最新高中数学选修1-2《推理与证明》

合集下载

高中数学选修1-2第三章 推理与证明2_数学证明-word文档

高中数学选修1-2第三章 推理与证明2_数学证明-word文档

§2 数学证明一、教学目标1.知识与技能:(1)了解演绎推理 的含义;(2)能正确地运用演绎推理 进行简单的推理;(3)了解合情推理与演绎推理之间的联系与差别。

2.方法与过程:认识演绎推理的主要形式为三段论,认识三段论推理一般模式,包括三步(1)大前提,(2)小前提,(3)结论.再从实际应用中认识数学中的证明,主要通过演绎推理来进行的.从实例中认识它的重要作用和具体做法。

3、情感态度与价值观:通过本节的学习,使学生认识到演绎推理在数学中的重要性,我们既需要用合情推理来发现结论,也要用演绎推理来证明结论的对否。

二、教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理. 教学难点:了解合情推理与演绎推理之间的联系与差别, 分析证明过程中包含的“三段论”形式,三段论的证明原理三、教学方法:探析归纳,讲练结合四、教学过程(一)复习准备:1. 练习: (1) 对于任意正整数n ,猜想(2n -1)与(n +1)2的大小关系?(2)在平面内,若,a c b c ⊥⊥,则//a b . 类比到空间,你会得到什么结论?(结论:在空间中,若,a c b c ⊥⊥,则//a b ;或在空间中,若,,//αγβγαβ⊥⊥则)2. 讨论:以上推理属于什么推理,结论正确吗?合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?3. 导入:(二)、新课探析1.概念:(1) 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。

要点:由一般到特殊的推理。

(2)讨论:演绎推理与合情推理有什么区别?合情推理⎧⎨⎩归纳推理:由特殊到一般类比推理:由特殊到特殊;演绎推理:由一般到特殊. (3) 提问:观察上面导入的表格,它们都由几部分组成,各部分有什么特点?2.“三段论”是演绎推理的一般模式;包括(1)大前提---已知的一般原理;(2)小前提---所研究的特殊情况;(3)结论-----据一般原理,对特殊情况做出的判断. 三段论的基本格式M —P (M 是P ) (大前提)S —M (S 是M ) (小前提)S —P (S 是P ) (结论)3.三段论推理的依据,用集合的观点来理解:如图若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P.④ 举例:举出一些用“三段论”推理的例子. SM PP2.例题探析:例1 求证:一个三角形中最大的角不超过O 60证明:设△ABC 中,,3C C B A ∠≤∠+∠+∠即O ≥∠1803C所以O ≥∠60C这个例子中,由(1)(2)是三段论推理,详细表述就是:大前提:设n n b b b a a a ,,,,,,,2121 都是实数,若,,,,,332211n n b a b a b a b a ≤≤≤≤ 则有n n b b b b a a a a +++≤++++321321;小前提:△ABC 中各角的度数都是实数,设C B A ∠≤∠≤∠,即C C C B C A ∠≤∠∠≤∠∠≤∠,,;结论:C C C C C B A ∠=∠+∠+∠≤∠+∠+∠3.在这个例子当中,由(2)到(3)也是三段论推理,省略的大前提是“三角形的内角和等于180O ”.例2:在锐角三角形ABC 中,,AD BC BE AC ⊥⊥,D ,E 是垂足. 求证:AB 的中点M 到D ,E 的距离相等.分析:证明思路 →板演:证明过程 → 指出:大前题、小前题、结论. 例3 证明函数2()2f x x x =-+在(],1-∞-上是增函数.板演:证明方法(定义法、导数法) → 指出:大前题、小前题、结论. 思考:因为所有的边长相等的凸多面体是正多边形,大前提 而菱形是所有边长都相等的凸多边形,小前题所以菱形是正多边形结论 (1)上面的推论形式正确吗?(2)推理的结论正确吗?为什么?(3)演绎推理怎样才结论正确?(只要前提和推理形式正确,结论必定正确)3.比较:合情推理与演绎推理的区别与联系?(从推理形式、结论正确性等角度比较;演绎推理可以验证合情推理的结论,合情推理为演绎推理提供方向和思路.)4. 小结:“三段论”是演绎推理的一般模式;包括:⑴大前提---已知的一般原理; ⑵小前提---所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断,演绎推理错误的主要原因是(1)、大前提不成立;(2)、小前提不符合大前提的条件。

新人教A版高中数学选修1-2第二章:推理与证明

新人教A版高中数学选修1-2第二章:推理与证明

第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1­ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。

新人教A版高中数学(选修1-2)第二章《推理与证明小结综合》word教案

新人教A版高中数学(选修1-2)第二章《推理与证明小结综合》word教案

第10课时 归纳推理一、知识盘点1.推理的概念:根据 得出一个新结论,这种思维方式叫做推理.推理一般有两个部分组成, .推理一般分为 与 两类. 2.合情推理:所谓的合情推理,就是 ,数学中常见的合情推理是 与 . 3.归纳推理:由某类事物的 具有某种特征,推出该事物的 都具的这种特征的推理,或者由 概括出 的推理,称为归纳推理(简称归纳).简而言之,归纳推理是由 到 、由 到 的推理.归纳推理的一般步骤是(1) ; (2) . 二、基础训练1.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为 ( )A .4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+2.观察一下各式:⋅⋅⋅=++++++=++++=++=;710987654;576543,3432;112222,你得到的一般性结论是______________________________________________________.三、例题分析:例1已知数列{}n a 的通项公式21()(1)n a n N n +=∈+,12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值。

[变式训练]1、已知111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算: 35(2),(4)2,(8),22f f f =>> (16)3,f >7(32)2f >,推测当2n ≥时,有__________________________.例2.观察下列两式:①110tan 60tan 60tan 20tan 20tan 10tan 000000=⋅+⋅+⋅ ;②15tan 75tan 75tan 10tan 10tan 5tan 0=⋅+⋅+⋅.分析上面的两式的共同特点,写出反映一般规律的等式,并证明你的结论。

高中数学第二章推理与证明本章整合课件新人教A版选修1_2

高中数学第二章推理与证明本章整合课件新人教A版选修1_2
第二章 推理与证明 本 章 整 合
专题1
专题2
专题3
专题一 合情推理和演绎推理在解题中的应用 1.合情推理的应用 归纳推理和类比推理是常用的合情推理,都是根据已有的事实, 经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的 推理.从推理形式上看,归纳推理是由部分特殊的对象得到一般性 的结论的推理方法,它在科学研究或数学学习中有着重要的作用, 有助于发现新知识、探索新规律、检验新结论,或预测答案、探索 解题思路等;类比推理是由特殊到特殊的推理,它以比较为基础,有 助于启迪思维、触类旁通、拓宽知识、发现命题等.合情推理的结 论不一定正确,有待于演绎推理的验证,而演绎推理的内容一般是 通过合情推理获得的,合情推理可以为演绎推理提供方向和思路.
专题1
专题2
专题3
通过观察、分析,可以看出:第四行的任一个数都和第一行中相 应的四个相邻的数有关.具体关系可以从上表看出,如果用an表示第 四行的第n个数,那么an=8n+4. 现在要找出an=8n+4=999k的an,显然k应是4的倍数. 注意到第四行中最大的数是7 980<999×8,所以k=4. 由此求出第四行中能被999整除的数是999×4=3 996,它是第四 行的第(3 996-4)÷8=499(项),即a499=3 996就是第四行中能被999整 除的数.
������1 ������2 ������3 = = ; sin������ sin������ sin������
2 2 2 ������1 = ������2 + ������3 − 2S2S3cos α, 2 2 2 ������2 = ������1 + ������3 − 2S1S3cos β, 2 2 2 ������3 = ������1 + ������2 − 2S1S2cos γ. 下面给出证明.

最新人教版高中数学选修1-2《推理与证明》本章概要

最新人教版高中数学选修1-2《推理与证明》本章概要

第二章推理与证明本章概要推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.它贯穿于高中数学的整个体系,它的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用.推理一般包括合情推理和演绎推理.推理与证明的学习,有利于培养学生的逻辑思维能力,形成和发展理性思维.本章的学习,是对以前所学知识点的总结和归纳,所以说本章的知识在整个高中数学阶段有着特别重要的地位.本章我们主要学习两种基本推理——合情推理与演绎推理.合情推理是根据已有的事实和正确的结论、实验和实践的结果,以及个人的经验和直觉等,推测某些结果的推理过程,归纳和类比是合情推理的常用思维方法.合情推理具有猜想和发现新结论、探究和提供解决问题思路的作用,有利于创新意识的培养.演绎推理是根据已有的事实和正确的结论按照严格的逻辑法则得到新结论的推理过程.演绎推理具有证明结论,整理和构建知识体系的作用,是公理体系中的基本推理方法.合情推理和演绎推理紧密联系、相辅相成,它们的学习有利于培养逻辑思维能力和创新思维能力,形成和发展理性思维,使学生体会并认识合情推理在数学发展中的作用,体会证明的功能和特点及在数学和生活中的作用,养成言之有理、论之有据的习惯.本章我们还将学习证明的两类基本方法——直接证明方法(包括分析法、综合法)和间接证明方法(反证法),从中体会证明的功能和特点,掌握数学证明的方法.证明通常包括逻辑证明和实验、实践证明,数学结论的正确性必须通过逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论.本章的重点是合情推理中的归纳推理与类比推理,演绎推理中的假言推理、三段论推理、关系推理、完全归纳推理,以及证明中的综合法、分析法、反证法.其中类比推理也是难点. 在日常生活,科技实践中,人们需要进行各种各样的推理.通过本章的学习,去体会和感受逻辑证明在数学学习和日常生活中的作用,养成言之有理,论之有据的好习惯.学习策略在数学中,可以变隐性为显性、分散为集中,结合以前所学的内容,通过挖掘、提炼、明确数学公式,同时通过新内容的学习,感受和体验如何学会数学思考方式,体会推理和证明在数学学习和日常生活中的定义和作用,提高自身数学素养.应通过实例,运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想.学习的重点在于通过具体实例理解合情推理与演绎推理,而不追求对概念的抽象表述.学习本章时要注意基本数学思想,如归纳、类比、演绎推理以及综合法、分析法、反证法思想的理解和应用.在学习的过程中要准确把握概念,通过具体实例理解合情推理,演绎推理的联系与区别;理解直接证明与间接证明的方法、步骤.要对命题进行观察、比较、分析、类比、归纳,不断提高自己的逻辑思维能力,体会数学的美学意义.。

高二数学人教A版选修1-2课件:第二章 推理与证明

高二数学人教A版选修1-2课件:第二章 推理与证明

专题一
专题二
专题二 直接证明与间接证明
1.综合法证明数学问题是“执因索果”,而分析法则是“执果索因”,二者一正一反,各有特点,综合法的特点是表述 简单条理清楚,分析法则便于解题思路的探寻.
2.分析法与综合法往往结合起来使用,即用分析法探寻解题思路,而用综合法书写过程,即“两头凑”,可使问题便 于解决.
专题一
专题二
【例1】 已知数列 归纳出Sn的计算公式.
8× 1 12 × 32
,
8× 32×
252,…,(2…������,-S1n为)82其×(2前������������n+项1的)2和, ,计算S1,S2,S3,S4,观察计算结果,并
思路分析:通过计算S1,S2,S3,S4的取值,发现它们的共同点有:都是分数,分母为奇数的平方,分子比分母少1,据
ABCD
中,������������������������'
+
������������ ������������'
+
������������ ������������'
+
������������������������' =4-������������-������������������+������������-������������������������������-+������������������������������-������������������ +������������-������������������ =4-������������������������--������������������������������������ =3.

最新选修1-2第二章推理与证明讲义

最新选修1-2第二章推理与证明讲义

第二章推理与证明讲义2.1合情推理与演绎推理学习目标:1・了解合情推理的含义,能利用归纳和类比进行简单的推理;2・了解演绎推理的含义,掌握演绎推理的基本模式,能利用“三段论”进行简单的推理•重点:用归纳和类比进行推理,做出猜想;用“三段论”证明问题难点:用归纳和类比进行合情推理,做出猜想。

学习策略:①合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势②合情推理中的归纳、类比都是具有创造性的或然推理•不论是由大量的实例,经过分析、概括、发现规律的归纳,还是由两系统的已知属性,通过比较、联想而发现未知属性的类比,它们的共同点是,结论往往超出前提所控制的范围,所以它们是“开拓型”或“发散型”的思维方法•也正因为结论超出了前提的管辖范围,前提也就无力保证结论必真,所以归纳类比都是或然性推理.③演绎推理所得的结论完全蕴含于前提之中,所以它是“封闭型”或“收敛型”的思维方法只要前提真实,逻辑形式正确,结论必然是真实的知识要点梳理知识点一:推理的扌既念根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理•从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.知识点二:合情推理根据已有的事实和正确的结论(包括定义、公理、定理等) 、实验和实践的结果、个人的经验和直觉等,经过观察、分析、比较、联想、归纳、类比等推测出某些结果的推理过程。

其中归纳推理和类比推理是最常见的合情推理。

1.归纳推理(1 )定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳) 。

(2 )一般模式:部分一整体,个体一一般(3)一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同的性质中猜想出一个明确表述的一般性命题;③检验猜想.(4)归纳推理的结论可真可假归纳推理一般都是从观察、实验、分析特殊情况开始,提出有规律性的猜想;一般地,归纳的个别情况越多,就越具有代表性,推广的一般性命题就越可靠•由于归纳推理的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以归纳推理所得的结论不一定是正确的2・类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比)(2 )一般模式:特殊一特殊(3) 类比的原则:可以从不同的角度选择类比对象,但类比的原则是根据当前问题的需要,选择恰当的类比对象.(4)一般步骤:①找出两类对象之间的相似性或一致性;②用一类对象的已知特征去推测另一类对象的特征,得出一个明确的命题(猜想) ;③检验猜想・(5)类比推理的结论可真可假类比推理中的两类对象是具有某些相似性的对象,同时又应是两类不同的对象;一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相尖,那么类比得出的命题就越可靠类比结论具有或然性,所以类比推理所得的结论不一定是正确的。

高中数学选修1-2第二章课后习题解答

高中数学选修1-2第二章课后习题解答

高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。

人教版高中选修1-2《推理与证明》教学设计

人教版高中选修1-2《推理与证明》教学设计

人教版高中选修1-2《推理与证明》教学设计《人教版高中选修1-2《推理与证明》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!推理与证明章节教学设计地位与作用“推理与证明”是数学的思维过程,也是人们学习和生活中经常使用的思维方式。

推理一般包括合情推理与演绎推理。

在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。

证明通常包括逻辑证明和实践、实践证明,演绎推理和逻辑证明能力的培养是高中数学课程的重要目标。

本章学习,有利于发展学生思维能力,提高学生数学素养,让学生感受逻辑证明在数学及日常生活中的作用,从而架起数学与生活的桥梁,形成严禁的理性思维和科学精神。

内容说明“推理与证明”是新课标新增内容,主要包括合情推理与演绎推理、直接证明与间接证明、数学归纳法三部分(其中数学归纳法文科数学不做要求)。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。

本章内容是各只是模块中常用推理方法和论证方法的总结,推理方法与证明方法是从思维过程中抽象出来的,是由数学思维过程凝缩而成的,是高中数学的重要基础,在高中数学中占有极其重要的地位和作用。

课程要求合情推理和演绎推理结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比进行简单的推理,体会并认识合情推理在数学发现中的作用。

结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

通过具体实例,了解合情推理和演绎推理之间的联系和差异。

直接证明与间接证明结合已经学过的数学实例,了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点。

结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。

本章重点与难点重点:(1)合情推理、演绎推理;(2)直接证明与间接证明。

新版高中数学人教A版选修1-2课件:第二章 推理与证明 2.2.1

新版高中数学人教A版选修1-2课件:第二章 推理与证明 2.2.1
证明:(1)在四棱锥P-ABCD中,
∵PA⊥底面ABCD,CD⊂平面ABCD, ∴PA⊥CD. ∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC. 而AE⊂平面PAC,∴CD⊥AE.
题型一
题型二
题型三
题型四
(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.
题型一
题型二
题型三
题型四
【变式训练3】 如图,三角形PDC所在的平面与长方形ABCD所 在的平面垂直,PD=PC=4,AB=6,BC=3.
典例透析
(1)证明:BC∥平面PDA; (2)证明:BC⊥PD; (3)求点C到平面PDA的距离. (1)证明因为四边形ABCD是长方形,所以BC∥AD. 因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.

1)(������∈N*,n≥2),求证: 1 为等差数列.
������������
分析:(1)类比题目所给等式得到 Sn+1 与 an+1 之间的关系式→两式相减→说明{an}是等比数列
(2)利用(1)中的公比
q
得到
f(m)→化简式子
bn=
3 2
������
(bn-1)→证明
1 ������������
两式相减,得Sn=n·2n-1×20-1×21-…-1×2n-1=n·2n-2n+1=2n(n-1)+1.
典例透析
题型一
题型二
题型三
题型四
利用综合法证明不等式
【例 2】 已知 a,b,c 是正实数,且 a+b+c=1. 求证:(1)a2+b2+c2≥13 ; (2) ������ + ������ + ������ ≤ 3.

高中数学选修1-2第三章 推理与证明.docx

高中数学选修1-2第三章 推理与证明.docx

高中数学学习材料鼎尚图文*整理制作第三章 推理与证明 §1 归纳与类比课时目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.1.归纳与类比定义 特征归纳 推理 由某类事物的__________具有某些特征,推出该类事物的______对象都具有这些特征的推理,或者由________概括出________的推理归纳推理是由__________,由__________的推理类比 推理由两类对象具有某些____特征和其中一类对象的某些________,推出另一类对象也具有这些特征的推理 类比推理是由____________的推理2.合情推理归纳和类比都是合情推理,得出的结论____________________.一、选择题1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误2.已知数列{a n }中,a 1=1,当n ≥2时,a n =2a n -1+1,依次计算a 2,a 3,a 4后,猜想a n 的一个表达式是( )A .n 2-1B .(n -1)2+1C .2n -1D .2n -1+13.根据给出的数塔猜测123456×9+7等于( ) 1×9+2=1112×9+3=111 123×9+4=1111 1234×9+5=11111 12345×9+6=111111 ……A .1111110B .1111111C .1111112D .1111113 4.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2 D .35. 观察图示图形规律,在其右下角的空格内画上合适的图形为( )A .■B .C .□D .○二、填空题6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是__________________________.7.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为____________________.8.观察下列等式: ①cos 2α=2c os 2α-1;②cos 4α=8cos 4α-8cos 2α+1;③cos 6α=32cos 6α-48cos 4α+18co s 2α-1;④cos 8α=128cos 8α-256cos 6α+160cos 4α-32cos 2α+1;⑤cos 10α=m cos 10α-1 280cos 8α+1 120cos 6α+n cos 4α+p cos 2α-1. 可以推测,m -n +p =________.三、解答题9.观察等式sin 220°+sin 240°+sin 20°·sin 40°=34;sin 228°+sin 232°+sin 28°·sin 32°=34.请写出一个与以上两个等式规律相同的一个等式.10.已知正项数列{a n }的前n 项和S n 满足S n =12⎝⎛⎭⎫a n +1a n (n ∈N *),求出a 1,a 2,a 3,并推测a n 的表达式..能力提升11.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )等于( )A .f (x )B .-f (x )C .g (x )D .-g (x )12.已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)具有性质:若M 、N 是椭圆C 上关于原点对称的两点,点P 是椭圆C 上任意一点,当直线PM 、PN 的斜率都存在时,记为k PM 、k PN ,那么k PM与k PN 之积是与点P 位置无关的定值.试对双曲线C :x 2a 2-y 2b2=1写出具有类似的特性的性质,并加以证明.1.归纳推理具有由特殊到一般,由具体到抽象的认识功能,归纳推理的一般步骤: (1)通过观察个别情况发现某些相同性质.(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).2.运用类比推理必须寻找合适的类比对象,充分挖掘事物的本质及内在联系.在应用类比推理时,其一般步骤为:①找出两类对象之间可以确切表述的相似性(或一致性).②用一类对象的性质去推测另一类对象的性质,从而得出一个猜想.③检验这个猜想.第三章 推理与证明 §1 归纳与类比答案知识梳理 1. 定义特征 一般步骤归纳 推理根据一类事物的部分对象具有某种性质,推出这类事物的所有 对象都具有这种性质的推理由特殊 到一般 1.通过观察个别情况发现某些共同性质;2.从已知的相同性质中推出一个明确表 述的一般性命题(猜想)类比 推理 根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物 具有与另一类事物类似(或相同)的性质的推理由特殊 到特殊1.找出两类事物的相似性或一致性;2.用一类事物的性质去推测另一类事物的性质,得到一个明确的命题(猜想)2.不一定是正确的 作业设计1.B [合情推理的结论不一定正确,但必须有前提有结论.]2.C [a 2=2a 1+1=2×1+1=3,a 3=2a 2+1=2×3+1=7,a 4=2a 3+1=2×7+1=15,利用归纳推理,猜想a n =2n -1.故选C.]3.B [由数塔可以猜测,结果是各位都是1的七位数,即1111111.] 4.B5.A [图形涉及□、○、三种符号;其中○与各有3个,且各自有两黑一白,所以缺一个□符号,即应画上■才合适.]6.正四面体的内切球的半径是高的14解析 原问题的解法为等面积法,即S =12ah =3×12ar ⇒r =13h ,类比问题的解法应为等体积法,V =13Sh =4×13Sr ⇒r =14h ,即正四面体的内切球的半径是高的14.7.13+23+33+43+53+63=212 8.962解析 观察各式容易得m =29=512,注意各等式右面的表达式各项系数和均为1,故有m -1 280+1 120+n +p -1=1,将m =512代入得n +p +350=0.对于等式⑤,令α=60°,则有cos 600°=512·1210-1 280·128+1 120·126+116n +14p -1,化简整理得n +4p +200=0,联立方程组⎩⎪⎨⎪⎧ n +p +350=0,n +4p +200=0,得⎩⎪⎨⎪⎧n =-400,p =50. ∴m -n +p =962. 9.解 ∵20°+40°=60°,28°+32°=60°,而cos 60°=12,sin 60°=32,由此题的条件猜想,若α+β=60°,则sin 2α+sin 2β+sin α·sin β=sin 2(α+β)=34.10.解 由a 1=S 1=12⎝⎛⎭⎫a 1+1a 1得,a 1=1a 1, 又a 1>0,所以a 1=1.当n ≥2时,将S n =12⎝⎛⎭⎫a n +1a n , S n -1=12⎝⎛⎭⎫a n -1+1a n -1的左右两边分别相减得a n =12⎝⎛⎭⎫a n +1a n -12⎝⎛⎭⎫a n -1+1a n -1, 整理得a n -1a n =-⎝⎛⎭⎫a n -1+1a n -1,所以a 2-1a 2=-2,即a 22+2a 2+1=2, 又a 2>0,所以a 2=2-1.同理a 3-1a 3=-22,即a 23+22a 3+2=3, 又a 3>0,所以a 3=3- 2. 可推测a n =n -n -1.11.D [由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).]12.证明 类似性质为:若M 、N 为双曲线x 2a 2-y 2b2=1上关于原点对称的两个点,点P是双曲线上任一点,当直线PM 、PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与P 点位置无关的定值.其证明如下:设P (x ,y ),M (m ,n ),则N (-m ,-n ),其中m 2a 2-n 2b 2=1,即n 2=b 2a 2(m 2-a 2). ∴k PM =y -n x -m ,k PN =y +nx +m ,又x 2a 2-y 2b 2=1,即y 2=b 2a2(x 2-a 2), ∴y 2-n 2=b2a2(x 2-m 2).∴k PM ·k PN =y 2-n 2x 2-m 2=b 2a2.故k PM ·k PN 是与P 点位置无关的定值.。

高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

高中数学 第二章推理与证明全章归纳总结 新人教A版选修1-2

第二章 推理与证明2.1.1 合情推理与演绎推理(1)归纳推理【要点梳理】1、从一个或几个已知命题得出另一个新命题的思维过程称为 任何推理包括 和 两个部分。

是推理所依据的命题,它告诉我们 是什么, 是根据前提推得的命题,它告诉我们 是什么。

2、从个别事实中推演车一般性的结论的推理通常称为 ,它的思维过程是3、归纳推理有如下特点(1)归纳推理的前提是几个已知的 现象,归纳所得的结论是尚属未知的 现象,该结论超越了前提所包含的范围。

(2)由归纳推理得到的结论具有 的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它 作为数学证明的工具。

(填“能”或“不能”)(3)归纳推理是一种具有 的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

【指点迷津】1、运用归纳推理的一般步骤是什么?首先,通过观察特例发现某些相似性(特例的共性或一般规律);然后,把这种相似性推广为一个明确表述的一般命题(猜想);然后,对所得的一般性命题进行检验。

2、在数学上,检验的标准是什么?标准是是否能进行严格的证明。

3、归纳推理的一般模式是什么?S 1具有P ;S 2具有P ;……;S n 具有P (S 1、S 2、…、S n 是A 类事件的对象) 所以A 类事件具有P【典型例题】例1、设N n x f x f x f x f x f x f x x f n n ∈'='='==-),()(,),()(),()(,sin )(112010 ,则)()(2005=x fA 、x sinB 、x sin -C 、x cosD 、x cos - 【解析】:,cos )(sin )(1x x x f ='=)()()(sin )(cos )()(cos )(sin )(sin )cos ()(cos )sin ()(sin )(cos )(42615432x f x f x f x x x f x f x x x f xx x f xx x f x x x f n n ====-='==='=='-=-='-=-='=+故可猜测)(x f n 是以4为周期的函数,有x x f x f x f n n sin )(,cos )1()(2414-===++xf x f x x f n n sin )4()(cos )(4434==-=++故选C【点评】归纳推理是由部分到整体、由个别到一般的推理,是人们在日常活动和科学学习研究中经常使用的一种推理方法,必须认真学习领会,在归纳推理的过程中,应注意所探求的事物或现象的本质属性和因果关系。

高中数学第三章推理与证明2数学证明课件北师大版选修1_2

高中数学第三章推理与证明2数学证明课件北师大版选修1_2
证明
达标检测
1.下面几种推理过程是演绎推理的是
√A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同
旁内角,则∠A+∠B=180°
B.某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人
数超过50人
C.由平面三角形的性质,推测空间四边形的性质 D.在数列{an}中,a1=1,an=12an-1+an1-1(n≥2),由此归纳出{an}的通
D.大前提和小前提都错误导致结论错误
解析 y=logax是增函数错误,故大前提错误.
1 2 34 5
解析 答案
3.三段论:“①只有船准时起航,才能准时到达目的港,②这艘船是准
时到达目的港的,③这艘船是准时起航的”,其中的“小前提”是
A.①
B.②
C.①②
D.③ √
1 2 34 5
答案
4.把“函数y=x2+x+1的图像是一条抛物线”恢复成三段论,则大前
小前提
所以方程x2-2mx+m-1=0有两个相异实根.
结论
1 2 34 5
证明
规律与方法
1.应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为 了叙述的简洁,如果前提是显然的,则可以省略. 2.合情推理是由部分到整体,由个别到一般的推理或是由特殊到特殊的 推理;演绎推理是由一般到特殊的推理. 3.合情推理与演绎推理是相辅相成的,数学结论、证明思路等的发现主 要靠合情推理;数学结论、猜想的正确性必须通过演绎推理来证明.
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识 逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。

[最新]人教版数学高中选修【1-2】第二章《推理与证明》章末总结

[最新]人教版数学高中选修【1-2】第二章《推理与证明》章末总结

F
(1)
=23
3 .
∴k≤2 3 3,即
k 的最大值为
23 3.
点评:本题融函数、 数列于一体, 用函数的单调性研究数列的单
调性,构思新颖,设计巧妙,不失为一道优秀试题.
最新精品资料
设 a>0,b>0,a+b=1,求证: 1a+1b+a1b≥8. 证明: 证法一 (综合法 ) ∵ a>0, b>0, a+ b=1, ∴1=a+b≥2 ab, ab≤12,ab≤14, ∴ a1b≥ 4. 又1a+1b=(a+b) 1a+1b =2+ba+ab≥4,
11 1 ∴ a+b+ ab≥ 8.
(2) 记 an = 2 f -1 n
(n∈N*) , 是 否 存 在 正 数
1 k , 使 得 1+ a1
1 12
·…·1
1
≥k 2n+ 1对 n∈N*均成立?若存在, 求出 k 的最
a
an
大值;若不存在,请说明理由.
解析: (1)由题知
2a+b= 32, 5
4a+b= 2
a= 12, ?
b= 12,
∴ f(x1)-f(x2)<0. ∴f(x)在(0,+ ∞)上单调递增, ∴f(x)的单调递增区间为 (-∞,0)和(0,+ ∞).
(2)解析: 计算得 f(4)-5f(2) g·(2)=0,f(9)-5f(3) g·(3)=0.
由此概括出对所有不等于零的实数 x 有
f(x2)-5f(x) ·g(x)=0. ∵f(x2)-5f(x) ·g(x)
证法二 (分析法 )
∵ a>0, b>0, a+ b=1,
∴要证 1a+1b+a1b≥8,
只需证
1a+

人教课标版高中数学选修1-2:《推理与证明》章末回顾-新版

人教课标版高中数学选修1-2:《推理与证明》章末回顾-新版

第二章推理与证明章末小结一、知识梳理1.思维导图2.知识梳理1.归纳推理和类比推理都是合情推理,归纳推理是由特殊到一般,由部分到整体的推理;类比推理是由特殊到特殊的推理.二者都能由已知推测未知,都能用于猜测,得出新规律,但推理的结论其正确性有待于去证明.2.演绎推理与合情推理不同,演绎推理是由一般到特殊的推理,是数学证明中的基本推理形式,只要前提正确,推理形式正确,得到的结论就正确.3.合情推理与演绎推理既有联系,又有区别,它们相辅相成,前者为人们探索未知提出猜想提供科学的方法,后者为人们证明猜想的正确性提供科学的推理依据.4.综合法、分析法、反证法都是数学证明的基本方法.综合法常用于由已知出发进行推理较易找到思路的问题;分析法常用于条件复杂,思考方向不明确的问题,但单纯用分析法证明的情形较少,通常是“分析找思路,综合写过程”;分析法的证明过程充分体现了转化的思想,而反证法则是正难则反思想的体现.另外用反证法证题时,原命题的反面不止一种情形时,要注意分类讨论.二、重难点突破1.进行类比推理时,可以从①问题的外在结构特征,②图形的性质或维数.③处理一类问题的方法.④事物的相似性质等入手进行类比.要尽量从本质上去类比,不要被表面现象迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.2.进行归纳推理时,要把作为归纳基础的条件变形为有规律的统一的形式,以便于作出归纳猜想.3.推理证明过程叙述要完整、严谨、逻辑关系清晰、不跳步.4.注意区分演绎推理和合情推理,当前提为真时,前者结论一定为真,后者结论可能为真!合情推理得到的结论其正确性需要进一步推证,合情推理中运用猜想时要有依据.5.用反证法证明数学命题时,必须把反设作为推理依据.书写证明过程时,一定要注意不能把“假设”误写为“设”,还要注意一些常见用语的否定形式.6.分析法的过程仅需要寻求某结论成立的充分条件即可,而不是充要条件.分析法是逆推证明,故在利用分析法证明问题时应注意逻辑性与规范性.一般地,用分析法书写解题步骤的基本格式是:要证:……,只需证……,只需证……,……,……显然成立,所以……成立.三、题型探究(一)合情推理与演绎推理运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳、类比的方法进行探索,提出猜想;最后用演绎推理的方法进行验证.例1观察下图中各正方形图案,每条边上有n(n≥2)个点,第n个图案中圆点的总数是S n.••••,• • •• •• • •,• • • •• •• •• • • •,…,n=2,S2=4;n=3,S3=8;n=4,S4=12;…,按此规律,推出S n与n的关系式为________.【知识点:归纳推理】详解:依图的构造规律可以看出:S2=2×4-4,S3=3×4-4,S4=4×4-4(正方形四个顶点重复计算一次,应减去).…猜想:S n=4n-4(n≥2,n∈N*).答案:S n=4n-4(n≥2,n∈N*)例2 若数列{a n }是等比数列,且a n >0,则有数列n b =b (n ∈N *)也为等比数列,类比上述性质,相应地,数列{}n c 是等差数列,则有数列n d =________也是等差数列. 【知识点:类比推理】 详解 :12n c c c n +++L 类比猜想可得12nn c c c d n+++=L 也成等差数列,若设等差数列{}n c 的公差为x ,则12nn c c c d n+++=L 11(1)2(1)2n n xnc x c n n -+==+-g可见{d n }是一个以c 1为首项,x 2为公差的等差数列,故猜想是正确的.答案:12nc c c n +++L .例3 已知函数1133()5x x f x --=,1133()5x x g x -+=(1)证明f (x )是奇函数,并求f (x )的单调区间;(2)分别计算(4)5(2)(2)f f g -g 和(9)5(3)(3)f f g -g 的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明.【知识点:函数的奇偶性,函数的单调性,指数的运算,不等式的性质】 详解:(1)证明:函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又11113333()()()()55x x x x f x f x -------==-=-,∴f (x )是奇函数.任取x 1,x 2∈(0,+∞),设x 1<x 2,1111113333112233121211331211()()()1555x x x x f x f x x x x x --⎛⎫-- ⎪-=-=-+ ⎪ ⎪⎝⎭g , ∵1133120x x -<,113312110x x +>g ,∴12()()0f x f x -<∴f (x )在(0,+∞)上单调递增.∴f (x )的单调递增区间为(-∞,0)和(0,+∞).(2)解析:计算得(4)5(2)(2)0f f g -=g ,(9)5(3)(3)0f f g -=g . 由此概括出对所有不等于零的实数x 有2()5()()0f x f x g x -=g . ∵221111222233333333332()5()()5055555x x x x x x x x x x f x f x g x -------+---=-=-=g g g∴该等式成立.点评:问题(1)的大前提为函数奇偶性和单调性的定义.问题(2)实际上是合情推理在高考中的体现,有一定的创新性. (二)直接证明与间接证明 1.综合法和分析法综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题常用的思维方式.如果从解题的切入点的角度细分,直接证明方法可具体分为:比较法、代换法、放缩法、判别式法、构造函数法等.应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法综合起来使用. 例4 设a >0,b >0,a +b =1,求证:1a +1b +1ab ≥8.【知识点:不等式的证明,综合法与分析法】 详解:证法一(综合法)∵a >0,b >0,a +b =1,∴1=a +b ≥2ab ,ab ≤12,ab ≤14,∴1ab ≥4. 又1a +1b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥4,∴1a +1b +1ab ≥8.证法二(分析法) ∵a >0,b >0,a +b =1,∴要证1a +1b +1ab ≥8,只需证⎝ ⎛⎭⎪⎫1a +1b +a +bab ≥8,即证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8,即证1a +1b ≥4,即证a +b a +a +b b ≥4,即证b a +a b ≥2.由基本不等式可知,当a >0,b >0时,b a +ab ≥2成立,∴原不等式成立. 2.反证法反证法的理论基础是互为逆否命题的等价性,从逻辑的角度看,命题:“若p 则q ”的否定是“若p 则¬q ”由此进行推理,如果发生矛盾,那么就说明“若p 则¬q ”为假,从而可以导出“若p 则q ”为真,从而达到证明的目的,反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现,它所反映出的“正难则反”的解决问题的思想方法更为重要.例5 求证:两条相交直线有且只有一个交点.【知识点:反证法,两条直线的位置关系;数学思想:分类的思想】 详解:假设结论不成立,即有两种可能:①无交点;②不只有一个交点.(1)若直线a 、b 无交点,那么a ∥b 或a 与b 异面,与已知矛盾;(2)若直线a 、b 不只有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾. 综上所述,两条相交直线有且只有一个交点.点拔:结论本身是否定形式或关于唯一性的命题、存在性的命题时,常用反证法. 例6 已知0<a ≤3,函数3()f x x ax =-在区间[1,+∞)上是增函数,设当x 0≥1,f (x 0)≥1时,有00(())f f x x =.求证:f (x 0)=x 0.【知识点:反证法,函数的单调性;数学思想:分类的思想】 证明:假设f (x 0)≠x 0,则必有f (x 0)>x 0或f (x 0)<x 0.若f (x 0)>x 0≥1,由于f (x )在[1,+∞)上为增函数,则00(())f f x x >. 又00(())f f x x =,∴00()x f x >,与假设矛盾. 若00()1x f x >≥,则00()(())f x f f x >. 又00(())f f x x =,∴f (x 0)>x 0,也与假设矛盾.综上所述,当x 0≥1,f (x 0)≥1且00(())f f x x =时有f (x 0)=x 0.点拔: (1)对于f (f (x 0))的性质知之甚少,直接证明有困难,因而用反证法来证明,增加了反设这一条件,为我们利用函数的单调性创造了可能. (2)反设中有两种情况,必须逐一否定. 四.课后作业(一)选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.自然数是整数,4是自然数,所以4是整数.以上三段论推理( )A .正确B .推理形式不正确C .两个“自然数”概念不一致D .“两个整数”概念不一致 【知识点:演绎推理】解:A 三段论中的大前提、小前提及推理形式都是正确的. 2.用反证法证明命题“2+3是无理数”时,假设正确的是( ) A .假设2是有理数 B .假设3是有理数 C .假设2或3是有理数D .假设2+3是有理数【知识点:反证法】解析:D假设应为“2+3不是无理数”,即“2+3是有理数”.3.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32…得出1+3+5+…+(2n-1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列【知识点:归纳推理,类比推理,演绎推理】解析:D A是类比推理,B是归纳推理,C是类比推理,D为演绎推理.4.用反证法证明命题“已知x,y∈N*,如果xy可被7整除,那么x,y至少有一个能被7整除”时,假设的内容是()A.x,y都不能被7整除B.x,y都能被7整除C.x,y只有一个能被7整除D.只有x不能被7整除【知识点:反证法】解析:A用反证法证明命题时,先假设命题的否定成立,再进行推证.“x,y至少有一个能被7整除”的否定是“x,y都不能被7整除”.5.我们把1,4,9,16,25,…这些数称做正方形数,这是因为这些数目的点子可以排成一个正方形(如图).试求第n个正方形数是()A.n(n-1) B.n(n+1)C.n2D.(n+1)2【知识点:归纳推理】解:C观察前5个正方形数,恰好是序号的平方,所以第n个正方形数应为n2.6. 函数f(x)在[-1,1]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式正确的是( )A .f (cos α)>f (sin β)B .f (sin α)>f (sin β)C .f (cos α)<f (cos β)D .f (sin α)<f (sin β)【知识点: 函数的单调性,三角函数的单调性,演绎推理】解:A α,β是锐角三角形的两个内角,这就意味着α,β为锐角,另外第三个角π-(α+β)为锐角.所以0<α<π2,0<β<π2,π2<α+β<π,所以π2>β>π2-α>0.,所以0<cos β<cos(π2-α)=sin α<1, 1>sin β>sin(π2-α)=cos α>0,又因为f (x )在[-1,1]上为减函数,所以f (sin β)<f (cos α).故选A.7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0D .不大于0【知识点:不等式的性质,不等式的证明,演绎推理】解:D 法一:因为a +b +c =0,所以a 2+b 2+c 2+2ab +2ac +2bc =0, 所以ab +bc +ca =-a 2+b 2+c 22≤0.法二:令c =0,若b =0,则ab +bc +ca =0,否则a 、b 异号,所以ab +bc +ca =ab <0,排除A 、B 、C ,选项D 正确.8.已知对正数a 和b ,有下列命题:①若a +b =1,则ab ≤12;②若a +b =3,则ab ≤32;③若a +b =6,则ab ≤3.根据以上三个命题提供的规律猜想:若a +b =9,则ab ≤( )A .2 B.92 C .4D .5【知识点:归纳推理】解:B 从已知的三个不等式的右边可以看出,其表现形式为12,32,62,所以,若a +b =9,则ab ≤92.9.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且法向量为n =(1,-2)的直线(点法式)方程为:1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3),且法向量为m =(-1,-2,1)的平面的方程为( )A .x +2y -z -2=0B .x -2y -z -2=0C .x +2y +z -2=0D .x +2y +z +2=0【知识点:归纳推理】解:A 所求的平面方程为-1×(x -1)+(-2)×(y -2)+1×(z -3)=0.化简得x +2y -z -2=0.10.下列不等式中一定成立的是( ) A .lg ⎝ ⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 【知识点:不等式的性质,不等式的证明,演绎推理】 解:C A 项中,因为x 2+14≥x ,所以lg ⎝ ⎛⎭⎪⎫x 2+14≥lg x ;B 项中sin x +1sin x ≥2只有在sin x >0时才成立;C 项中由不等式a 2+b 2≥2ab 可知成立;D 项中因为x 2+1≥1,所以0<1x 2+1≤1.11.已知f (x )=sin x +cos x ,定义f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′(n ∈N *),经计算,f 1(x )=cos x -sin x ,f 2(x )=-sin x -cos x ,f 3(x )=-cos x +sin x ,…,照此规律,则f 100(x )=( )A .-cos x +sin xB .cos x -sin xC .sin x +cos xD .-sin x -cos x【知识点:归纳推理】解:C 根据题意, f 4(x )=[f 3(x )]′=sin x +cos x ,f 5(x )=[f 4(x )]′=cos x -sin x ,f 6(x )=[f 5(x )]′=-sin x -cos x ,…,观察知f n (x )的值呈周期性变化,周期为4,所以f 100(x )=f 96+4(x )=f 4(x )=sin x +cos x .12.请阅读下列材料:若两个正实数a 1,a 2满足a 21+a 22=1,求证:a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f(x)≥0,所以Δ≤0,即4(a1+a2)2-8≤0,所以a1+a2≤ 2.根据上述证明方法,若n个正实数a1,a2,…,a n满足a21+a22+…+a2n=n时,你能得到的结论是()A.a1+a2+…+a n≤2n B.a1+a2+…+a n≤n2C.a1+a2+…+a n≤n D.a1+a2+…+a n≤n【知识点:归纳推理】解:C构造函数f(x)=(x-a1)2+(x-a2)2+…+(x-a n)2=nx2-2(a1+a2+…+a n)x+n,因为对一切实数x,恒有f(x)≥0,所以Δ≤0;即4(a1+a2+…+a n)2-4n2≤0,所以a1+a2+…+a n≤n.(二)填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.“因为AC,BD是菱形ABCD的对角线,所以AC,BD互相垂直且平分.”补充以上推理的大前提是________.【知识点:演绎推理】解:菱形的对角线互相垂直且平分大前提是“菱形的对角线互相垂直且平分”.14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时:甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可以判断乙去过的城市为________.【知识点:反证法;数学思想:分类思想】解:A易知三人同去的城市为A,又甲去过城市比乙去过的城市多,且甲没去过B城,∴甲去过A城,C城,乙只去过A城.15.通过圆与球的类比,由“半径为R的圆的内接矩形中,以正方形的面积最大,最大值为2R2.”猜想关于球的相应命题为________.【知识点:类比推理】解:半径为R的内接六面体中以正方体的体积为最大,最大值为839R3. “圆中正方形的面积“类比为“球中正方体的体积”,可得结论.16.如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1,过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3……依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.【知识点:归纳推理】解:14 根据题意易得a 1=2,a 2=2,a 3=1,∴{a n }构成以a 1=2,q =22的等比数列,∴a 7=a 1q 6=2×⎝ ⎛⎭⎪⎫226=14. (三)解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=xx +2(x >0).如下定义一列函数:f 1(x )=f (x ),f 2(x )=f (f 1(x )),f 3(x )=f (f 2(x )),…,f n (x )=f (f n -1(x )),…,n ∈N *,那么由归纳推理求函数f n (x )的解析式.【知识点:归纳推理,函数的解析式】 解:依题意得,f 1(x )=xx +2,f 2(x )=x x +2x x +2+2=x 3x +4=x(22-1)x +22f 3(x )=x 3x +4x 3x +4+2=x 7x +8=x(23-1)x +23,…,由此归纳可得f n (x )=x(2n -1)x +2n(x >0).18.(本小题满分12分)已知A +B =π3,且A ,B ≠k π+π2(k ∈Z ).求证:(1+3tan A )(1+3tan B )=4.【知识点:演绎推理,诱导公式,两角和的正切】证明:由A +B =π3得tan(A +B )=tan π3,即tan A +tan B 1-tan A tan B =3,所以tan A +tan B =3-3tan A tan B.所以(1+3tan A )(1+3tan B )=1+3(tan A +tan B )+3tan A tan B =1+3(3-3tanA tanB )+3tan A tan B =4.故原等式成立.19.(本小题满分12分)把下面在平面内成立的结论类比地推广到空间,并判断类比的结论是否成立.(1)如果一条直线和两条平行线中的一条相交,则必和另一条相交;(2)如果两条直线同时垂直于第三条直线,则这两条直线互相平行.【知识点:类比推理,反证法,直线与平面平行的性质】解:(1)类比为:如果一个平面和两个平行平面中的一个相交,则必和另一个相交. 结论是正确的,证明如下:设α∥β,且γ∩α=a ,则必有γ∩β=b ,若γ与β不相交,则必有γ∥β.又α∥β,所以α∥γ,与γ∩α=a 矛盾,所以必有γ∩β=b .(2)类比为:如果两个平面同时垂直于第三个平面,则这两个平面互相平行,结论是错误的,这两个平面也可能相交.20.(本小题满分12分)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS n n 2+c,n ∈N *,其中c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).【知识点:演绎推理,等差数列的前n 项和,等比 中项】证明:由题意得,S n =na +n (n -1)2d . 由c =0,得b n =S n n =a +n -12d .又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d , 化简得d 2-2ad =0.因为d ≠0,所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .21.(本小题满分12分)设函数f (x )=1x +2,a ,b 为正实数.(1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23; (2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.【知识点:不等式的证明,分析法,反证法】证明:(1)欲证f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,即证b a +2b +a b +2a ≤23,只要证a 2+b 2+4ab 2a 2+2b 2+5ab ≤23. 因为a ,b 为正实数,只要证3(a 2+b 2+4ab )≤2(2a 2+2b 2+5ab ),即a 2+b 2≥2ab , 因为a 2+b 2≥2ab 显然成立,故原不等式成立.(2)假设af (b )=a b +2≤12,bf (a )=b a +2≤12, 由于a ,b 为正实数,所以2+b ≥2a ,2+a ≥2b ,两式相加得:4+a +b ≥2a +2b ,即a +b ≤4,与条件a +b >4矛盾,故af (b ),bf (a )中至少有一个大于12.22.(本小题满分12分)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC=12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起图②中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值.【知识点:演绎推理,线面垂直的判定,面面垂直的性质,锥体的体积】(1)证明:在图①中,因为AB =BC =12AD =a ,E 是AD 的中点, ∠BAD =π2,所以BE ⊥AC ,即在图②中,BE ⊥A 1O ,BE ⊥OC ,从而BE ⊥平面A 1O C.又CD ∥BE ,所以CD ⊥平面A 1O C.(2)解:由已知,平面A 1BE ⊥平面BCDE ,且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 则A 1O 是四棱锥A 1-BCDE 的高.由图①知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2.从而四棱锥A 1-BCDE 的体积V =13×S ·A 1O =13a 2·22a =26a 3. 由26a 3=362,得a =6.。

高中数学选修1-2(人教A版)第二章推理与证明2.1知识点总结含同步练习及答案

高中数学选修1-2(人教A版)第二章推理与证明2.1知识点总结含同步练习及答案

sin (200 ∘ + α) + cos (200 ∘ + α + 30∘ ) + sin α cos (α + 30∘ ) =
高考不提分,赔付1万元,关注快乐学了解详情。
分别为 S 1 ,S 2 ,EF ∥ AB 且 EF 到 CD 与 AB 的距离之比为 m : n ,则 △OEF 的面积 S 0 与
S 1 ,S 2 的关系是 (
).
mS 1 + nS 2 m+n − − − − m√S 1 + n√S 2 − − C.√S 0 = m+n
A.S 0 =
答案: C
nS 1 + mS 2 m+n − − − − n√S 1 + m√S 2 − − D.√S 0 = m+n
B.S 0 =
4. 观察 sin 220 ∘ + cos 250 ∘ + sin 20∘ cos 50∘ = 个与以上两式规律相同的一个等式
答案:

3 3 ,sin 215 ∘ + cos 245 ∘ + sin 15∘ cos 45∘ = ,写出一 4 4 3 4
3. 如图,在梯形 ABCD 中,AB ∥ DC,AB = a,CD = b (a > b) 若 EF ∥ AB,EF 到 CD 与
ma + nb .试用类比的方法,推想出下述问题的结 m+n 果.在上面的梯形 ABCD 中,延长梯形两腰 AD ,BC 相交于 O 点,设 △OAB,△OCD 的面积 AB 的距离之比为 m : n ,则可推算出:EF =
(查看更多本章节同步练习题,请到快乐学)
1. 下列说确的 B.合情推理必须有前提有结论 C.合情推理不能猜想 D.合情推理得出的结论无法判定正误
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 推理与证明 1
一、合情推理
2 12→⎫⎬→⎭、归纳推理:个别一般(结论不一定正确)、类比推理:特殊特殊 3
例1、推导等差数列通项公式。

4
解: 5
6
7
8
9
33332123________.n ++++=例、求 10
解: 11
12
13
14
15 16
17
18
19
二、演绎推理
20 ()()()()123⎧⎪→⎨⎪⎩大前提:M 是P 三段论小前提:S 是M
一般特殊结论正确结论:S 是P 21
例:“自然数是整数,4是自然数,所以4是整数”。

22 233243123(1)n a a d a a d a a d a a n d =+⎫⎪=+⎪⎪=+↓⎬⎪⎪=+-⎪⎭个别一般32332333233332221111293123=36=++
11+2+3++(123)(1)4n n n n ⎫==⎪⎪+==⎪⎪++↓⎬⎪⎪⎪=+++
+=+⎪⎭特殊(123)一般
25
26
三、直接证明
27 1→→、综合法:条件结论
2、分析法:结论条件
28 (
)(
),,,0,+=+,12,a b c d a b c d ab cd a b c d >>>-<->例:设且证明:
若若
29 (
)221,,,a b c d a b c d ab cd ab cd ab cd ⎫>⎪⎪>⎪⎪+>+⎬+=+>⎪⎪>⎪⎪>>⎭证明:只要证,即,分析法因为所以只要证,只要证因为成立. 30 (
)22222,()()()4()4,a b c d a b c d a b ab c d cd a b c d ab cd ⎫-<--<-⎪+-<+-⎪⎬+=+>⎪⎪>⎭若,
即,
综合法因为所以,
由(1 31
32
四、间接证明 33
反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,34
因此说明假设错误,从而证明了原命题成立。

35
36
37
210.x m n x mn x m x n ++≠≠≠例、若-(),则且
38 2==0x m x n x m x n x m x n x m n x mn x m x n ≠≠--++≠∴≠≠证:假设且不成立,
则且,
所以()()=0与-()矛盾,
故假设不成立,
且成立.
39
42
43
44
45
22例、证明是无理数. 46 2222222222=,
=24,
2,
2q p q p
p q q q q k k p k p k p p p q ∴=∴∴∴=∴=∴∴∴证明:假设是有理数,则(、互质的整数),2是偶数,
是偶数,
可设(为整数),
2是偶数,
也是偶数,
与、互质矛盾,则假设不成立,
是无理数. 47
五、数学归纳法
48 *00*0()=(,)1n an n N n k k n k N n k ∈≥∈=+步骤:①:(归纳奠基)证明当取第一个值时命题成立.
②:(归纳递推)假设时命题成立,证明当时命题成立. 49
50
例1、 51
52
53
54
55
56
57
58
例2、59
60。

相关文档
最新文档