热力学作业(答案)

合集下载

第一章热力学的基本规律课后作业和答案

第一章热力学的基本规律课后作业和答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。

解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。

问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。

工程热力学课后作业答案(第十一章)第五版 .

工程热力学课后作业答案(第十一章)第五版 .

11-1空气压缩致冷装置致冷系数为2.5,致冷量为84600kJ/h ,压缩机吸入空气的压力为0.1MPa ,温度为-10℃,空气进入膨胀机的温度为20℃,试求:压缩机出口压力;致冷剂的质量流量;压缩机的功率;循环的净功率。

解:压缩机出口压力1)12(1/)1(-=-k k p p ε 故:))1/(()11(12-+=k k p p ε=0.325 MPa 2134p p p p = T3=20+273=293K k k p p T T /)1()34(34-==209K 致冷量:)41(2T T c q p -==1.01×(263-209)=54.5kJ/kg 致冷剂的质量流量==2q Q m 0.43kg/s k k p p T T /)1()12(12-==368K 压缩功:w1=c p (T2-T1)=106 kJ/kg压缩功率:P1=mw1=45.6kW膨胀功:w2= c p (T3-T4)=84.8 kJ/kg膨胀功率:P2=mw2=36.5kW循环的净功率:P=P1-P2=9.1 KW11-2空气压缩致冷装置,吸入的空气p1=0.1MPa ,t1=27℃,绝热压缩到p2=0.4MPa ,经冷却后温度降为32℃,试计算:每千克空气的致冷量;致冷机消耗的净功;致冷系数。

解:已知T3=32+273=305Kk k p p T T /)1()12(12-==446K k k p p T T /)1()34(34-==205K 致冷量:)41(2T T c q p -==1.01×(300-205)=96kJ/kg致冷机消耗的净功: W=c p (T2-T1)-c p (T3-T4)=46.5kJ/kg 致冷系数:==wq 2ε 2.06 11-3蒸气压缩致冷循环,采用氟利昂R134a 作为工质,压缩机进口状态为干饱和蒸气,蒸发温度为-20℃,冷凝器出口为饱和液体,冷凝温度为40℃,致冷工质定熵压缩终了时焓值为430kJ/kg ,致冷剂质量流量为100kg/h 。

【精品】热力学作业题答案

【精品】热力学作业题答案

【关键字】精品第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。

解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aPV b T V V b =--+=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。

∴ P=19.22MPa2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson 方程;(4)普遍化关系式。

解:查附录二得NH 3的临界参数:T c =405.6K P c =11.28MPa V c =72.5 cm 3/mol ω=0.250 (1) 求取气体的摩尔体积对于状态Ⅰ:P=2.03 MPa 、T=447K 、V=2.83 m 3477405.6 1.176r c T T T === 2.0311.280.18r c P P P ===—普维法∴01.6 1.60.4220.4220.0830.0830.24261.176r BT =-=-=- 11c r c rBP PV BP P Z RT RT RT T =+==+→V=1.885×10-3m 3/mol∴n=2.83m 3/1.885×10-3m 3/mol=1501mol对于状态Ⅱ:摩尔体积V=0.142 m 3/1501mol=9.458×10-5m 3/mol T=448.6K (2) Vander Waals 方程 (3) Redlich-Kwang 方程 (4) Peng-Robinson 方程 ∵448.6405.6 1.106r c T T === ∴220.3746 1.542260.269920.3746 1.542260.250.269920.250.7433k ωω=+-=+⨯-⨯=∴()()()a T RTPV b V V b b V b =--++- (5) 普遍化关系式 ∵559.458107.2510 1.305r c V V V --==⨯⨯=<2 适用普压法,迭代进行计算,方法同1-1(3)2-7:答案: 3cm第三章3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。

第一章热力学的基本规律课后作业及答案

第一章热力学的基本规律课后作业及答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。

解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。

问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。

北航工程热力学 作业答案参考

北航工程热力学  作业答案参考

作业:思考题1-5,1-7;习题1-6。

S 1-5:何为平衡状态?平衡状态和均匀状态是否同一概念?平衡必须满足什么条件?系统不受外界影响的条件下,如果各部分的宏观状态参数不随时间变化,系统处于平衡状态。

平衡状态和均匀状态不是同一概念。

平衡状态强调不受外界影响+状态参数不随时间变化;均匀状态强调的是状态参数不随空间变化,空间分布均匀。

举例:封闭刚性容器内的水和水蒸汽混合物,处于平衡状态,但不处于均匀状态。

平衡条件:力平衡、温度平衡、化学平衡-无势差。

注意:要讲清楚二者的区别,而不是简单的判断和给出定义描述。

S 1-7:可逆过程与平衡过程(内平衡过程)有何区别?造成不可逆的因素有哪些?可逆过程一定是平衡过程,平衡过程不一定是可逆过程;无耗散(无摩擦)的平衡过程是可逆过程。

造成不可逆的因素:胀缩时有力不平衡、传热有温差,运动有摩擦。

注意:要讲清楚二者的区别,而不是简单的判断和给出定义描述。

X 1-6: 解:1760 1.03323 1.01325atm mmHg at bar === 19.829.82/1.033239.504p at atm atm === 2 4.24 4.24/1.01325 4.185p bar atm atm ===745745/7600.98B mmHg atm atm === 19.5040.9810.484A p p B atm =+=+= 2B A p p p +=210.484 4.185 6.299B A p p p atm =-=-= 注意:2B p p B =+是错误的;“真空度”:v p B p =-,B 一般特指地面标准大气压,1B atm =,所以1v p atm <。

S2-5:功是过程量,而推挤功pv 却只取决于状态,怎么理解?热力学力里的功是广义功,体系作功的大小与过程经历的路径和条件有关,不同的过程即使起止状态相同,做功大小也不同,因此,功是过程量。

工程热力学课后作业答案第五版全

工程热力学课后作业答案第五版全

⼯程热⼒学课后作业答案第五版全2-2.已知N2的M = 28,求(1)N2的⽓体常数;(2)标准状态下N2的⽐容和密度;(3)p O.IMPa , t 500 C 时的摩尔⾕积Mv。

解:(1)N2的⽓体常数R Ro 8314= 296.9 J /(kg ? K)M 28(2)标准状态下N2的⽐容和密度压B = 101.325 kPa。

解:热⼒系:储⽓罐。

应⽤理想⽓体状态⽅程。

压送前储⽓罐中p1v1m1RT1压送后储⽓罐中c p2v2m2RT2根据题意Mv =空=64.27 m3 / kmolP2- 3.把CO2压送到容积3m3 的储⽓罐⾥,起始表压⼒P g1 30 kPa ,终了表压⼒P g2 0.3 Mpa,温度由t1 = 45 C 增加到t2 = 70 C。

试求被压⼊的CO2的质量。

当地⼤⽓压⼊的CO2的质量m m1 m2 —回)(5)R T2 T1 '将(1)、⑵、⑶、⑷代⼊(5)式得m=12.02kg2-5当外界为标准状态时,⼀⿎风机每⼩时可送300 m3的27 C ,⼤⽓压降低到容积体积不变; R = 188.9RT vP 296?9 273 = 0.8m3/kg101325 p1 Pg1B(1)-=1.25 kg / m3v(3) p 0.1MPa , t 500 C时的P2T1 t1 273摩尔容积Mv T2 t2 273 CO2的质量CO2的质量99.3kPa ,⽽⿎风机每⼩时的送风量仍为300 m 3,问⿎风机送风量的质量改变多少?解:同上题m ml m2 丫(史已型(空R T2 T1 287 300 =41.97kg2-6空⽓压缩机每分钟⾃外界吸⼊温度为15 C 、压⼒为0.1MPa 的空⽓3 m 3,充⼊容积8.5 m3的储⽓罐内。

设开始时罐内的温度和压⼒与外界相同,问在多长时间内空⽓压缩机才能将⽓罐的表压⼒提⾼到0.7MPa ?设充⽓过程中⽓罐内温度不变。

解:热⼒系:储⽓罐。

热力学作业题答案复习课程

热力学作业题答案复习课程

热力学作业题答案第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。

解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程2 2.52 2.560.5268.314190.60.427480.42748 3.2224.610c c R T a Pa m K mol P -⨯===⋅⋅⋅⨯ 53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT a P V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式 323.15190.6 1.695rc T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTPP P V == ∴ c r PVZ P RT=654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯ 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01ZZ Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。

西工大(冯青) 工程热力学作业答案 第二章

西工大(冯青) 工程热力学作业答案 第二章
' '
0 = ( mu ′ − m0 u0 ) + 0( h + − ( m − m0 )( h +
1 2 cf + gz ) out 2
1 2 cf + gz ) in + 0 2
习题 2-13 储气罐充气
忽略宏观动能和位能后,整理得
( mu ′ − m0 u0 ) = h( m − m0 ) ,即开口系能量的增加等于
则由闭口系热力学第一定律表达式得
Q12 = ΔU 12 + W12 = 1.5( p2V2 − p1V1 ) +
1 ( p2 − p1 )(V2 + V1 ) + ( p1V2 − p2V1 ) 2
= 60 + 0.5 × ( 200 − 1000)(1.2 + 0.2) + (1000 × 1.2 − 200 × 0.2) = 660 kJ
PA2V A2 PA1V A1
× T A1 =
V2
2 × 0.00645 TA1 = 3T A1 = 900 K 1 × 0.043
(2)取 B 内气体为热力系, WB =

V2
V1
pdV = ∫
RgTB1
V
V1
dV = RgTB1 ln
V2 V1
kJ
= 0.287 × 300 × ln
则 QB = ΔU B + WB = 0 − 59.68 = −59.68
cf 3′ = 2( h3 − h3′ ) =
2γRg
γ −1
(T3 − T3′ ) =
2 × 1.40 × 0.287 (600 − 370) = 21.50 m/s 1.40 − 1

中国石油大学远程教育化工热力学作业答案

中国石油大学远程教育化工热力学作业答案

化学热力学高升专答案第一次作业第 1 题水处于饱和蒸气状态,其自由度为您的答案:A题目分数:0.5此题得分:0.5批注:第 2 题如要查询水的饱和蒸气热力学性质表,则需要个独立状态参数的已知条件。

您的答案:A题目分数:0.5此题得分:0.5批注:第3题经历一个不可逆循环过程,体系工质的熵C您的答案:题目分数:0.5此题得分:0.5批注:第4题范德华方程与R- K方程均是常见的立方型方程,对于摩尔体积V 存在三个实根或者一个实根,当存在三个实根时,最大的V值是您的答案:B题目分数:0.5此题得分:0.5批注:第5题可以通过测量直接得到数值的状态参数是C您的答案:题目分数:0.5此题得分:0.5批注:第 6 题处于平衡的气体的摩尔体积vg 和液体的摩尔体积vL 的关系为您的答案:A题目分数:0.5批注:第7 题随着温度的增加,处于平衡的气体的摩尔体积vg和液体的摩尔体积vL的变化规律为您的答案:A题目分数:0.5此题得分:0.5批注:第8题您的答案:处于临界点的平衡的气体和液体B题目分数:0.5此题得分:0.5批注:第9题您的答案:超临界流体是下列条件下存在的物质A题目分数:0.5此题得分:0.5批注:第10 题对应态原理认为,在相同的对比态下,所有物质表现出相同的性质。

即您的答案:D题目分数:0.5此题得分:0.5批注:第11 题关于建立状态方程的作用,以下叙述不正确的是您的答案:C题目分数:0.5此题得分:0.5批注:第12 题纯流体在一定温度下,如压力低于该温度下的饱和蒸汽压,则此物质的状态为您的答案:D题目分数:0.5批注:第13 题利用麦克斯韦关系式,其目的是将难测的()与易测的()联系起来。

您的答案:C题目分数:0.5此题得分:0.5批注:第14 题真实气体在的条件下,其行为与理想气体相近。

您的答案:D题目分数:0.5此题得分:0.5批注:第15 题水的三相点的自由度数目为您的答案:A题目分数:0.5此题得分:0.5批注:第16 题二元系统气液平衡的自由度为2您的答案:错误题目分数:0.5此题得分:0.5批注:第17 题理想气体的熵仅仅是温度的函数您的答案:错误题目分数:0.5此题得分:0.5批注:第18 题某工质在封闭系统进行不可逆循环后,其熵必定增加您的答案:错误题目分数:0.5批注:第19 题理想气体经可逆绝热膨胀后,温度不变您的答案:错误题目分数:0.5 此题得分:0.5 批注:第20 题恒沸点和临界点时的气体和液体都是平衡的,而且两相的组成是相同的,其它的性质也相同您的答案:错误题目分数:0.5 此题得分:0.5 批注:第21题气体混合物的virial系数,如B, C…,只是温度和组分的物性的函数您的答案:错误题目分数:0.5 此题得分:0.5 批注:第22 题纯物质的三相点随着温度或压力的不同而改变您的答案:错误题目分数:0.5 此题得分:0.5 批注:第23题对于纯物质,当P> PC T> TC时,物质以液态存在您的答案:错误题目分数:0.5 此题得分:0.5 批注:第24题当压力大于临界压力时,纯物质就以液态存在您的答案:错误题目分数:0.5此题得分:0.5批注:第25 题温度和压力相同的两种理想气体(纯物质)等温等压混合后,则总体积为原来两气体体积之和,总熵为原来两气体熵之和您的答案:错误题目分数:0.5此题得分:0.5批注:第26 题由于分子间相互作用力的存在,实际气体的体积一定小于同温、同压下理想气体的体积,所以理想气体的压缩因子Z=1,实际气体的压缩因子Z< 1 您的答案:错误题目分数:0.5此题得分:0.5批注:第27 题纯物质的第二维里仅仅是温度的函数您的答案:正确题目分数:0.5此题得分:0.5批注:第28 题节流过程为等焓过程,所以节流后流体的温度不变您的答案:错误题目分数:0.5此题得分:0.5批注:第29 题对于一个绝热不可逆过程,其熵变可以设计一个可逆过程来计算您的答案:正确题目分数:0.5此题得分:0.5批注:第30 题吸热过程一定使系统熵增。

工程热力学课后作业答案(第九章)第五版

工程热力学课后作业答案(第九章)第五版

9-1压力为0.1MPa ,温度为20℃的空气,分别以100、300、500及1000m/s 的速度流动,当被可逆绝热滞止后,问滞止温度及滞止压力各多少?解:h 1=1T c p =1.01×293=296kJ/kgh 0=h 1+22c 当c=100m/s 时:h 0=301 kJ/kg ,T 0=p c h 0=298K ,11010)(-=k k T T p p =0.106 MPa 当c=300m/s 时:h 0=341 kJ/kg ,T 0=337.6K ,p 0= 0.158MPa当c=500m/s 时:h 0=421 kJ/kg ,T 0=416.8K ,p 0= 0.33MPa当c=1000m/s 时:h 0=796 kJ/kg ,T 0=788.1K ,p 0= 0.308MPa9-2质量流量1=mkg/s 的空气在喷管内作定熵流动,在截面1-1处测得参数值p 1= 0.3MPa ,t1=200℃,c1=20m/s 。

在截面2-2处测得参数值p 2=0.2MPa 。

求2-2截面处的喷管截面积。

解:=⨯==3.0528.01p p c β0.1584>0.2 MPa采用渐缩喷管。

c1=20m/s 较小忽略。

因此2-2截面处是临界点==-k k p p T T 12)12(1421K ==222P RT v 0.6m 3/kg =--=-])12(1[11221k k p p k kRT c 323m/s =⨯=222c m v f 0.00185m 39-3渐缩喷管进口空气的压力p 1= 2.53MPa ,t1=80℃,c1=50m/s 。

喷管背压p b = 1.5MPa 。

求喷管出口的气流速度c2,状态参数v2、t2。

如喷管出口截面积f2=1cm 2,求质量流量。

解: ⨯==528.01p p c β 2.53=1.33<1.5 MPa没有到临界。

滞止温度:pc c T T 21021+==354.24K滞止压力:1)10(10-=k k T T p p =2.56 MPa =--=-])02(1[10221k k p p k kRT c 317.5 m/s k k p p T T 1)12(12-==304K ==222P RT v 0.058 m 3/kg ==222v c f m 0.55 m 3/s9-4如上题喷管背压p b = 0.1MPa 。

《大学物理AII》作业 No.11 热力学第一定律(参考答案)

《大学物理AII》作业 No.11 热力学第一定律(参考答案)
1、理解准静态过程、体积功、热量、内能等概念,理解功、热量和内能的微观 意义,并熟练掌握其计算。 2、理解热力学第一定律的意义,并能用它对理想气体各过程进行分析和计算。 3、理解热容量概念,并能用它计算理想气体各过程的热容及热量传递。 4、理解理想气体绝热过程的状态变化特征和能量传递关系。 5、理解循环过程概念及正循环、逆循环的能量转换特征;并能计算热机效率和 致冷系数。 6、理解卡诺循环的特征,掌握卡诺正循环效率及卡诺逆循环致冷系数的计算。
V2
V1
ò p d V 来直接求解做功,但可以
答: (1)不可能。等容加热过程中,系统吸热且不对外做功,根据热力学第一定律其内能一 定增加。 (2)不可能。等温压缩过程中,系统内能不变,对外做负功,根据热力学第一定律系统一 定是经历放热过程。 (3)不可能。等压压缩过程中,系统温度降低,内能减少,同时对外做负功,根据热力学 第一定律系统一定是经历放热过程。 (4)可能。绝热压缩过程,吸热为零,外界对系统做功,系统内能一定增加。
氢气是双原子分子,其自由度为 5,而氦气是单原子分子,其自由度为 3,因此氢气与氦气
5 RT 2 ,所以 3 2 E2 = m RT 4 2 E1 =
m1 2
的内能分别为:
E1 = 5/ 3 E2 ;
7 R 2 ,当它们吸收相同的热量,意味着它们的温度变 5 = R 2
氢气与氦气的等压热容分别为:
Aab = 0
b—c 等压过程: Qbc =
m i+2 3 CP (Tc - Tb ) = ( PcVc - PbVb ) = (i + 2) P 1V1 M 2 8
Abc =
1 3 P1 ( Vc - Vb ) = P1V1 4 4
m V 1 RTa ln A = PaVa ln = - P 1V1ln 4 M VC 4

工程热力学课后作业答案第五版(全)1

工程热力学课后作业答案第五版(全)1

压送前储气罐中CO2的质量
p2v27?105?8.5
m2??kg
RT2287?288
压缩机每分钟充入空气量
pv1?105?3m??kg
RT287?288
ห้องสมุดไป่ตู้
所需时间
m1?
p1v1
RT1p2v2
RT2
t?
m2
?19.83min m
压送后储气罐中CO2的质量
(2)标准状态下N2的比容和密度
RT296.9?2733
v??=0.8m/kg
p101325
m?m1?m2?
=41.97kg
vp2p130099.3101.325
(?)?(?)?1000RT2T1287300273
??
(3)
13
=1.25kg/m v
2-2.已知N2的M=28,求(1)N2的气体常数;(2)标准状态下
T1?t1?273 T2?t2?273
压入的CO2的质量
(3) (4)
N2
的比容和密度;(3)
m?m1?m2?
p?0.1MPa,t?500℃时的摩尔容积Mv。
解:(1)N2的气体常数
2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa的空气3 m3,充入容积8.5 m3的储气罐内。设开始时罐内的温度和压力与外界相同,问在多长时间内空气压缩机才能将气罐的表压力提高到0.7MPa?设充气过程中气罐内温度不变。
p?0.1MPa,t?500℃时的摩尔容积
Mv
RTMv =0
m=12.02kg
vp2p1
(?) RT2T1

工程热力学课后作业答案

工程热力学课后作业答案

p734-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力减少为8/12p p =,设比热为定值,求过程中内能旳变化、膨胀功、轴功以及焓和熵旳变化。

解:热力系是1kg 空气过程特性:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9由于T c q n ∆=内能变化为R c v 25==717.5)/(K kg J •v p c R c 5727===1004.5)/(K kg J •=n c ==--v v c n kn c 51=3587.5)/(K kg J •n v v c qc T c u /=∆=∆=8×103J膨胀功:u q w ∆-==32 ×103J轴功:==nw w s 28.8 ×103J焓变:u k T c h p ∆=∆=∆=1.4×8=11.2 ×103J熵变:12ln 12lnp p c v v c s v p +=∆=0.82×103)/(K kg J •4-2 有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=;(3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中旳膨胀功及熵旳变化,并将各过程旳相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1) 膨胀功:])12(1[111k k p p k RT w ---==111.9×103J熵变为0(2))21(T T c u w v -=∆-==88.3×103J12ln 12ln p p R T T c s p -=∆=116.8)/(K kg J •(3)21ln1p p RT w ==195.4×103)/(K kg J • 21ln p p R s =∆=0.462×103)/(K kg J • (4)])12(1[111n n p p n RT w ---==67.1×103J n n p p T T 1)12(12-==189.2K 12ln 12ln p p R T T c s p -=∆=-346.4)/(K kg J •4-3 具有1kmol 空气旳闭口系统,其初始容积为1m 3,终态容积为10 m 3,当时态和终态温度均100℃时,试计算该闭口系统对外所作旳功及熵旳变化。

第八章 热力学作业(答案)

第八章 热力学作业(答案)

第八章 热力学基础一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。

【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ∆+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =;AB 等压过程:AB AB E A Q ∆+=,且0>∆AB E[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+∆得 0E ∆=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =.[ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有 (A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E【提示】由上题分析知:0=∆E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。

[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小. 【提示】如图。

大学物理 热力学第二定律 习题(附答案)

大学物理 热力学第二定律 习题(附答案)

nc
B → C 为等体降温降压过程, 有
he .c
om
① ②
解: ( 1 )由 题意及 相图有 :空气 可视为 刚性双 原子分 子理想 气体, 总自由 度数为
为 10 5 kW 的动力厂每秒能生产多少千克 0 � C 的水。 ) (已知冰的比热容 c = 2.08 kJ/kg ⋅ � C ,冰的熔解热 l = 333.6 kJ/kg 。 解:(1)在这两个恒温热源之间工作的热机效率的理论极限是可逆卡诺循环的效率:
η = 1−
273 − 40 T2 =1- = 78. 3% 273 + 800 T1
(2)一座输出功率为 105 kW 的动力工厂 每秒钟热机需做功 A = 10 5 × 10 3 = 10 8 ( J ) 每秒传给冷源的热量 Q 2 =
设每秒钟有 M kg 的冰熔化成 0 � C 的冰,则有
M = [ c(T0 − T2 ) + l ] = Q2
解:根据热力学第二定律(P306)的开尔文表述和不可逆过程定义知(1)错(4)对,根据热 机效率公式知(2)对,根据热力学第二定律的克劳修斯表述知(3)错。 故选 A
om
∆Q < 0, T
故选 D
4.关于热功转换和热量传递过程,有下面一些叙述: (1) 功可以完全变为热量,而热量不能完全变为功 (2) 一切热机的效率都只能够小于 1 (3) 热量不能从低温物体向高温物体传递 (4) 热量从高温物体向低温物体传递是不可逆的 以上这些叙述 [ ] (A) 只有(2)、(4)正确 (B) 只有(2)、(3) 、(4)正确 (C) 只有(1)、(3) 、(4)正确 (D) 全部正确
T A = 1 − 2 ,得 B 错,C 错。 Q T1

热力学作业答案

热力学作业答案
热力学作业答案
一、选择题 1.单原子分子组成的理想气体自平衡态A变化 到平衡态B,变化过程不知道,但A、B两点的压 强、体积和温度都已确定,则可求出 A.气体膨胀所做的功 B.气体内能变化 C.气体传递的热量 D.气体分子的质量
2.理想气体的温度越高,则 A.热量越多 B.作功越多 C.内能越大 D.不能确定
a
Tb=4Ta=4T, Tc=2T O 3 9 Eab CV T R( Tb Ta ) RT 2 2 1 3 3 Aab ( PbVb PaVa ) PaVa RT 2 2 2
c
2V V
V
4.一摩尔单原子分子理想气体作如图所示循环, 已知a点的温度为T,且,试求: (1)一次循环过程中气体吸收的热量 (2)一次循环过程中气体对外所作的净功 (3)循环效率 P b 解: Q1 Aab Eab 3 9 RT RT 6 RT a c 2 2 1 O A净 (Vc Va ) ( Pb Pc ) V 2 A 1 1 1 PaVa RT Q1 12 2 2
3.单原子分子理想气体作如图所示循环,bc为 等温过程,在bc中吸热140J,试求: (1)在一次循环过程中系统从外界吸收的热量 (2)在一次循环过程中系统向外界放出的热量 (3)循环效率
解:(1) Qab CV T i ( PbVb PaVa ) 3 2
2 2
M
2.0 1.0
P(105Pa) b
T1 n Q1
n
10.根据热力学第二定律可知: A. 功可以全转换为热,热不能全转换为功; B. 热可以从高温物体传到低温物体,但不能 从低温物体传到高温物体 C. 不可逆过程是不能向相反方向进行过程 D. 一切自发过程都是不可逆的

第五章 气体的热力性质(作业)

第五章 气体的热力性质(作业)

C p ,m 22.414 103
1.2978kJ/ m3 K
Q V0C p t2 t1 60000 1.2978 250 20 1.752 107 kJ/h
⑵用平均比热容计算
C p
20 0
20 250 Q V0 C p 250 C p 20 0 0 60000 1.312 2501.2976 20 1.812107 kJ/h
根据试算法,得
Z 0.99
pr 0.5202
p pr pC 0.5202 3.39 1.76MPa
h Cv t 2 t1 1.038 400 30 384.06kJ/kg
u Cv t2 t1 0.742 400 30 274.54kJ/kg
C p 1.038kJ/kg K
解:⑴用定值比热容计算
Cv 0.742kJ/kg K
S 120 1.004 ln 240.9 273 240.9 273 210 1.004 ln 400 273 150 273 32.495 41.041 8.546kJ/K h
上式不能应用于不同种类气体的混合。 上述绝热的混合过程是不可逆过程,空气的总熵必然增大。
对1kmol氧气有: H=6858.84KJ,U=4988.19KJ,S=-16.95KJ/k
(2)按能量平衡方程
Q n(HM Wt ) 1000 (6858.84 20000) 13141.16kJ
热力学习题参考答案
[5-12]两股压力相同的空气流,一股温度,t1=400℃,流量为qm1=120kg/h;另一 股t2=15℃,qm2=210kg/h,两股混合为相同压力的混合气流,若混合过程是绝热的, 求:⑴混合气流的温度;⑵混合过程空气的熵将增大还是减小,还是不变?⑶计算 熵变化量(用定值比热容计算)。

物理化学 第二章 热力学第一定律 经典习题及答案

物理化学 第二章 热力学第一定律 经典习题及答案

V3 = V2 =
W b = − p外 ΔV = − p3 (V3 − V1 ) = − 200 × 103 (0.10167 − 0.06197) = −7.940kJ
由热力学第一定律
Wa + Qa = Wb + Qb -5.57+25.42= − 7.940 + Qb ∴ Qb = 27.79
= − 2 × 8.314 × 300 × (1 −
2.
∂H ∂p 求证: C p − CV = − + V ∂p T ∂ T V
方法一:和课件中的证明类似
方法二:
∂H ∂U ∂H ∂( H m − pVm C p,m − CV,m = m − m = m − ∂T ∂T p ∂T V ∂T p V ∂H ∂H ∂p = m − m +Vm ∂T V ∂T p ∂T V 令H = H (T , p) ∂H ∂H dH = dT + dp ∂T p ∂p T
2.10 2 mol 某理想气体,
。由始态 100 kPa,50 dm3,先恒容加热使
压力体积增大到 150 dm3,再恒压冷却使体积缩小至 25 dm3。求整个过程的 。 解:过程图示如下 n = 2mol 理想气体 T1 = ? p1 = 100kPa V1 = 0.05m3 n = 2mol 理想气体 恒容 → T2 = ? p2 = 200kPa V2 = 0.05m3 n = 2mol 理想气体 恒压 → T3 = ? p3 = 200kPa V3 = 0.025m3
3.
∂U 已知:理想气体 =0 ∂V T

第二章 能量与热力学第一定律作业

第二章 能量与热力学第一定律作业

1 2 q h2 h1 C 2 C f2 f1 2
41.6 500 4.1868 102 1002 103 / 2 1924.2kJ/kg
即每千克蒸汽在冷凝器中放热量为1924.2 kJ。
热力学习题参考答案
[2-10]某燃气轮机装置如图2-19所示。已知h1=286kJ/kg的燃料和空气的混合 物,在截面1处以20m/s的速度进入燃烧室,并在定压下燃烧,使工质吸入热 量q=879kJ/kg,燃烧后燃气进入喷管绝热膨胀到状态3,h3=502kJ/kg,流速 增加到cf3,此后燃气进入动叶,推动转轮作功。若燃气在动叶中的热力状态 不变,最后离开燃气轮机的速度cf4=150m/s。求: ⑴ 燃气在喷管出口的流速cf3; ⑵ 每千克燃气在燃气轮机中所作的功; ⑶ 燃气流量为5.23kg/s时,燃气轮机的功率(kW)。 解: ⑴燃气流速c f3
热力学习题参考答案
⑵每千克燃气作功 取截面3至截面4作热力系,燃气的热力状态不变,稳定流动能量方程为
2 q h4 h3 C 2 C f4 f 3 / 2 wnet
其中, q 0 , h3 h4
2 2 2 3 wnet C 2 C / 2 1151.7 150 10 / 2 651.95kJ / kg f3 f4
热力学习题参考答案
一、是非题 1. 2. 3. 4.
×, ×, √; ×, √;
√; ×.
热力学习题参考答案 二、选择题 1. 2. 3. 4.
c a1 b a
; , a2 ; ; , a , c , c .
热力学习题参考答案
[2-2]为了确定高压下稠密气体的性质,取2kg气体在25 MPa下从350K定压 加热到370K,气体初终状态下的容积分别为0.03m3及0.035m3,加入气体 的热量为700KJ,试确定初终状态下的内能之差。 解: 定压下加热

第一章 基本概念及定义(作业)

第一章 基本概念及定义(作业)

1MPa 7.5006 水银柱 101.972m水柱 10.1975 m at
755 900 1020 p 3 3 7.5006 10 7.5006 10 101.972 103 0.2306 MPa 2.351at
解二:
p pb pe pb 水 gh水 汞 gh汞=…
容器中部分2内气体的绝对压力
p2 p1 pB 0.073 0.036 0.037MPa
真空计A读数
p A pb p2 0.097 0.037 0.06MPa
热力学习题参考答案
l—9 气体盛在A,B两气缸内,用一个具有不同直径的活塞联在一起,如图1— 16。活塞的质量为10kg,气体在缸A内的压力0.2MPa。试计算气缸B内气体 的压力。
烟气的绝对压力
p pb pv 0.1 0.0007845 0.9921 MPa 1.012at
热力学习题参考答案
1—7 上题中,若表C为真空计,读数为24kPa,表B读数为36kPa,试确定 表A的读数(MPa)。
解:容器中部分1内气体的绝对压力
1
2
p1 pb pc 0.097 0.024 0.073MPa
热力学习题参考答案 二、选择题 1.( a )与测温介质的物性无关,因而可作为度量温度的客观 标准。 (a)热力学温标;(b)理想气体温标;(c)经验温标。 2.在国际单位制中压力的单位是( a )。 (a)帕; (b)巴; (c)工程大气压。 3.在国际单位制中温度的单位是( a )。 (a)开尔文(K); (b)摄氏度(℃); (c)华氏度( )。 4.气体的( b、c )与当时当地的大气压力有关,而( a )与之无 关。 (a)绝对压力; (b)表压力; (c)真空度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A→B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D.(D)既是A →B 也是A →C , 两过程吸热一样多。

【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ∆+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =;AB 等压过程:AB AB E A Q ∆+=,且0>∆A B E[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+∆得 0E ∆=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =.[ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有(A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D) 0......0>∆=∆S E 【提示】由上题分析知:0=∆E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。

[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小. 【提示】如图。

等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得:B AB AT T V V =,2B A T T ∴=,B A A T T T -=绝热过程:11A A D DT V T V γγ--=,1112A D A A D V T T T V γγ--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,得:1112D A A A T T T T γ-⎡⎤⎛⎫-=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以,选择(D )【或者】等压过程:()()p A B A B A A p V V R T T ν=-=-,pB A A T T Rν-=;绝热过程:()2D A iA E R T T ν=-∆=--,2D A A T T i R ν-=;∵2iR R νν<,由图可知p A A >, 所以 B A D A T T T T ->-[ A ]5.(自测提高3)一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程是吸热还是放热.(A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热.(C) abc 过程和def 过程都吸热. (D) abc 过程和def 过程都放热. 【提示】(a ) , 0a c c a T T E E =∴-=,()0abc abc c a abc Q A E E A =+-=>,吸热。

(b )df 是绝热过程,0df Q =,∴f d df E E A -=-,()def def f d def df Q A E E A A =+-=-,“功”即为曲线下的面积,由图中可见,def df A A <,故0def Q <,放热。

[ B ]6.(自测提高6)理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.【提示】两条绝热线下的面积大小即为“功的大小”。

绝热过程的功的大小为12()2i A E R T T ν=-∆=-,仅与高温和低温热源的温差有关,而两个绝热过程对应的温差相同,所以作功A 的数值相同,即过程曲线下的面积相同。

二、填空题1.(基础训练13)一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体V为单原子分子气体,则该过程中需吸热 500 J ;若为双原子分子气体,则需吸热 700 J.【提示】据题意200()molMA pdV p V R T J M ==⋅∆=⋅∆=⎰ 22mol i M iE R T A M ⎛⎫∆=⋅∆=⎪⎝⎭,22i Q A E A +=+∆= 对于单原子分子:3i =,所以5500()2Q A J ==; 对于双原子分子:5i =,所以7700()2Q A J ==2.(基础训练14)给定的理想气体(比热容比γ为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T =01 3T γ-,压强p =03p γ【提示】求温度的变化,可用绝热过程方程:1100T V TVγγ--=,100013V T T T V γγ--⎛⎫==⎪⎝⎭求压强的变化,可用绝热过程方程:00p V pV γγ=,得:0003V p p p V γ⎛⎫== ⎪⎝⎭3.(自测提高11)有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,b -a 为等压线,p c =2p a .令气体进行a -b 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量Q < Q ab . (填入:>,<或=) 【提示】a-b 过程:2ab i Q A E S R T ν=+∆=+∆矩形 而acba 循环过程的净吸热量Q A S '==半圆,∵p c =2p a ,由图可知:S S >矩形半圆,且0T ∆>,0E ∆>,所以 ab Q Q >4.(自测提高12)如图所示,绝热过程AB 、CD ,等温过程DEA , 和任意过程BEC ,组成一循环过程.若图中ECD 所包围的面积为70 J ,EAB 所包围的面积为30 J ,DEA 过程中系统放热100 J ,则:(1) 整个循环过程(ABCDEA )系统对外作功为40J .(2) BEC 过程中系统从外界吸热为 140J .【提示】(1) 整个循环过程(ABCDEA )系统对外作功为()307040J EABE ECDE A A A =+=-+=逆循(正循)()环环; (2)ABCDEA AB BEC CD DEA Q Q Q Q Q =+++00(100)BEC Q =+++-,Vp abp同时40()ABCDEA Q A J ==, 140()BECQ J ∴=5.(自测提高13)如图示,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1:33.3% ,η2: 50% ,η3: 66.7%【提示】由121T T -=η (1T 对应高温热源的温度,2T 对应低温热源的温度),得:010211133cd ab T T T T η=-=-=,02011122ef cd T T T T η=-=-=,03021133ef ab T T T T η=-=-=6.(自测提高15)1 mol 的单原子理想气体,从状态I (p 1,V 1)变化至状态II (p 2,V 2),如图所示,则此过程气体对外作的功为12211 () 2p p V V +-(),吸收的热量为1221221113()() 22p p V V p V p V +-+-()【提示】①气体对外作的功 = 过程曲线下的梯形面积;②由热力学第一定律,得 21()2i Q A E A R T T ν=+∆=+-,其中3i =,1mol ν=,212211()R T T p V pV ν-=-,1221221113(()()22Q p p V V p V p V ∴=+-+-)三.计算题1.(基础训练18)温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?解:(1)等温膨胀:127325298T K =+=,213V V =,1mol ν=211ln 2720()V A RT J V ν∴==(2)绝热过程:21()2i A E R T T ν=-∆=--,其中5i =,1mol ν=,2T 可由绝热过程方pOV3T2TT 0fa db c e,V 2)程求得:112211T V TV γγ--=,111211211923V T T T K V γγ--⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,518.31(192298)2202()2A J ∴=-⨯⨯⨯-=2、(基础训练19)一定量的单原子分子理想气体,从初态A 出发,沿如图所示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A .(1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:3i =,(1) A B →:11()()2002B A B A A p p V V J =+-= 13()()75022B A B B A A i E R T T p V p V J ν∆=-=-=111950Q A E J =+∆=C B →:20A =23()()60022C B C C B B i E R T T p V p V J ν∆=-=-=-222600Q A E J =+∆=-A C →:3()100A A C A p V V J =-=-33()()15022A C A A C C i E R T T p V p V J ν∆=-=-=-333250Q A E J =+∆=-(2) 123100A A A A J =++=J Q Q Q Q 100321=++=3.(基础训练22)一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C =300 K ,T B =400 K .试求:此循环的效率.解: 211Q Q η=-)(1A B P T T C Q -=ν, 2()P C D Q C T T ν=-21(1/)(1/)C D CD C B A B A B Q T T T T T Q T T T T T --==--根据绝热过程方程得到:γγγγ----=D D A A T p T p 11, γγγγ----=C C B B T p T p 11而 B A p p = , D C p p = 所以有 C D B A T T T T //= ,21CBQ T Q T =ABCD OVp3) 5故 %251112=-=-=BC T T Q Q η (此题不能直接由BCT T -=1η 式得出,因为不是卡诺循环。

相关文档
最新文档