线性参数的最小二乘法处理

合集下载

多元线性回归模型参数的最小二乘估计

多元线性回归模型参数的最小二乘估计

x
2 ki
yi
x1i
yi
X
Y
xki yi
ˆ0
ˆ1
ˆ
ˆ k
于是正规方程组的矩阵形式为
( X X )ˆ X Y
(3.2.5)
于是有 ˆ ( X X )1 X Y (3.2.6)
二、中心化模型的参数最小二乘估计 我们已经知道,总体线性回归模型可以表示为
yi 0 1 x1i 2 x2i k xki ui (3.2.7)
u1
U
u2
un
残差平方和
1
2
n
2 i
(Y
Xˆ )(Y
Xˆ )
YY 2ˆ X Y ˆ X Xˆ
其中用到 Y Xˆ 是标量的性质。
(3.2.15)
将残差平方和(3.2.15)对 ˆ 求导,并令其为零:
( ˆ
)
2 X
Y
2 X

0
整理得正规方程组
X Xˆ X Y
(3.2.16)
这里 =0,可以看作是对参数施加一个限制条件。
其中心化模型
yi 1 x1i 2 x2i k xki ui (3.2.11)
yi ˆ1 x1i ˆ2 x2i ˆk xki i (3.2.12)
(i =1,2,…,n)
将它们写成矩阵形式:
Y X U
(3.2.13)
Y Xˆ
ˆ0 xki ˆ1 x1i xki ˆ2 x2i xki ˆk xk2i xki yi
由(3.2.3)第一个方程,可以得到:
y ˆ0 ˆ1 x1 ˆ2 x2 ˆk xk
(3.2.4)
将正规方程组写成矩阵形式:
n x1i xki

第五章 线性参数最小二乘法处理(1)

第五章 线性参数最小二乘法处理(1)
第五章 线性参数的最小二乘法处理
光电效应
1 E = hν = m υ0 2 + A 2
1 eU 0 = m υ0 2 2
h A U0 = ν e e
2
光电效应
频率νi(×1014Hz) 8.214 7.408 6.879 5.490 5.196 截止电压U0i(V) 1.790 1.436 1.242 0.688 0.560
3
光电效应
SLOPE函数
频率ν i(Hz) 8.214E+14 7.408E+14 6.879E+14 5.490E+14 5.196E+14 截止电压U0i(V) 1.790E+00 1.436E+00 1.242E+00 6.880E-01 5.600E-01
4.02964E-15
2.000E+00 1.800E+00 1.600E+00
1
i 2
e
i 2 ( 2 i 2 )
di
( i 1, 2,
, n)
由概率论可知,各测量数据同时出现在相应区域的概率
为ቤተ መጻሕፍቲ ባይዱ
P Pi
i 1
n
1

1 2 n
2
e n

i 1
n
i 2 (2 i 2 )
d 1d 2
d n
12
第一节 最小二乘原理
1.400E+00
y = 4E-15x - 1.5314
1.200E+00 1.000E+00 8.000E-01 6.000E-01
4.000E-01
2.000E-01 0.000E+00 0.000E+00 5.000E+14 1.000E+15

误差理论与数据处理课第六版后答案5

误差理论与数据处理课第六版后答案5

例3-2 已知 x x 2.0 0.1,y y 3.0 0.2 ,相关系数 xy 0 试求 x3 y 的值及其标准差。
解: 0 x3 y 2.03 3.0 13.86
a12
2 x
a22
2 y
a1
f x
3x2
y
20.78
a2
f y
x3
1 2y
2.31
20.782 0.12 2.312 0.22 2.13
三、微小误差取舍原则
Di ai i
y D12 D22 Dn2
D1 D2 Dn y
n
i
y
n
1 ai
i
y
n
1 ai
1
10
y
Dk
1
3
y
四、 最佳测量方案的确定
1. 选择最佳函数误差公式 2.使误差传递函数 f / x或i 为0 最小
10
例3-1 求长方体体积V,直接测量各边长 a 161.6 , b 44.5 , c 11.2 已知测量的系统误差为 a 1.2, b 0.8 c 0.5 测量的极限误差 为 a 0.8, b 0.5, c 0.5 求立方体体积及其极限误差。
2)判断
2
若nx 、ny≤10,则由秩和检验表2-10查得T- 、T+
T 14 T 30 T T
故怀疑存在系统误差
8
第三章 误差的合成与分配
一、函数系统误差计算
1. 一般函数形式 y f ( x1 , x2 ,, xn )
y
f x1
x1
f x2
x2
f xn
xn
二、函数随机误差计算

f xi
g

误差理论实验报告2

误差理论实验报告2


n(m+1)
X Y

F F=
U/m s

显著性 0.01 0.05 0.1 或其他
2. 实验内容和结果
1、 程序及流程 用MATLAB编写程序解答下面各题 1.材料的抗剪强度与材料承受的正应力有关。某种材料实验数据 如下表:
正应力x (Pa) 抗剪强度y (Pa) 26.8 26.5 25.4 27.3 28.9 24.2 23.6 27.1 27.7 23.6 23.9 25.9 24.7 26.3 28.1 22.5 26.9 21.7 27.4 21.4 22.6 25.8 25.6 24.9

Z14=log(y4); Z15=log(y5); Z1pz=(Z11+Z12+Z13+Z14+Z15)/5; x1=1.585; x2=2.512; x3=3.979; x4=6.310; x5=9.988; x6=15.85; Z21=log(x1); Z22=log(x2); Z23=log(x3); Z24=log(x4); Z25=log(x5); Z2pz=(Z21+Z22+Z23+Z24+Z25)/5; A1=(Z11)*(Z21); A2=(Z12)*(Z22); A3=(Z13)*(Z23); A4=(Z14)*(Z24); A5=(Z15)*(Z25); Apz=5*(Z1pz)*(Z2pz); B1=(Z11)*(Z11); B2=(Z12)*(Z12); B3=(Z13)*(Z13); B4=(Z14)*(Z14); B5=(Z15)*(Z15); Bpz=5*(Z1pz)*(Z1pz); b=((A1+A2+A3+A4+A5)-Apz)/((B1+B2+B3+B4+B5)-Bpz) a=10^((Z1pz)/b-Z2pz) y=(y1 y2 y3 y4 y5); x=(x1 x2 x3 x4 x5); y=a*x^b;

最小二乘法线性拟合

最小二乘法线性拟合

4.最小二乘法线性拟合(非常好)我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。

用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。

最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。

显然,关键是如何求出最佳的a 和b 。

(1) 求回归直线设直线方程的表达式为:bx a y += (2-6-1)要根据测量数据求出最佳的a 和b 。

对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下:111bx a y d --=222bx a y d --=n n n bx a y d --=显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+|d 2|+……+ |d n |又不好解方程,因而不可行。

现在采取一种等效方法:当d 12+d 22+……+d n2对a 和b 为最小时,d 1、d 2、……、d n 也为最小。

取(d 12+d 22+……+d n 2)为最小值,求a 和b 的方法叫最小二乘法。

令 ∑==ni idD 12=2112][i i ni ni ib a y dD --==∑∑== (2-6-2)D 对a 和b 分别求一阶偏导数为:][211∑∑==---=∂∂ni i n i i x b na y a D][21211∑∑∑===---=∂∂n i i n i i n i i i x b x a y x b D再求二阶偏导数为:n a D 222=∂∂; ∑==∂∂ni i x b D 12222 显然: 0222≥=∂∂n a D ; 021222≥=∂∂∑=n i i x b D 满足最小值条件,令一阶偏导数为零:011=--∑∑==ni i ni ix b na y(2-6-3)01211=--∑∑∑===ni i ni i ni ii x b x a yx (2-6-4)引入平均值: ∑==ni i x n x 11; ∑==n i i y n y 11;∑==n i i x n x 1221; ∑==ni i i y x n xy 11则: 0=--x b a y02=--x b x a xy (2-6-5) 解得: x b y a -= (2-6-6)22xx y x xy b --=(2-6-7)将a 、b 值带入线性方程bx a y +=,即得到回归直线方程。

第五章线性参数的最小二乘法处理01

第五章线性参数的最小二乘法处理01

第五章线性函数的最小二乘处理最小二乘原理应用时的条件是:函数关系确定已知、等精度、误差独立、无偏估计得到满足,在众多的N个测量方程中利用最小二乘原理求得t个(t</N)参数的最佳估计值。

如前所叙,在随机因素作用下,测量次数较多时,计算的结果就会更精密,测量次数往往大于待求未知量的个数,因而出现N>t的现象就成为自然而然的事情了。

众所周知,当N=t时可由线性代数知识求得一组唯一正确解。

当N>t时,代数解法则无能为力了。

也许读者会提出另外一个问题:既然N>t,可由N中取出t个方程来求解,而把(N-t)个方程弃掉,问题不就解决了吗?答案是不行的。

这样求解后的结果不是最佳值,有时会与最佳值离歧很大。

最小二乘法是一种数学原理,高斯于1809年在他的名著《天体沿圆锥截面绕太阳运动的理论》一书中,发表了他发现的最小二乘原理并应用于测量之后,在许多科学领域及技术领域中得到越来越多地应用。

5.1 函数为直接测量值得线性组合5.1.1 测量方程式函数中可能存在着多个待定参数,根据该函数关系可列出多个测量后的方程式,该方程式称作测量方程式。

设含有t个待求参数Xj(j=1,2,…,t)的函数关系已知,表现为线性组合,即Xj是待定系数的真值,aj是在某具体测量条件下获得的直接测量值,经N次测量(N>t)后,理应得到N个函数真关系式。

为了表达更简洁,可将各方程中系数用aij(i=1,2, …,N;j=1,2, …,t)表示,上述方程可简写成量值Y经N次测量后的测量值用Mi表示,则上述方程变为测量方程式,又称测量条件方程,式中,aij及Mi是在某具体测量条件下的直接测量值,Mi含有误差,即Mi≠Yi。

5.1.2 剩余误差方程式若用同直接测量时一样,可将称作剩余误差。

由此便可得到N个剩余误差方程式可以看出,剩余误差是各最可信赖值的函数,即5.1.3 正规方程组现在以三个待求量x1,x2,x3为例,说明建立正规方程组的过程,该计算方法和过程及结论,可推广到t个待求量中去。

第3章 线性模型参数的最小二乘估计法

第3章 线性模型参数的最小二乘估计法
| 为由概P率i =论σ可i 1知2π,e各−δi2测(2量σi2 )数dδ据i 同(时i =出1,现2,"在,相n)应区域
的概率为
∏ P =
n i =1
Pi
=
1
σ1σ 2 "σ n
n

∑ − δi2 e i=1
(2σi2 )dδ1dδ 2 "dδ n
1. 最小二乘原理
| 测量值 l1,l2 ,",ln 已经出现,有理由认为这n个测 量值出现于相应区间的概率P为最大。要使P最
ti /0 C
10
20
30
40
50
60
li / mm 2000.36 2000.72 2000.8 2001.07 2001.48 2000.60
| 1)列出误差方程
vi = li − ( y0 + ay0ti )
| 令 y0 = c, ay0 = d为两个待估参量,则误差方程为
vi = li − (c + tid )
x2 ,",
xt
)
⎪⎪ ⎬

vn = ln − fn (x1, x2 ,", xt )⎪⎭
残差方程式
1. 最小二乘原理
| 若 l1,l2 ,",ln 不存在系统误差,相互独立并服从正 态分布,标准差分别为σ1,σ 2 ,",σ n,则l1, l2 ,", ln出
现在相应真值附近 dδ1, dδ2,", dδn 区域内的概率
大,应有
δ12
+
δ
2 2
+"
+
δ
2 n
= 最小
σ12 σ 22

线性回归与最小二乘法

线性回归与最小二乘法

线性回归与最小二乘法线性回归是一种常用的统计分析方法,也是机器学习领域的基础之一。

在线性回归中,我们通过寻找最佳拟合直线来对数据进行建模和预测。

最小二乘法是线性回归的主要方法之一,用于确定最佳拟合直线的参数。

1. 线性回归的基本原理线性回归的目标是找到一条最佳拟合直线,使得预测值与实际值之间的误差最小。

我们假设线性回归模型的形式为:Y = β₀ + β₁X₁ +β₂X₂ + … + βₙXₙ + ε,其中Y是因变量,X₁、X₂等是自变量,β₀、β₁、β₂等是回归系数,ε是误差项。

2. 最小二乘法最小二乘法是一种求解线性回归参数的常用方法。

它的基本思想是使所有样本点到拟合直线的距离之和最小化。

具体来说,我们需要最小化残差平方和,即将每个样本点的预测值与实际值之间的差的平方求和。

3. 最小二乘法的求解步骤(1)建立线性回归模型:确定自变量和因变量,并假设它们之间存在线性关系。

(2)计算回归系数:使用最小二乘法求解回归系数的估计值。

(3)计算预测值:利用求得的回归系数,对新的自变量进行预测,得到相应的因变量的预测值。

4. 最小二乘法的优缺点(1)优点:最小二乘法易于理解和实现,计算速度快。

(2)缺点:最小二乘法对异常点敏感,容易受到离群值的影响。

同时,最小二乘法要求自变量与因变量之间存在线性关系。

5. 线性回归与其他方法的比较线性回归是一种简单而强大的方法,但并不适用于所有问题。

在处理非线性关系或复杂问题时,其他方法如多项式回归、岭回归、lasso回归等更适用。

6. 实际应用线性回归及最小二乘法广泛应用于各个领域。

在经济学中,线性回归用于预测GDP增长、消费者支出等经济指标。

在医学领域,线性回归被用于预测疾病风险、药物剂量等。

此外,线性回归还可以应用于电力负荷预测、房价预测等实际问题。

总结:线性回归和最小二乘法是统计学和机器学习中常用的方法。

线性回归通过拟合一条最佳直线,将自变量与因变量之间的线性关系建模。

第四章参数的最小二乘法估计讲解

第四章参数的最小二乘法估计讲解

第四章 最小二乘法与组合测量§1 概述最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。

对于从 事精密科学实验的人们来说, 应用最小乘法来解决一些实际问题, 仍是目前必不 可少的手段。

例如,取重复测量数据的算术平均值作为测量的结果, 就是依据了 使残差的平方和为最小的原则, 又如,在本章将要用最小二乘法来解决一类组合 测量的问题。

另外,常遇到用实验方法来拟合经验公式, 这是后面一章回归分析 方法的内容,它也是以最小二乘法原理为基础。

最小二乘法的发展已经经历了 200 多年的历史,它最先起源于天文和大地测 量的需要, 其后在许多科学领域里获得了广泛应用, 特别是近代矩阵理论与电子 计算机相结合,使最小二乘法不断地发展而久盛不衰。

本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用, 一些深 入的内容可参阅专门的书籍和文献。

§2 最小二乘法原理最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。

对某 量 x 测量一组数据 x 1,x 2, ,x n ,假设数据中不存在系统误差和粗大误差,相互独 立,服从正态分布,它们的标准偏差依次为: 1, 2, n 记最可信赖值为 x ,相 应的残差 v i x i x 。

测值落入 (x i ,x i dx)的概率。

根据概率乘法定理,测量 x 1,x 2, ,x n 同时出现的概率为P i2i 2 exp( 2v ii 2)dx1 1 v PP i1n exp[ 1( i )2 ](dx)n ii ( 2 )n 2 i i显然,最可信赖值应使出现的概率 P 为最大,即使上式中页指数中的因子达 最小,即2 v ii2 Min i i 22[ wvv]w i v i Min再用微分法,得最可信赖值 xnw i x ii1 x nw ii1这里为了与概率符号区别,以 i 表示权因子。

特别是等权测量条件下,有:[vv] v i 2 Min以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的, 称之为最小二乘法原理。

(完整版)5线性参数的最小二乘法处理(精)

(完整版)5线性参数的最小二乘法处理(精)

一、等精度测量线性参数的LSM处理的正规方 程。
❖ 线性参数的误差方程式为:
l1 a11x1 a12 x2 ... a1t xt v1
l2 a21x1 a22 x2 ... a2t xt v2
……
ln an1x1 an2 x2 ... ant xt vn
v2
第三节 精度估计
❖ 一、测量数据的精度估计
❖ (一)等精度测量数据的精度估计
❖ 对包含t个未知数的线性参数方程,进行n次独立的 等精度测量。
❖ 可以证明

[V V ] ~ 2 n t
2
E[V V
2
]
n
t
❖取
s 2 v v
nt
s
v
2 i
nt
❖ V1=3-(1.28×1+0.418×2)=0.884 ❖ V2=5-(1.28×1+0.418×10)=-0.46 ❖ V3=8-(1.28×1+0.418×20)=-1.64 ❖ V4=15-(1.28×1+0.418×30)=1.18 ❖ V5=18-(1.28×1+0.418×40)=0
L
8
15
18
AT A 1052 3100024 AT L 134698
( AT
A)1
1 4616
3004 102
1502
X
( AT A)1 AT L
1 4616
3004 102
1502134698 01..42188
❖ 正规方程为: ❖ 5x+102y=49 ❖ 102x+3004y=1386 ❖ 解该方程得到 ❖ x=1.28 ❖ y=0.418
i

最小二乘法求解线性回归问题

最小二乘法求解线性回归问题

最小二乘法求解线性回归问题最小二乘法是回归分析中常用的一种模型估计方法。

它通过最小化样本数据与模型预测值之间的误差平方和来拟合出一个线性模型,解决了线性回归中的参数估计问题。

在本文中,我将详细介绍最小二乘法在线性回归问题中的应用。

一、线性回归模型在介绍最小二乘法之前,先了解一下线性回归模型的基本形式。

假设我们有一个包含$n$个观测值的数据集$(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)$,其中$x_i$表示自变量,$y_i$表示因变量。

线性回归模型的一般形式如下:$$y=\beta_0+\beta_1 x_1+\beta_2 x_2+\dots+\beta_px_p+\epsilon$$其中,$\beta_0$表示截距,$\beta_1,\beta_2,\dots,\beta_p$表示自变量$x_1,x_2,\dots,x_p$的系数,$\epsilon$表示误差项。

我们希望通过数据集中的观测值拟合出一个线性模型,即确定$\beta_0,\beta_1,\dots,\beta_p$这些未知参数的值,使得模型对未知数据的预测误差最小化。

二、最小二乘法的思想最小二乘法是一种模型拟合的优化方法,其基本思想是通过最小化优化问题的目标函数来确定模型参数的值。

在线性回归问题中,我们通常采用最小化残差平方和的方式来拟合出一个符合数据集的线性模型。

残差代表观测值与模型估计值之间的差异。

假设我们有一个数据集$(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)$,并且已经选定了线性模型$y=\beta_0+\beta_1 x_1+\beta_2 x_2+\dots+\beta_p x_p$。

我们希望选择一组系数$\beta_0,\beta_1,\dots,\beta_p$,使得模型对数据集中的观测值的预测误差最小,即最小化残差平方和(RSS):$$RSS=\sum_{i=1}^n(y_i-\hat{y}_i)^2$$其中,$y_i$表示第$i$个观测值的实际值,$\hat{y}_i$表示该观测值在当前模型下的预测值。

最小二乘法求解参数

最小二乘法求解参数

最小二乘法求解参数
最小二乘法来估计参数,就是使得实际值与估计值的差距的平方最小。

β可以被已知的未知数计算得到是无偏估计的值。

但是用最小二乘法可以得到最好的线性无偏估计量,因为变异比较小。

所以这种方法就是最稳定的最通用的方法。

如果只有一个β1,也就是只有y与x1,则使用两样本t检验和回归分析是一样的。

因为两样本t检验就可以计算β的置信区间,因此也可以在该回归方程中。

另一种估计参数方法是最大似然函数,用此法估计参数值是一样的,但是仅对于y是连续值情况。

采用最小二乘估计式可以得到简单线性回归模型参数的估计量。

但是估计量参数与总体真实参数的接近程度如何。

在工程物理、化学工程、生物医学、统计学、经济学、信号处理、自动化、测绘学等领域中,许多问题都可归结为求解矩阵方程Ax=b 的问题。

通过计算机仿真说明了在模型中所有变量均具有不可忽略的误差时,全最小二乘法得到的参数估计更接近。

除了线性均方估计外,最小二乘估计是另一种不需要任何先验知识的参数估计方法,最小二乘估计不需要先验统计特性,适用范围更广。

、、。

线性最小二乘法拟合

线性最小二乘法拟合

线性最小二乘法拟合
线性最小二乘法(Linear Least Squares,LLS)是一种用来对观测数据建立数学模型的最常见的统计学方法,它可以有效地从数据中恢复出一组最优参数值。

它可以用来拟合各种类型的多项式曲线,甚至可以应用到混合型曲线,并且具有良好的拟合效果。

一、线性最小二乘法的定义
线性最小二乘法是一种数学方法,记为$argmin \ \sum_{i=1}^{n} (Y_i - f(X_i))^2$,表明最小二乘法通过最小化残差(残差是指观测值与实际值的差异)的平方和,来估计参数模型的参数。

二、线性最小二乘法的原理
线性最小二乘法即最小误差平方和法,即参数估计问题关于误差平方和有最小值时参数向量,该参数向量即构成最小二乘解。

另外,在假定数据舍入误差符合高斯分布的情况下,最小二乘法可以被认为是可行统计方法的最优的一种。

三、线性最小二乘法的应用
(1)拟合函数式在数学及工程中,最小二乘法非常常见,主要用于拟合函数式,特别是二元一次函数式,如曲线或抛物线;
(2)计算未知参数线性最小二乘法可以用来解决只有已知数据,而求解未知参数的最小二乘问题,它除了可以拟合多项式表达式,还可以拟合非线性方程;
(3)建立数据模型经过数据分析处理,可以使用最小二乘法的方法建立数据模型,来求解某些复杂的问题。

四、线性最小二乘法的优缺点
(1)优点:算法简单,收敛速度快,适用于线性拟合;
(2)缺点:模型不一定适用所有数据,受输入噪声影响,不适用高次函数拟合。

线性最小二乘法是广泛用于统计学和工程领域的有效方法,它不仅可以提供良好的拟合效果,而且可以有效地恢复出参数模型的最优参数值,可以满足许多不同的场景的需求,也被广泛认可和使用。

(完整版)5线性参数的最小二乘法处理(精)

(完整版)5线性参数的最小二乘法处理(精)

一、等精度测量线性参数的LSM处理的正规方 程。
❖ 线性参数的误差方程式为:
l1 a11x1 a12 x2 ... a1t xt v1
l2 a21x1 a22 x2 ... a2t xt v2
……
ln an1x1 an2 x2 ... ant xt vn
v2
AT L A X 0
( AT A) X AT L
❖ 解上面方程组得
X AT A 1 AT L Nhomakorabea❖ 可以证明最小二乘估计值是无偏估计。
❖ 测量方程为:

x+2y=3

x+10y=5

x+20y=8

x+30y=15

x+40y=18
1 2
1 10
A 1
20
1 30
1
40
3 5
ank [ln (an1 x1 an2 x2 ... ant xt )] 0 k 1,2, ,t

[ai ai ] a1i a1i a2i a2i ... ani ani i 1,2 ,t [ai a j ] a1i a1 j a2i a2 j ani anj (i, j 1,2, ,t) [ai L] a1il1 a2il2 ... aniln i 1,2 ,t
' i
.........
i
L* A* X V *
最小 ❖
V *V
(L*
A*
^
X )T(L*
A*
^
X)
第二节 正规方程
❖ 为了得到可靠的测量结果,测量次数n总是要 多于未知数的数目t。因而直接用一般解代数 方程的方法求解这些未知数是不可能的。最 小二乘法可以将误差方程转化为有确定解的 代数方程,而且方程个数正好等于未知数的 个数,从而可求解这些未知数。

误差理论线性参数的最小二乘法处理实验报告

误差理论线性参数的最小二乘法处理实验报告

误差理论线性参数的最小二乘法处理实验报告一、实验目的1.掌握误差理论线性参数的最小二乘法处理原理;2.熟悉误差理论线性参数的最小二乘法处理过程;3.进一步理解误差源与观测量之间的关系。

二、实验原理1.误差理论线性参数的最小二乘法处理原理:最小二乘法是一种常见的数据处理方法,通过最小化观测值与估计值之间的残差,来求取未知参数的最优估计值。

对于误差理论线性参数的最小二乘法处理,可以根据观测值和其对应的误差,通过建立含有未知参数的线性方程组,然后通过最小化残差平方和的方法求解最优估计值。

2.误差理论线性参数的最小二乘法处理步骤:(1)确定线性关系的函数模型;(2)建立观测值与理论值之间的代数关系;(3)建立每个观测值与误差之间的代数关系;(4)构建误差方程;(5)求解未知参数的最优估计值;(6)分析残差,并进行精度评定。

三、实验内容及步骤1.实验准备:(1)阅读实验教材,了解实验原理;(2)确定实验使用的观测仪器和测量对象;(3)清洗、校准测量仪器。

2.实验步骤:(1)根据实验要求,确定需要测量的多个观测值,并为每个观测值确定一个相应的误差;(2)建立观测值与理论值之间的线性关系;(3)构造观测值和误差的方程,并对方程进行变换和简化;(4)解线性方程组,求解未知参数;(5)计算观测值的残差,并分析精度。

四、实验数据处理1.实验数据:假设有三个观测值,测量结果如下:观测值1:4,误差:0.1观测值2:7,误差:0.2观测值3:10,误差:0.32.实验数据处理:(1) 建立观测值与理论值之间的线性关系模型:y = ax + b;(2)构造观测值和误差的方程:观测值1:4=a*1+b+ε1观测值2:7=a*2+b+ε2观测值3:10=a*3+b+ε3(3)对方程进行变换和简化,得到:4=a+b+ε17=2a+b+ε210=3a+b+ε3(4)构建误差方程:ε1=4-a-bε2=7-2a-bε3=10-3a-b(5)将误差方程代入原方程组,并最小化残差平方和,得到最优解:2a+b=35a+b=6(6)解得未知参数的最优估计值为:a=1,b=1(7)计算观测值的残差:观测值1的残差:ε1=4-1-1=2观测值2的残差:ε2=7-2-1=4观测值3的残差:ε3=10-3-1=6五、结果分析1.通过最小二乘法处理,我们得到未知参数的最优估计值为:a=1,b=12.通过计算观测值的残差,我们可以评定估计结果的精度,其中残差ε1=2,ε2=4,ε3=6实验结果表明,通过误差理论线性参数的最小二乘法处理,我们可以准确地估计未知参数的值,并评价估计结果的精度。

第五章线性参数的最小二乘法处理

第五章线性参数的最小二乘法处理

X 的最佳估计值
Xˆ ( AT PA)1 AT PL C 1 AT PL
例题 5-2
5-22
四、最小二乘法与算术平均值的关系
为确定一个量X的估计值x,对它进行n次直接测量,得 到n个数据 l1, l2 , , ln ,相应的权分别为 P1, P2 , , Pn 。
最佳估计值
n
Pili
x i1 n Pi i 1
V TV 最小
V L A Xˆ
l1
1
L Ml2 P 2 L
ln
v1
1
V
Mv2
P
2V
vn
a11 a12 L A a21 a22 L
M an1 an2 L
a1t
a2t
P
1 2
A
ant
5-14
线性参数的最小二乘法处理程序
误差 方程
最小二乘法
V TV 最小
求极值 的方法
x1 d11 x2 d 22
xt dtt 不定系数 C 1 ( AT PA)1对角元素
单位权的标准差
5-30
第四节 组合测量(combined measurement)
的最小二乘法处理
5-31
组合测量基本概念
组合测量是通过直接测量待测参数的各种组合量(一 般是等精度测量),然后对这些测量数据进行处理, 从而求得待测参数的估计值,并给出其精度估计。
5-28
二、最小二乘估计量
x1, x2 , , xn 的精度估计
1、等精度测量时估计量的精度估计
x1 d11 x2 d 22
xt dtt 不定系数
AT A 1 对角元素
直接测量量的标准差
5-29

最小二乘法线性详细说明

最小二乘法线性详细说明
在处理数据时,常要把实验获得的一系 列数据点描成曲线表反映物理量间的关系。 为了使曲线能代替数据点的分布规律,则 要求所描曲线是平滑的,既要尽可能使各 数据点对称且均匀分布在曲线两侧。由于 目测有误差,所以,同一组数据点不同的 实验者可能描成几条不同的曲线(或直线), 而且似乎都满足上述平滑的条件。那么, 究竟哪一条是最曲线呢?这一问题就是 “曲线拟合”问题。一般来说,“曲线拟 合”的任务有两个:
利用最小二乘法计算出b, a得出回归方程即两个变 量之间的关系式。
计算 s ,并利用肖维涅准则判断有无粗差。
如果有粗差,剔除后重复①,②,③步骤计算。
如无粗差,计算b , a ,给出最后的回归方程。
26
〔例题〕
用伏安法测电阻,测量数据如表。问能否拟 合成线性关系曲线?若可以,试判断有无粗
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。
24
回归方程的精密度
根据统计理论还可以求出a和b的标准偏差分别 为:
b s
sx x
a b
xi2 n
xi2
s
nsxx
25
回归分析法的运算步骤
首先计算R,判断是否能拟合成线性曲线。 R≥ R0
b2 s11 s2 y s12 s1y
s s s 11 22
2 12
a y b1x1 b2 x 2
32
公式中:
s11
x2 1i
(
x1i)2 n
s22
x2 2i
(
x2i)2 n
s12
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
W1、 +1″, +10″, +1″, +12″,
W2、 +6″, +4″,
W3、
W4„
Wn
+2″ , -3″ , +4″ +12″, +4″ +3″, +4″
+12″, +12″, +12″
W12
2
12

W22
2 2

W32
32
最小值
3
即 ∑(PW2)=(P1W21)+(P2W22)+(P3W32)
的测量结果 yi 最接近真值,最为可靠,即: yi=∠i+Wi 由于改正数 Wi 的二次方之和为最小,因此称为最小二乘法。 二 最小二乘法理 现在我们来证明一下,最小二乘法和概率论中最大似然方法(算术平均值方法) 是一致的。 (一)等精度测量时 (1)最大似然方法 设 x1,x2„xn 为某量 x 的等精度测量列,且服从正态分布,现以最大似然法和最小 二乘法分别求其最或是值(未知量的最佳估计量) 在概率论的大数定律与中心极限定理那一章我们讲过,随着测量次数的增加,测 量值的算术平均值也稳定于一个常数,即
2 i 1
n
曾给出: vi2
i 1
n
n n 1 n 2 ,由此可知 x vi2 / i2 为最小,这就是最小二乘法的基本 i n i 1 i 1
含义。引入权的符号 P ,最小二乘法可以写成下列形式:
Pv
i 1
n
2 i i
最小
在等精度测量中, 1 2 ... , P1 P2 ... Pn 即: 最小二乘法可以写成下列形式:
l1 y 0 1 t1 得方程组 与 0 。
事实上,由于测量结果 l1 与 l 2 含有测量误差,所得的 y 0 与 0 的值也含有误差,显 而易见,为了减小所得 y 0 与 0 的误差,应增加 y t 的测量次数,以便利用随机误差 的抵偿性减小测量误差的影响。 设在 t 1 , t 2 ,„ t n 温度条件下分别测得金属尺的长度 l1 , l 2 „ l n 共 n 个结果,可列出 方程组:
6
设有一金属尺,在温度 t ℃条件下的长度可表示为: yt y 0 1 t 式中: y 0 —温度为 0 ℃时金属尺的长度;
—金属材料的线胀系;
t —测量尺长时的温度;
现在求出 y 0 与 的数值, 为此, 在 t 1 、t 2 两个温度条件下分别测得尺的长度 l1 与 l 2 ,
1 x1 2 ... xn 2 d x1 d x2 ...d xn exp 2 1 2 ... n( 2 ) 2 1
2


所谓误差最小就是概率 p 最大,即: xi / i 为最小,推导 Bessel 公式时
(5-1)
上面 n 个方程中共有(n+1)个未知数, (在大多数情况下,为了获得更可靠的结 果,测量次数 n 总要多于未知参数的数目 t)是不定方程组,为了解此种方程组必须 提出一个最佳条件,这就是∑W2=(x-x1)2+(x-x2)2+„+(x-xn)2=最小值 现求满足上式的 x 值,令
( W 2 ) =0(函数的一阶导数等于零的点为最值点,二阶 x
1 x 2 2 exp 2 2 2 1 d x 2
1
„„„„„„„„„„„„„
1 x n 2 exp 2 2 2 1 d x n
Pn=
1
由于各次测量是独立事件,所以误差 x2 ,„ xn 同时出现的概率是各个概率的乘 积,即: P=P1P2P3„Pn=
l1 y 0 1 t1 l y 1 t 2 0 2 l n y 0 1 t n
由于方程组的数目多于未知数的数目,属超定方程,无法用
代数法求解上述方程组。显然,当充分利用这 n 个测量结果所提供的信息,必 须给出一个适当的处理方法,克服上面所遇到的问题,而最小二乘法就是解决此类 问题的基本方法。
(8-1)
这些方程式称为观测方程式。设 Yi 的测定值和权分别为 l i 和 Pi ,而 x1,x2,x3,„„ 的最或是值(最佳估计量)分别为 x10,x20,x30,„„。设直接测量量中不含系统误差和 粗大误差,由于存在随机误差,则可得残差方程:
v1 l1 (a11 x10 a1 2 x2 0 a13 x3 0 a1t xt 0 ) v2 l 2 (a 21 x10 a 2 2 x2 0 a 2 3 x3 0 a 2t xt 0 ) vn l n (a n1 x1 a n x2 cn x3 a nt xt 0 ) 0 0 2 3 0
倒数等于零的点为最小值点) 。 2(x-x1)+2(x-x2)+„2(x-xn)=0 ∴nx= xi
i 1 n
∵x= 1 n

i 1
n
x1
可见,所求结果与最大似然方法完全一致。将 x x 带入( 5-1 )式中,求得:
Wi =x= x -xi=-(xi- x )=-Vi(残差)
因此最小二乘原理又可写成残差的平方和为最小,即:
2
式中 σ i2——方差,σ i2= 1 (xi- x )2 n 1 i 1 u= x (真值), xi——测量值
n
∠(xi,σ 12)——概率值, (各测量数据同时出现在相应区域 d x1 „d x n ,的概率) 为满足上式必须使 (
i 1 n
xi u

i
) 2 即: (
既然算术平均值是真值的最可信赖值,那么用 x 代替 A 所产生的误差就一定为最 小。对于正态分布,误差 x1 在区间 d x1 中出现的概率: P1=
1 x1 2 exp 2 2 2 1 d x1
1
1
同理,误差 x2 ,„ xn 在区间 d x2 ,„, d xn 中出现的概率分别为: P2=
n
P1, P2, ,„„,Pn 各测量结果出现在相应区间
xi , xi dx 的概率
P1= 1 e 2

12
2 2 1
·d x
5
┆ Pn=
1

n 2
e
2 n 2 2 n
·d x
测得值 x1,x2„„,xn 同时出现的概率为:
n v i2 n 1 1 ( P=P1P2P3„Pn=∠(xi,σ i )=( ) exp[( ) 2 ) ]=最大 2 i 2 i 1 i

i 1
n
vi2 最小
最小二乘法这个词可理解为, 用 x 代替真值 A 后得到的误差为 “最小” ,“二乘” 的含义指误差平方。
2
§1.1 一
最小二乘法的基本概念
改正数和平差值 我们来看在大地测量中的一个简单的例子。设观测了某三角形的三个内角,得观
测值如下: ∠1=58º30′40″,∠2=61º20′10″,∠3=60º08′58″ 由于存在观测误差,三角形的三个观测值之和与其真值之间有一差值(不符值) , 通常称此差值为三角形的闭合差△闭,即 △闭=(∠1+∠2+∠3)-180º=-12″ 为了消除这个-12″的三角形的闭合差△闭,就需要在各观测值上分别加一个改正 数 Wi(i=1~3) ,使得改正之后,消除了闭合差,故 (∠1+W1)+(∠2+W2)+(∠3+W3)-180º=0 然而为满足上式要求,从表 5-1 所列的各组 Wi 中,任意一组都能达到目的,问题 就在于选择哪一组 Wi 最为合理,测量结果的精度最高。本节将证明应按下列两种情况 选择: 编号 1 2 3 和 观测值 58º30′40″ 61º20′10″ 60º08′58″ 179º59′48″ 表 5-1 1)若各观测值为 Li 为等精度的,则应选取其中一组能使改正数的平方和为最小。 即:∑W2=W12+W22+W32=最小值„„„„„最小二乘法; 2)若各观测值 Li 为不等精度的,则应选取其中一组能使 ∑( W )=
i 1
n
i2 ) =最小 i2
由于权 Pi 与方差 σ
n
2 i
成反比,故得 P= 12 (求权的方法之一)
i
Pi
i 1
i2 =最小
上式表明,测量结果的最可信赖值应在残余误差平方和(在不等精度测量的情形中 应为加权残余误差平方和)为最小的条件下求出,这就是最小二乘原理。 实质上,按最小二乘条件给出最终结果能充分利用随机误差的抵偿作用 ,可以有效 地减小随机误差的影响,因而所得结果具有可信赖性。 一般情况下,最小二乘法可以用于线性参数的处理,也可用于非线性参数的处理。 由于测量的实际问题中大量的是属于线性的,而非线性参数借助于级数展开的方法可 以在某一区域近似地化成线性的形式。因此,线性参数的最小二乘法处理是最小二乘 法理论研究的基本内容。 §5-2 线性参数的最小二乘估计 为了解决如下问题: 先考察下面的例子。
P
1
i2
(权)
这种既能消除不符值(闭合差) ,又能满足上述要求(改正数的平方和为最小)的 一组改正数,称为最或然改正数,简称改正数。观测值∠i 加上这种改正数 Wi,就称为 被观测量的平差值=∠i+Wi 平差计算——为了平差而进行的相应计算称为平差计算。 平 差——上述消除三角形闭合差的过程,在大地测量学中称为平差。平差后
Y1 a11 x1 a1 2 x 2 a13 x3 a1t xt Y2 a 21 x1 a 2 2 x 2 a 2 3 x3 a 2 t xt Y3 a31 x1 a3 2 x 2 a3 3 x3 a3t xt Yn a n 1 x1 a n 2 x 2 a n 3 x3 a nt xt
相关文档
最新文档