变化率、导数及其计算(师)

合集下载

变化率与导数

变化率与导数

变化率与导数、导数的运算课前双击巩固1.变化率与导数 (1)平均变化率: 概念 对于函数y=f (x ),f(x 2)-f(x 1)x 2-x 1=Δy Δx 叫作函数y=f (x )从x 1到x 2的 变化率几何 意义 函数y=f (x )图像上两点(x 1,f (x 1)),(x 2,f (x 2))连线的物理 意义 若函数y=f (x )表示变速运动的质点的运动方程,则ΔyΔx 就是该质点在[x 1,x 2]上的 速度(2)导数:概念点x 0处 limΔx→0ΔyΔx =limΔx→0f(x 0+Δx)−f(x 0)Δx,我们称它为函数y=f (x )在 处的导数,记为f'(x 0)或y'|x=x 0,即f'(x 0)=limΔx→0ΔyΔx= lim Δx→0f(x 0+Δx)−f(x 0)Δx区间 (a ,b )当x ∈(a ,b )时,f'(x )=lim Δx→0ΔyΔx =lim Δx→0 叫作函数在区间(a ,b )内的导数几何 意义 函数y=f (x )在点x=x 0处的导数f'(x 0)就是函数图像在该点处切线的 .曲线y=f (x )在点(x 0,f (x 0))处的切线方程是物理 意义 函数y=f (x )表示变速运动的质点的运动方程,则函数在x=x 0处的导数就是质点在x=x时的 速度,在(a ,b )内的导数就是质点在(a ,b )内的 方程2.导数的运算 常用 导数 公式原函数导函数特例或推广常数函数 C'=0(C 为常数)幂函数(x n)'= (n ∈Z )1x'=-1x 2三角函数(sin x)'=,(cos x)'=偶(奇)函数的导数是奇(偶)函数,周期函数的导数是周期函数指数函数(a x)'=(a>0且a≠1) (e x)'=e x对数函数(log a x)'=(a>0且a≠1)(ln x)'=1x,(ln|x|)'=1x四则运算法则加减[f(x)±g(x)]'=(∑i=1nf i(x))'=∑i=1nf'i(x)乘法[f(x)·g(x)]'=[Cf(x)]'=Cf'(x) 除法f(x)g(x)'=(g(x)≠0)1g(x)'=-g′(x)[g(x)]2复合函数导数复合函数y=f[g(x)]的导数与函数y=f(u),u=g(x)的导数之间具有关系y'x=,这个关系用语言表达就是“y对x的导数等于y对u的导数与u对x的导数的乘积”题组一常识题1.[教材改编]向气球中充入空气,当气球中空气的体积V(单位:L)从1 L增加到2 L时,气球半径r(单位:dm)的平均变化率约为.2.[教材改编]已知将1吨水净化到纯净度为x %时所需费用(单位:元)为c(x)=5284100−x(80<x<100),当净化到纯净度为98 %时费用的瞬时变化率为.3.[教材改编] y=sin(πx+φ)的导数是y'=.4.[教材改编]曲线y=xe x-1在点(1,1)处切线的斜率等于.题组二常错题◆索引:平均变化率与导数的区别;求导时不能掌握复合函数的求导法则致错;混淆f'(x 0)与[f (x 0)]',f'(ax+b )与[f (ax+b )]'的区别.5.函数f (x )=x 2在区间[1,2]上的平均变化率为 ,在x=2处的导数为 .6.已知函数y=sin 2x ,则y'= .7.已知f (x )=x 2+3xf'(2),则f (2)= .8.已知f (x )=x 3,则f'(2x+3)= ,[f (2x+3)]'= .课堂考点探究探究点一 导数的运算1(1)函数f (x )的导函数为f'(x ),且满足关系式f (x )=x 2+3xf'(2)-ln x ,则f'(2)的值为( )A.74 B.-74 C.94 D.-94(2)已知f (x )=-sin x2(1−2cos 2x4),则f'(π3)= .[总结反思] (1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆. 式题 (1)函数y=sinx x 的导数为y'= .(2)已知f (x )=(x+1)(x+2)(x+a ),若f'(-1)=2,则f'(1)= . 探究点二 导数的几何意义考向1 求切线方程2 函数f (x )=e x·sin x 的图像在点(0,f (0))处的切线方程是 .[总结反思] (1)曲线y=f (x )在点(x 0,f (x 0))处的切线方程为y-f (x 0)=f'(x 0)(x-x 0);(2)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(3)注意过某点的切线和曲线上某点处的切线的区别. 考向2 求切点坐标3设a∈R,函数f(x)=e x+a·e-x的导函数是f'(x),且f'(x)是奇函数.若曲线y=f(x)的一条切线的斜率是32,则切点的横坐标为( )A.ln 2B.-ln 2C.ln22 D.-ln22[总结反思] f'(x)=k(k为切线斜率)的解即为切点的横坐标.考向3求参数的值4已知曲线C在动点P(a,a2+2a)与动点Q(b,b2+2b)(a<b<0)处的切线互相垂直,则b-a的最小值为( )A.1B.2C.√2D.-√2[总结反思](1)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.(2)注意:①曲线上横坐标的取值范围;②切点既在切线上又在曲线上.强化演练1.【考向1】已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为( )A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=02.【考向3】直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于( )A.2B.-1C.1D.-23.【考向2】已知在平面直角坐标系中,f(x)=aln x+x的图像在x=a处的切线过原点,则a=( )A.1B.eC.1eD.04.【考向2】若曲线y=xln x在点P处的切线平行于直线2x-y+1=0,则点P的坐标是.5.【考向1】函数f(x)=xe x的图像在点P(1,e)处的切线与坐标轴围成的三角形面积为.。

高中数学变化率问题导数的概念(老师版)

高中数学变化率问题导数的概念(老师版)

变化率的“视觉化”, %越大,曲线y = f(x)在区间[X 1, X 2]上越“陡峭”,反之亦然 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数 则fx2― fx1X 2 — X 1知识点二瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s = s(t)描述,设 A 为时间改变量,在t o + A t 这段时间内,物体的位移 (即位置)改变量是A s = s(t o ^ At) — s(t 0),那么位移改变量 A s 与时间改变量A t 的比就是这段时间内物体的平均速度s s t o + A t — s t oV ,即 V = A t = A t1.1.1 变化率问题1.1.2导数的概念[学习目标]1•理解函数平均变化率、瞬时变化率的概念 .2.掌握函数平均变化率的求法 3掌握导数的概念,会用导 数的定义求简单函数在某点处的导数 . 知识梳理自主学习知识点一函数的平均变化率 1•平均变化率的概念 设函数y = f(x), X 1, X 2是其定义域内不同的两个点,那么函数的变化率可用式子f X2 — f X1我们把这个式子称 X 2 — X 1 为函数y = f(x)从X 1到X 2的平均变化率,习惯上用 A x 表示X 2 — X 1,即A x = X 2— X 1,可把A x 看作是相对于X 1的一个 “增量”,可用 X 1+ A x 代替X 2;类似地,A y = f(X 2)— f(X 1).于是,平均变化率可以表示为A y A2•求平均变化率 求函数y = f(x)在[*, x 2]上平均变化率的步骤如下: (1)求自变量的增量 A x = X 2— X 1 ; ⑵求函数值的增量 A y = f(x 2)- f(x 1); ⑶求平均变化率A x X 2 — X 1 A y f X 2 — f X 1 f X 1 + A x — f X 1 A x 思考 (1)如何正确理解 A x , A y? (2)平均变化率的几何意义是什么? 答案(1) A 是一个整体符号,而不是 △与X 相乘,其值可取正值、负值,但 时0 ;A y 也是一个整体符号,若 A x=X 1 — x 2,贝U A y = f(X 1)— f(X 2),而不是 A y = f(X 2)— f(X 1), A y 可为正数、负数,亦可取零(2)如图所示: y = f(x)在区间[X 1, X 2]上的平均变化率 “数量化”,曲线陡峭程度是平均 y = f(x)图象上有两点 A(X 1, f(X 1)) , B(X 2, f(X 2)),物理学里,我们学习过非匀速直线运动的物体在某一时刻 t o 的速度,即t o 时刻的瞬时速度,用 v 表示,物体在t o 时刻的瞬时速度 v 就是运动物体在t o 到t o +A t 这段时间内的平均变化率 s+弓+_在A t T 0时的极限,即v = limA ss t o + A t — s t o 一 一△t = ym o 石 •瞬时速度就是位移函数对时间的瞬时变化率 .思考(1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么? 答案⑴其实质是当平均变化率中自变量的改变量趋于 o 时的值,它是刻画函数值在某处变化的快慢 •⑵①区别:平均变化率刻画函数值在区间[X 1, X 2]上变化的快慢,瞬时变化率刻画函数值在 x o 点处变化的快慢;②联系:当A X 趋于o 时,平均变化率A y 趋于一个常数,这个常数即为函数在 x o 处的瞬时变化率,它是一个固定值 • 知识点三导数的概念函数y = f(x)在x = x o 处的导数一般地,函数y = f(x)在x = xo 处的瞬时变化率是 |im o 多=妁。

函数的导数与变化率

函数的导数与变化率

函数的导数与变化率函数的导数是微积分中的基础概念之一,它描述了函数在某一点上的变化率。

在实际问题中,我们经常需要了解一个函数在某一点的变化情况,以便更好地理解问题的本质和解决方法。

本文将详细介绍函数的导数的概念、性质以及在实际应用中的意义和计算方法。

一、导数的概念函数的导数是函数变化率的度量,表示了函数在某一点上的变化速度。

形式上,设函数y=f(x),若该函数在点x处的导数存在,则导数被定义为:f'(x)=lim(h→0)[f(x+h)-f(x)]/h其中,f'(x)表示函数在点x处的导数,h表示自变量x的变化量。

导数的定义是一个极限的概念,表示了自变量逐渐接近某一点时,函数变化的趋势。

二、导数的性质1. 导数的存在性函数在某一点上的导数存在的充分条件是函数在该点附近连续,并且左右导数相等。

2. 导数与函数图像的关系函数的导数可以反映函数图像的一些特征,比如导数正值表示函数在该点上升,导数负值表示函数在该点下降,导数等于零表示函数在该点取得极值。

3. 导数的计算法则导数具有一组计算法则,可以用于计算各种复杂函数的导数。

常见的导数运算法则包括常数法则、幂法则、和差法则、乘积法则和商数法则等。

三、变化率与导数的关系函数的导数即为函数在某一点上的变化率。

当自变量的变化量很小时,导数可以近似地表示函数的变化率。

函数的变化率可以分为平均变化率和瞬时变化率两种。

平均变化率是指函数在两个点之间的变化率,可以通过函数的增量和自变量的增量来计算。

瞬时变化率是指函数在某一点上的瞬时变化率,可以通过函数的导数来求得。

四、导数在实际应用中的意义导数在实际问题中有着广泛的应用。

以物理学为例,速度即为位移对时间的导数,加速度即为速度对时间的导数。

在经济学中,边际成本和边际收益也可以通过导数来计算和分析。

导数还可以用于优化问题、曲线拟合和图像处理等领域。

五、导数的计算方法为了计算导数,我们可以利用导数的定义进行计算,也可以利用导数的运算法则简化计算过程。

2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文

2022数学第二章函数导数及其应用第十节变化率与导数导数的运算教师文档教案文

第十节变化率与导数、导数的运算授课提示:对应学生用书第37页[基础梳理]1.导数的概念(1)函数y=f(x)在x=x0处导数的定义称函数y=f(x)在x=x0处的瞬时变化率=错误!为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=错误!=.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数称函数f′(x)=错误!为f(x)的导函数.2原函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x(a>0,且a≠1)f′(x)=a x ln__af(x)=e x f′(x)=e x f(x)=log a x(a>0,且a≠1)f′(x)=错误!f(x)=ln x f′(x)=错误!3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x).(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).(3)错误!′=错误!(g(x)≠0).1.求导其实质是一种数学运算即求导运算,有公式和法则,也有相应的适用范围或成立条件,要注意这一点,如(x n)′=nx n-1中,n≠0且n∈Q*.错误!′=错误!,要满足“=”前后各代数式有意义,且导数都存在.2.(1)f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.(2)f′(x)是一个函数,与f′(x0)不同.3.(1)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.(2)“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.[四基自测]1.(基础点:求导数值)若f(x)=x·e x,则f′(1)等于()A.0B.eC.2e D.e2答案:C2.(易错点:导数的运算)已知f(x)=x·ln x,则f′(x)=() A。

变化率与导数

变化率与导数

导数的概念
一般地, 函数 y=f(x) 在点x=x0处的瞬时变 化率是
f ( x0 + Dx ) f ( x 0 ) Dy lim lim Dx 0 D x Dx 0 Dx
我们称它为函数 y = f (x)在点x=x0处的导数, 记为 f '(x0)或 y'| x=x0 ,即
f ( x0 + Dx ) f ( x0 ) Dy f ( x0 ) lim lim Dx 0 Dx Dx 0 Dx
Dx 0
曲线在点(x0 , f(x0))处的切线的方程为: y-f (x0) = f '(x0)(x-x0)
例2 求曲线y=f(x)=x2+1在点P(1,2)处的 切线方程.
解:
y
△y
因此,切线方程为
y-2=2(x-1),
P △x
即 y = 2x.
O
1
x
【总结提升】 求曲线在某点处的切线方程的基本步骤: ①求出切点P的坐标;
变化率与导数
平均变化率
我们把式子
f ( x2 ) f ( x1 ) 称为函数 x2 x1
y=f (x)从x1到 x2的平均变化率.
令△x = x2-x1 , △ y = f (x2) -f (x1) ,则
△y f ( x 2 ) f ( x1 ) = △x x 2 x1
平均变化率
例题分析
例2 将原油精练为汽油、柴油、塑胶等各 种不同产品, 需要对原油进冷却和加热. 如果第 x h时, 原油的温度(单位: oC) 为 f(x)=x2-7x+15 (0≤x≤8). 计算第2h 与低6h时原油温度的瞬时变化 率,并说明它们的意义。
解:

高中数学 第二章 变化率与导数 2.1 变化的快慢与变化率课件 北师大版选修22

高中数学 第二章 变化率与导数 2.1 变化的快慢与变化率课件 北师大版选修22

∴瞬时速度为4a,即4a=8.∴a=2.
Δ
即为平均速度,
Δ
答案:A
=
5-3(1+Δ)2 -5+3×12
=-3Δt-6.
Δ
探究一
探究二
探究三
思维辨析
瞬时变化率
1
【例2】 已知s(t)= 2gt2,其中g=10 m/s2.
(1)求t从3 s到3.1 s的平均速度;
(2)求t从3 s到3.01 s的平均速度;
(3)求t在t=3 s时的瞬时速度.
(2)函数y=3x2+2在区间[2,2+Δx]上的平均变化率为
(2+Δ)-(2)
Δ
=
3(2+Δ)2 +2-(3×22 +2)
Δ
=
12Δ+3(Δ)2
=12+3Δx.
Δ
反思感悟求函数平均变化率的步骤
第一步,求自变量的改变量Δx=x2-x1,
第二步,求函数值的改变量Δy=f(x2)-f(x1).
Δ
=
4Δ+(Δ)2
=4+Δt,
Δ
∵≤5,∴4+Δt≤5,∴Δt≤1.
又∵Δt>0,∴Δt的取值范围是(0,1].
答案:(0,1]
探究一
探究二
探究三
思维辨析
因错用平均变化率公式而致误
【典例】 已知曲线y=-2x3+2和这条曲线上的两个点P(1,0),Q(2,14),求该曲线在PQ段的平均变化率.
名师点拨对平均变化率的理解
(1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x)在区间[x1,x2]
上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.

人教版高数选修2-2第1讲:变化率与导数(教师版)

人教版高数选修2-2第1讲:变化率与导数(教师版)

变化率与导数____________________________________________________________________________________________________________________________________________________________________1、平均变化率的概念、函数在某点处附近的平均变化率;2、理解导数的几何意义;一、变化率问题:知识导入:问题1 气球膨胀率将班内同学平均分成4组,每组发一只气球,各有一位同学负责将气球吹起,其他同学观察气球在吹起过程中的变化,并做好准备回答以下问题:(1)气球在吹起过程中,随着吹入气体的增加,它的膨胀速度有何变化? (2)你认为膨胀速度与哪些量有关系? (3)球的体积公式是什么?有哪些基本量?(4)结合球的体积公式,试用两个变量之间的关系来表述气球的膨胀率问题?总结:可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--h可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )=-4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.1、平均变化率:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3. 则平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆x f 1212)()(x x x f x f --表示什么?直线AB 的斜率二、导数的概念:1、瞬时变化率:从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlim x x f x x f x fx x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()limx f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()lim x f x f x f x x x ∆→-'=-三、导数的几何意义:1、平均变化率与割线的斜率、瞬时变化率与切线的斜率: (一)曲线的切线及切线的斜率: 如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?x 1x 2O yy =f (x )f (x 1) f (x 2) △x = x 2-x 1 △y =f (x 2)-f (x 1)x我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?⑵切线PT 的斜率k 为多少? 容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在0x x =处的导数.(2)曲线在某点处的切线: 1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. 2、导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.类型一:求函数的平均变化率例1、求221y x =+在0x 到0x x +∆之间的平均变化率,并求01x =,12x ∆=时平均变化率的值.思路点拨: 求函数的平均变化率,要紧扣定义式00()()f x x f x y x x+∆-∆=∆∆进行操作. 解析:当变量从0x 变到0x x +∆时,函数的平均变化率为220000()()[2()1][21]f x x f x x x x x x+∆-+∆+-+=∆∆042x x =+∆当01x =,12x ∆=时,平均变化率的值为:141252⨯+⨯=. 总结升华:解答本题的关键是熟练掌握平均变化率的概念,只要求出平均变化率的表达式,其他就迎刃而解.举一反三:【变式1】求函数y=5x 2+6在区间[2,2+x ∆]内的平均变化率。

高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选

高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选

提示:在点x=x0处的导数的定义可变形为f′(x0)=
lx im 0f(x0- 或- xf )′- x (xf0)=x0
lim
f
x
f
x0
.
xx0 x-x0
28
【类题·通】
求一个函数y=f(x)在x=x0处的导数的步骤
(1)求函数值的变化量Δy=f(x0+Δx)-f(x0).
(2)求平均变化率 yf(x0x)fx0.
47
(1)求直线l1,l2的方程. (2)求由直线l1,l2和x轴所围成的三角形的面积.
48
【思维·引】1.设出切点的坐标,利用导数在切点处的 导数值即为切线的斜率求解. 2.(1)利用导数的几何意义求出切线的斜率,进而求出 两直线的方程;(2)解方程组求出两直线的交点坐标, 利用三角形的面积公式求解.
36
【解析】将x=1代入曲线C的方程得y=1,即切点
P(1,1).
因为f′(1)=
limy= lim(1x)313
x x 0
x 0
x
= lim3x3(x)2(x)3
x 0
x
=
l
xi[m30 +3Δx+(Δx)2]=3,
37
所以切线方程为y-1=3(x-1), 即3x-y-2=0.
38
【素养·探】 求曲线在某点处的切线方程通常应用的数学核心素养 是数学运算,一般要根据导数的定义求出函数的导数, 即所求切线的斜率,然后利用直线的点斜式方程求切 线的方程. 本典例中的切线与曲线C是否还有其他的公共点?
59
2.面积问题三类型 (1)曲线的一条切线与两坐标轴围成的图形的面积.此类 问题,只要求出切线方程与两坐标轴的交点,即可计 算.

(完整版)变化率与导数及导数的计算

(完整版)变化率与导数及导数的计算

第十一节变化率与导数、导数的计算一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2. ∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________. 解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.典题导入[例1] 用定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2, 所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导入[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导入[例3] (1)(2011·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程. 解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20.又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. (2)(2013·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x 在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1), 得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a 23,因斜率最小的切线与12x +y =6平行, 即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x , 以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.【基础自测】1.(2013全国高考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =( )A.9B.6C.-9D.-62.(2014宁夏一模)如果过曲线12++=x x y 上的点P 处的切线平行于直线2+=x y ,那么点P 的左标为 ( )A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州一模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜角的取值范围为]4,0[π,则点P 横坐标的取值范围为 ( ) A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知二次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最小值为 ( ) A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x fx f B. x f x x f x x f x x f )()(.C )()(.A )()(lim,)(000'0'000--∆-∆-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线方程求曲线过点处的切线方程;求曲线在】已知曲线【例--=+=x x y。

高中数学变化率与导数24导数的四则运算法则242导数的乘法与除法法则北师大版

高中数学变化率与导数24导数的四则运算法则242导数的乘法与除法法则北师大版
1

=ex 2 + ln-cos + 2 + + sin .
'=x4+2x2.
题型一
题型二
1
1
1
(3)方法一:y'=
·cos '=
'cos x+ (cos x)'



1
1
1 -3
1
=( 2 )'cos x- sin x=- 2 cos x- sin x

2

cos
sin
=- 3 −

解:(1)∵y=
∴y'=2x+3x2+4x3.
2
(2)∵y= sin
4
+ cos
2
2
4

4
-2sin2 ·cos2

4
1 2
=1- sin
2
2
1 1-cos
3 1
=1- ·
= + cos x,
2
2
4 4
3 1
1
∴y'= 4 + 4 cos '=-4sin x.
(1+ )2 (1- )2
解析:∵y=xln x,∴y'=ln x+1,
∴曲线在点(1,0)处的切线的斜率为k=1.
故切线方程为y=x-1.
答案:C
)
2
3
4
5
6
1
-1
的导数是
+1
-1
解析:方法一:y'=
'
+1
4 函数 y=

高二数学北师大版选修2-2(陕西专用)课件第二章 变化率与导数 本章整合

高二数学北师大版选修2-2(陕西专用)课件第二章 变化率与导数 本章整合

(3������+5) Nhomakorabea.
2
1 3
∴抛物线 C 的方程为 x2=4y.
专题一
专题二
专题三
专题二 导数的四则运算
对于函数 f(x)求导,首先应判断其为何种类型 ������(������) + ������(������),������(������)-������(������),������(������)������(������), 【例题】 若曲线 C:y=2x3-3ax2+3ax+a 上任意点处的切线的倾斜角都 是锐角,那么整数 a 的值等于( ) A.-2 B.0 C.1 D.-1 解析:y'=6x2-6ax+3a,由于曲线在任意点处的切线的倾斜角都是锐角, 则 6x2-6ax+3a>0 恒成立. ∴Δ=36a2-72a<0,∴0<a<2.又 a∈Z,∴a=1. 答案:C
专题一
专题二
专题三
【例题】 已知点 M(0,-1),F(0,1),过点 M 的直线 l 与曲线 y= x3-4x+4 在 x=2 处的切线平行. (1)求直线 l 的方程; (2)求以点 F 为焦点,l 为准线的抛物线 C 的方程. 解:(1)∵y'=x2-4,∴在 x=2 处的切线斜率 k=0. 即直线 l 的斜率为 0,∴直线 l 的方程为 y=-1. (2)∵抛物线以点 F(0,1)为焦点,y=-1 为准线,设抛物线方程为 x2=2py, ������ ∴ =1,p=2.
函数的平均变化率:
������ ������
=
导数的几何意义:切线的斜率 加法:(u + v)' = u' + v' 导数的四则运算法则 减法:(u-v)' = u'-v' 乘法:(uv)' = u'v + uv' 除法:

新高考数学一轮复习考点知识归类讲义 第16讲 变化率与导数、导数的计算

新高考数学一轮复习考点知识归类讲义 第16讲 变化率与导数、导数的计算

新高考数学一轮复习考点知识归类讲义第16讲 变化率与导数、导数的计算1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率limΔx →0f (x 0+Δx )-f (x 0)Δx=错误!未指定书签。

lim Δx →0ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=错误!未指定书签。

limΔx →0ΔyΔx =错误!未指定书签。

lim Δx →f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=错误!未指定书签。

limΔx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin xf ′(x )=cos__xf (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln af (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).➢考点1 导数的运算[名师点睛]对解析式中含有导数值的函数,即解析式类似f (x )=f ′(x 0)g (x )+h (x )(x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求导数值. 1.(2022·浙江·高三专题练习)请用函数求导法则求出下列函数的导数. (1)sin x y e =;(2)32x y x +=+; (3)()ln 23y x =+;(4)()()2221y x x =+-;(5)cos 23y x π⎛⎫=+ ⎪⎝⎭.【解】(1)因为sin x y e =,则()sin sin sin cos x x y e x e x ''=⋅=;(2)因为32x y x +=+,则()()()()()()223223122x x x x y x x ''++-++'==-++; (3)因为()ln 23y x =+,则()22213233y x x x ''=⋅+=++; (4)因为()()2221y x x =+-,则()()()()''22221221y x x x x =+++-'-()()2222122624x x x x x =-++=-+;(5)因为cos 23y x π⎛⎫=+ ⎪⎝⎭,故2sin 22sin 2333y x x x πππ'⎛⎫⎛⎫⎛⎫'=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(2022·全国·高三专题练习)已知函数()f x 的导数为()f x ',且()2(e)ln f x xf x +'=,则()e f =( )A .1e-B .1-C .1D .e 【答案】B 【解析】由()2(e)ln f x xf x +'=得1()2(e)f x f x ''=+,当e x =时,1(e)2(e)e f f ''=+,解得()1e ef '=-,所以2()ln e x f x x -=+,2e(e)ln e 1ef -=+=-. 故选:B [举一反三]1.(2021·江苏省阜宁中学高三阶段练习)下列求导运算不正确的是( ) A .()22x x '=B .()sin cos x x '= C .()33ln 3x x '=D .()1e ln 3e 3x x '+=+【答案】D 【解析】对于A :()22x x '=,故选项A 正确; 对于B :()sin cos x x '=,故选项B 正确; 对于C :()33ln 3x x '=,故选项C 正确;对于D :()()()e ln 3e l 0n 3e e x x x x '''=++=+=,故选项D 不正确; 所以求导运算不正确的是选项D , 故选:D.2.(2022·全国·高三专题练习)若函数()f x ,()g x 满足()()21,f x xg x x +=-且()11f =,则()()11f g ''+=( ) A .1B .2C .3D .4 【答案】C【解析】取1x =,则有()()110f g +=,即(1)(1)1g f =-=-,又因为()()21,f x xg x x +=-所以()()()2f x g x xg x x ''++=,所以()()1(1)12f g g ''++=,所以()()112(1)213f g g ''+=-=+=.故选:C3.(2022·全国·河源市河源中学模拟预测)已知实数x 满足()()()222cos 22cos sin f x xf x x x x x '+=++,0x >,π52f ⎛⎫= ⎪⎝⎭,那么()πf 的值为( )A .0B .1C .2D .π 【答案】C【解析】由()()()222cos 22cos sin f x xf x x x x x '+=++两边同时乘x 可得: ()()()22222cos 22sin 22xf x x f x x x x x x x f x ''⎡⎤+=++=⎣⎦,又()222sin 22cos 22sin 22x x x x x x x x +++'=,因此()222sin 2x f x x x x c =++.由π52f ⎛⎫= ⎪⎝⎭,即222πππ5sin π444c ⨯=++,可得2πc =, ∴()22πsin 21f x x x =++,∴()22sin 21π2πππf =++=.故选:C ﹒4.(2022·江苏·高三专题练习)下列求导数运算正确的有( )A .(sin )cos x x '=B .211()x x '=C .31(log )3ln x x'=D .1(ln )x x '=【答案】AD【解析】A :(sin )cos x x '=,故正确; B :211()x x'=-,故错误;C :31(log )ln 3x x '=,故错误; D :1(ln )x x'=,故正确. 故选:AD5.(2022·全国·高三专题练习)求下列函数的导数:(1)y =x (x 2311x x ++);(2)y =1)1); (3)y =x tan x ; (4)y =x ﹣sin 2x cos 2x;(5)y =3ln x +ax (a >0,且a ≠1).【解】解:(1)y =x (x 2311x x++)=x 3+121x +;则函数的导数y ′=3x 232x -.(2)y =1)1)=11=y ′= (3)y =x tan x sin cos x xx =, 则y ′()()()222sin 'cos sin cos 'sin cos cos sin cos cos x x x x x x x x x x x x xx-++==2222sin sin cos cos xcosx xcos x xsin x x x xx cos x+++==;(4)y =x ﹣sin 1cos 222x x x =-sinx ;则y ′=112-cosx.(5)y ′3x=+ax ln a .➢考点2 导数的几何意义1.(2022·广东茂名·模拟预测)曲线()sin 2cos 1f x x x =--在点π,02⎛⎫ ⎪⎝⎭处的切线方程为______.【答案】2π0x y --=【解析】()cos 2sin f x x x '=+,则曲线()y f x =在π,02⎛⎫⎪⎝⎭处的切线斜率ππcos 2sin 222k =+=,∴切线方程为π22y x ⎛⎫=- ⎪⎝⎭,即2π0x y --=.故答案为:2π0x y --=.2.(2022·全国·高三专题练习)已知f (x )=x 2,则过点P (-1,0),曲线y =f (x )的切线方程为__________【答案】0y =或440x y ++=【解析】点P (-1,0)不在f (x )=x 2上,设切点坐标为(x 0,20x ),由f (x )=x 2可得()'2f x x =,∴切线的斜率()'002k f x x ==.切线方程为()021y x x =+.∵切线过点P (-1,0),∴k =2001x x +=2x 0,解得x 0=0或x 0=-2,∴k =0或-4,故所求切线方程为y =0或4x +y +4=0. 故答案为:0y =或440x y ++=3.(2022·河南·三模)曲线()30y x m x =+<在点A 处的切线方程为322y x m =+-,则切点A 的坐标为______. 【答案】()1,3-【解析】由233y x '==,得1x =±,因为0x <,所以1x =-, 则切点A 的横坐标为-1,所以()31322m m -+=-+-, 解得4m =,所以A 的坐标为()1,3-. 故答案为:()1,3-.4.(2022·湖南湘潭·三模)已知直线l 是曲线e 1x y =-与ln 1y x =+的公共切线,则l 的方程为___________.【答案】e 1y x =-或y x =【解析】设l 与曲线e 1x y =-相切于点(),e 1aP a -,与曲线ln 1y x =+相切于点(,ln Q b b +1),则1ln e 2e a ab b b a-+==-,整理得()()1e 10aa --=,解得1a =或0a =,当1a =时,l 的方程为e 1y x =-;当0a =时,l 的方程为y x =. 故答案为:e 1y x =-或y x =. [举一反三]1.(2022·山东枣庄·三模)曲线32y x bx c =++在点()1,0M 处的切线与直线20x y --=垂直,则c 的值为( ) A .1-B .0C .1D .2【答案】C 【解析】设()32f x x bx c =++,则()232f x x bx '=+,直线20x y --=的斜率为1,由题意可得()()1321110f b f b c ⎧=+=-⎪⎨=++='⎪⎩,解得21b c =-⎧⎨=⎩. 故选:C.2.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为( ) A .3-B .3C .5-D .5 【答案】A【解析】当0x >时,()()21f x x f ''=-,()()121f f ''∴=-,解得:()11f '=,∴当0x >时,()22f x x x =-+;当0x <时,0x ->,()22f x x x ∴-=++,又()f x 为偶函数,()()22f x f x x x ∴=-=++,即0x <时,()22f x x x =++,则()21f x x '=+,()2413f '∴-=-+=-. 故选:A.3.(2022·湖北·宜城市第一中学高三阶段练习)若过点(),a b 可以作曲线()10y x x x=->的两条切线,则( ) A .0b a >>B .10a b a a-<<< C .10a b a a <-<<D .1a b a a>>-且0a > 【答案】D 【解析】作出()10y x x x=->的图象,由图可知, 若过点(),a b 可以作曲线()10y x x x=->的两条切线,点(),a b 应在曲线外, 设切点为()()000,0>x y x ,所以0001y x x =-,21-'=+y x ,所以切线斜率为0002000111---=+==--x b y b x k x x ax a, 整理得()20020--+=a b x x a ,即方程在00x >上有两个不同的解,所以()()4402020a a b a b a ⎧-->⎪-⎪->⎨-⎪⎪>⎩,100⎧-<⎪⎪->⎨⎪>⎪⎩a ba ab a , 所以1a b a a>>-且0a >. 故选:D .4.(2022·山东潍坊·二模)已知函数()ln f x x x t =-+,直线1:ln 222l y x =-++,点()()00,P x f x 在函数()y f x =图像上,则以下说法正确的是( )A .若直线l 是曲线()y f x =的切线,则3t =-B .若直线l 与曲线()y f x =无公共点,则3t >-C .若2t =-,则点P 到直线l 5D .若2t =-,当点P 到直线l 的距离最短时,02x = 【答案】D【解析】f (x )定义域为(0,+∞),()11f x x'=-, 若直线l 是曲线()y f x =的切线,则()1111222f x x x =-⇒-=-⇒=',代入1ln222y x =-++得1ln2y =+,()21ln2ln221ln23f t t ∴=+⇒-+=+⇒=,故A 错误;当t =-2时,当在点P 处的切线平行于直线l 时,P 到切线直线l 的最短距离,则()0001111222f x x x =-⇒'-=-⇒=,故D 正确; 此时()2ln24f =-,故P 为()2,ln24-,P 到l :22ln240x y +--=的距离为=C 错误;设1ln ln 22ln ln 2222xx x t x t x -+=-++⇒=-++,令()ln ln 222x g x x =-++,则()11222x g x x x-'=-=, 当()0,2x ∈时,()0g x '<,()g x 单调递减,当()2,x ∈+∞,()0g x '>,()g x 单调递增, ∴()()min 23g x g ==,又0x →时,()g x ∞→+;x →+∞时,()g x ∞→+, ∴若直线l 与曲线()y f x =无公共点,则t <3,故B 错误. 故选:D .5.(2022·全国·高三专题练习)已知直线:20(0)l x ty t --=≠与函数()(0)xe f x x x=>的图象相切,则切点的横坐标为A.2.2+C .2D .1【答案】A【解析】由()(0)xe x x x =>可得()()21x e x f'x x -=,设切点坐标为()(),0m n m >,则()22011m m m tn en m e m m t ⎧⎪--=⎪⎪=⎨⎪⎪-=⎪⎩,解得2m = A.6.(2022·福建泉州·模拟预测)若直线()111f k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e 【答案】B【解析】设直线()111f k x =+-与曲线e x y =相切于点()11,e xx ,直线()211y k x =+-与曲线ln y x =相切于点()22,ln x x ,则11e x k =,且111e 11x k x +=+,所以11e 1xx =,221k x =,且222ln 11x k x +=+,所以22ln 1x x =,令()ln f x x x =,()1ln f x x '=+,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<,()f x 单调递减,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增,且()10f =,()0lim 0x f x →=,所以当()0,1x ∈时,()0f x <, 因为()222ln 1f x x x ==,()111e e 1x x f x ==,即()()12e 10xf x f ==>,所以()()121,,e 1,xx ∞∞∈+∈+,所以12=e xx ,故11221e 1x k k x =⋅= 故选:B7.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( )A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞【答案】B【解析】设公切线与曲线ln 1y x =-和2y ax =的交点分别为()11,ln 1x x -,()222,x ax ,其中1>0x ,对于ln 1y x =-有1y x'=,则ln 1y x =-上的切线方程为()()1111ln 1y x x x x --=-,即()11ln 2xy x x =+-, 对于2y ax =有2y ax '=,则2y ax =上的切线方程为()22222y ax ax x x -=-,即2222y ax x ax =-,所以2121212ln 2ax x x ax ⎧=⎪⎨⎪-=-⎩,有1211ln 24x ax -=-,即()22111112ln 04x x x x a =->, 令()222ln g x x x x =-,()()32ln 32ln g x x x x x x '=-=-,令0g x,得32e x =,当320,e x ⎛⎫∈ ⎪⎝⎭时,0g x,()g x 单调递增,当32,e x ⎛⎫⎪⎝∈+⎭∞时,0g x,()g x 单调递减,所以()332max 1e e 2g x g ⎛⎫== ⎪⎝⎭,故3110e 42a <≤,即31e 2a -≥.故选:B.8.(多选)(2022·河北保定·二模)若直线3y x m =+是曲线()30y x x =>与曲线()260y x nx x =-+->的公切线,则( ) A .2m =-B .1m =-C .6n =D .7n = 【答案】AD【解析】解:设直线3y x m =+与曲线()30y x x =>相切于点()3,a a ,与曲线()260y x nx x =-+->相切于点(),3b b m +,对于函数()30y x x =>,23y x '=,则()2330a a =>,解得1a =,所以313m =+,即2m =-.对于函数()260y x nx x =-+->,2'=-+y x n ,则()230b n b -+=>, 又2632b nb b -+-=-,所以()232632b b b b -++-=-,又0b >, 所以2b =,7n =. 故选:AD9.(2022·重庆·三模)曲线()1ln 225y x x =+++在点1,32⎛⎫- ⎪⎝⎭处的切线方程为___________. 【答案】22y x =-+【解析】由()1ln 225y x x =+++,2111y x x '=-++,则切线的斜率为12422x y =-=-+=-'. 所以曲线()1ln 225y x x =+++在点1,32⎛⎫- ⎪⎝⎭处的切线方程为: 1322y x ⎛⎫-=-+ ⎪⎝⎭,即22y x =-+.因此所求切线的方程为22y x =-+. 故答案为:22y x =-+.10.(2022·浙江·高三专题练习)已如函数()e ,()ln x f x g x x ==.若曲线()y f x =在点()()11,x f x 处的切线与曲线()y f x =在点()()22,x g x 处的切线平行,则()12x g x +=___________;若(2)()2()1f x h x x g x x=--+,则()h x 的最大值为___________. 【答案】 0 2n 2e l 2-+ 【解析】由已知()e x f x '=,1()g x x'=,所以121e x x =,即12e xx -=,所以112111()ln e0x x x x g x x -=-+==+.2()2ln e 1xh x x x x=--+,定义域为()0,∞+,2222222e (21)e (12(21)(()221)e )x x x x x x x h x x x x x x x ----'=--=--=,令2e ()x p x x =-,则2()12e x p x '=-,0x >时,()0p x '<,所以()p x 在(0,)+∞上递减, 所以0x >时,()(0)1p x p <=-, 所以102x <<时,()0h x '>,()h x 递增,12x >时,()0h x '<,()h x 递减,所以max 11()()1ln 1221222ee ln 2h x h =-=-+=-+. 故答案为:0;2n 2e l 2-+.11.(2022·河北廊坊·模拟预测)设直线12y x b =+是曲线sin (0,)y x x π=∈,的一条切线,则实数b 的值是_________.6π- 【解析】设切点坐标为00(,)x y ,因为cos y x '=,所以有00000sin 121cos 2y x y x b x ⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩因为(0,)x π∈,所以00,3x y π==00126b y x π=-=.6π- 12.(2022·全国·高三专题练习)曲线sin 21y x x =++在点P 处的切线方程是310x y -+=,则切点P 的坐标是____________. 【答案】()0,1【解析】由函数sin 21y x x =++,则cos 2y x '=+,设切点P 的坐标为()00,x y ,则斜率00cos 23x x k y x ==+'==, 所以0cos 1x =,解得02()x k k Z π=∈,当0k =时,切点为()0,1,此时切线方程为310x y -+=; 当0k ≠,切点为(2,41)()k k k Z ππ+∈,不满足题意, 综上可得,切点为()0,1. 故答案为:()0,1.13.(2022·重庆巴蜀中学高三阶段练习)设三次函数()32f x ax bx cx d =+++,若曲线()y f x =在点()0,0处的切线与曲线()()g x xf x =在点1,2处的切线重合,则()2g '=______.【答案】32-【解析】由题知:(0)0f =,∴0d =,2()32f x ax bx c '=++()f x 在(0,0)处的切线为0(0)(0)y f x '-=-,即(0)y f x =',∵()()()g x f x xf x +''=,(1)(1)(1)g f f =+'', ∴()g x 在1,2处的切线方程为:(1)(1)2y g x g =-'+' 又因为两条切线重合,∴(0)(1){(1)20f g g ='-+'=',∴(0)(1)2f g ''==,又∵(1)(1)2g f ==,(1)(1)(1)g f f =+''∴(1)0f '=,∴(0)2{(1)320(1)2f c f a b c f a b c ===++==++'='解得2{22a b c =-==∴()32222f x x x x =-++,2()642f x x x '=-++,∴(2)(2)2(2)32g f f =+=-''. 故答案为:32-.14.(2022·广东·执信中学高三阶段练习)已知()e 1x f x =-(e 为自然对数的底数),()ln 1g x x =+,则()f x 与()g x 的公切线条数为_______.【答案】2【解析】根据题意,设直线l 与()e 1x f x =-相切于点(,e 1)m m -,与()g x 相切于点(,ln 1)n n +, 对于()e 1x f x =-,其导数为()e x f x '=, 则有()e m k f m ='=,则直线l 的方程为1e e ()m m y x m +-=-,即e e (1)1m m y x m =+--, 对于()ln 2g x x =+,其导数为1()g x x'=, 则有1()k g n n='=,则直线l 的方程为1(ln 1)()y n x n n-+=-,即1ln y x n n=+, 直线l 是()f x 与()g x 的公切线,则1e (1)e 1ln m m n m n⎧=⎪⎨⎪--=⎩,可得(1)(e 1)0m m --=, 则0m =或1m =,故直线l 的方程为y x =或e 1y x =-; 则()f x 与()g x 的公切线条数是2条. 故答案为:2。

变化率与导数及导数的计算

变化率与导数及导数的计算

变化率与导数及导数的计算变化率是指其中一物理量在一定时间或空间上的变化幅度。

导数是微积分中用来描述函数变化率的概念。

导数的定义是函数在其中一点的变化率。

在微积分中,导数用于刻画函数曲线上一点的斜率,即曲线在该点的切线的斜率。

导数表示了函数在该点附近的局部变化情况。

若函数y=f(x),则函数f(x)在x=a的导数表示为f'(a)或dy/dx,_x=a。

导数表示了函数y=f(x)在x=a点附近的变化率。

导数可以通过几何方法、物理方法、以及代数方法进行求解。

一、几何解释法通过对函数对应的图像进行观察,可以直观地看出导数的几何意义。

函数y=f(x)在x=a点的导数f'(a)等于函数曲线在x=a点处的切线的斜率。

二、平均变化率和瞬时变化率平均变化率表示了函数的两个点之间的变化情况。

若函数f(x)在区间[a,b]上是连续的,则函数在该区间上的平均变化率为(f(b)-f(a))/(b-a)。

瞬时变化率表示了函数在其中一点的瞬时变化情况。

当间隔变得非常短小,即b趋近于a时,平均变化率趋近于瞬时变化率,即瞬时变化率等于导数。

三、导数的计算方法1.基本导数公式常见的基本导数公式如下:(1)常数函数的导数为零,即d(c)/dx=0,其中c为常数;(2)x的导数为1,即d(x)/dx=1;(3)可加性,即d(u+v)/dx=du/dx+dv/dx,其中u和v是函数;(4)乘性,即d(uv)/dx=udv/dx+vdu/dx,其中u和v是函数。

2.基本函数的导数(1)幂函数的导数:若f(x)=x^n,则f'(x)=nx^(n-1),其中n为常数;(2)指数函数的导数:若f(x)=a^x,则f'(x)=a^x * ln(a),其中a为常数,ln(a)为a的自然对数;(3)对数函数的导数:若f(x)=log_a(x),则f'(x)=1/(x*ln(a)),其中a为常数,ln(a)为a的自然对数;(4)三角函数的导数:若f(x)=sin(x),则f'(x)=cos(x);若f(x)=cos(x),则f'(x)=-sin(x);若f(x)=tan(x),则f'(x)=sec^2(x),其中sec(x)为x的余切。

变化率与导数

变化率与导数

记为 f ( x0 ) 或
y
x xo
,即
f ( x0 x) f ( x0 ) f f ( x0 ) lim lim x 0 x x 0 x
思考?

观察函数f(x)的图象
Y=f(x) y B
y f(x2 ) f ( x1 ) 平均变化率 x x2 x1
表示什么?
f(x2) f(x2)-f(x1)=△y A f(x1)
直线AB 的斜率
x2-x1=△x x x1 x2
O
四、导数的几何意义:
y
y=f(x) Pn
割 线
T
y
P
切线

x
o
x 我们发现,当点Pn沿着曲线无限接近点P即 Δ x→0时,割线P Pn趋近于确定位置PT.则我们 把直线PT称为曲线在点P处的切线.
因此,函数f(x)在x=x0处
y
y= Q f( x) P

的导数就是切线PT的斜率.
o
'
割 线 T 切 线 x
即:
f ( x0 x) f ( x0 ) y k切线 f ( x0 ) lim lim x 0 x x 0 x
这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质——函数在x=x0处的导数.
f ( x0 x) f ( x0 ) f lim lim x 0 x 0 x x
练习:
1.函数f(x)=x2在x=1处的瞬时变化率为( ).
2.函数f(x)=1-3x在x=x0处的瞬时变化率为( ) 3.质点运动规律s=t2+3,则在t=3秒的瞬时速度为
三、导数
一般地,函数 y =f(x) 在x=x0处的瞬时变化率 称为函数 y = f (x)在点x=x0处的导数,

高中数学第2章变化率与导数5简单复合函数的求导法则课件北师大版选修2_2

高中数学第2章变化率与导数5简单复合函数的求导法则课件北师大版选修2_2

• 解 t′x=析3:,∴原y′x函=数2t由·3y==6t(23和x-t=43).x-4复合而成,y′t=2t, • 答案: D
• 2.函数y=sin(2x-1)的导数是( ) • A.cos(2x-1) B.2xsin(2x-1) • C.2cos(2x-1) D.2sin(2x-1) • 解析: y′=cos(2x-1)·2=2cos(2x-1). • 答案: C • 3.函数y=e2x+e-x的导数为_____________. • 答案: 2·e2x-e-x
结果
理由
令u=3x-π6,则y=cos u.
(3) -3sin3x-π6 y=yu′·ux′=-sin u·3x-π6′
=-3sin u=-3sin3x-π6
令u=1+x2,则y= u=u12,
(4)
x 1+x2
y′=yu′·ux′=12u-12(1+x2)′
=x·u-12=
=2sin2x+π3·cos2x+π3·2x+π3′
=2sin4x+23π.
8分
(3)y′=xx-1x100′=x′x-1x100+xx-1x100′
=x-1x100+x·100x-1x99·x-1x′
2.复合函数的导数
• 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的 导 于数__间__的__关__系__为__y_′_yx=′_u·__u_′__x ___________乘__积__..即y对x的导数等
y对u的导数与u对x导数的

求复合函数的导数要处理好以下环节
• (1)中间变量的选择应是基本函数结构;
2x
πcos ∴f′(π)=
2π+100cos 2π-12sin π+1002

变化率与导数导数的计算

变化率与导数导数的计算
导数与积分的关系
导数与积分是互逆运算,一个函数的导数与其积分之间的关系可以通过微积分基本定理来表示。
04 导数的应用
导数在几何中的应用
求切线斜率
导数可以用来求曲线在某一点的切线斜率,从而了解曲线在该点的 变化趋势。
研究函数极值
通过求导数并令其为零,可以找到函数的极值点,进而研究函数的 最大值和最小值。
莱布尼茨法则
对于复合函数的 $n$ 阶导数,可以利用莱布尼 茨法则进行计算。
幂级数展开法
对于复杂的函数,可以利用幂级数展开法求得高阶导数。
THANKS FOR WATCHING
感谢您的观看
曲线的凹凸性判断
通过求二阶导数,可以判断曲线的凹凸性,进而了解曲线的弯曲程度。
导数在物理中的应用
速度和加速度的研究
在物理学中,导数可以用来研究物体的速度和加速度, 例如瞬时速度和瞬时加速度。
斜抛运动的研究
通过导数可以研究斜抛物体的运动轨迹,例如研究射 程、射高等。
振动和波动的研究
导数可以用来研究振动和波动的规律,例如振幅、频 率等。
03
导数可以用来研究函数的单调性、极值、拐点等性质。
导数的几何意义
导数的几何意义是函数在某一 点处的切线斜率,即切线与x
轴正方向的夹角正切值。
当导数大于0时,函数在该点 处单调递增;当导数小于0时,
函数在该点处单调递减。
导数的符号变化点为函数的拐 点,即函数图像的凹凸分界点。
导数的计算方法
定义法
隐函数的导数计算
对数求导法
对于形如 $y = f(x)$ 的隐函数,可以通 过两边取对数,转化为显函数进行求导 。
VS
参数方程法
对于参数方程 $x = x(t), y = y(t)$,可以 通过对参数 $t$ 求导来求得隐函数的导数。

2020版数学攻略大浙江专用精练12_§3_1变化率与导数、导数的计算教师备用题库

2020版数学攻略大浙江专用精练12_§3_1变化率与导数、导数的计算教师备用题库

教师专用真题精编
1.(2018课标全国Ⅰ,5,5分)设函数f(x)=x3+(a—1)x2+ax。

若f (x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()
A.y=—2x B。

y=—x
C。

y=2x D.y=x
答案D本题主要考查函数的奇偶性及导数的几何意义.
∵f(x)=x3+(a-1)x2+ax为奇函数,∴a—1=0,解得a=1,∴f(x)=x3+x,∴f '(x)=3x2+1,∴f ’(0)=1,故曲线y=f(x)在点(0,0)处的切线方程为y=x,故选D。

2。

(2018课标全国Ⅱ,13,5分)曲线y=2ln(x+1)在点(0,0)处的切线方程为。

答案y=2x
解析本题主要考查导数的几何意义.
,所以y’|x=0=2,又(0,0)为切点,
因为y'=2
x+1
所以曲线在点(0,0)处的切线方程为y=2x。

3.(2018课标全国Ⅲ,14,5分)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=。

答案—3
解析本题考查导数的综合应用。

设f(x)=(ax+1)e x,则f '(x)=(ax+a+1)e x,所以曲线在点(0,1)处的切线的斜率k=f ’(0)=a+1=-2,解得a=-3。

攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志。

人教版数学高二教材解读---变化率及导数,导数的计算

人教版数学高二教材解读---变化率及导数,导数的计算

打印版摘要:高考试题关键词:导数的概念和计算,高考链接,陈立田教材解读“变化率及导数,导数的计算”---人教A版选修2-2第一章一、教材主要特点:导数的概念是高中新教材人教A版选修1-1第三章3.1.2的内容,是在学生学习了平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1气球平均膨胀率--→瞬时膨胀率问题2高台跳水的平均速度--→瞬时速度新教材不介绍极限的形式化定义及相关知识,而是用直观形象的逼近方法定义导数。

通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),学生更易于理解。

二、讲授时注意的问题:1.加强知识发生过程的学习学生开始接触的知识,关键是对导数的基本概念、性质等有一个初步的认识,进而达到能够运用由其内容反映出来的数学思想和方法的目点为此,适当介绍有关概念、性质的来龙去脉,对学生了解、把握它们是十分必要的本章的主要概念是导数,教科书在讲述导数的概念时,首先用比较多的篇幅介绍了导数产生的几何背景——光滑曲线的切线的斜率,以及物理背景——瞬时速度,由此引出函数在一点的导数的定义.接下来,又阐述了导数的几何意义,这样处理,符合学生的认识规律,有利于学生正确理解和掌握导数的意义2.降低理论要求,重视数学应用学习导数,要着眼于用导数的知识及其思想方法解决数学学习、日常生活与工作中的问题高中阶段,在导数概念的严谨性、知识的系统性上多花时间与精力,既没有必要也不可能收到明显的效果.因此,与以往高中教材中的导数部分比较,本章在数学应用的内容上适当加强了,而在理论要求上则有所降低本章导数的初步知识中介绍了一此导数公式与求导法则,教材侧重的是公式在求导中的应用,而淡化(或删除了)公式与法则的理论推导.例如,在导数公式中,函数x m的导数公式只给了m是正整数情况下的证明,函数sinx、cosx的导数公式则没有给出证明;(对数函数与指数函数的导数公式没有给出证明,是因为超出了目前的学习范围),在两个函数四则运算的求导法则中,没有给出商的求导法则的证明,没有给出复合函数求导法则的证明(最近册去)这些都表明皆在降低理论要求.打印版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. (2011· 山东高考)曲线 y=x3+11 在点 P(1,12)处的切线与 y 轴交点的纵坐标是( A.-9 C.9 B.-3 D.15
[解答] y′=3x2,故曲线在点 P(1,12)处的切线斜率是 3,故切线方程是 y-12=3(x-1),令 x=0 得 y=9. [答案] C 5.(教材习题改编)曲线 y= sin x 在点 M(π,0)处的切线方程是________. x -π 1 ∴f′(π)= 2 =- . π π
【典型例题讲解】
导数的计算
[例 1]、求下列函数的导数
1
y x13 ;
2 y
x3 ;
3 y x 3 ;
1
4 y 5 x2 ;
5 y 2 x 2 3 3 x 2 ;
6
1 1 y x x2 3 ; x x
1
拓扑教育
直线可能有多条.
纳百川,容学问,立德行,善人品
(2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以是切点,也可以不是切点,而且这样的
3.过圆上一点 P 的切线与圆只有公共点 P,过函数 y=f(x)图象上一点 P 的切线与图象也只有公共点 P 吗? 提示:不一定,它们可能有 2 个或 3 个或无数多个公共点. 2.几种常见函数的导数 原函数 f(x)=c(c 为常数) f(x)=xn(n∈Q*) f(x)=sin x f(x)=cos x f(x)=ax f(x)=ex f(x)=logax f(x)=ln x 导函数 f′(x)=0 f′(x)=nxn
-1
f′(x)=cos_x f′(x)=-sin_x f′(x)=axln_a f′(x)=ex 1 f′(x)= xln a 1 f′(x)= x
3.导数的运算法则 (1)[f(x)± g(x)]′=f′(x)± g′(x); (2)[f(x)· g(x)]′=f′(x)g(x)+f(x)g′(x); f′xgx-fxg′x fx (3) ′= (g(x)≠0). gx [gx]2
Δx 0
f′(x0)= lim →
fx0+Δx-fx0 Δy = lim . Δx Δx→0 Δx
(2)导数的几何意义: 函数 f(x)在点 x0 处的导数 f′(x0)的几何意义是在曲线 y=f(x)上点 P(x0,y0)处的切线的斜率(瞬时速度就是位 移函数 s(t)对时间 t 的导数).相应地,切线方程为 y-y0=f′(x0)(x-x0). (3)函数 f(x)的导函数: 称函数 f′(x)= lim →
Δx 0
fx+Δx-fx 为 f(x)的导函数. Δx
[探究] 1.f′(x)与 f′(x0)有何区别与联系? 提示:f′(x)是一个函数,f′(x0)是常数,f′(x0)是函数 f′(x)在 x0 处的函数值. 2.曲线 y=f(x)在点 P0(x0,y0)处的切线与过点P0x0,y0)的切线,两种说法有区别吗? 提示:(1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,斜率为 k=f′(x0)的切线,是唯一的一条切线. 专注孩子的未来
解析:由题意知 f′(5)=-1, 专注孩子的未来
5
拓扑教育
f(5)=-5+8=3, ∴f(5)+f′(5)=3-1=2. 答案:2
纳百川,容学问,立德行,善人品
7.(2012· 广东高考)曲线 y=x3-x+3 在点(1,3)处的切线方程为________. 解析:∵y′=3x2-1,∴y′
|x
1 1.(教材习题改编)f′(x)是函数 f(x)= x3+2x+1 的导函数,则 f′(-1)的值为( 3 专注孩子的未来
4
)
拓扑教育
A.0 C.4 B.3 7 D.- 3 ∴f′(-1)=3.
纳百川,容学问,立德行,善人品
1 解析:选 B ∵f(x)= x3+2x+1,∴f′(x)=x2+2. 3 2.曲线 y=2x-x3 在 x=-1 处的切线方程为( A.x+y+2=0 C.x-y+2=0
拓扑教育
纳百川,容学问,立德行,善人品
拓 扑 教 育 学 科 教 师 讲 义
副校长/组长签字: 签字日期:
年 级 :高二 课 题
课 时 数 :2
姓 名 :李尚真
科目 :数学
教师 : 崔丹丹
导数及其应用 2015 年 月 日 :00 — :00 a.m
授课日期及时段
1..理解导数的几何意义.
教 学 目 的
导数的几何意义
1.求曲线切线方程的步骤 (1)求出函数 y=f(x)在点 x=x0 处的导数,即曲线 y=f(x)在点 P(x0,f(x0))处切线的斜率; (2)由点斜式方程求得切线方程为 y-y0=f′(x0)· (x-x0). 2.求曲线的切线方程需注意两点 (1)当曲线 y=f(x)在点 P(x0,f(x0))处的切线平行于 y 轴(此时导数不存在)时,切线方程为 x=x0; (2)当切点坐标不知道时,应首先设出切点坐标,再求解.
—————
—————————————— 导数几何意义应用的三个方面
导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点 A(x0,f(x0))求斜率 k,即求该点处的导数值:k=f′(x0); (2)已知斜率 k,求切点 A(x1,f(x1)),即解方程 f′(x1)=k; 专注孩子的未来
x· cos x-sin x sin x 解析:∵f(x)= ,∴f′(x)= , x x2 1 ∴切线方程为 y=- (x-π),即 x+πy-π=0. π 答案:x+πy-π=0
6.(教材习题改编)如图,函数 y=f(x)的图象在点 P 处的切线方程是 y=-x+8,则 f(5)+f′(5)=________.
1 · x-ln x x ln x ln x ′ x - x ′ ln x 1-ln x (8)y′= x ′= = = . x2 x2 x2 sin x sin x′cos x-sin xcos x′ cos xcos x-sin x-sin x 1 (9)y′= = = 2 . cos x′= cos2x cos2x cos x (10)y′=(3xex)′-(2x)′+e =(3x)′ex+3x(ex)′-(2x)′=3x(ln 3)· ex+3xex-2xln 2=(ln 3+1)· (3e)x-2xln 2.
7 y
x2 ; sin x
ln x (8)y= ; x
(9)y=tan x;
(10)y=3xex-2x+e.
专注孩子的未来
2
拓Байду номын сангаас教育
纳百川,容学问,立德行,善人品
[自主解答] (5) y ' 18x 2 8x 9 (6) y 3 x
' 2
2 x3
(7)
x2 sin x x cos x sin 2 x
2 (2)法一:设切点为(x0,y0),则直线 l 的斜率为 f′(x0)=3x0 +1, 2 ∴直线 l 的方程为 y=(3x0 +1)(x-x0)+x3 0+x0-16,又∵直线 l 过点(0,0), 2 ∴0=(3x0 +1)(-x0)+x3 0+x0-16,
整理得,x3 0=-8,∴x0=-2. ∴y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26). 法二:设直线 l 的方程为 y=kx,切点为(x0,y0), y0-0 x3 0+x0-16 则 k= = , x0 x0-0 x3 0+x0-16 又∵k=f′(x0)=3x2 =3x2 0+1,∴ 0+1, x0 解得 x0=-2. ∴y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x,切点坐标为(-2,-26). x (3)∵切线与直线 y=- +3 垂直,∴切线的斜率 k=4. 4
1 2. 能根据导数定义求函数 y=c(c 为常数),y=x,y=x2,y=x3,y= 的导数.
x
3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 导数的基本运算多涉及三次函数、指数函数与对数函数、三角函数等,主要考查对基
重 难 点
本初等函数的导数及求导法则的正确利用.




=1
=3×12-1=2.
∴该切线方程为 y-3=2(x-1),即 2x-y+1=0. 答案:2x-y+1=0 8.函数 y=xcos x-sin x 的导数为________. 解析:y′=(xcos x)′-(sin x)′ =x′cos x+x(cos x)′-cos x =cos x-xsin x-cos x =-xsin x. 答案:-xsin x 9.求下列函数的导数. (1)y=ex· ln x; 解:(1)y′=(ex· ln x)′ 1 1 =exln x+ex·=ex ln x+x. x 1 2 (2)∵y=x3+1+ 2,∴y′=3x2- 3. x x 1 1 x2+ + 3; (2)y=x x x
3
拓扑教育
纳百川,容学问,立德行,善人品
fx1-fx0 (3)已知过某点 M(x1,f(x1))(不是切点)的切线斜率为 k 时,常需设出切点 A(x0,f(x0)),利用 k= 求 x1-x0 解. 例 3.已知函数 f(x)=x3+x-16. (1)求曲线 y=f(x)在点(2,-6)处的切线的方程; (2)直线 l 为曲线 y=f(x)的切线,且经过原点,求直线 l 的方程及切点坐标; 1 (3)如果曲线 y=f(x)的某一切线与直线 y=- x+3 垂直,求切点坐标与切线的方程. 4 解:(1)可判定点(2,-6)在曲线 y=f(x)上. ∵f′(x)=(x3+x-16)′=3x2+1, ∴在点(2,-6)处的切线的斜率为 k=f′(2)=13. ∴切线的方程为 y=13(x-2)+(-6),即 y=13x-32.
相关文档
最新文档