起重机设计规范汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
起重机设计规汇总提纲
对GB/T3811-2008《起重机设计规》中关于起重机设计的计算载荷与载荷组合的理解:3811第4章规定了计算各种载荷及选择载荷组合原则和方法,用这个原则和方法验证本标准所适用的各种起重机的金属结构件和机械零部件的防强度失效、防弹性失稳和防疲劳失效的能力,并且还用于起重机的抗倾覆稳定性和抗风防滑移安全性的校验计算。
起重机的结构设计能力验算有两种方法:许用应力设计法和极限状态设计法,不管采用哪种方法,在考虑载荷、载荷系数、载荷组合、许用应力和极限设计应力时,都应以3811中的相关章节、条款和附录来确定。
(载荷的组合)在设计考虑载荷时并不是将所有载荷都考虑进去,若那样的话制造成本太高,同时也是极大的浪费,也完全没必要那样做,如某载荷在此起重机上不可能出现,就无需考虑,起重机说明书禁止出现的载荷、设计未提出要求的、设计中已明确要防止或禁止的载荷都可以不考虑,例如:起重机的静载荷试验的载荷重量,为什么是额定载荷的1.25倍,为什么不定的更高一些,若更高一些起重机岂不是更保险吗,1.25这个数值,据说是前联的很多科学家对起重机的机械故障率和制造成本做了大量的科学统计,找出了二者的最佳结合点,就是这个1.25,可以将此数值加大吗?可以,那样起重机更可靠,强度储备更高,但是将导致提高制造成本,当然最后是使用方买单,但是这对于社会是一个很大的浪费,所以只有非常特殊的起重机在设计时才将此值提高到1.4 (如
JB/T7688.5-95冶金起重机技术条件-夹钳起重机、7688.6整模起重机、7688.8脱锭起重机、7688.10锻造起重机、)。作用在起重机上的载荷分为常规载荷、偶然载
荷、特殊载荷及其他载荷,只有在分析与这些载荷有关的起重机各种可能的载荷组合时,才需要区分这些载荷的不同类别。
常规载荷:常规载荷是指在起重机正常工作时经常发生的载荷,包括由重力产生的载荷,有驱动机构或制动器的作用使起重机加(减)速运动而产生的载荷及因起重机结构位移或变形引起的载荷。根据GB/T3811-20084.2.1常规载荷涉及一下方面:
1、自重载荷P G是指起重机本身的结构、机械设备、
电气设备、以及在起重机工作时始终积结在某
个部件上的物料,这个物料包括工艺装备及长
期粘结在起重机上的物料。
2、额定起升载荷P Q:起重机起吊额定起重量时的总
起升质量的重力。
3、自重振动载荷Φ1P G
当物品起升离地时,或将悬吊在空中的部分物品突然
卸除时,或悬吊在空中的物品下降制动时,起重机本
身(只要是其金属结构)的自重将因出现振动而产生
脉冲式增大或减小的动力响应。此自重振动载荷用起
升冲击系数Φ1乘以起重机的自重载荷来考虑,为反映此振动载荷围的上下限,该系数取为两个值:Φ1=1±α,0≤α≤0.1.当动力响应是增大时Φ1=1+α,说明振动方向向下,相当于加大了自重载荷,当动力响应
是减小时Φ1=1-α,其自重载荷效应与Φ1=1+α时是相反的。
4、起升动载荷Φ2P Q
(1)起升动力效应:当物品无约束的起升离开地面时,物品的惯性力将会使起升载荷出现动载增大的作用。此起升动力效应用一个大于1的起升动载系数Φ2乘以额定起升载荷P Q来考虑。所以起升过程的加速度越小,这个Φ2就越
接近1,起升机构电力拖动采用变频时,这个Φ2就很接近1了。
(2) HC1 由于起升机构驱动控制型式的不同,物品起升离地时操作方法会有较大的差别,因此表现出了起升操作的平稳程度和物品起升离地的动力特性也会有很大的不同。将起升状态按其冲击的由小到大划分为HC1-HC4四个级别;每个级别都对应着系数
起升状态级别β2 Φ2 min
起升离地平稳HC1 0,17 1.05
起升离地有轻微冲击HC2 0.34 1.10
起升离地有中度冲击HC3 0.51 1.15
起升离地有较大冲击HC4 0.68 1.20
β2:按起升状态级别设定的系数
从以上可以看出,物品离地控制的越平稳,两个系数的值就越小。
对工作级别的理解
起重机的工作级别是表征起重机工作特性的一个重要概念,由起重机的使用等级和载荷状态级别组成,使用等级是指起重机在设计预期寿命期限,从开始工作到最终报废完成的总的工作循环数,这个循环数是次数而不是时间,分为十级。载荷状态级别是指起重机在设计预期寿命期限,它的各个有代表性的起升载荷值的大小及各相对应的起吊次数,与起重机的额定起升载荷值的大小及总的起吊次数的比值情况。从载荷状态级别的定义及载荷系数Kp 的公式可以看出起重机的载荷状态级别是由其起升机构的能力决定的,人们把载荷系数划分了四个围值,它们各代表了起重机一个相对应的载荷状态级别即Q1、Q2、Q3、
Q4,(将GB/T3811-2008的表3及附录A中的A.1、A.2、
A.3、A.4、A.4续)另外从K P的公式我们能看到有一个指数m=3,为何非要取m=3,因为FEM1.001-1998《欧洲起重机设计规》中对起重机整机载荷谱系数K P和对起重机机构的载荷谱系数K m的讨论中,均明确指出,为便于组别的划分,约定取指数等于3,从以上对载荷谱系数K P的解释可以看出:整机的载荷状态级别就是起升机构的载荷状态级别,所以说整机的工作级别与起升机构的工作级别是密不可分的,但也不能说起升机构的工作级别就是整机的工作级别,因为起重机不同的工作用途,工况差别很大,设计者根据起重机实际工作中每一个机构的使用等级和载荷状态级别,也会设计出大车运行机构M5,小车运行机构M5,起升机构M4,整机定为A5,只要设计是真实的,符合实际的,这种确定法也没有错;GB/T3811-2008附录A的《起重机整机分级举例》是一个重要的参考,但不能说是必须的。
起重机工作级别的划分原则是以起重机的寿命为标准,在载荷不同、使用频次不同的情况下,具有相同寿命的起重机划分在同一级别,有的教材上说综合起重机的使用等级和载荷状态级别,按对角线原则将起重机的工作级别分为A1-A8,1、在同一条对角线上出现了多个相同的工作级别,这也说明了不同的载荷状态级别、不同的使用等级可以有相同的工作级别,它们的设计寿命是相同的,这也符合对角线原则的定义,从GB/T3811-2008表3可以清楚的看出,A1有6种组合,A2、A3、A4、A5、A6A、7A各有4种组合,而A8有10种组合(这10种组合是U9分别和
Q1Q2Q3Q4的组合,U8分别和Q2Q3Q4的组合,U7分别和
Q3Q4的组合,U6和Q4的组合).
将使用等级和载荷状态级别结合起来,就出现了公式Φ×Kp,Φ=N/N0,N是结构的总工作循环次数,根据
ISO4301:1986取N0﹦1×101,N0是无限寿命设计的最小循环次数KP载荷系数,用此公式可算出8个数字,
1