及以上为优秀)请估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数.-参考答案-一、单选题1、D【解析】【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得345755x++++=,解得x=6,∴这组数据的方差是()()()()()22222 356545557525-+-+-+-+-=.故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.2、D【解析】【分析】将数据排序,进而根据中位数的定义,可得答案.【详解】解:数据79、81、77、82、75、82从小到大排列后可得:75、77、79、81、82、82,排在中间的两个数是79,81,所以,其中位数为79+81=802,故选:D.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、C【解析】【分析】根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.【详解】解:由题意可知:25出现了5次,出现次数最多,所以众数为25.故选:C.【点睛】本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.4、B【解析】【分析】根据平均数和方差的变化规律即可得出答案.【详解】∵a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,∴数据a、b、c、d、e、f、g的平均数是m+1,方差是n,∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22•n=4n;故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.5、B【解析】【分析】根据加权平均数的公式计算即可.【详解】解:小明该学期的总评得分=9010%9030%8560%9275187⨯+⨯+⨯=++=分.故选项B.【点睛】本题考查加权平均数,掌握加权平均数公式是解题关键.6、C【解析】【分析】权数最大的数据是众数,第25个,26个数据的平均数是中位数,计算即可.【详解】∵7的权数是19,最大,∴所调查学生睡眠时间的众数是7小时,根据条形图,得第25个数据是7小时,第26个数据是8小时,∴所调查学生睡眠时间的中位数是782+=7.5小时,故选C.【点睛】本题考查了条形统计图,中位数即数据排序后,中间的数或中间两位数的平均数;众数即数据中出现次数最多的数据,正确计算中位数是解题的关键.7、D【解析】【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.8、D【解析】【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可.【详解】A.乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B.乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C.根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D.因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D.【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定.9、D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】解:共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选:D.【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.二、填空题1、7【解析】【分析】根据平均数和方差的计算公式即可得.【详解】解:设数据,,,,a b c d e 的平均数为5a b c d e x ++++=, 则2,2,2,2,2a b c d e +++++的平均数为2222225a b c d e x +++++++++=+, 数据,,,,a b c d e 的方差是7,()()()()()22222175a x b x c x d x e x ⎡⎤∴-+-+-+-+-=⎣⎦, ()()()()()222221222222222275a x b x c x d x e x ⎡⎤∴+--++--++--++--++--=⎣⎦, 即2,2,2,2,2a b c d e +++++的方差是7,故答案为:7.【点睛】本题考查了求方差,熟记公式是解题关键.2、21【解析】【分析】设明同学完成数学作业的时间是x 分钟,根据平均数的定义求解即可【详解】解:设明同学完成数学作业的时间是x 分钟.由题意得,18+20+25+x=21×4,∴x=21故答案为:21.【点睛】本题考查了平均数的计算,平均数是指在一组数据中所有数据之和再除以数据的个数.3、A B【解析】略4、82【解析】【分析】根据加权平均数的计算公式进行计算即可.【详解】解:小亮的平均成绩为:(70×3+90×3+85×2+85×2)÷(3+3+2+2)=(210+270+170+170)÷10=820÷10=82(分).故小亮的平均成绩为82分.故答案为:82.【点睛】本题考查了加权平均数,理解加权平均数的计算公式是解题的关键.加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 5、0【解析】【分析】根据方差的定义求解.【详解】∵这一组数据都一样∴平均数为2021∴方差=21(20212021)606⎡⎤-⨯=⎣⎦ 故答案为:0.【点睛】本题考查方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、 98 95 89.4 62 98 84.2 99 85 77 平均数 中位数 众数【解析】略7、小刘【解析】【分析】根据方差的意义即可求出答案.【详解】解:由于S 小刘2<S 小李2,且两人10次射击成绩的平均值相等,∴两人中射击成绩比较稳定的是小刘,故答案为:小刘【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.8、2或-4##-4或2【解析】【分析】依据定义分别求出{3,21,1}M x x +-和min{3,7,25}x x -++,再分三种情况讨论,即可得到x 的值.【详解】3211{3,21,1}13x x M x x x +++-+-==+ 当min{3,7,25}3x x -++=时,73253x x -+≥⎧⎨+≥⎩,解得14x -≤≤, ∵{3,21,1}min{3,7,25}M x x x x +-=-++∴13x +=,解得2x =,符合条件;当min{3,7,25}7x x x -++=-+时,37257x x x ≥-+⎧⎨+≥-+⎩,解得4x ≥, ∵{3,21,1}min{3,7,25}M x x x x +-=-++∴17x x +=-+,解得3x =,不符合条件;当min{3,7,25}25x x x -++=+时,325725x x x ≥+⎧⎨-+≥+⎩,解得1x ≤-,∵{3,21,1}min{3,7,25}M x x x x +-=-++∴125x x +=+,解得4x =-,符合条件;综上所述:2x =或4x =-故答案为:2或-4【点睛】本题考查了算术平均数、一元一次方程的应用、解一元一次不等式组.解题的关键是弄清新定义运算的法则,并分情况讨论.需要考虑每种情况下x 的取值范围9、93【解析】【分析】根据题意求这组数据的加权平均数即可.【详解】解:七(1)班的综合成绩为9540%9040%9520%93⨯+⨯+⨯=分故答案为:93【点睛】 本题考查了求加权平均数,掌握加权平均数的计算是解题的关键,加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 10、84【解析】【分析】根据求加权平均数的方法求解即可【详解】解:6480904836841010⨯+⨯=+= 故答案为:84【点睛】 本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 三、解答题1、(1)15a =;(2)见解析;(3)7.1;(4)5【解析】【分析】(1)根据扇形统计图种5种闯关次数的占比和为1即可求解a 的值;(2)用闯关次数为5的人数除以其占比得到总人数,由此即可求出闯9关的人数,由此补全统计图即可;(3)根据平均数的求解公式求解即可;(4)把闯关成绩从小到大排序,共20,中位数为10位与11位上数的平均数,利用中位数是7,则要使加入的人数最多,原来成绩中最左侧的7要排在第13位,由此求解即可.【详解】解:(1)由题意得:%110%25%30%20%15%a =----=∴15a =;(2)由题意得:总人数为210%20÷=人,∴闯9关的人数为2025634----=,补全统计图如下所示:(3)由题意得数学课外活动小组的平均闯关次数为25566738497.120x⨯+⨯+⨯+⨯+⨯==;(4)原闯关成绩分别为:5,5,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,∴原闯关成绩的中位数为7772+=,∵再新加入n名同学闯关后,若中位数仍然为7,要保证加入的人数最多,∴需原成绩中最右侧的7排第13位,∴最多加入5人,故答案为:5.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,求平均数,中位数等等,解题的关键在于准确读懂统计图.2、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)4号和2号【解析】【分析】(1)根据众数的定义找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】(1)84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩,解得:0.4x =,0.6y = 笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是920.4880.689.6⨯+⨯=(分),3号选手的综合成绩是840.4860.685.2⨯+⨯=(分),4号选手的综合成绩是900.4900.690⨯+⨯=(分),5号选手的综合成绩是840.4800.681.6⨯+⨯=(分),6号选手的综合成绩是800.4850.683⨯+⨯=(分),则综合成绩排序前两名人选是4号和2号【点睛】此题考查了加权平均数,用到的知识点是众数、加权平均数的计算公式,关键是灵活运用有关知识列出算式.3、(1)7.5,8.0;(2)该运动员本次试跳得分为84分.【解析】【分析】(1)根据众数(一组数据中心出现次数最多的数据叫做众数)、中位数(一组数据按照从小到大的顺序排列,找出最中间的一个数或最中间两个数的平均数)的定义即可得;(2)根据运动员试跳得分公式列出算式计算即可.【详解】解:(1)7.5出现的次数最多,7名裁判打分的众数是7.5;将这组数据按照从小到大的顺序排列得:7.5、7.5、7.5、8.0、8.5、8.5、9.0,根据中位数的定义可得,中位数为8.0;故答案为:7.5,8.0;(2)根据试跳得分公式可得:()13.57.58.08.53843⨯⨯++⨯=(分), 故该运动员本次试跳得分为84分.【点睛】题目主要考查平均数、众数和中位数的定义,理解三个定义及题意中公式是解题关键.4、(1)见解析;(2)见解析【解析】【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=15(5+9+7+10+9)=8,把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.故填表如下:故答案为:8,8,9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.5、(1)15,48,50;(2)女生的成绩较好,理由见解析;(3)755人.【解析】【分析】(1)由扇形统计图,可求出a 的值,根据中位数的意义,将男生成绩排序,找出处于中间位置的两个数的平均值即为中位数,从女生成绩中找出出现次数最多的数即为众数;(2)通过比较平均数、中位数、众数的大小即可解答;(3)抽查女生20人中优秀的有10人,男生20人中优秀的9人,求出两个优秀占抽查总人数的比例,求出该校初2022届参加此次测试的学生中优秀的学生人数即可.【详解】解:(1)1-5%-5%-45%-30%=15%,15a ∴=由扇形统计图中,可知,男生成绩的中位数位于D 组,男生成绩第10,11个数成绩高于46,但不超过48分的成绩的较大的两个48,48,4848482b +∴== 女生成绩出现次数最多的是50,因此众数是50,∴=c50故答案为:15,48,50;(2)女生的成绩较好,理由:男女生的平均数相等,女生的中位数、众数都比男生大,因此女生的成绩较好.(3)2045%=9⨯(人)109⨯+⨯=+=(人)7009003504057552020答:估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数为755人.【点睛】本题考查平均数、中位数、众数、统计表、理解平均数、中位数、众数的意义是解题关键,样本估计总体是统计中常用的方法.。
初二下学期期末测试(数学)试题含答案
初二下学期期末测试(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分48分)1.(4分)下列二次根式是最简二次根式的是( )A 12B 3C .12D .)0(22<a a 2.(4分)已知菱形的对角线长分别为6,8,则该菱形的周长为( )A .5B .10C .20D .403.(4分)下列四组线段中,能构成直角三角形的是( )A .2,3,4B .4,5,6C .3,27D .1,1,24.(4分)一次函数y =-2x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.(4分)为选拔4名同学参加2018年重庆市中学生英语演讲比赛,某区对区内进入复赛的7名同学进行了评比.王强在复赛中获A .方差B .众数C .中位数D .平均数 6.(4分)下列计算正确的是( )A 3+2=5B .2+2=22C 6+2=3+12D 2(3+2)=6+27.(4分)96-26( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间 8.(4分)平行四边形、矩形、菱形、正方形都具有的性质是( ) A .对角线互相平分 B .对角线互相垂直C .对角线相等D .轴对称图形9.(4分)如图,在△ABC 中,∠C=90°,AC=8,BC=6,点P 为斜边AB 上一动点,过点P作PE ⊥AC 于点E ,PF ⊥BC 于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.810.(4分)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC上),折叠后端点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则DE 的长为( ) A.2 B.3 C.4 D.5 11.(4分)若关于x 的不等式组⎪⎩⎪⎨⎧-≤-≥-13213x a x 无解,且关于y 的方程1222=-++-y a y y 的解为正分数,则符合题意的整数a 有( )个A.1个B.2个C.3个D.4个12.(4分)如图,在平面直角坐标系,直线y=﹣3x+3与坐标轴分别交于A ,B 两点,以线段AB 为边,在第一象限内作正方形ABCD ,将正方形ABCD 沿x 轴负方向平移a 个单位长度,使点D 恰好落在直线y=3x ﹣2上,则a 的值为( )A .1B .2C .﹣1D .﹣1.5二、 填空题 (本题共计6小题,总分24分)13.(4分)函数y =2x x -中自变量x 的取值范围是 .14.(4分)若数据1、﹣2、3、x 的平均数为2,则x =_________.15.(4分)已知x=3-2,则代数式(347+)x 2的值是__________.16.(4分)已知直角三角形两边的长为3和4,则此三角形的周长为_____________17.(4分)甲、乙两车分别从A 、B 两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B 地后马上以另一速度原路返回A 地(掉头的时间忽略不计),乙车到达A 地以后即停在地等待甲车.如图所示为甲乙两车间的距离y (千米)与甲车的行驶时间t (小时)之间的函数图象,则当乙车到达A 地的时候,甲车与A 地的距离为__________千米.18.(4分)如图,在正方形ABCD 中,点E 是对角线BD 上一点,连接AE ,将DE 绕D 点逆时针方向旋转90°到DF ,连接BF ,交DC 于点G ,若DG=3,CG=2,则线段AE 的长为__________.三、 解答题 (本题共计8小题,总分78分)19.(10分)(1)232-8+(2)()1-021-2-3-13127⎪⎭⎫ ⎝⎛++⨯ 20.(10分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a .七年级成绩频数分布直方图:b .七年级成绩在7080x ≤<这一组的是:70 72 74 75 76 76 77 77 77 78 79c .七、八年级成绩的平均数、中位数如下:年级平均数 中位数 七76.9 m 八79.2 79.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m 的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数. 21.(10分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE=CF .求证:(1)△AED≌△CFB(2)四边形DEBF是平行四边形.22.(10分)有这样一个问题:探究函数112x xy++-=的图象与性质.小东根据学习函数的经验,对函数112x xy++-=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当x≥-1时,y=__________,当x<-1时y=__________;(2)根据(1)中的结果,请在所给坐标系中画出函数112x xy++-=的图象;(3)结合函数图象,写出该函数的一条性质:______.23.(10分)我校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,若购买1张两人学习桌,1张三人学习桌需230元;若购买2张两人学习桌,3张三人学习桌需590元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资金不超过6600元,购买两种学习桌共60张,以至少满足137名学生的需求,有几种购买方案?并求哪种购买方案费用最低?24.(10分)把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”,例如:23→22+32=13→12+32=10→12+02=191→92+12=82→82+22=68→62+82=100→12+02+02=1.所以23和91都是“快乐数”.(1)13_______(填“是”或“不是”)“快乐数”;最小的三位“快乐数”是__________;(2)若一个两位“快乐数”经过两次运算后结果为1,求出这个“快乐数”;(3)请证明任意一个“快乐数”经过若干次运算后都不可能得到16.25.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,求点D的坐标;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.26.(8分)如图,等腰直角三角形ABC,过点A在AB左侧作AE⊥AB,并构造正方形AEDB,点F是AC上一点,且AB=AF,过点A作AG平分∠BAC,AH⊥EF,分别交EF于点G,H,连接DG.(1)若AF=2,求CF的长.(2)求证:DG+AG=EG.答案一、单选题(本题共计12小题,总分48分)1.(4分)B2.(4分)C3.(4分)C4.(4分)A5.(4分)C6.(4分)C7.(4分)A8.(4分)A9.(4分)D10.(4分)D11.(4分)C12.(4分)A二、填空题(本题共计6小题,总分24分)13.(4分)x214.(4分)615.(4分)116.(4分)12或7+17.(4分)63018.(4分)257三、解答题(本题共计8小题,总分78分)19.(10分)解:(1)原式=2﹣4+=﹣; (2)原式=+1+2﹣2=3+1=4. 20.(10分)解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79, 777877.52m +∴==, 故答案为77.5;(3)甲学生在该年级的排名更靠前,七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为515840022450++⨯=(人). 21.(10分)(1) 证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥CB∴∠DAE=∠CBF ,∵AE=CF, ∠DAE=∠CBF ,AD=CB∴△AED ≌△CFB(SAS)(2)证明:连接BD ,交AC 于点O ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OA ﹣AE=OC ﹣CF ,即OE=OF ,∴四边形DEBF 是平行四边形.22.(10分)解:(1) 当x ≥-1时,111122x x x x y x ++-++-===;当x <-1时1111122x x x x y ++---+-===-; (2)(3)函数有最小值-1,函数无最大值,当1x ≥-时,y 随x 的增大而增大(此题答案不唯一)23.(10分)1.解:(1)设两人桌每张x 元,三人桌每张y 元,根据题意得,解得;(2)设两人桌m 张,则三人桌(60﹣m )张,根据题意可得,解得 40≤m ≤43m 为正整数,m 为40、41、42、43 共有4种方案,设费用为WW=100m+130(60﹣m )=﹣30m+7800,m=43时,W 最小为6510元.24.(10分)(1)∵13→12+32=10→12+02=1,∴13是“快乐数”.∵100→12+02+02=1,且100是最小的三位数,∴最小的三位“快乐数”是100.故答案为:是;100.(2)∵一个两位“快乐数”经过两次运算后结果为1,∴该两位数经过一次运算为10或100,∵10=1+9=12+32,100=64+36=82+62,∴这个“快乐数”为13、31、68或86.(3)∵16→12+62=37→32+72=58→52+82=89→82+92=145→12+42+52=42→42+22=20→22+02=4→42=16,∴16不是“快乐数”.∵任意一个“快乐数”经过若干次运算后得到的数都是“快乐数”,∴任意一个“快乐数”经过若干次运算后都不可能得到16.25.(10分)解:(1);(2)D的坐标为(-2,5)或(-5,3).(3)(3)当OC是腰,O是顶角的顶点时,OP=OC,则P的坐标为(5,0)或(-5,0);当OC是腰,C是顶角的顶点时,CP=CP,则P与O关于x=3对称,则P的坐标是(6,0);当OC是底边时,设P的坐标为(a,0),则,解得,此时P的坐标是;综上可知P的坐标为(5,0)或(-5,0)或(6,0)或.26.(8分)(1)解:∵等腰直角三角形ABC中,AB=AF=2,∴AC==4,∴CF=AC﹣AF=4﹣2;(2)证明:如图1,过点D作DM⊥EF于点M,则∠EDM+∠DEM=90°,∵∠DEM+∠AEH=90°,∴∠EDM=∠AEH,∵AH⊥EF,∴∠AHE=∠DME=90°,∠FAH=∠EAF=×(90°+45°)=67.5°,在△DEM和△EAH中,,∴△DEM≌△EAH(AAS),∴DM=EH,EM=AH,∵AG平分∠BAC,∴∠FAG=∠BAC=22.5°,∴∠HAG=∠FAH﹣∠FAG=45°,∴△AHG是等腰直角三角形,∴AH=HG,AG=AH=EM,∴EM=HG,∴EH=GM,∴DM=MG,即△DMG是等腰直角三角形,∴DG=MG,∴DG+AG=GM+EM=(GM+EM)=EG;。
(完整版)初二下学期数学练习题含答案及解析
初二放学期数学练习题一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣2.以下对于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形B.对角线相互垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式存心义的x 的取值范围()A. x> 2B. x≥ 2C. x>3D. x≥2 且 x≠3 4.如图,将△ABC绕着点 C顺时针旋转50°后获取△ A′B′C′,若∠ A=45°,∠B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣ 3, y ),( 1, y2)都在直线y=kx+2 ( k< 0)上,则 y ,y大小关系是()112A. y1> y2B. y1=y 2C. y1<y2D.不可以比较6.如图,在四边形ABCD中,对角线 AC, BD订交于点 E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形 ABCD 的面积为()A. 6B. 12C. 20D. 247.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1B. m≥ 1C. m≤1D. m>18.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1B. 1C.52015D.﹣ 520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中暗影部分构成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.按序连结一个四边形的各边中点,获取了一个矩形,则以下四边形中知足条件的是()①平行四边形;②菱形;③矩形;④对角线相互垂直的四边形.A.①③B.②③C.③④11.如图,在□ABCD中,已知AD= 8 ㎝, AB =6 ㎝,DE均分∠ ADC交BC边于点E,则BE等于()A. 2cm B. 4cm C. 6 cm D. 8cmD.②④A D BE C第11 题图12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15 公斤,付西红柿的钱26 元,若再加买0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少?()A.1.5B. 2C. 2.5D. 313.如图,在 ?ABCD中,对角线 AC与 BD订交于点 O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连结 AE、CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形14.已知 xy> 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣15.某商品原价 500 元,销售时标价为900 元,要保持收益不低于26%,则起码可打()A.六折B.七折C.八折D.九折16.已知 2+的整数部分是 a,小数部分是b,则 a2+b2=()A. 13﹣ 2B. 9+2C. 11+D. 7+417.某礼拜天下午,小强和同学小颖相约在某公共汽车站一同搭车回学校,小强从家出发先步行到车站,等小颖到了后两人一同乘公共汽车回学校,图中折线表示小强走开家的行程y(公里)和所用时间x(分)之间的函数关系,以下说法中错误的选项是()A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C.公共汽车的均匀速度是30 公里 / 小时D.小强从家到公共汽车站步行了 2 公里17.如图,直线 y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则对于 x 的不等式﹣ x+m> x+3> 0 的取值范围为()A. x>﹣ 2B. x<﹣ 2C.﹣ 3< x<﹣ 2D.﹣ 3< x<﹣ 119.如图,四边形ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12D. 2420.如图,正方形 ABCD中,点 E、F 分别在 BC、CD上,△AEF是等边三角形,连结 AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③ AC 垂直均分 EF,④ BE+DF=EF,⑤S△AEC=S△ABC,此中正确结论有()个.A. 5B. 4C. 3D. 2二、填空题(本大题共 4 小题,满分12 分)21.已知直线y=2x+( 3﹣ a)与 x 轴的交点在A( 2, 0)、 B( 3, 0)之间(包含 A、 B 两点),则a 的取值范围是.22.以下图,正方形ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形ABCD内,在对角线AC上有一点P,使 PD+PE的和最小,则这个最小值为.23.在下边的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣ 1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转90°,则点 A 的对应点的坐标为.24.若对于x 的不等式组有4个整数解,则 a 的取值范围是.三、解答题(本大题共 5 个小题,共48 分)25.( 1)计算(+1)(﹣ 1) + +﹣ 3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l 1的分析式为y=﹣ x+2,l 1与 x 轴交于点B,直线 l 2经过点 D( 0, 5),与直线l 1交于点C(﹣ 1, m),且与x 轴交于点A(1)求点 C的坐标及直线 l 2的分析式;(2)求△ ABC的面积.27.如图,在△ABC中, D 是 BC边上的一点, E 是 AD的中点,过A 点作 BC的平行线交CE的延伸线于点F,且AF=BD,连结 BF.(1)证明: BD=CD;(2)当△ ABC知足什么条件时,四边形 AFBD是矩形?并说明原因.28.如图,点 P 是正方形 ABCD内一点,点 P 到点 A、 B 和 D 的距离分别为1, 2,,△ ADP沿点 A 旋转至△ABP′,连结 PP′,并延伸 AP与 BC订交于点 Q.(1)求证:△ APP′是等腰直角三角形;(2)求∠ BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80 元,售价120 元;乙种每双进价60 元,售价 90 元,计划购进两种运动鞋共100 双,此中甲种运动鞋许多于65 双.( 1)若购进这100 双运动鞋的花费不得超出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在 6 月 19 日“父亲节”当日对甲种运动鞋以每双优惠a( 0<a< 20)元的价格进行优惠促销活动,乙种运动鞋价钱不变,请写出总收益w 与 a 的函数关系式,若甲种运动鞋每双优惠11 元,那么该运动鞋店应怎样进货才能获取最大收益?2015-2016 学年山东省泰安市新泰市八年级(下)期末数学试卷参照答案与试题分析一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【剖析】依据无理数的判断条件判断即可.【解答】解:=2 ,是有理数,﹣= ﹣ 2 是有理数,∴只有π 是无理数,应选 C.【评论】本题是无理数题,熟记无理数的判断条件是解本题的要点.2.以下对于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形B.对角线相互垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【剖析】依据菱形的判断方法、正方形的判断方法逐项剖析即可.【解答】解: A、四个角相等的菱形是正方形,正确;B、对角线相互均分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线均分且垂直的四边形是菱形,错误;应选 A【评论】本题考察了对菱形、正方形性质与判断的综合运用,特别四边形之间的相互关系是考察要点.3.使代数式存心义的x 的取值范围()A. x> 2B. x≥ 2C. x>3D. x≥2 且 x≠3【考点】二次根式存心义的条件;分式存心义的条件.【剖析】分式存心义:分母不为0;二次根式存心义,被开方数是非负数.【解答】解:依据题意,得,解得, x≥2 且 x≠ 3.应选 D.( a≥ 0)叫二次根式.性质:【评论】本题考察了二次根式存心义的条件、分式存心义的条件.观点:式子二次根式中的被开方数一定是非负数,不然二次根式无心义.4.如图,将△ ABC绕着点 C 顺时针旋转50°后获取△ A′B′C′,若∠ A=45°,∠ B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【剖析】依据旋转的性质可得∠ B=∠B′,而后利用三角形内角和定理列式求出∠ ACB,再依据对应边 AC、A′C的夹角为旋转角求出∠ ACA′,而后依据∠ BCA′=∠ ACB+∠ACA′计算即可得解.【解答】解:∵△ ABC绕着点 C 顺时针旋转 50°后获取△ A′B′C′,∴∠ B=∠B′=110°,∠ ACA′=50°,在△ ABC中,∠ ACB=180°﹣∠ A﹣∠ B=180°﹣ 45°﹣ 110°=25°,∴∠ BCA′=∠ ACB+∠ACA′=50° +25°=75°.应选 B.【评论】本题考察了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角确实定是解题的要点.5.已知点(﹣3, y1),(1, y2)都在直线y=kx+2 ( k< 0)上,则y1,y2大小关系是()A. y1> y2B. y1=y 2C. y1<y2D.不可以比较【考点】一次函数图象上点的坐标特色.【剖析】直线系数k< 0,可知 y 随 x 的增大而减小,﹣3< 1,则 y1> y2.【解答】解:∵直线y=kx+2 中 k< 0,∴函数 y 随 x 的增大而减小,∵﹣ 3< 1,∴ y1> y2.应选 A.y=kx+b :当k> 0 时, y 随x 的增大而增大;【评论】本题考察的是一次函数的性质.解答本题要熟知一次函数当 k< 0 时, y 随 x 的增大而减小.6.如图,在四边形ABCD中,对角线AC, BD订交于点 E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形ABCD的面积为()A. 6B. 12C. 20D. 24【考点】平行四边形的判断与性质;全等三角形的判断与性质;勾股定理.【剖析】依据勾股定理,可得 EC的长,依据平行四边形的判断,可得四边形 ABCD的形状,依据平行四边形的面积公式,可得答案.【解答】解:在 Rt △ BCE中,由勾股定理,得CE===5.∵ BE=DE=3, AE=CE=5,∴四边形ABCD是平行四边形.四边形 ABCD的面积为BCBD=4×( 3+3) =24,应选: D.CE的长,又利用对角线相互均分的四边形【评论】本题考察了平行四边形的判断与性质,利用了勾股定理得出是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1B. m≥ 1C. m≤1D. m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【剖析】依据不等式的性质求出不等式的解集,依据不等式组的解集获取2≥m+1,求出即可.【解答】解:,由①得: x> 2,由②得: x> m+1,∵不等式组的解集是 x >2,∴2≥ m+1,∴m≤ 1,应选 C.【评论】本题主要考察对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能依据不等式的解集和已知得出 2≥ m+1是解本题的要点.8.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1B. 1C. 52015D.﹣ 52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【剖析】第一依据非负数的性质,几个非负数的和是 0,则每个非负数等于 0 列方程组求得 a 和 b 的值,而后辈入求解.【解答】解:依据题意得:,解得:,20162016则( b﹣ a)=(﹣ 3+2)=1.【评论】本题考察了非负数的性质,几个非负数的和是 0,则每个非负数等于 0,正确解方程组求得 a 和 b 的值是要点.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中暗影部分构成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【剖析】依据中心对称图形的特色进行判断即可.【解答】解:应当将②涂黑.应选 B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转180 度后与原图重合.10.按序连结一个四边形的各边中点,获取了一个矩形,则以下四边形中知足条件的是()①平行四边形;②菱形;③矩形;④对角线相互垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【剖析】有一个角是直角的平行四边形是矩形,依据此可知按序连结对角线垂直的四边形是矩形.【解答】解: AC⊥ BD, E, F, G, H 是 AB, BC,CD, DA的中点,∵EH∥ BD,FG∥BD,∴ EH∥ FG,同理; EF∥HG,∴四边形 EFGH是平行四边形.∵AC⊥ BD,∴EH⊥ EF,∴四边形EFGH是矩形.因此按序连结对角线垂直的四边形是矩形.而菱形、正方形的对角线相互垂直,则菱形、正方形均切合题意.应选: D.【评论】本题考察矩形的判断定理和三角形的中位线的定理,从而可求解.11.已知 a, b, c 为△ ABC三边,且知足(a2﹣ b2)( a2+b2﹣ c2) =0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【剖析】第一依据题意可得(a2﹣ b2)( a2+b2﹣ c2) =0,从而获取a2+b2=c2,或 a=b,依据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:( a2﹣b2)( a2+b2﹣ c2) =0,22∴ a +b ﹣ c2,或a﹣ b=0,解得: a2+b2=c2,或 a=b,∴△ ABC的形状为等腰三角形或直角三角形.应选 D.【评论】本题主要考察了勾股定理逆定理以及非负数的性质,要点是掌握勾股定理的逆定理:假如三角形的三边长 a, b, c 知足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为 15 公斤,付西红柿的钱26 元,若他再加买0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少公斤?()A. 1.5B. 2C. 2.5D. 3【考点】一次函数的应用.【剖析】设价钱 y 与重量 x 之间的函数关系式为y=kx+b ,由( 15, 26)、( 15.5 ,27)利用待定系数法即可求出该一次函数关系式,令y=0 求出 x 值,即可得出空蓝的重量.【解答】解:设价钱 y与重量 x 之间的函数关系式为y=kx+b ,将( 15, 26)、( 15.5, 27)代入 y=kx+b 中,得:,解得:,∴ y 与 x 之间的函数关系式为y=2x ﹣ 4.令y=0,则 2x﹣ 4=0,解得: x=2.应选 B.【评论】本题考察了待定系数法求函数分析式,解题的要点是求出价钱y 与重量x 之间的函数关系式.本题属于基础题,难度不大,依据给定条件利用待定系数法求出函数关系式是要点.13.如图,在 ?ABCD中,对角线 AC与 BD订交于点 O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连结 AE、CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判断;平行四边形的性质.【剖析】第一利用平行四边形的性质得出AO=CO,∠ AFO=∠CEO,从而得出△ AFO≌△ CEO,再利用平行四边形和菱形的判断得出即可.【解答】解:四边形AECF是菱形,原因:∵在 ?ABCD中,对角线AC与 BD订交于点 O,∴AO=CO,∠ AFO=∠ CEO,∴在△ AFO和△ CEO中,∴△ AFO≌△ CEO( AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥ AC,∴平行四边形AECF是菱形.应选: C.【评论】本题主要考察了菱形的判断以及平行四边形的判断与性质,依据已知得出EO=FO是解题要点.14.已知 xy> 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【剖析】二次根式存心义,y<0,联合已知条件得y< 0,化简即可得出最简形式.【解答】解:依据题意,xy> 0,得 x 和 y 同号,又 x中,≥ 0,得y< 0,故x< 0, y< 0,因此原式 ====﹣.故答案选D.【评论】主要考察了二次根式的化简,注意开平方的结果为非负数.15.某礼拜天下午,小强和同学小颖相约在某公共汽车站一同搭车回学校,小强从家出发先步行到车站,等小颖到了后两人一同乘公共汽车回学校,图中折线表示小强走开家的行程y(公里)和所用时间x(分)之间的函数关系,以下说法中错误的选项是()A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C.公共汽车的均匀速度是30 公里 / 小时D.小强从家到公共汽车站步行了 2 公里【考点】函数的图象.【剖析】直接利用函数图象从而剖析得出切合题意跌答案.【解答】解: A、小强乘公共汽车用了60﹣ 30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的均匀速度是:15÷ 0.5=30 (公里 / 小时),正确;2 公里,正确.D、小强从家到公共汽车站步行了应选: A.【评论】本题主要考察了函数图象,正确利用图象得出正确信息是解题要点.16.某商品原价500 元,销售时标价为900 元,要保持收益不低于26%,则起码可打()A.六折B.七折C.八折D.九折【考点】由实质问题抽象出一元一次不等式.【剖析】由题意知保持收益不低于26%,就是收益大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得 x≥ 7,故起码打七折,应选B.【评论】要抓住要点词语,弄清不等关系,把文字语言的不等关系转变为用数学符号表示的不等式.17.如图,直线 y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则对于 x 的不等式﹣ x+m> x+3> 0 的取值范围为()A. x>﹣ 2B. x<﹣ 2C.﹣ 3< x<﹣ 2D.﹣ 3< x<﹣ 1【考点】一次函数与一元一次不等式.【剖析】解不等式x+3> 0,可得出x>﹣ 3,再依据两函数图象的上下地点关系联合交点的横坐标即可得出不等式﹣ x+m> x+3 的解集,联合两者即可得出结论.【解答】解:∵ x+3> 0∴ x>﹣ 3;察看函数图象,发现:当 x<﹣ 2 时,直线y=﹣ x+m的图象在y=x+3 的图象的上方,∴不等式﹣ x+m> x+3 的解为 x<﹣ 2.综上可知:不等式﹣x+m> x+3> 0 的解集为﹣ 3< x<﹣ 2.应选 C.x+m>【评论】本题考察了一次函数与一元一次不等式,解题的要点是依据函数图象的上下地点关系解不等式﹣x+3.本题属于基础题,难度不大,解集该题型题目时,依据函数图象的上下地点要点解不等式是要点.18.已知 2+的整数部分是 a,小数部分是b,则 a2+b2=()A. 13﹣ 2B. 9+2C. 11+D. 7+4【考点】估量无理数的大小.【剖析】先估量出的大小,从而获取a、 b 的值,最后辈入计算即可.【解答】解:∵ 1< 3< 4,∴ 1<<2.∴ 1+2< 2+<2+2,即3<2+<4.∴a=3, b= ﹣ 1.∴a2+b2=9+3+1﹣ 2 =13﹣ 2 .应选: A.【评论】本题主要考察的是估量无理数的大小,依据题意求得a、 b 的值是解题的要点.19.如图,四边形ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12D. 24【考点】菱形的性质.【剖析】设对角线订交于点O,依据菱形的对角线相互垂直均分求出AO、 BO,再利用勾股定理列式求出AB,然后依据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线订交于点O,∵AC=8, DB=6,∴AO= AC= ×8=4,BO= BD=× 6=3,由勾股定理的,AB===5,∵DH⊥ AB,∴ S 菱形ABCD=ABDH= ACBD,即5DH= × 8× 6,解得 DH=.应选 A.【评论】本题考察了菱形的性质,勾股定理,主要利用了菱形的对角线相互垂直均分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形 ABCD中,点 E、F 分别在 BC、CD上,△AEF是等边三角形,连结 AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③ AC垂直均分EF,④ BE+DF=EF,⑤S△AEC=S△ABC,此中正确结论有()个.A. 5B. 4C. 3D. 2【考点】正方形的性质;全等三角形的判断与性质;等边三角形的性质.【剖析】由正方形和等边三角形的性质得出△ ABE≌△ ADF,从而得出∠ BAE=∠ DAF,BE=DF,①正确;②正确;由正方形的性质就能够得出 EC=FC,就能够得出 AC垂直均分 EF,③正确;设 EC=x,由勾股定理和三角函数就能够表示出BE与 EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形 ABCD是正方形,∴AB=BC=CD=AD,∠ B=∠ BCD=∠D=∠BAD=90°.∵△ AEF等边三角形,∴AE=EF=AF,∠ EAF=60°.∴∠ BAE+∠DAF=30°.在 Rt △ ABE和 Rt △ ADF中,,∴Rt △ ABE≌ Rt △ ADF( HL),∴BE=DF(故①正确).∠BAE=∠ DAF,∴∠ DAF+∠DAF=30°,即∠ DAF=15°(故②正确),∵BC=CD,∴BC﹣ BE=CD﹣ DF,即CE=CF,∵ AE=AF,∴AC垂直均分 EF..设EC=x,由勾股定理,得 EF= x,CG= x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴ AC=,∴ AB=,∴ BE=AB﹣ x=,∴ BE+DF= x﹣ x≠x,(故④错误),∵S△AEC=CEAB, S△ABC=BCAB,CE< BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,应选: C.【评论】本题考察了正方形的性质的运用,全等三角形的判断及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时要点.二、填空题(本大题共 4 小题,满分 12 分)21.已知直线 y=2x+( 3﹣ a)与 x 轴的交点在A( 2, 0)、 B( 3, 0)之间(包含A、 B 两点),则 a 的取值范围是7≤ a≤9.【考点】一次函数图象上点的坐标特色.【剖析】依据题意获取x 的取值范围是值范围来求 a 的取值范围.【解答】解:∵直线y=2x+( 3﹣ a)与2≤ x≤ 3,则经过解对于x 的方程 2x+( 3﹣ a)=0 求得 x 的值,由x 轴的交点在A(2, 0)、 B( 3, 0)之间(包含A、 B 两点),x 的取∴2≤ x≤ 3,令y=0,则 2x+( 3﹣a) =0,解得 x=,则 2≤≤ 3,解得 7≤ a≤ 9.故答案是: 7≤ a≤ 9.【评论】本题考察了一次函数图象上点的坐标特色.依据一次函数分析式与一元一次方程的关系解得x 的值是解题的打破口.22.以下图,正方形ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形ABCD内,在对角线AC上有一点P,使 PD+PE的和最小,则这个最小值为2.【考点】轴对称 - 最短路线问题;正方形的性质.【剖析】因为点 B 与 D 对于 AC对称,因此连结BD,与 AC的交点即为 F 点.此时PD+PE=BE最小,而BE是等边△ABE的边, BE=AB,由正方形 ABCD的面积为 12,可求出 AB 的长,从而得出结果.【解答】解:连结 BD,与 AC交于点 F.∵点 B 与 D对于 AC对称,∴ PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形 ABCD的面积为 12,∴AB=2 .又∵△ ABE是等边三角形,∴BE=AB=2 .故所求最小值为 2 .故答案为: 2 .【评论】本题主要考察轴对称﹣﹣最短路线问题,要灵巧运用对称性解决此类问题.23.在下边的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣ 1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转90°,则点 A 的对应点的坐标为(5,﹣1).【考点】坐标与图形变化- 旋转.【剖析】先利用 B,C 两点的坐标画出直角坐标系获取 A 点坐标,再画出△ABC绕点 C顺时针旋转90°后点 A 的对应点的A′,而后写出点A′的坐标即可.【解答】解:如图, A 点坐标为( 0, 2),将△ ABC绕点 C 顺时针旋转90°,则点 A 的对应点的A′的坐标为( 5,﹣ 1).故答案为:(5,﹣ 1).【评论】本题考察了坐标与图形变化:图形或点旋转以后要联合旋转的角度和图形的特别性质来求出旋转后的点的坐标.常有的是旋转特别角度如:30°, 45°, 60°, 90°, 180°.24.若对于x 的不等式组有4个整数解,则 a 的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【剖析】第一确立不等式组的解集,先利用含 a 的式子表示,依据整数解的个数就能够确立有哪些整数解,依据解的状况能够获取对于 a 的不等式,从而求出 a 的范围.【解答】解:,由①得, x> 8,由②得, x< 2﹣ 4a,∵此不等式组有解集,∴解集为 8< x< 2﹣4a,又∵此不等式组有 4 个整数解,∴此整数解为 9、 10、 11、 12,∵ x< 2﹣ 4a, x 的最大整数值为12,,∴ 12< 2﹣ 4a≤ 13,∴﹣≤a<﹣.【评论】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出对于 a 的不等式组,临界数的弃取是易错的地方,要借助数轴做出正确的弃取.三、解答题(本大题共 5 个小题,共 48 分)25.( 1)计算(+1)(﹣ 1) ++﹣ 3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混淆运算;在数轴上表示不等式的解集;解一元一次不等式组.【剖析】(1)利用平方差公式、二次根式的性质化简计算即可;( 2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:( 1)原式 =()2﹣ 12+ + ×3 ﹣ 3×=3﹣ 1++﹣2=2+;( 2),解①得, x< 2,解②得, x≥﹣ 1,则不等式组的解集为:﹣1≤x< 2.【评论】本题考察的是二次根式的混淆运算、一元一次不等式组的解法,掌握二次根式的和和运算法例、一元一次不等式组的解法是解题的要点.26.如图,直线l 1的分析式为y=﹣ x+2,l 1与 x 轴交于点B,直线 l 2经过点 D( 0,5),与直线 l 1交于点 C(﹣ 1,m),且与x 轴交于点A(1)求点 C的坐标及直线 l 2的分析式;(2)求△ ABC的面积.【考点】两条直线订交或平行问题.【剖析】(1)第一利用待定系数法求出 C 点坐标,而后再依据D、C 两点坐标求出直线l 2的分析式;( 2)第一依据两个函数分析式计算出A、 B 两点坐标,而后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:( 1)∵直线l 1的分析式为y=﹣ x+2 经过点 C(﹣ 1, m),∴m=1+2=3,∴C(﹣ 1,3),设直线 l 2的分析式为y=kx+b ,∵经过点D( 0, 5), C(﹣ 1, 3),∴,解得,∴直线 l 2的分析式为y=2x+5;(2)当 y=0 时, 2x+5=0,解得 x=﹣,则 A(﹣,0),当y=0 时,﹣ x+2=0解得 x=2,则 B( 2, 0),△ ABC的面积:×(2+)× 3=.【评论】本题主要考察了待定系数法求一次函数分析式,要点是掌握凡是函数图象经过的点必能知足分析式.27.如图,在△ ABC中, D 是 BC边上的一点, E 是 AD的中点,过 A 点作 BC的平行线交 CE的延伸线于点 F,且AF=BD,连结 BF.(1)证明: BD=CD;(2)当△ ABC知足什么条件时,四边形 AFBD是矩形?并说明原因.【考点】全等三角形的判断与性质;矩形的判断.【剖析】( 1)由 AF 与 BC平行,利用两直线平行内错角相等获取一对角相等,再一对对顶角相等,且由 E 为 AD 的中点,获取 AE=DE,利用 AAS获取三角形 AFE与三角形 DCE全等,利用全等三角形的对应边相等即可得证;AFBD为平行( 2)当△ ABC知足: AB=AC时,四边形AFBD是矩形,原因为:由AF 与 BD平行且相等,获取四边形四边形,再由AB=AC, BD=CD,利用三线合一获取AD垂直于 BC,即∠ ADB为直角,即可得证.【解答】解:( 1)∵ AF∥ BC,∴∠ AFE=∠DCE,∵ E 为 AD的中点,∴ AE=DE,在△ AFE和△ DCE中,,∴△ AFE≌△ DCE( AAS),∴AF=CD,∵AF=BD,∴ CD=BD;( 2)当△ ABC知足: AB=AC时,四边形 AFBD是矩形,原因以下:∵AF∥ BD, AF=BD,∴四边形AFBD是平行四边形,∵ AB=AC, BD=CD,∴∠ ADB=90°,∴四边形AFBD是矩形.【评论】本题考察了全等三角形的判断与性质,以及矩形的判断,娴熟掌握全等三角形的判断与性质是解本题的要点.28.如图,点P 是正方形ABCD内一点,点P 到点 A、 B 和 D 的距离分别为1, 2,,△ ADP沿点A旋转至△ABP′,连结PP′,并延伸AP与 BC订交于点 Q.(1)求证:△ APP′是等腰直角三角形;(2)求∠ BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【剖析】(1)依据正方形的性质得AB=AD,∠ BAD=90°,再利用旋转的性质得AP=AP′,∠ PAP′=∠DAB=90°,于是可判断△ APP′是等腰直角三角形;( 2)依据等腰直角三角形的性质得PP′=PA=,∠ APP′=45°,再利用旋转的性质得PD=P′B=,接着依据勾股定理的逆定理可证明△PP′B为直角三角形,∠ P′PB=90°,而后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠ BAD=90°,∵△ ADP沿点 A 旋转至△ ABP′,∴AP=AP′,∠ PAP′=∠DAB=90°,∴△ APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′= PA= ,∠ APP′=45°,∵△ADP沿点 A 旋转至△ ABP′,∴P D=P′B=,在△ PP′B中, PP′=,PB=2,P′B=,∵(222) +( 2) =(),222∴PP′ +PB=P′B,∴△ PP′B为直角三角形,∠ P′PB=90°,∴∠ BPQ=180°﹣∠ APP′﹣∠ P′PB=180°﹣ 45°﹣ 90°=45°.【评论】本题考察了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考察了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价 120 元;乙种每双进价 60 元,售价 90 元,计划购进两种运动鞋共100 双,此中甲种运动鞋许多于65双.( 1)若购进这100 双运动鞋的花费不得超出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在 6 月 19日“父亲节”当日对甲种运动鞋以每双优惠a( 0<a< 20)元的价格进行优惠促销活动,乙种运动鞋价钱不变,请写出总收益w 与 a 的函数关系式,若甲种运动鞋每双优惠11 元,那么该运动鞋店应怎样进货才能获取最大收益?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【剖析】(1)设购进甲种运动鞋x 双,依据题意列出对于x 的一元一次不等式,解不等式得出结论;( 2)找出总收益w对于购进甲种服饰x 之间的关系式,依据一次函数的性质判断怎样进货才能获取最大收益.【解答】解:( 1)设购进甲种运动鞋x 双,由题意可知:80x+60 ( 100﹣ x)≤ 7500 ,解得: x≤ 75.答:甲种运动鞋最多购进75 双.( 2)因为甲种运动鞋许多于65 双,因此 65≤x≤ 75,总收益 w=( 120﹣ 80﹣ a) x+( 90﹣ 60)( 100﹣x) =(10﹣ a) x+3000,。
北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)
人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。
2023-2024学年八年级第二学期期末考试数学试卷含答案解析
)
A.AD=BC,AB=CD
B.AB∥CD,AD=BC
C.AD∥BC,AB∥CD
D.OA=OC,OB=OD
5.
(3 分)如图,在△ABC 中,点 D,E 分别是 AC,BC 的中点,以点 A 为圆心,AD 为半
径作圆弧交 AB 于点 F.若 AD=7,DE=5,则 BF 的长为(
第 1页(共 31页)
全体学生的测试成绩数据进行了收集、整理和分析,研究过程中的部分数据如下:
信息一:党史知识测试题共 10 道题目,每小题 10 分;
信息二:两个班级的人数均为 40 人;
信息三:九年级 1 班成绩条形统计图如图;
60×3+70×17+80×3+90×9+100×8
信息四:九年级 2 班平均分的计算过程如下:
第 6页(共 31页)
19.(9 分)如图,矩形 ABCD 的对角线 AC,BD 交于点 O,AM⊥BD 于点 M.
(1)尺规作图:过点 C 作 BD 的垂线,垂足为 N,连接 AN,CM(保留作图痕迹,不写
作法,不写结论).
(2)补全推理过程:
在矩形 ABCD 中,
∵AD∥BC,AD=BC,
∴
.
=80.5
3+17+3+9+8
(分)
;
第 4页(共 31页)
信息五:
统计量
平均数
中位数
众数
方差
九年级 1 班
82.5
m
90
158.75
九年级 2 班
80.5
75
n
174.75
根据以上信息,解决下列问题:
(1)m=
河北省邯郸市丛台区汉光中学2023-2024学年八年级下学期期末数学试题(含答案)
初二数学期末试卷一.选择题(共16小题.42分)1.下列四个图象中,哪个不是y 关于x 的函数()A. B. C. D.2.下列方程中是一元二次方程的是()A. B. C. D.3.下列二次根式是最简二次根式的是()4.x 的取值范围是()A. B. C. D.5.已知a 、b 、c 是三角形的三边长,如果满足,则三角形的形状是()A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形D.直角三角形6.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分 B.84分 C.84.5分 D.86分7.若是关于x 的一元二次方程的解,则()A.-1B.-2C.-3D.-68.已知在一次函数的图象上有三个点,,,则下列各式中正确的是()A. B. C. D.9.如图,的对角线AC 与BD 相交于点O ,.若AB =4,AC =6,则BD 的长是()A.8B.9C.10D.1110.关于函数,下列结论正确的是()210x -=21y x +=210x +=11x x+=3x ≠-3x ≥-3x ≤-3x >-()26100a -+=1x =220x ax b ++=36a b +=32y x =-+()13,A y -()23,B y ()34,C y -123y y y <<213y y y <<312y y y <<321y y y <<ABCD □AB AC ⊥21y x =-+A.图象必经过点(-2,1)B.图象经过第一、二、三象限C.当时,D.y 随x 的增大而增大11.如图,四边形ABCD 是平行四边形,下列结论中错误的是()A.当,平行四边形ABCD 是矩形B.当,平行四边形ABCD 是矩形C.当,平行四边形ABCD 是菱形D.当,平行四边形ABC D 是正方形12.如图,在中,D 是AB 上一点,,,垂足为点E ,F 是BC 的中点,若BD =16,则EF 的长为()A.32B.16C.8D.413.如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,若正方形A 、B 、D 的面积依次为5、13、30,则正方形C 的面积为()A.12B.18C.10D.2014.如图,嘉嘉利用刻度直尺(单位:cm )测量三角形纸片的尺寸,点B ,C 分别对应刻度尺上的刻度2和8,D 为BC 的中点,若,则AD 的长为()A.3cmB.4cmC.5cmD.6cm15.如图所示,一次函数(,b 是常数)与正比例函数(m 是常数)的图象相交于点M (1,2),下列判断错误的是()12x >0y <90ABC ∠=︒AC BD =AB BC =AC BD ⊥ABC △AD AC =AE CD ⊥90BAC ∠=︒y kx b =+k 0k ≠y mx =0m ≠A.关于x 的方程的解是B.关于x 的不等式的解集是C.当时,函数的值比函数的值大D.关于x ,y 的方程组的解是16.如图,在平面直角坐标系中,四边形OABC 是边长为1的正方形,顶点A 、C 分别在x 轴的负半轴、y 轴的正半轴上.若直线与边AB 有公共点,则k 的值可能为()A.B.C.D.3二、填空题(共3小题,17,18每题3分,19题4分)17.若一组数据1,3,x ,5,4,6的平均数是4,则这组数据的中位数是_______.18.若一次函数的图象向上平移5个单位恰好经过点(-1,4),则b 的值为_______.19.如图,△ABC 是等腰直角三角形,,AC =BC =4,点P 是AB 上的一个动点(点P 与点A 、B 不重合),过点P 分别作PE ⊥BC 于点E ,PF ⊥AC 于点F ,连接EF .(1)四边形PECF 的形状是_______.(2)线段EF 的最小值为_______.三.解答题(共8小题,68分.20题12分,21题8分,22题8分,23题8分,24题10分,25mx kx b =+1x =mx kx b <+1x >0x <y kx b =+y mx =0y mx y kx b -=⎧⎨=+⎩12x y =⎧⎨=⎩2y kx =+1232522y x b =+90C ∠=︒题10分,26题12分)20.(1);(2(3);(4).21.已知关于x 的一元二次方程.(1)若方程的一个根为-1,求k的值和方程的另一个根;(2)求证:不论取何值,该方程都有两个不相等的实数根.22.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F .(1)求证:BC =CF ;(2)若∠1=5∠2,求∠C 的度数23.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩7577(1),;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出_______的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.24.综合与实践主题:检测雕塑(如图)底座正面的边AD 和边BC 是否分别垂直与底边AB .(÷()22+3810x -=2760y y -+=2(2)10k x k x -++-=k a_______a =_______x =乙素材:一个雕塑,一把卷尺步骤1:利用卷尺测量边AD ,边BC 和底边AB 的长度,并测量出点B 、D 之间的距离;步骤2:通过计算验证底座正面的边AD 和边BC 是否分别垂直于底边AB .解决问题:(1)通过测量得到边AD 的长是60厘米,边AB 的长是80厘米,BD 的长是100厘米,边AD 垂直于边AB 吗?为什么?(2)如果你随身只有一个长度为30cm 的刻度尺,你能有办法检验边AD 是否垂直于边AB 吗?如果能,请写出你的方法,并证明。
数学八年级下册课本习题答案
数学八年级下册课本习题答案【篇一:最新人教版初二数学下学期课后习题与答案】a是怎样的实数时,下列各式在实数范围内有意义?(1(2(3;(4.解析:(1)由a+2≥0,得a≥-2;(2)由3-a≥0,得a≤3;(3)由5a≥0,得a≥0;(4)由2a+1≥0,得a≥?12.2、计算:(1)2;(2)(2;(3)2;(4)2;(5(6)(?2;(7(8)解析:(1)2?5;(2)(2?(?1)2?2?0.2;(3)2?2;(4)2?52?27?125;(5??10;(6)(?2?(?7)2?2?14;(7??23;(8)???25.3、用代数式表示:(1)面积为s的圆的半径;(2)面积为s且两条邻边的比为2︰3的长方形的长和宽.解析:(1)设半径为r(r0),由?r2?s,得r?;,得x?,所以两条邻边长为 4、利用a?2(a≥0),把下列非负数分别写成一个非负数的平方的形式:(1)9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0.解析:(1)9=32;(2)5=2;(3)2.5=2;(4)0.25=0.52;(5)12?2;(6)0=02. 5、半径为r cm的圆的面积是,半径为2cm和3cm的两个圆的面积之和.求r的值.解析:?r2???22???32,??r2?13?,?r?0,?r.6、△abc的面积为12,ab边上的高是ab边长的4倍.求ab的长.7、当x是怎样的实数时,下列各式在实数范围内有意义?(1(2(3(4.答案:(1)x为任意实数;(2)x为任意实数;(3)x>0;(4)x>-1.8、小球从离地面为h(单位:m)的高处自由下落,落到地面所用的时间为t(单位:s).经过实验,发现h与t2成正比例关系,而且当h=20时,t=2.试用h表示t,并分别求当h=10和h=25时,小球落地所用的时间.答案:h=5t29、(1n所有可能的值;1 / 33(2n的最小值.答案:(1)2,9,14,17,18;(2)6.为整数的最小的正整数n是6.10、一个圆柱体的高为10,体积为v.求它的底面半径r(用含v 的代数式表示),(1);(2(3;(4(5;(6.2答案:(1(2(3(4(5)(6).答案:r?习题16.21、计算:(1(2(;(3(4.答案:(1)(2)?(3)(4) 2、计算:(1(2;(3(4.答案:(1)32;(2)(3(43、化简:(1(2)(3(4答案:(1)14;(2)(3)37;(4. 4、化简:5(1)a=1,b=10,c=-15;(2)a=2,b=-8,c=5.答案:(1)?5?(26、设长方形的面积为s,相邻两边分别为a,b.(1)已知a?b?s;(2)已知a?b?,求s.答案:(1);(2)240;7、设正方形的面积为s,边长为a.(1)已知s=50,求a;(2)已知s=242,求a.答案:(1)(2) 8、计算:(1;(2(3;(4答案:(1)1.2;(2)312;(3)3;(4)15.9?1.4140.707,2.828. 10、设长方形的面积为s,相邻两边长分别为a,b .已知s?a?b.2 / 3311、已知长方体的体积v?h?s.12、如图,从一个大正方形中裁去面积为15cm2和24cm2下部分的面积.答案:2.13、用计算器计算:(1(2(3;(4观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:?________. 答案:(1)10;(2)100;(3)1000;(4)10000..100??????0 n个0习题16.31、下列计算是否正确?为什么?(1? (2)2? (3)?3;(4??3?2?1.答案:(1(2)不正确,2(3)不正确,? (4?2?2. 2、计算:(1)(2;(3 (4)a3 答案:(1)(2(3);(4)17a 3、计算:(1(2(3)?;(4)132?4.答案:(1)0;(2(3)(4)?4 4、计算:(1)(2);(3)2;(4)答案:(1)6?(2)-6;(3)95?;(4)43?12.5?2.236,求.答案:7.83.6、已知x1,y1,求下列各式的值:(1)x2+2xy+y2;(2)x2-y2.答案:(1)12;(2)3 / 33. 8、已知a?1a?a?1a的值.答案:9(1)2x2-6=0,;(2)2(x+5)2=24,(5???5??5?.答案:(1)(2)?5.复习题161、当x是怎样的实数时,下列各式在实数范围内有意义?(1 (2;(3;(4 答案:(1)x≥-3;(2)x?12;(3)x?23;(4)x≠1. 2、化简:(1 (2 (3 (4 5 (6(答案:(1)(2);(33;(4(5)(63、计算:(1)?;(2)(3);(4)(5)2;(6)2.答案:(1(2;(3)6;(4)?2;(5)35?;(6)5?2.4、正方形的边长为a cm,它的面积与长为96cm,宽为12cm的长方形的面积相等.求a的值.答案:25、已知x?1,求代数式x2+5x-6的值.答案:5.答案:2.45a.8、已知n是正整数,n的最小值.答案:21.9、(1)把一个圆心为点o,半径为r的圆的面积四等分.请你尽可能多地设想各种分割方法.(2)如图,以点o为圆心的三个同心圆把以oa为半径的大圆o的面积四等分.求这三个圆的半径ob,oc,od的长.答案:(1)例如,相互垂直的直径将圆的面积四等分;4 / 33(2)设oa=r,则od?12r,oc?2r,ob?.10、判断下列各式是否成立:??? 类比上述式子,再写出几个同类型的式子.你能看出其中的规律吗?用字母表示这一规律,并给出证明.答案:规律是:?n?nn2?1?n3n2?1,再两边开平方即可.习题17.11、设直角三角形的两条直角边长分别为a和b,斜边长为c.(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.答案:(1)13;(2(32、一木杆在离地面3m处折断,木杆顶端落在离木杆底端4m处.木杆折断之前有多高?答案:8m.3、如图,一个圆锥的高ao=2.4,底面半径ob=0.7.ab的长是多少?答案:2.5.4、已知长方形零件尺寸(单位:mm)如图,求两孔中心的距离(结果保留小数点后一位).答案:43.4mm.5、如图,要从电线杆离地面5m处向地面拉一条长7m的钢缆.求地面钢缆固定点a到电线杆底部b的距离(结果保留小数点后一位).答案:4.9m.6 答案:略.答案:(1)bc?12c,ac?;(2)bc?2,ac?2.(1)△abc的面积;(2)斜边ab;(3)高cd.答案:(1)2.94;(2)3.5;(3)1.68.9、已知一个三角形工件尺寸(单位:mm)如图,计算高l的长(结果取整数).5 / 33【篇二:新人教版八年级下册数学教案(包括每节课后练习及答案)】1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写p4[思考],学生自己依次填出:10,s,200,v.7a33s2.学生看p3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.20?v20?v20?v20?v20?v20?v轮船顺流航行100千米所用的时间为100小时,逆流航行60千米所用时间60小时,所以100=60. 3. 以上的式子100,60,s,v,有什么共同点?它们与分数有什么相同点和不同点? as五、例题讲解p5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0? 2(1m?1(2)m?1m?3的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2(3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4,8y?3,1 xx?9205y22. 当x取何值时,下列分式有意义?(1)(2)(3)x2?43?2xx?23. 当x为何值时,分式的值为0?七、课后练习 3x?5mm?2m?11分母不能为零;○2分子为零,这样求出的m的解集中[分析] 分式的值为0时,必须同时满足两个条件:○..2x?5x2?1x?77x(1)(2)x2?x5x21?3x1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 .x?12.当x取何值时,分式无意义? 3x?2x?1的值为0? 3. 当x为何值时,分式x2?x八、答案:六、1.整式:9x+4,9?y, m?4 分式: 7 , 8y?3,1 xx?9520y23.(1)x=-7 (2)x=0(3)x=-180七、1.1s,x?y; 整式:8x, a+b, x?y; xa?b44分式:80, s a?bx2. 3. x=-1 3课后反思: 2316.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变. “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入15313与9与相等吗?为什么?4202482.说出与之间变形的过程,并说出变形依据? 4与202483.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解p7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.p11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.p11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.?6b, ?x, 2m??n?5a3y, ??7m, ??3x。
八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)
八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。
初二下学期数学试题含答案
⼀、选择题(每⼩题3分,共36分)1.如图,BE平分∠ABC,DE∥BC,则图中相等的⾓共有( )A.3对B.4对C.5对D.6对2.如图所⽰,直线l1∥l2,∠1=55°,∠2=62°,则∠3为( )A.50°B.53°C.60°D.63°3.如图所⽰,将含有30°⾓的三⾓板的直⾓顶点放在相互平⾏的两条直线其中⼀条上,若∠1=35°,则∠2的度数为( )A.10°B.20°C.25°D.30°4.(2015•河北中考)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120°B.130°C.140°D.150°5.某商品的商标可以抽象为如图所⽰的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )A.30°B.45°C.60°D.75°6.如图所⽰,∠AOB的两边OA、OB均为平⾯反光镜,且∠AOB=28°.在OB上有⼀点P,从P点射出⼀束光线经OA上的Q点反射后,反射光线QR恰好与OB平⾏,则∠QPB =( )A.28°B.56°C.100°D.120°7.如图所⽰,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的条件的序号是( )A.①②B.①③C.①④D.③④8.如图所⽰,AB∥CD,直线EF与AB、CD分别相交于点G,H,∠AGH=60°,则∠EHD的度数是( )A.30°B.60°C.120°D.150°9.若直线a∥b,点A、B分别在直线a、b上,且AB=2 cm,则a、b之间的距离( )A.等于2 cmB.⼤于2 cmC.不⼤于2 cmD.不⼩于2 cm10.如图所⽰,直线a∥b,直线c与a、b相交,∠1=60°,则∠2等于( )A.60°B.30°C.120°D.50°11.如图所⽰,把矩形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( )A.110°B.115°C.120°D.130°12.如图,△DEF是由△ABC平移得到,且点B、E、C、F在同⼀直线上,若BF=14,CE=6,则BE的长度为( )A.2B.4C.5D.3⼆、填空题(每⼩题3分,共24分)13.如图所⽰,在不等边△ABC中,已知直线DE∥BC,∠ADE=60°,则图中等于60°的⾓还有 .14.⼀个宽度相等的纸条按如图所⽰⽅法折叠,则∠1= .15.如图所⽰,已知∠1=∠2,再添加条件可使CM∥EN.(只需写出⼀个即可)16.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.17.如图,标有⾓号的7个⾓中共有_______对内错⾓,________对同位⾓,_______对同旁内⾓.18.货船沿北偏西62°⽅向航⾏,后因避礁先向右拐28°,再向左拐28°,这时货船的航⾏⽅向是 .19.如图所⽰,若∠1=82°,∠2=98°,∠3=77°,则∠4= .20.如图,已知∠1=∠2,∠ =35°,则∠3=_____.三、解答题(共40分)21.(8分)已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.22.(8分)如图所⽰,要想判断AB是否与CD平⾏,我们可以测量哪些⾓?请写出三种⽅案,并说明理由.23.(8分)如图所⽰,已知AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,求∠EAB的度数.24.(8分)如图所⽰,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,试说明:CD平分∠ACE.25.(8分)如图,在四边形ABCD中,AD∥BC,BC>AD,将AB,CD分别平移到EF和EG的位置,若AD=4 cm,BC=8 cm,求FG的长.第1章平⾏线检测题参考答案1.C 解析:∵ DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.⼜∵ BE平分∠ABC,∴∠ABE=∠EBC,即∠ABE=∠DEB.∴图中相等的⾓共有5对.故选C.2.D 解析:如图所⽰,∠5=∠1=55°,因为l1∥l2,所以∠4=∠2=62°,由三⾓形内⾓和定理得∠3=180°-∠4-∠5=180°-62°-55°=63°.3.C 解析:由题意,得∠1+∠2=60°,所以∠2=60°-∠1=60°-35°=25°.4.C 解析:如图,过点C作CM∥AB, ∴ .∵ AB∥EF, ∴ CM∥EF.∵,∴ , ,∴ .5.B 解析:因为∠EAB=45°,所以∠BAD=180°-∠EAB=180°-45°=135°.因为AB∥CD,所以∠ADC=∠BAD=135°,所以∠FDC=180°-∠ADC=45°.故选B.6.B 解析:∵ QR∥OB,∴∠AQR=∠AOB=28°,∠PQR+∠QPB=180°.由反射的性质知,∠AQR=∠OQP=28°,∴∠PQR=180°-28°-28°=124°,∴∠QPB=180°-∠PQR=180°-124°=56°.7.A8.C 解析:∠BGH=180°-∠AGE=180°-60°=120°,由AB∥CD,得∠EHD=∠BGH= 120°.9.C 解析:当AB垂直于直线a时,AB的长度为a、b间的距离,即a、b之间的距离为2 cm;当AB不垂直于直线a时,a、b之间的距离⼩于2 cm,故a、b之间的距离⼩于或等于2 cm,也就是不⼤于2 cm,故选C.10.A 解析:要求∠2的度数,根据对顶⾓的性质,可得∠2=∠3,所以只要求出∠3的度数即可解决问题.因为a∥b,根据“两直线平⾏,同位⾓相等”,可得∠3=∠1=60°,所以∠2=∠3=60°.11.B 解析:由折叠的性质,可知∠BFE= =65°.因为AD∥BC,所以∠AEF=180°-∠BFE=115°.12.B 解析:由平移的性质知BC=EF,即BE=CF, .13.∠B14.65° 解析:根据题意得2∠1=130°,解得∠1=65°.故填65°.15.此题答案不,可添加DM∥FN等.16.130° 解析:因为AB∥CD,所以∠B=∠C=50°.因为BC∥DE,所以∠C+∠D=180°,所以∠D=180°-50°=130°.17.4;2;4 解析:共有4对内错⾓,分别是∠1和∠4,∠2和∠5,∠6和∠1,∠5和∠7;2对同位⾓:分别是∠7和∠1,∠5和∠6;4对同旁内⾓:分别是∠1和∠5、∠3和∠4、∠3和∠2、∠4和∠2.18.北偏西62° 解析:根据同位⾓相等,两直线平⾏可知,货船未改变航⾏⽅向.19.77°20.35° 解析:因为∠1=∠2,所以AB∥CE,所以∠3=∠B.⼜∠B=35°,所以∠3=35°.21.证明:∵∠BAP+∠APD=180°,∴ AB∥CD.∴∠BAP=∠APC. ⼜∵∠1=∠2,∴∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF, ∴ AE∥FP.∴∠E=∠F.22.解:∠EAB=∠C⇒AB∥CD(同位⾓相等,两直线平⾏);∠BAD=∠D⇒AB∥CD(内错⾓相等,两直线平⾏);∠BAC+∠C=180°⇒AB∥CD(同旁内⾓互补,两直线平⾏).23.解:∵ AB=BC ,∴∠BAC=∠ACB=180°-110°=70°.∴∠B=180°-70°×2=40°.∵ AE∥BC,∴∠EAB=∠B=40°.24.解:∵∠DCA=∠CAB(已知),∴ AB∥CD(内错⾓相等,两直线平⾏),∴∠ABC+∠BCD=180°(两直线平⾏,同旁内⾓互补).∵∠ABC=90°(已知),∴∠BCD=90°.∵∠1+∠2+∠ACD+∠DCE=180°(平⾓的定义),∴∠2+∠DCE=90°,∴∠2+∠DCE=∠1+∠ACD.∵∠1=∠2(已知),∴∠DCE=∠ACD.∴ CD平分∠ACE(⾓平分线的定义).25.解:因为AD∥BC,且AB平移到EF,CD平移到EG,所以AE=BF,DE=CG,所以AE+DE=BF+CG,即AD=BF+CG.因为AD=4 cm,所以BF+CG=4 cm.因为BC=8 cm,所以FG=8-4=4(cm).。
2023-2024学年上海市闵行区八年级下学期月考数学试卷含详解
2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A .3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A.B.C.D.3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.4.下列方程中,有实数根的方程是()A.40=;B.2350x x ++=;C.111x x x =--;D.380x +=.5.已知各组x y 、的值①1,2;x y =-⎧⎨=⎩②20x y =-⎧⎨=⎩,;③34x y =-⎧⎨=⎩,;④41x y =-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y ++---=的解的个数为()A.1B.2C.3D.46.已知关于x3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.8.直线25y x =-的截距是_______.9.已知一次函数()112f x x =-,那么()2f =_______.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.14.方程(x 0-=的解是_____________________15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.20.解方程:2631x 1x 1-=--21.1=22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?25.A 、B 两城间的公路长为m 千米,甲、乙两车同时从A 城出发沿这一公路驶向B 城,甲车到达B 城1小时后沿原路用每小时90千米的速度返回.如图是它们离A 城的路程y (千米)与行驶时间x (小时)之间的函数图像.(1)由题设可以得出m 的值为_______;(2)甲车从A 城出发时的速度为_______千米/小时;(3)甲车返回过程中y 与x 之间的函数解析式是_______;(4)如果乙车的行驶速度为60千米/小时,那么甲从B 城开始返回,经过几个小时与途中的乙车相遇.五、综合题:(本题满分10分,第(1)(3)小题各4分,第(2)小题2分)26.如图,直线1:l y x m =-+与y 轴交于点A ,直线2:2l y x n =+与y 轴交于点C ,与x 轴交于点D ,且它们都经过点()2,2B .(1)求点A 、点D 坐标;(2)过点A 作BC 的平行线交x 轴于点E ,求点E 的坐标;(3)在(2)的条件下,直线2l 上是否存在一动点P ,使EDP △是等腰三角形?若存在,请直线写出P 点坐标;若不存在,请说明理由.2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A.3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.【答案】A【分析】此题考查函数的性质,熟知一次函数的性质及反比例函数的性质是解题的关键,根据函数性质依次判断即可.【详解】A.是一次函数,0k <,y 值随x 的增大而减小,故符合题意;B.是正比例函数,0k >,y 值随x 的增大而增大,故不符合题意;C.是一次函数,0k >,y 值随x 的增大而增大,故不符合题意;D.由0x ≠得函数图象是两个分支,在每个象限内,y 值随x 的增大而减小,故不符合题意;故选:A .2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A. B. C. D.【答案】B【分析】此题考查了一次函数图像及反比例函数图像,根据a 的取值分别确定一次函数及反比例函数图像所在的象限,即可得到答案【详解】当0a >时,x y a a=-的图像过第一,三,四象限;a y x =的图像在第一,三象限;故C 错误,D 错误;当a<0时,x y a a =-的图像过第一,二,四象限;a y x =的图像在第二,四象限;故A 错误,B 正确;故选:B3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.【答案】B【分析】根据题意,列出函数关系式,即可求解.【详解】解∶根据题意得∶()54008y t t=-+≤≤,∴该图象为一次函数图象的一部分.故选:B【点睛】本题主要考查了一函数的图象,根据题意,列出函数关系式是解题的关键.4.下列方程中,有实数根的方程是()A.40=;B.2350x x++=; C.111xx x=--; D.380x+=.【答案】D【分析】此题考查了二次根式的性质,一元二次方程根的判别式,解分式方程,立方根的概念,据此依次判断即可.【详解】解:A、40+=4=-,无意义,故无实数根,不符合题意;B、2345110∆=-⨯=-<,无实数根,故不符合题意;C、去分母,得1x=,此时10x-=,无实数根,故不符合题意;D、380x+=,得2x=-,有实数根,故符合题意;故选:D.5.已知各组x y、的值①1,2;xy=-⎧⎨=⎩②2xy=-⎧⎨=⎩,;③34xy=-⎧⎨=⎩,;④41xy=-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y++---=的解的个数为()A.1B.2C.3D.4【答案】C【分析】本题考查二元二次方程的解,将题目中的各组解分别代入224426x xy y x y ++---中,看哪一组解使得2244260x xy y x y ++---=,则哪一组解就是方程的解,本题得以解决【详解】解:2244260x xy y x y ++---=即()()2216x y x y ++-=①当12x y =-⎧⎨=⎩时,()()2216x y x y ++-=,故该选项符合题意;②.当20x y =-⎧⎨=⎩,()()2216x y x y ++-=,故该选项符合题意;③.34x y =-⎧⎨=⎩,()()2216x y x y ++-≠故该选项不符合题意;④.41x y =-⎧⎨=⎩,()()2216x y x y ++-=故该选项符合题意;则符合题意得有3个.故选:C .6.已知关于x 3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.【答案】A【分析】本题主要考查的是无理方程,先把方程的根代入方程,可以求出m 的值,然后根据无理方程中二次根式的双重非负性列出不等式,得2m =.【详解】解:把1x =代入方程有:13m ++=,2m =-,两边同时平方得:2244m m m -=-+,即2560m m -+=,即()()230m m --=,∴12m =,23m =,由题意得:2020m x m -≥⎧⎨-≥⎩,∴2020m m -≥⎧⎨-≥⎩,经检验2m =13m ++=的解,3m =不符合题意,要舍去.故选:A .二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.【答案】0≠##不等于0【分析】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.根据一次函数的定义即可求解.【详解】 函数7y mx =+是一次函数,∴0m ≠故答案为:0≠.8.直线25y x =-的截距是_______.【答案】5-【分析】此题考查了一次函数截距的定义,截距即为图象与y 轴交点的纵坐标,据此解答即可.【详解】当0x =时,25y x =-中5y =-,故答案为5-.9.已知一次函数()112f x x =-,那么()2f =_______.【答案】0【分析】此题考查求一次函数值,根据公式代入计算即可.【详解】∵()112f x x =-,∴()122102f =⨯-=,故答案为:0.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).【答案】>【分析】此题考查比较一次函数值的大小,将点()1,A a -、点()1,B b 代入1y x =-+,分别求出a ,b ,比较即可.【详解】将点()1,A a -、点()1,B b 代入1y x =-+,得112,110a b =+==-+=,∴a b >,故答案为:>.11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.【分析】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系,先判断出一次函数图象经过第一、二、三象限或一、三象限,即可确定m 的取值范围,解题的关键是熟练掌握一次函数的图象及性质.【详解】解:∵一次函数2y x m =+的图象不经过第四象限,∴一次函数2y x m =+图象经过第一、二、三象限或一、三象限,∴0m ≥,故答案为:0m ≥.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.【答案】3x <【分析】本题主要考查一次函数图像和一元一次不等式的解集,根据图像直接解答即可.【详解】解:根据函数图像可知:当3x <时,0y >,故答案为:3x <.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.【答案】25302y y -+=【分析】由21x y x =-,则211x x y -=,将方程()2231512x x x x -+=-变形得25302y y -+=.【详解】解:设21x y x =-,则211x x y-=,则方程()2231512x x x x -+=-为352y y +=整理得25302y y -+=,故答案为25302y y -+=.14.方程(x 0-=的解是_____________________【答案】4x =【详解】解:(x 0-=Q 20x ∴-=或40x -=,解得:2x =或4x =,40x -≥∴4x ≥4x ∴=故答案为:4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.【答案】()112x x m -=【分析】本题主要考查了一元二次方的应用,解决本题的关键是读懂题意,得到总场数的等量关系.根据“比赛场数()12x x -=”,即可求解.【详解】解:根据题意得:()112x x m -=,故答案为:()112x x m -=.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.【答案】18【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解: 多边形每一个内角都等于o 160∴多边形每一个外角都等于o o o180-160=20∴边数o o 3602018n =÷=故答案为:18【点睛】此题主要考查了多边形的外角与内角,解题的关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________【答案】(0,2)-【分析】要使点P 在y 轴上且PA PB +最短,作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,P 即为所求.【详解】解:作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,则此时使PA +PB 最小,∵A (-6,2),∴A’坐标为(6,2),设直线A’B 的解析式为y =kx +b ,将A’(6,2),B (-3,−4)代入y =kx +b 得:2643k b k b =+⎧⎨-=-+⎩,解得:232k b ⎧=⎪⎨⎪=-⎩,∴直线A’B 的解析式为y =223x -,当x=0时,y=-2,∴点P 的坐标为(0,2)-,故答案为(0,2)-.【点睛】此题主要考查了最短路径求法以及待定系数法求一次函数解析式等知识,求得直线A’B 的解析式是解题关键.18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.【答案】7,4,82---【分析】先将分式方程化为整式方程,此整式方程为一元二次方程,根据判别式等于0求得a 的值,再分为两种情况,当△=0和△>0,再分别求出即可.【详解】解:去分母得整式方程为:2224=0x x a -++,∵方程只有一个实数根,当△=0时,(-2)2-4×2×(a+4)=0,解得:a=72-,此时方程的解为:x=72-,满足条件;当△>0时,a <72-,此时方程2224=0x x a -++有两个不相等的实数根,则当x=0时,代入方程得:a=-4<72-,即a=-4时,x=0是方程2202(2)x x x a x x x x -+++=--的增根,当x=2时,代入方程得:a=-8<72-,即a=-8时,x=2是方程2202(2)x x x a x x x x -+++=--的增根,综上:a 的值为72-或-4或-8.【点睛】本题考查了分式方程的解和分式有意义的条件,以及一元二次方程根的判别式,能求出符合的所有情况是解此题的关键.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.【答案】1122x =+,2122x =-【分析】本题主要考查了用公式法解一元二次方程,先把方程变形得到230x x --=,再按公式法解方程即可.【详解】解:方程()13x x -=可化为:230x x --=,1a =,1b =-,3c =-,()()2241413130b ac ∆=-=--⨯⨯-=>,∴方程有两个不相等的实数根.411322b x a -±==,∴1122x =+,2122x =-.20.解方程:2631x 1x 1-=--【答案】x=-4【分析】本题考查解分式方程的能力.因为x 2-1=(x+1)(x-1),所以可得方程最简公分母为(x+1)(x-1).再去分母整理为整式方程即可求解.结果需检验.【详解】方程两边同乘(x+1)(x-1),得6-3(x+1)=x 2-1,整理得x 2+3x-4=0,即(x+4)(x-1)=0,解得x 1=-4,x 2=1.经检验x=1是增根,应舍去,∴原方程的解为x=-4.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.1=【答案】1x 0=【分析】根据解无理方程的一般步骤求解即可.=2x 11+=+x =2x -4x 0=解得1x 0=,2x 4=经检验2x 4=是原方程的增根,所以原方程的解为1x 0=【点睛】本题主要考查解无理方程,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩【答案】21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩【分析】本题考查了解二元一次方程组,先变形(1)得出3x y -=,3x y -=-,作出两个方程组,求出方程组的解即可.【详解】解:22291102x xy y x y ⎧-+=⎨+-=⎩()(),由(1)得出3x y -=,3x y -=-,故有31x y x y -=⎧⎨+=⎩或31x y x y -=-⎧⎨+=⎩解得:21x y =⎧⎨=-⎩或12x x =-⎧⎨=⎩原方程组的解是21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩.四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.【答案】(1)6y x =+(2)9【分析】本题主要考查了求一次函数的解析式,一次函数与x 轴的交点,两直线的交点以及一次函数的几何应用.(1)用待定系数法求一次函数解析式即可.(2)根据题意作出图象,分解求出点A ,B ,O 的坐标,然后计算ABO S 即可.【小问1详解】解:设一次函数的解析式为y kx b =+,∵一次函数图象经过点()1,7A ,点()1,5B -,∴75k b k b +=⎧⎨-+=⎩,解得:16k b =⎧⎨=⎩,∴一次函数的解析式为6y x =+.【小问2详解】根据题意作图如下:令60y x =+=,解得:6x =-,∴一次函数6y x =+与x 轴的交点坐标为:()6,0B -令0y x =-=,解得:0x =,∴直线y x =-与x 轴为()0,0O ,∴6OB =,联立两直线:6y x y x =+⎧⎨=-⎩,解得:33x y =-⎧⎨=⎩,∴()3,3A -.∴点A 到x 轴的距离为3.∴13692ABO S =⨯⨯=.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?【答案】甲、乙两班单独完成这项工作各需8小时、12小时.【分析】单独完成这项工作甲需要x 小时,乙需要y 小时,则甲每小时完成全部工作的1x ,乙每小时完成全部工作的1y ,再根据题意列方程组即可求解.,【详解】解:设甲、乙两班单独完成这项工作各需x 小时、y 小时.由题意得2312211x y x xy ⎧+=⎪⎪⎨+⎪+=⎪⎩①②①-②得:212x y -=得:24y x =-③将③代①得:231242x x +=-解得:8x =所以12y =经检验:812.x y =⎧⎨=⎩是原方程的解且符合题意.答:甲、乙两班单独完成这项工作各需8小时、12小时.【点睛】本题考查了分式方程组的应用,根据方程组的特点化二元分式方程为一元分式方程进一步转化为整式方程求解是关键。
初二下学期数学练习题 含答案及解析
初二下学期数学练习题含答案及解析题1:一团黄油重200克,为防止变质,包装在4独立包装中,每包装一样重,包装每独立包装中黄油重多少克?解析:假设每独立包装中黄油的重量为x克。
根据题意可得方程:x + x + x + x = 2004x = 200x = 50答案:每独立包装中黄油重50克。
题2:一根木材长18米,需要切割成6段,每段长度相等,每段木材的长度是多少米?解析:假设每段木材的长度为x米。
根据题意可得方程:x + x + x + x + x + x = 186x = 18x = 3答案:每段木材的长度为3米。
题3:某音乐班共有48位学生,男生和女生人数的比例为2:3,男生有多少人?解析:假设男生人数为2x,女生人数为3x。
根据题意可得方程:2x + 3x = 485x = 48x = 9.6答案:男生人数为2x = 2 * 9.6 = 19.2(约等于19)人。
题4:某商场举办特价促销活动,原价100元的商品打75折出售,打折后的价格是多少?解析:打75折相当于原价乘以0.75。
打折后的价格 = 100 * 0.75 = 75元。
答案:打折后的价格为75元。
题5:一个矩形的长是5米,宽是2米,求它的面积和周长。
解析:矩形的面积等于长乘以宽,周长等于长加宽乘以2。
面积 = 5 * 2 = 10 平方米。
周长 = (5 + 2) * 2 = 14 米。
答案:矩形的面积为10平方米,周长为14米。
题6:一辆汽车每小时行驶60公里,行驶多少小时可行驶480公里?解析:设行驶的小时数为x小时。
根据题意可得方程:60x = 480x = 480 ÷ 60x = 8答案:行驶8小时可以行驶480公里。
题7:某书店原价卖出一本书得到50元的利润,现在决定打折出售,打折后的价格要使得利润为30元,打折后的价格是多少?解析:设打折后的价格为x元。
打折后的利润 = x - 原价利润为30元,可得方程:x - 原价 = 30x - (原价 + 50) = 30x = 原价 + 80答案:打折后的价格为原价 + 80元。
天津市部分区2023-2024学年八年级下学期期中练习数学试卷(含解析)
天津市部分区2023~2024学年度第二学期期中练习八年级数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.将正确选项填在下表中)1. 若在实数范围内有意义,则x的值可以是()A. 2B. 0C.D.答案:A解析:解:在实数范围内有意义,,即,的值可以是2,故选:A.2. 如果一个三角形的三边长分别为1,1,,那么这个三角形是( )A. 锐角三角形B. 等边三角形C. 钝角三角形D. 等腰直角三角形答案:D解析:∵有两边长都是1,∴三角形一定是等腰三角形;∵,∴对角一定是直角,故三角形一定是等腰直角三角形;故选D.3. 如图,在平行四边形中,若,则的大小为()A. B. C. D.答案:B解析:解:∵四边形是平行四边形,∴,∴∴故选B.4. 下列二次根式中,与能合并的是()A. B. C. D.答案:B解析:解:A:,与不是同类二次根式,所以不能合并,该选项不符合题意;B:,与是同类二次根式,所以能合并,该选项符合题意;C:,与不是同类二次根式,所以不能合并,该选项不符合题意;D:,与不是同类二次根式,所以不能合并,该选项不符合题意;故选:B.5. 在数学活动课上,老师要求同学们判断一个四边形门框是不是矩形,下面某学习小组拟定的测量方案,其中正确的是()A. 测量对角线是否互相平分B. 测量两组对边是否分别相等C. 测量一组对角是否都为直角D. 测量四边形的三个角是否都为直角答案:D解析:解:、测量对角线是否互相平分,只能判定四边形门框是不是平行四边形,不能判断是不是矩形,该测量方案不正确,不合题意;、测量两组对边是否分别相等,只能判定四边形门框是不是平行四边形,不能判断是不是矩形,该测量方案不正确,不合题意;、测量一组对角是否都为直角,无法判断一个四边形门框是不是矩形,该测量方案不正确,不合题意;、三个角是直角的四边形是矩形,故测量四边形的三个角是否都为直角能判断一个四边形门框是不是矩形,符合题意;故选:.6. 下列二次根式是最简二次根式的是()A. B. C. D.答案:C解析:解:根据最简二次根式的定义可得:选项,最简二次根式中被开方数不能为分数,不是最简二次根式,不符合题意,选项错误;选项,,即被开方数中含有能开得尽方的因数,不是最简二次根式,不符合题意,选项错误;选项,是最简二次根式,符合题意,选项正确;选项,,即被开方数中含有能开得尽方的因数,不是最简二次根式,不符合题意,选项错误.故选:.7. 在下列长度的各组线段中,能构成直角三角形的是( )A. 3,5,9B. 4,6,8C. 13,14,15D. 6,8,10答案:D解析:解:A、∵,∴不能构成直角三角形,本选项不符合题意;B、∵,∴不能构成直角三角形,本选项不符合题意;C、∵,∴不能构成直角三角形,本选项不符合题意;D、∵,∴能构成直角三角形,本选项符合题意;故选:D.8. 如图,四边形是正方形,点为原点,点的坐标是,点的坐标为()A. B. C. D.答案:A解析:解:∵四边形是正方形,点为原点,点的坐标是,∴,∵点在第二象限,∴点的坐标为,故选:A.9. 如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A. B. C. D.答案:B解析:解:根据勾股定理得出:AB===5,∴EF=AB=5,∴阴影部分面积是25,故选:B.10. 如图,在△ABC中,D,E,F分别是AB、CA、BC的中点,若CF=3,CE=4,EF=5,则CD的长为()A. 5B. 6C. 8D. 10答案:A解析:∵CF=3,CE=4,EF=5,∴CF2+CE2=EF2,∴△ECF是直角三角形,即△ABC也是直角三角形,∵E,F分别是CA、BC的中点,∴EF是△ABC的中位线,∴AB=2EF=10,∵D为AB的中点,∴CD=AB=故选:A.11. 如图,将正方形沿对折,使点A落在对角线上的处,连接,则的大小为()A. B. C. D.答案:C解析:解:在正方形中,∵是正方形的对角线∴,,由折叠性质得,∴,∴,故选:C.12. 如图,中,垂直平分于点,则的长为()A. B. C. D.答案:C解析:解:垂直平分于点,,,,,∴,,,,∴,即,,,故选:C.二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13. 计算的结果是______.答案:解析:故答案为:.14. 如果=0,那么的值为____________答案:-6解析:解:在=0中,∴x-3=0,y+2=0,解得x=3,y=-2,所以,xy=3×(-2)=-6.故答案为:-6.15. 已知直角三角形的两直角边长分别为3cm和4cm,则斜边上的高为________cm.答案:2.4解析:解:由勾股定理,直角三角形斜边长==5(cm),设斜边上的高为h cm,则S=,∴h=2.4,即斜边上的高为2.4cm,故答案:2.4.16. 某地需要开辟一条隧道,隧道的长度无法直接测量.如图所示,在地面上取一点C,使C到A、B 两点均可直接到达,测量找到和的中点D、E,测得的长为1100m,则隧道的长度为______________m.答案:2200解析:解:∵点D、E分别为和的中点,∴是的中位线,∴(米),答:隧道的长度为2200米,故答案为:2200.17. 已知:在平行四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC 于F,S△AOE=3,S△BOF=5,则平行四边形ABCD的面积是_____.答案:32解析:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠BCA,∠AEF=∠CFE,又∵AO=CO,在△AOE与△COF中∴△AOE≌△COF∴△COF的面积为3,∵S△BOF=5,∴△BOC的面积为8,∵△BOC的面积=平行四边形ABCD的面积,∴▱ABCD的面积=4×8=32,故答案为32.18. 如图,在矩形中,平分,交于点,为的中点,为的中点,连接.若,.则:的长为______;的长为______.答案:①. ②.解析:解:矩形中,,,平分,,,;矩形中,,,,,中,,为的中点,为的中点,为的中位线,.故答案为:;.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19. 计算(1);(2).答案:(1)(2)小问1解析:解:原式;小问2解析:原式20. 已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF答案:详见解析解析:证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)21. 如图,,,,,求的面积.答案:30解析:解:如图,在中,∵,∴在中,∵∴∴为直角三角形.∴.22. 如图,在中,,现将它折叠,使点与重合,求折痕的长.答案:解析:解:由折叠的性质可得:,BD=CD,,∵,∴,∴AD=AB-BD=4-CD;在Rt△DAC中,由勾股定理得:,解得:,在Rt△DEC中,由勾股定理得:.答:折痕的长为.23. 如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF(1)求证:CD=EF;(2)求EF的长.答案:(1)见解析;(2)EF=.解析:(1)∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵使CF=BC,∴DE=FC,∴四边形CDEF是平行四边形,∴CD=EF.(2)∵四边形DEFC是平行四边形,∴CD=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴EF=CD==.24. 如图,在四边形中,,,E为对角线中点,F为边的中点,连接,.(1)求证:四边形是菱形;(2)连接交于点G,若,,求的长.答案:(1)证明见解析(2)4小问1解析:证明:为的中点,F为的中点,,,,,.又∵,,,四边形是平行四边形,是菱形.小问2解析:解:四边形是菱形,且,,,,,,.25. 如图,在中,,,.点从点出发沿方向以每秒个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点,运动的时间是秒.过点作垂直于点,连接,.(1)求,的长;(2)求证:;(3)当为何值时,为直角三角形?请直接写出结果.答案:(1),.(2)证明见解析.(3)当或时,为直角三角形.小问1解析:解:在中,,,,,设,则,由勾股定理得:,即,解得,(舍去),,.小问2解析:证明:,,在中,,,,又,.小问3解析:解:依题得:,,,,,①当时,,,,四边形为矩形,此时,即,解得,②当时,,,,又由可得,,四边形是平行四边形,,,,,即,解得;③当时,点到达点,点到达点,此时、、三点共线,当时,不存在;综上,当或时,为直角三角形.。
【经典版】 初二下学期数学期末试卷3套(精品含答案)
八年级(下册)数学期末测试卷一、选择题 (每小题3分,共30分) 1.下列计算中,正确的是 ﹙ ﹚A .123-⎪⎭⎫ ⎝⎛-=23 B .a 1+b 1=b a +1 C .b a b a --22=a+b D .0203⎪⎭⎫⎝⎛-=02.纳米是一种长度单位,1纳米=910-米。
已知某种花粉的直径为35000纳米,则用科学计数法表示该花粉的直径为 ( )A. m 6105.3-⨯B. m 5105.3-⨯C. m 41035-⨯D. m 4105.3⨯ 3.某八年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小华已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数 B.众数 C.极差 D.平均数 4.下列三角形中是直角三角形的是( )A.三边之比为7:6:5 B.三边之比为2:3:1 C.三边之长为2225,4,3 D.三边之长为13,14,15 5.正方形具有菱形不一定具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线平分一组对角 6.已知三点),(111y x P ),(222y x P )2,1(3-P 都在反比例函数xky =的图象上,若0,021><x x ,则下列式子正确的是( )A .120y y <<B .120y y <<C .120y y >>D .120y y >>7.如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD,AC 、BD 相交于点O ,OE⊥BD 交AD 于E ,则△ABE 的周长为( ) A .4cm B.6cm C.8cm D.10cm8.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AB 于点N,则MN等于( )A.56 B.59 C.512 D.5169.若31=+x x ,则1242++x x x 的值是 () A BCDO EA.81 B. 101 C. 21 D. 41 10.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ). A .不小于54m 3 B .小于54m 3C .不小于45m 3D .小于45m 3二、填空题 (每小题4分,共24分)11.当x=1时,分式nx mx -+2无意义,当x=4分式的值为零, 则n m +=________.12.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是___________. 13.如图,在菱形ABCD 中,∠A=060,E 、F 分别是AB 、AD 的中点,若 EF=2,则菱形ABCD的边长是____. 14.若分式方程931312-=++-x kx x 无解,则k =_________.15.如图,一次函数11y x =-与反比例函数22y x=的图象交于点A (2,1),B (-1,-2),则使12y y >的x 的取值范围是 .16.如图,正方形ABCD 的面积为25,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为_____________。
初二数学综合练习题(含答案)
八年级下学期期末考试数学试卷一、选择题(每小题3分,共36分)1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( )A .2个B .3个C .4个D .5个 2.下列运算正确的是( )A .y x y y x y --=-- B .3232=++y x y x C .y x y x y x +=++22 D .y x y x x y -=-+122 3.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( )A .b <cB .b >cC .b=cD .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( )A .1B .2C .3D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( ) A .1个 B .2个 C .3个 D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B 关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中A B OyxABCDEABEDC正确结论的个数为( )A .1个B .2个C .3个D .4个第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( ) A .①②③ B .②③④ C .①③④ D .①②③④ 二、填空题(每小题3分,共18分)13. 已知一组数据10,10,x ,8的众数与它的平均数相等,则这组数的中位数是 .14.观察式子:a b 3,-25a b ,37a b ,-49a b ,……,根据你发现的规律知,第8个式子为 .15.已知梯形的中位线长10cm ,它被一条对角线分成两段,这两段的差为4cm ,则梯形的两底长分别为 .16直线y=-x+b 与双曲线y=-x 1(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2= .17. 请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是______________.18.已知直角坐标系中,四边形OABC 是矩形,点A (10,0),点C (0,4),点D 是OA 的中点,点P 是BC 边上的一个动点,当△POD 是等腰三角形时,点P 的坐标为_________.三、解答题(共6题,共46分)19.( 6分)解方程:011)1(222=-+-+xx x x20. (7分) 先化简,再求值:2132446222--+-•+-+a a a a a a a ,其中31=a .21.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=xk2的图象交于A (1,-3),B(3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积.A B C D OxyABC EDOA BO xy ABO x yXYA DBC PO22.(8测验 类别 平 时期中 考试 期末 考试 测验1 测验2 测验3 测验4 成绩11010595110108112(1)计算小军上学期平时的平均成绩;(2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分?23.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .(1)判断四边形ADEF 的形状,并证明你的结论;(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形?24.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y (毫克)与时间x (分钟)成正比,药物喷洒完后,y 与x 成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.(1)求喷洒药物时和喷洒完后,y 关于x 的函数关系式;(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?期末 50%期中 40%平时 10% A F EDC B 10 8O x y (分钟) (毫克)B DAF EG C四、探究题(本题10分)25.如图,在等腰Rt △ABC 与等腰Rt △DBE 中, ∠BDE=∠ACB=90°,且BE 在AB 边上,取AE 的中点F,CD 的中点G,连结GF.(1)FG 与DC 的位置关系是 ,FG 与DC 的数量关系是 ;(2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.五、综合题(本题10分)26.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x2于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD .(1)求证:AD 平分∠CDE ;(2)对任意的实数b (b ≠0),求证AD ·BD 为定值;(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.BACA BCE O D xy参考答案二、填空题(每小题3分,共18分)13.10 14.-817a b 15.6cm ,14cm ,16.2,17.略,18.(2,4),(2.5,4),(3,4),(8,4) 三、解答题(共6题,共46分)19. X=-3220.原式=-a1,值为-321.(1)y=x -4,y=-x3. (2)S △OAB =422.(1)平时平均成绩为:)分(105411095105110=+++(2)学期总评成绩为:105×10%+108×40%+112×50%=109.7(分) 23.(1)(略) (2)AB=AC 时为菱形,∠BAC=150º时为矩形.24.(1)y=x 54(0<x ≤10),y=x80. (2)40分钟(3)将y=4代入y=x 54中,得x=5;代入y=x80中,得x=20.∵20-5=15>10. ∴消毒有效.四、探究题(本题10分)25.(1)FG ⊥CD ,FG=21CD. (2)延长ED 交AC 的延长线于M ,连接FC 、FD 、FM.∴四边形 BCMD 是矩形. ∴CM=BD.又△ABC 和△BDE 都是等腰直角三角形. ∴ED=BD=CM. ∵∠E=∠A=45º∴△AEM 是等腰直角三角形. 又F 是AE 的中点.∴MF ⊥AE ,EF=MF ,∠E=∠FMC=45º. ∴△EFD ≌△MFC.∴FD=FC ,∠EFD=∠MFC. 又∠EFD +∠DFM=90º ∴∠MFC +∠DFM=90º即△CDF 是等腰直角三角形. 又G 是CD 的中点.∴FG=21CD ,FG ⊥CD. 五、综合题(本题10分)26.(1)证:由y=x +b 得 A (b ,0),B (0,-b ).∴∠DAC=∠OAB=45 º又DC ⊥x 轴,DE ⊥y 轴 ∴∠ACD=∠CDE=90º ∴∠ADC=45º 即AD 平分∠CDE.(2)由(1)知△ACD 和△BDE 均为等腰直角三角形. ∴AD=2CD ,BD=2DE.∴AD ·BD=2CD ·DE=2×2=4为定值. (3)存在直线AB ,使得OBCD 为平行四边形.若OBCD 为平行四边形,则AO=AC ,OB=CD. 由(1)知AO=BO ,AC=CD设OB=a (a >0),∴B (0,-a ),D (2a ,a )∵D 在y=x2上,∴2a ·a=2 ∴a=±1(负数舍去)∴B (0,-1),D (2,1). 又B 在y=x +b 上,∴b=-1即存在直线AB:y=x -1,使得四边形OBCD 为平行四边形.。
北京市第一零一中学2023-2024学年八年级下学期期中数学试题(解析版)
北京一零一中2023-2024学年度第二学期期中练习初二数学一、选择题(本大题共8小题,共24分)在下列各题的四个选项中,只有一个是符合题意的.1. 函数中,自变量x 的取值范围是( )A. x >5B. x <5C. x≥5D. x≤5【答案】C【解析】【详解】根据题意得x-5≥0,所以x≥5,故选C.2. 在中,,,的对边分别是a ,b ,c ,下列条件中,不能判定是直角三角形的是( )A. B. C. ,, D. ,,【答案】C【解析】【分析】本题主要考查了直角三角形的判断,分别根据有一个角是直角的三角形是直角三角形,勾股定理的逆定理判断即可.【详解】∵,∴,∴是直角三角形.则A 不符合题意;设,,,根据题意,得,解得,,即,所以是直角三角形.ABC A ∠B ∠C ∠ABC A B ∠∠=︒+90::3:2:1A B C ∠∠∠=1a =1b =1c =1a =b =2c =A B ∠∠=︒+90=90C ∠︒ABC 3A x ∠=2B x ∠=C x ∠=23180x x x ++=︒30x =︒390x =︒=90A ∠︒ABC则B 不符合题意;∵,∴是等边三角形.则C 符合题意;∵,∴是直角三角形;则D 不符合题意.故选:C .3. 将一次函数的图象沿y 轴向上平移4个单位长度,所得直线的解析式为( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键.根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式.【详解】解: 一次函数的图象沿y 轴向上平移4个单位长度, 所得直线的解析式为.故选A .4. 在平行四边形中,,则的度数为( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.根据平行四边形的对角相等、邻角互补以及图形可知与是对角,即可求出和的度数;再根据与是邻角,即可求得.【详解】解:如图:∵四边形为平行四边形,a b c ==ABC 2224a b c +==ABC 21y x =-23y x =+25y x =-24y x =-24y x =+ 21y x =-∴21423y x x =-+=+ABCD 100A C ∠+∠=︒B ∠50︒80︒100︒130︒A ∠C ∠A ∠C ∠B ∠A ∠B ∠ABCD∴.∵,∴,∴.故选D .5. 下列各曲线中,不能表示y 是x 的函数的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了函数的概念,“一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数”,熟悉函数的定义是解决问题的关键.根据定义,逐一判定是否对于的每一个确定的值,都有唯一确定的值与其对应,即可解决问题.【详解】解:A :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;B :在x 正半轴一段范围,对于x 的每一个取值,y 有两个值与之对应,不是的函数,该选项符合题意;C :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;D :对于x 的每一个取值,y 都有唯一确定的值与之对应,是的函数,该选项不符合题意;故选:B .6. 如图,在菱形中,对角线,相交于点O ,E 是的中点,连接,若,.则四边形的周长为( )A. 8B. C. D. 【答案】C 180A B A C ∠+∠=︒∠=∠,100A C ∠+∠=︒50A ∠=︒130B ∠=︒x y x y x y x x y y x y x y x y x ABCD AC BD ABEO OB =120BAD ∠=︒AEOD 6+8+【分析】本题考查了菱形的性质,直角三角形斜边中线等于斜边一半的性质以及勾股定理的应用,熟练掌握相关知识点是解题的关键.利用菱形的性质和勾股定理求出菱形的边长,利用直角三角形的中位线定理得出的长,即可计算出菱形的周长.【详解】解: 为菱形,,对角线,相交于点O ,,,,在中,,,,设,则,利用勾股定理得,,即,解得,(舍去), ,E 是的中点,, 四边形的周长为:.故选:C .7. 能说明命题“若x 为无理数,则也是无理数”是假命题的反例是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.逐一计算每个选项的平方数,按照无理数定义验证即可解决问题.【详解】解:A :,是无理数,不符合题意;B :,不是无理数,符合题意;C :,是无理数,不符合题意;D :EO ABCD ABCD 120BAD ∠=︒AC BD ∴AC BD ⊥60BAO DAO ∠=∠= AB AD BC CD ===OB OD ==Rt AOB △ 60BAO ∠= ∴30ABO = ∠∴12AO AB =AO x =2AB x =222OB AO AB +=222((2)x x +=12x =22x =-∴4AB AD == AB ∴122AE EO AB ===∴AEOD 2248AE EO AD OD +++=+++=+2x π122πx =2212x ==221)6x =-=-225x =+=+8. 如图,某自动感应门的正上方A 处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高米的学生正对门,缓慢走到离门米的地方时(米),感应门自动打开,则人头顶离感应器的距离等于( )A. 米B. 米C. 2米D. 米【答案】A【解析】【分析】本题考查了矩形的判定与性质,勾股定理.熟练掌握矩形的判定与性质,勾股定理是解题的关键.如图,作于,则四边形是矩形,,,,由勾股定理得,【详解】解:如图,作于,则四边形是矩形,∴,,∴,由勾股定理得,,故选:A .二、填空题(本大题共8小题,共24分)9. 已知点,,在一次函数的图象上,则,的大小关系是______.【答案】【解析】2.5AB =1.6CD 1.21.2BC =AD 1.5 1.8 2.4DE AB ⊥E BCDE 1.2DE BC == 1.6BE CD ==0.9AE =AD =DE AB ⊥E BCDE 1.2DE BC == 1.6BE CD ==0.9AE = 1.5AD ==()11,A y -()23,B y 2y x =-+1y 2y 12y y >【分析】本题主要考查了比较一次函数值的大小,根据解析式得到y 随x 增大而减小,再由即可得到答案.【详解】解:∵一次函数解析式为,,∴y 随x 增大而减小,∵知点,,在一次函数的图象上,且,∴,故答案为:.10. 已知x+1,则代数式x 2﹣2x +1的值为____.【答案】2【解析】【分析】利用完全平方公式将所求的代数式进行变形,然后代入求值即可.【详解】解:原式为:,将代入上式,原式故答案为:2.【点睛】此题考查了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.11. 如图,在平面直角坐标系中,函数与的图象相交于点,则关于x 的不等式的解集是______.【答案】13-<2y x =-+10k =-<()11,A y -()23,B y 2y x =-+13-<12y y >12y y >221x x -+()2=1x -1x =+)22=(1)=11=2x -+-xOy 1y kx =23y ax =+()1,2A -3kx ax <+1x >-【解析】【分析】本题考查了一次函数与一元一次不等式的关系,观察图象写出直线在直线下方所对应的自变量的范围即可.【详解】解:观察图象可知,当时,直线在直线下方,故关于x 的不等式的解集是,故答案为:.12. 如图1,将长为,宽为的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.若图2中阴影小正方形的面积为49.则a 的值为______.【答案】4【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质,根据题意可得图2中阴影小正方形的边长为,再由图2中阴影小正方形的面积为49即可求出答案.【详解】解:由题意得,图2中阴影小正方形的边长为,∵图2中阴影小正方形的面积为49,∴图2中阴影小正方形的边长为7,∴,∴,故答案为:4.13. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点A 表示的数是,若以点为圆心,的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.1y kx =23y ax =+1x >-1y kx =23y ax =+3kx ax <+1x >-1x >-23a +2a 233a a a +-=+233a a a +-=+37a +=4a =1AC BC BD ===2-A AD E E A E【答案】【解析】【分析】根据勾股定理可以求得和的长,再根据和,点表示的数为,即可写出点表示的数.【详解】解:,,,,,点表示的数是,点表示的数为故答案为:【点睛】本题考查勾股定理、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.14. 已知平面直角坐标系下,点A 、C 的坐标为,,点B 的坐标为.若的面积为5,则b 的值为______.【答案】8或【解析】【分析】本题考查了平面直角坐标系中的坐标与图形,利用横、纵坐标得到线段的长度解题的关键.根据点B 、C 的坐标三角形的底,根据点A 的坐标可知边上的高,利用三角形面积计算公式求解即可.【详解】点A 、C 的坐标为,,点B 的坐标为,的底为,高为2,的面积为5,2-+AB AD AD AE A 2-E 1AC BC BD === 90ACB ABD ∠=∠=︒AB ∴===AD ∴===AD AE = AE ∴= A 2-∴E 2-+2-()1,2A ()3,0C (),0Bb ABC 2-BC ()1,2A ()3,0C (),0B b ∴ABC 3BA b =- ABC,,或,故答案为:8或.15. 漏刻是我国古代的一种计时工具.据史书记载,西周时期就已经出现了漏刻,这是中国古代人民对函数思想的创造性应用.小明同学依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现水位是时间的一次函数,如表是小明记录的部分数据,则时.h 的值为______.…1235…… 2.4 2.8 3.24…【答案】3.6【解析】【分析】本题考查了待定系数法求一次函数解析式,解二元一次方程组,掌握待定系数法求一次函数解析式是解题的关键.设水位h (cm )是时间t (min )的一次函数解析式为,根据表格代入数据解方程组即可求出解析式,将代入即可求解.【详解】解:设水位h (cm )是时间t (min )的一次函数解析式为,根据表格得,解得,一次函数解析式为,当,.故答案为:3.6.16. 如图,在中,,于点E ,于点F ,、交于点H ,、的延长线交于G ,给出下列结论:①;②点D 是中点:③;④若平分,则;其中一定正确的结论有______.(填序号)1|3|252ABC S b =⨯-⨯=△∴|3|5b -=8b ∴=2b =-2-()cm h ()min t 4t =cm ()min t ()cm h h kt b =+4t =h kt b =+2.42 2.8k b k b +=⎧⎨+=⎩0.42k b =⎧⎨=⎩∴0.42h t =+4t =0.442 3.6h =⨯+=ABCD Y 45DBC∠=︒DE BC ⊥BF CD ⊥DE BF AD BF A BHE ∠=∠AG AB BH =BG DBC ∠)1BE CE =【答案】①③④【解析】【分析】本题考查了平行四边形的性质、等腰三角形的性质,全等三角形的性质和判定,①由证明即可;③先证明,从而得到,然后由平行四边形的性质可知;④连接,证是等腰直角三角形,,设,得出,进而得出.②无法证明点D 是中点.【详解】解:,,,,四边形是平行四边形,,,故①正确;和中,,,,,正确;连接,如图:平分,,在HBE CBF HEB CFB ∠=∠∠=∠,BHE DEC △≌△BH DC =AB BH =CH CEH △DH CH =EH EC a ==DH CH ===)1BE DE EC ==+AG DE BC BF CD ⊥⊥ ,90DEC HFD ∴∠=∠=︒9090DHF EDC EDC C ∴∠+∠=︒∠+∠=︒,DHF C ∴∠=∠ ABCD AB CD A C ∴=∠=∠,DHF BHE ∠=∠ A BHE∴∠=∠BHE DCE △HBE CDE BE DEBEH DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BHE DCE ∴ ≌BH DC EH EC ∴==,AB CD = AB BH ∴=,③CH BG 45DBC DBC ∠∠=︒,22.5HBE ∴∠=︒,,是等腰直角三角形,,,,设,,,,④正确∵是平行四边形,∴,∴,,又,∴三个角对应相等无法证明全等,∴无法证明,即无法证明点D 是中点,故②错误,综上①③④正确,故答案为:①③④.三、解答题:(本大题共10小题,共52分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1(2)【答案】(1)(222.5CDE ∴∠=︒90EH EC DEC =∠=︒ ,CEH ∴ 45EHC CDE HCD ∴∠=︒=∠+∠22.5HCD CDE ∴∠=︒=∠DH CH ∴=EH EC a ==DH CH ∴===)1DE DH HE a a ∴=+=+=+))11BE DE a EC ∴===ABCD AG BC DGF CBF ∠=∠GDF BCF ∠=∠90DFG CFB ∠=∠=︒DFG CFB DG CB =AG +2+4【解析】【分析】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.(1)先根据二次根式的乘除法逐项化简,再合并同类二次根式即可.(2)先将转化为再利用平方差公式,即可求解.【小问1详解】;【小问2详解】18. 如图,在平行四边形中,点E ,F 对角线上,且,连接、、、、求证:四边形是平行四边形.【答案】证明见解析【解析】【分析】根据平行四边形的性质,得到,,进而得到,即可证明四边形是平行四边形.【详解】证明:连接交于点O,2+=+4=+2=+22⎡⎤=-⎢⎥⎣⎦()32=-=ABCD AC AE CF =DE EB BF FD DEBF OA OC =OB OD =OE OF =DEBF BD AC四边形为平行四边形,,,,,四边形为平行四边形.【点睛】本题考查了平行四边形的性质与判定,熟练掌握相关性质与判定定理是解题关键.19.(1)直接写出和的值:______,______;(2)求的值.【答案】(11.(2)1.【解析】【分析】本题考查二次根式的混合运算和异分母分式的加法运算.(1)分别把,和进行计算即可;(2)先进行异分母分式的加法运算,再将和的值代入即可.【小问1详解】解:由已知,,1. ABCD OA OC ∴=OB OD =AE CF = OE OF ∴=∴DEBF a =b =a b +ab a b +=ab =1111s a b=+++a =b =a b +ab a b +ab a b +==1ab ===【小问2详解】解:.20. 如图,已知网格中有一个,顶点A 、B 、C 、D 都在格点上,要求仅利用已有的格点和无刻度直尺作图(注意:不能用圆规),找出格点P (一个即可),使平分.小明和小天分别采用了不同的方法:小明:在边上找到格点P ,连接,可知平分.小天:在边上找到某个格点E ,连接,发现线段上存在格点P ,使平分.请根据两人的思路,分别在图1和图2中完成小明和小天的图形(标出两人所说的点,画出相应的图形)【答案】见解析【解析】【分析】本题主要考查了等腰三角形的性质与判定,平行四边形的性质,根据两人的思路进行作图求解即可.【详解】解:如图1和图2所示,即为所求;图1中易证明,则,再由平行四边形的性质结合平行线的性质可得,则,则点P 即为所求;图2中,易证明,点P 为的中点,则由三线合一定理可得平分.21. 如图.在中,点D 、E 、F 分别是边、、的中点,且.求证:四边形为矩形.()()11112111111b a a b s a b a b a b ab +++++=+====+++++++ABCD Y BP ABC ∠AD BP BP ABC ∠BC AE AE BP ABC ∠AB AP =ABP APB ∠=∠APB CBP ∠=∠ABP CBP ∠=∠AB BE =AE BP ABC ∠ABC AB AC BC 2BC AF =ADFE【答案】见解析【解析】【分析】本题考查了三角形中位线的性质、矩形的判定、等腰三角形的性质以及三角形的内角和.先根据中位线的性质得到,得到四边形为平行四边形,再利用等腰三角形的性质和三角形内角和证明,则求证可证.【详解】证明:∵点D 、E 、F 分别是边、、的中点,∴,,∴四边形为平行四边形,∵F 为中点,,∴,∴,∵,∴,则,即,∴四边形为矩形.22. 探究函数性质时,我们经历了列表、描点、连线画出函数的图象,观察分析图象特征,概括函数性质的过程.小玉同学根据学习函数的经验,对函数进行了探究.下面是小玉的探究过程,请补充完整:(1)函数的自变量取值范围是全体实数;(2)绘制函数图象①列表:下表是x 与的几组对应值:x…01234…EF AB ∥DF AC ∥ADFE 90BAC ∠=︒AB AC BC EF AB ∥DF AC ∥ADFE BC 2BC AF =BF AF CF ==,B BAF FAC C ∠=∠∠=∠180B BAF FAC C ∠+∠+∠+∠=︒()2180BAF FAC ∠+∠=︒90BAF FAC ∠+∠=︒90BAC ∠=︒ADFE 112y x =-+112y x =-+1y 2-1-…543b 345…其中,______;②描点、连线:在同一平面直角坐标系中,描出上表中各组数值所对应的点,并画出函数的图象;(3)结合函数图象,探究函数性质①函数图象上的最低点坐标是______;②的数图象关于直线______对称;(4)已知函数图象和函数的图象无交点,直接写出m 的取值范围是______.【答案】(1)原说法正确,理由见详解 (2)①2,②见详解(3)①,②1. (4)【解析】【分析】本题主要考查了函数的图像和性质.(1)根据对于任意x ,是否有意义回答即可.(2)①把代入函数即可求出b的值. ②描点画出函数图像即可.(3)①根据函数图像即可得出答案,②根据函数图像即可得出答案,(4)根据可得出当时,即可求出m 取值范围.【小问1详解】解:对于任意x ,均有意义上.的1y b =xOy ()1,x y 1y 1y 1y x =22x y m =+112y x =-+()1,232m <1y 1x =1122y x =-+≥1x =122m +<1y∴函数的自变量取值范围是全体实数【小问2详解】①当时,,∴,故答案为:2.②的图象如下:【小问3详解】①函数图象上的最低点坐标是,故答案为:②函数图象关于直线对称,故答案为:1.【小问4详解】∵,且当时,,∴当时,,即,解得:,故答案为:.23. 一次函数的图像与轴交于点,且经过点.(1)当时,求一次函数的解析式及点的坐标;112y x =-+1x =1121122y x =-+=-+=2b =1y 1y ()1,2()1,21y 1x =1122y x =-+≥1x =12y =1x =22y <122m +<32m <32m <()40y kx k k =+≠x A ()2,B m =2m A(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.【答案】(1)y=x +,点A 的坐标为(-4,0) (2)【解析】【分析】(1)当m =2时,把点C 的坐标代入y =kx +4k (k ≠0),即可求得k 的值,得到一次函数表达式,再求出点A 的坐标即可;(2)根据图像得到不等式,解不等式即可.【小问1详解】解:∵m =2,∴将点C (2,2)代入y =kx +4k ,解得k =;∴一次函数表达式y =x +,当y =0时,x +=0,解得x =-4∵一次函数y =x +的图像与x 轴交于点A ,∴点A 的坐标为(-4,0).【小问2详解】解:如图,y =kx +4k (k ≠0)过定点,∵当时,,对于x 的每一个值,函数的值大于一次函数y =kx +4k (k ≠0)的为1x >-x =y x ()40y kx k k =+≠k 134313k ≤-13134313431343()=+4k x ()4,0-1x =-1y x ==-=y x ()=+4k x值,∴,,解得k ≤−.∴k≤−.【点睛】本题考查了待定系数法求一次函数解析式,利用函数图像解不等式,数形结合是解答本题的关键.24. 如图,一次函数的图象与x 轴交于点A ,与y 轴交于点B ,点D 为x 轴上的点(在点A 右侧),为的垂直平分线,垂足为点E,且,连接.(1)求证:四边形是菱形;(2)连接,求的长.【答案】(1)证明见解析(2)【解析】【分析】本题考查了菱形的判定和性质,勾股定理,平行四边形的判定和性质,直角三角形的性质,熟练掌握菱形的判定与性质是解题的关键;(1)根据为的垂直平分线,得E 为中点,,根据,再证,得,判定四边形是平行四边形,根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)根据一次函数与x 、y 轴交点得出,,再根据勾股定理求出,根据菱形的性质求出,再次利用勾股定理求出,依据直角三角形的性质定理即可得出.【小问1详解】为的垂直平分线,,,,,1x =-41k k -+≤-1313443y x =-+AC BD BC OD ∥CD ABCD OE OE AC BD BD 90BEC DEC DEA ∠=∠==︒BC OD ∥BEC DEA △≌△BC DA =ABCD OA OB AB AD BD OE AC BD BE DE ∴=90BEC DEC DEA ∠=∠==︒ BC OD ∥BCE DAE ∴∠=∠在和中,,,四边形是平行四边形,为的垂直平分线,四边形是菱形;【小问2详解】一次函数的图象与x 轴交于点A ,与y 轴交于点B ,点A 坐标为,点B 坐标为,,,在中,由(1)得:四边形是菱形,,E 为中点,,在中,E 为中点,连接,.25. 已知,矩形,,对角线、交于点O ,,点M 在射线上,满足,作于E ,的延长线交于F BEC DEA △BEC DEA BE DEBCE DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BEC DEA △≌△BC DA ∴=∴ABCD AC BD ∴ABCD 443y x =-+∴()3,0()0,4∴3OA =4OB =Rt AOB△5AB ===ABCD 5AD AB ∴==BD 8OD OA AD ∴=+=Rt AOB△AB === BDOE 12OE AB ∴===ABCD AD AB >AC BD DAC α∠=BC 2DMC α∠=DE AC ⊥DE BC(1)如图1,点M 在线段上①依题意补全图形,并直接写出______(用含的式子表示)②连接,请用等式表示线段与的数量关系,并证明.(2)当时,设,,请直接写出线段的长(用含m 、n 的式子表示)【答案】(1)①画图见解析,;②,证明见解析 (2)或或【解析】【分析】(1)①根据题意先补全图形,由矩形的性质得到,再根据同角的余角相等得到;②如图所示,延长交于N ,设交于G ,由矩形的性质可得,,先证明,再证明,得到,则;再证明,得到,可得;证明,得到,即可推出;(2)分当点M 在上,且时,当点M 在上,且时,当点M 在线段延长线上时,三种情况画出对应的图形讨论求解即可.【小问1详解】解:①补全图形如下:∵四边形是矩形,∴,∴,∵,∴,∴;BC CDF ∠=αOM OM DF 30α≠︒AD m =CF n =FM α12OM DF =32n m -32m n -2m n +90ADC ∠=︒CDF DAC α==∠∠MO AD MO DF AC BD OA OB OC OD ====,90BAD ∠=︒DBC α∠=BDM DBM α∠==∠BM DM =MO BD ⊥GFM GMF GND GDN ==∠∠,∠∠GF GM GN GD ==,DF MN =()AAS AON COM ≌ON OM =12OM DF =BC FC MC >BC FC MC <BC ABCD 90ADC ∠=︒90DAC DCA ∠+∠=︒DE AC ⊥90CDF DCE ∠+∠=︒CDF DAC α==∠∠故答案为:;②,证明如下:如图所示,延长交于N ,设交于G ,∵四边形是矩形,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∵,∴,,∴,∴,∴,即;∵,∴,又∵,∴,∴,α12OM DF =MO AD MO DF ABCD AC BD OA OB OC OD ====,90BAD ∠=︒DAC α∠=90OAB OBA α==︒-∠∠AB CD 90OAB OBA ODC OCD α====︒-∠∠∠∠DBC α∠=2DMC DBM BDM α=+=∠∠∠BDM DBM α∠==∠BM DM =MO BD ⊥DF AC AD BC ⊥,∥90DFC ADE α==︒-∠∠90DNM NMB α==︒-∠∠GFM GMF GND GDN ==∠∠,∠∠GF GM GN GD ==,GF GD GM GN +=+DF MN =AD BC ∥OAN OCM ONA OMC ==∠∠,∠∠OA OC =()AAS AON COM ≌ON OM =∴,即;【小问2详解】解:如图所示,当点M 在上,且时,取线段的中点N ,连接,则是的中位线,∴,;由矩形的性质可得,∴,∴,由(1)得,∴,∴,∴四边形是平行四边形,∴,∴;如图所示,当点M 在上,且时,取线段的中点N ,连接,则是的中位线,∴,;由矩形的性质可得,2DF MN OM ==12OM DF =BC FC MC >DF ON CN ,ON DBF 12ON BF =ON BF ∥90BC AD m DCF ===︒,∠12CN FN DF ==90CN OM NCF NFC α===︒-,∠∠90EMF α=︒-∠EMF NCF =∠∠CN OM ∥ONCM 12CM ON BF ==()333222n m FM BC BF CM BC BF m m n -=--=-=--=BC FC MC <DF ON CN ,ON DBF 12ON BF =ON BF ∥90BC AD m DCF ===︒,∠∴,∴,由(1)得,∴,∴,∴,∴四边形是平行四边形,∴,∴;如图所示,当点M 线段延长线上时,延长交于N ,∵,∴,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴,在12CN FN DF ==90CN OM NCF NFC α===︒-,∠∠OBM OM BD α=∠,⊥90OMB α=︒-∠EMF NCF =∠∠CN OM ∥ONCM 12CM ON BF ==()333222m n FM BF CM BC BF BC m n m -=+-=-=--=BC AC DM ,AD BC ∥ACB DAC α∠=∠=MCN ACB α==∠∠2DMC N MCN α=+=∠∠∠N MCN DAC α===∠∠∠CM MN DA DN m ===,90DFM α=︒-∠18090290FDM ααα=︒-︒+-=︒-∠FDM DFM ∠=∠MF DM =n CM m CM +=-2m n CM -=∴;综上所述,的长为或或.【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,矩形的性质,三角形中位线定理,平行四边形的性质与判定等等,利用分类讨论的思想求解是解题的关键.26. 在平面直角坐标系中,对于点和直线.作点关于的对称点,点是直线上一点,作线段满足且,如果线段与直线有交点,则称点是点关于直线和点的“垂对点”.如下图所示,点是点关于直线和点的“垂对点”.2m n MF CF CM +=+=FM 32n m -32m n -2m n +xOy M l M l M 'N l M P 'M P M N ''=90PM N '∠=︒M P 'l P M l N P M l N(1)如图1,已知点,若点,则点关于轴和点的“垂对点”的坐标为______;若点,求点关于轴和点的“垂对点”的坐标;(2)若点、点是直线上的点,点,且满足点是点关于轴和点的“垂对点”,直接写出点的坐标______;(3)已知点,,,,其中.点在四边形的边上,直线,若四边形的边上存在点是点关于直线和点的“垂对点”,请直接写出的取值范围(用含的式子表示)______.【答案】(1)①;②(2)点的坐标为:或 (3)【解析】分析】(1)①根据“垂对点”定义,结合坐标系,即可求解;②点,作关于轴的对称点,过点作轴,过点作的垂【()2,0M -①()10,2N -M y 1N ②()20,4N M y 2N P M P 2y x =--()5,0N -P M x N M (),0A a -(),0B a (),2C a a (),2D a a -0a >M ABCD :l y x t =+ABCD P M l N t a ()0,2()2,2-P ()20-,()1,3-55a t a-≤≤()20,4N ()2,0M -y ()2,0M 'M 'AB y ∥2,P N AB线段,垂足分别为,进而根据“垂对点”定义,结合坐标系,证明,得出的坐标为,即可求解;(2)当在轴上方时,过点作轴,过点作的垂线段,垂足分别为,同(1)可得,得出,根据在上,代入即可求解,当在轴下方时,同法可求;(3)当时,设正方形的中心为,得出,,将绕点逆时针旋转得到,与交于点,证明四边形是正方形,得出是等腰直角三角形,确定点的轨迹,进而根据点与点重合时为临界点,连接,进而得出,结合图形可得当时,存在点是点关于直线和点的“垂对点”,根据对称性即可得出.【小问1详解】解:①如图所示,点,则点关于轴和点的“垂对点”的坐标为如图所示,点,作关于轴的对称点,过点作轴,过点作的垂线段,垂足分别为,,B A ()2AAS AN M BM P ''≌P ()2,2-M x M 'AB x ∥,P N AB ,B A ()AAS ANM BMP ' ≌()2,27P m -+P 2y x =--M x 0t >ABCD Q ()0,Q a (),Q a t t '-M SN ' M '90︒M TP ' EN TP E M SET 'EHK P P C D E '5t a =5t a ≤P M l N 55a t a -≤≤()10,2N -M y 1N ()0,2()20,4N ()2,0M -y ()2,0M 'M 'AB y ∥2,P N AB ,B A根据新定义可得:,∴,∴,∴,∴的坐标为,∴点关于轴和点的“垂对点”的坐标为【小问2详解】解:如图所示,当在轴上方时,过点作轴,过点作的垂线段,垂足分别为,2290,N M P N M PM '''∠=︒=290AM N PM B M PB '''∠=︒-∠=∠()2AAS AN M BM P ''≌24,2AM PB AN BM ''====P ()2,2-M y 2N P ()2,2-M x M 'AB x ∥,P N AB ,B A同(1)可得,∴∵点、点是直线上的点,设,则,∵点,∴∴,即又∵在上,∴,解得:∴;当在轴下方时,如图所示,()AAS ANM BMP ' ≌,AN M B AM PB ''==M P 2y x =--(),2M m m --(),2M m m '+()5,0N -5,2AM m AN m '=+=--()()()225P m n m m +--+++,()2,27P m -+P 2y x =--2722m +=-72m =-()2,0P -M x∵点、点是直线上的点,设,则,∵点,∴∴,,∴,即又∵在上,∴,解得:∴综上所述,点的坐标为:或【小问3详解】解:如图所示,当时,M P 2y x =--(),2M m m --(),2M m m '+()5,0N -5,2AM m AN m '=+=+52AB m m =+--5BP AM m ==+()()225P m m m m +++-+,()22,3P m +-P 2y x =--()3222m -=-+-12m =-()1,3P -P ()20-,()1,3-0t >设正方形的中心为,∵点,,,,其中.∴即,∵关于直线直线的对称点为,则∴,∴,设直线与坐标轴的交点分别为则,∴,则是等腰直角三角形,则∵在直线上,设绕点逆时针旋转(根据新定义,与直线有交点)得到,∴是等腰直角三角形,∵点是点关于直线和点的“垂对点”,∴是等腰直角三角形,设与的交点为,将绕点逆时针旋转得到,与交于点,如图所示,ABCD Q (),0A a -(),0B a (),2C a a (),2D a a -0a >02,20a a a Q -++⎛⎫ ⎪⎝⎭()0,Q a Q :l y x t =+Q '90Q FQ '∠=︒FQ FQ t a '==-(),Q a t t '-:l y x t =+,F H()()0,,,0F t H t -OF OH =OFH 45HFQ ∠=︒N :l y x t =+N Q '90︒Q N ''l N 'NQN ' P M l N M NP ' MM 'FN S M SN ' M '90︒M TP ' EN TP E∴∵∴,∴四边形是矩形又∵∴四边形是正方形,∴∵设与轴的交点为,与轴的交点为点,则,,是等腰直角三角形,当在正方形的边上运动时,在正方形上运动,当点在上运动时,在直线上运动,∴当点与正方形有交点时,存在点是点关于直线和点的“垂对点”,即点与点重合时为临界点,连接,如图所示,90M SN M TP ''∠=∠=︒M S ST'⊥90M SN M SE ''∠=∠=︒M SET 'M S M T''=M SET 'TP NE⊥45FHO ∠=°TP x K y G EHK OKG EFG M ABCD M 'A B C D ''''N y x t =+P TE P ABCD P M l N P C D E '∵四边形是正方形,又∴轴,∵是等腰直角三角形,又,,则的纵坐标之差为,∴,,∵是等腰直角三角形,∴,∴∴当时,存在点是点关于直线和点的“垂对点”,根据对称性可得,故答案为:.【点睛】本题考查了坐标与图形,一次函数与坐标轴交点问题,等腰直角三角形的性质与判定,正方形的性质,全等三角形的性质与判定,轴对称的性质,熟练掌握一线三等角证明全等三角三角形确定点的坐标是解题的关键.M TES '45M ES EHK'∠=︒=∠D E x '∥EFG (),Q a t t '-Q F D E ''∥,F E a (),E a t a --2FG a =GKO 3OG OK OB BK OB BC a ==+=+=5t a=5t a ≤P M l N 55a t a -≤≤55a t a -≤≤。
八年级数学(下)第十九章《正比例函数》同步练习题(含答案)
八年级数学(下)第十九章《正比例函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数y=(k-1)2k x为正比例函数,则A.k≠±1B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1,故选C.2.若y=x+2-b是正比例函数,则b的值是A.0 B.-2 C.2 D.-0.5【答案】C【解析】因为y=x+2-b是正比例函数,所以2-b=0,所以b=2,故选C.3.下列问题中,两个变量成正比例的是A.等腰三角形的面积一定,它的底边和底边上的高B.等边三角形的面积和它的边长C.长方形的一边长确定,它的周长与另一边长D.长方形的一边长确定,它的面积与另一边长【答案】D【解析】A.等腰三角形的面积一定,它的底边和底边上的高成反比例,故本选项错误;B.等边三角形的面积是它的边长的二次函数,故本选项错误;C.长方形的一边长确定,它的周长与另一边长成一次函数,故本选项错误;D.长方形的一边长确定,它的面积与另一边长成正比例,故本选项正确,故选D.4.关于函数y=2x,下列结论中正确的是A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图象不经过(2,1),故错误;B:k=2>0,∴函数图象经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误,故选C.5.正比例函数y=(k-3)x的图象经过一、三象限,那么k的取值范围是A.k>0 B.k>3 C.k<0 D.k<3【答案】B【解析】由正比例函数y=(k-3)x的图象经过第一、三象限,可得:k-3>0,则k>3,故选B.6.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随x的增大而增大,∴-3m>0,解得m<0,∴P(m,5)在第二象限,故选B.7.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y=kx(k≠0)中得,k=2>0,∴函数图象经过原点,且经过第一、三象限,故选C.8.如图,三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是A.a>b>c B.c>b>a C.b>a>c D.b>c>a【答案】C【解析】首先根据图象经过的象限,得a>0,b>0,c<0,再根据直线越陡,|k|越大,则b>a>c.故选C.二、填空题:请将答案填在题中横线上.9.已知正比例函数y =(4m +6)x ,当m __________时,函数图象经过第二、四象限.【答案】<-1.5【解析】∵函数经过第二、四象限,∴4m +6<0,即m <-1.5,故答案为:m <-1.5.10.已知直线y =(2-3m )x 经过点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,则m 的取值范围是__________.【答案】m >23【解析】∵直线y =(2-3m )x 经过点A (11x y ,)、B (22x y ,),当12x x <时,有12y y >,∴此函数是减函数,∴2-3m <0,解得m >23,故答案为:m >23. 三、解答题:解答应写出文字说明、证明过程或演算步骤.11.已知y =(k -3)x +2k -9是关于x 的正比例函数,求当x =-4时,y 的值.【解析】当290k -=且30k -≠时,y 是x 的正比例函数,故当k =-3时,y 是x 的正比例函数,∴6y x =-,当x =-4时,y =-6×(-4)=24.12.已知4y +3m 与2x -5n 成正比例,证明:y 是x 的一次函数.【解析】由题意,设4y +3m =k (2x -5n )(k ≠0), ∴1(35)24k y x m kn =⋅-+. ∵k 是不为0的常数.∴2k ,1(35)4m kn -+为常数,且02k ≠, ∴y 是x 的一次函数.13.已知正比例函数y =(2m +4)x ,求:(1)m 为何值时,函数图象经过第一、三象限?(2)m 为何值时,y 随x 的增大而减小?(3)m 为何值时,点(1,3)在该函数的图象上?【解析】(1)∵函数图象经过第一、三象限,∴2m +4>0,∴m >-2.(2)∵y 随x 的增大而减小,∴2m +4<0,∴m <-2.(3)依题意得(2m+4)×1=3,解得12m=-.14.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【解析】(1)∵点A的横坐标为3,且△AOH的面积为3∴点A的纵坐标为-2,点A的坐标为(3,-2),∵正比例函数y=kx经过点A,∴3k=-2解得k=-23,∴正比例函数的解析式是y=-23 x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5,∴点P的坐标为(5,0)或(-5,0).。
初二下学期数学练习题--含答案和解析
初二下学期数学练习题--含答案和解析初二下学期数学练题一、选择题(每小题3分)1.下列数中是无理数的是()。
A。
2.B。
-3.C。
π。
D。
02.下列关于四边形的说法正确的是()。
A。
四个角相等的菱形是正方形B。
对角线互相垂直的四边形是菱形C。
有两边相等的平行四边形是菱形3.使代数式有意义的x的取值范围是()。
A。
x。
2.B。
x ≥ 2C。
x。
3.D。
x ≥ 2且x ≠ 34.如图,将△XXX绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()。
A。
55°。
B。
75°。
C。
95°。
D。
110°5.已知点(-3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()。
A。
y1.y2.B。
y1 = y2C。
y1 < y2.D。
不能比较6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()。
A。
6.B。
12.C。
20.D。
247.不等式组m+2n。
1的解集是()。
A。
m < 1.B。
m ≥ 1C。
m ≤ 1.D。
m。
18.若+|2a-b+1|=0,则(b-a)2016的值为()。
A。
0.B。
1.C。
.D。
-9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()。
A。
①。
B。
②。
C。
③。
D。
④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()。
①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形。
A。
①③。
B。
②③。
C。
③④。
D。
②④11.如图,在□ABCD中,已知AD=8㎝,AB=6㎝,DE平分∠ADC交BC边于点E,则BE等于()。
A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二下学期数学练习题一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形 B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠34.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.247.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>18.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是( )A .①B .②C .③D .④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( )①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A .①③B .②③C .③④D .②④11.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A. 2cm B. 4cmC. 6 cmD. 8cm12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少?( )A .1.5B .2C .2.5D .313.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( )A .梯形B .矩形C .菱形D .正方形 14.已知xy >0,化简二次根式x的正确结果为( )A .B .C .﹣D .﹣15.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打( )A .六折B .七折C .八折D .九折16.已知2+的整数部分是a ,小数部分是b ,则a 2+b 2=( )A .13﹣2B .9+2C .11+D .7+417.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y (公里)和所用时间x (分)之间的函数关系,下列说法中错误的是( )ABCD第11题图EA.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣119.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2420.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为.24.若关于x的不等式组有4个整数解,则a的取值范围是.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016学年山东省泰安市新泰市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】根据无理数的判定条件判断即可.【解答】解: =2,是有理数,﹣ =﹣2是有理数,∴只有π是无理数,故选C.【点评】此题是无理数题,熟记无理数的判断条件是解本题的关键.2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】根据菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解:A、四个角相等的菱形是正方形,正确;B、对角线互相平分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线平分且垂直的四边形是菱形,错误;故选A【点评】本题考查了对菱形、正方形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】根据旋转的性质可得∠B=∠B′,然后利用三角形内角和定理列式求出∠ACB,再根据对应边AC、A′C 的夹角为旋转角求出∠ACA′,然后根据∠BCA′=∠ACB+∠ACA′计算即可得解.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠B=∠B′=110°,∠ACA′=50°,在△ABC中,∠AC B=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,∴∠BCA′=∠ACB+∠ACA′=50°+25°=75°.故选B.【点评】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角的确定是解题的关键.5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线y=kx+2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.24【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BCBD=4×(3+3)=24,故选:D.【点评】本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,根据不等式组的解集得到2≥m+1,求出即可.【解答】解:,由①得:x>2,由②得:x>m+1,∵不等式组的解集是 x>2,∴2≥m+1,∴m≤1,故选C.【点评】本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥m+1是解此题的关键.8.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】根据中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知a,b,c为△ABC三边,且满足(a2﹣b2)(a2+b2﹣c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】首先根据题意可得(a2﹣b2)(a2+b2﹣c2)=0,进而得到a2+b2=c2,或a=b,根据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:(a2﹣b2)(a2+b2﹣c2)=0,∴a2+b2﹣c2,或a﹣b=0,解得:a2+b2=c2,或a=b,∴△ABC的形状为等腰三角形或直角三角形.故选D.【点评】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A.1.5 B.2 C.2.5 D.3【考点】一次函数的应用.【分析】设价钱y与重量x之间的函数关系式为y=kx+b,由(15,26)、(15.5,27)利用待定系数法即可求出该一次函数关系式,令y=0求出x值,即可得出空蓝的重量.【解答】解:设价钱y与重量x之间的函数关系式为y=kx+b,将(15,26)、(15.5,27)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=2x﹣4.令y=0,则2x﹣4=0,解得:x=2.故选B.【点评】本题考查了待定系数法求函数解析式,解题的关键是求出价钱y与重量x之间的函数关系式.本题属于基础题,难度不大,根据给定条件利用待定系数法求出函数关系式是关键.13.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.【点评】此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出符合题意跌答案.【解答】解:A、小强乘公共汽车用了60﹣30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.【点评】此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【考点】由实际问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得x≥7,故至少打七折,故选B.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1【考点】一次函数与一元一次不等式.【分析】解不等式x+3>0,可得出x>﹣3,再根据两函数图象的上下位置关系结合交点的横坐标即可得出不等式﹣x+m>x+3的解集,结合二者即可得出结论.【解答】解:∵x+3>0∴x>﹣3;观察函数图象,发现:当x<﹣2时,直线y=﹣x+m的图象在y=x+3的图象的上方,∴不等式﹣x+m>x+3的解为x<﹣2.综上可知:不等式﹣x+m>x+3>0的解集为﹣3<x<﹣2.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是根据函数图象的上下位置关系解不等式﹣x+m>x+3.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关键解不等式是关键.18.已知2+的整数部分是a,小数部分是b,则a2+b2=()A.13﹣2B.9+2C.11+D.7+4【考点】估算无理数的大小.【分析】先估算出的大小,从而得到a、b的值,最后代入计算即可.【解答】解:∵1<3<4,∴1<<2.∴1+2<2+<2+2,即3<2+<4.∴a=3,b=﹣1.∴a2+b2=9+3+1﹣2=13﹣2.故选:A.【点评】本题主要考查的是估算无理数的大小,根据题意求得a、b的值是解题的关键.19.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=ABDH=ACBD,即5DH=×8×6,解得DH=.故选A.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,①正确;②正确;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,③正确;设EC=x,由勾股定理和三角函数就可以表示出BE与EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF..设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=AB﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△AEC=CEAB,S△ABC=BCAB,CE<BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.【点评】本题考查了一次函数图象上点的坐标特征.根据一次函数解析式与一元一次方程的关系解得x的值是解题的突破口.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标与图形变化-旋转.【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故答案为:(5,﹣1).【点评】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.若关于x的不等式组有4个整数解,则a的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,由①得,x>8,由②得,x<2﹣4a,∵此不等式组有解集,∴解集为8<x<2﹣4a,又∵此不等式组有4个整数解,∴此整数解为9、10、11、12,∵x<2﹣4a,x的最大整数值为12,,∴12<2﹣4a≤13,∴﹣≤a<﹣.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于a的不等式组,临界数的取舍是易错的地方,要借助数轴做出正确的取舍.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)利用平方差公式、二次根式的性质化简计算即可;(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:(1)原式=()2﹣12++×3﹣3×=3﹣1++﹣2=2+;(2),解①得,x<2,解②得,x≥﹣1,则不等式组的解集为:﹣1≤x<2.【点评】本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.【点评】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】全等三角形的判定与性质;矩形的判定.【分析】(1)由AF与BC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为AD 的中点,得到AE=DE,利用AAS得到三角形AFE与三角形DCE全等,利用全等三角形的对应边相等即可得证;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由为:由AF与BD平行且相等,得到四边形AFBD为平行四边形,再由AB=AC,BD=CD,利用三线合一得到AD垂直于BC,即∠ADB为直角,即可得证.【解答】解:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE,在△AFE和△DCE中,,∴△AFE≌△DCE(AAS),∴AF=CD,∵AF=BD,∴CD=BD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴四边形AFBD是矩形.【点评】此题考查了全等三角形的判定与性质,以及矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设购进甲种运动鞋x双,根据题意列出关于x的一元一次不等式,解不等式得出结论;(2)找出总利润w关于购进甲种服装x之间的关系式,根据一次函数的性质判断如何进货才能获得最大利润.【解答】解:(1)设购进甲种运动鞋x双,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,∵当10<a<20时,10﹣a<0,w随x的增大而减少,∴当x=65时,w有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.【点评】本题主要考查了一次函数的应用和解一元一次不等式,解题的关键是:根据题意列出关于x的一元一次不等式,找出利润w关于x的关系式.在一次函数y=kx+b中,当k<0时,y随x的增大而减小,这是判断的依据.。