七年级下数学半期考试试卷及答案

合集下载

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

浙教版数学七年级下学期《期中考试试卷》含答案解析

浙教版数学七年级下学期《期中考试试卷》含答案解析
浙 教 版 数 学 七年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
一、选择题
1.下列方程中,属于二元一次方程的是()
A.2x=yB.2x﹣3y=zC.2x2﹣x=5D.3﹣a= +1
2.用科学记数方法表示 ,得()
A. B. C. D.
故答案为:12.
[点睛]本题考查二元一次方程组的应用,巧设未知数,根据矩形的对边相等列出方程组是解题的关键.
三、解答题
17.(1)计算:
(2)化简:
[答案](1)3;(2) ;
[解析]
[分析]
(1)根据零指数幂、负整数指数幂的运算法则计算;
(_______④_______)
∴___________⑤_______(______⑥_______)
22.如图,将一张长方形纸板按图中虚线裁剪成 块,其中有 块是边长都为 厘米的大正方形, 块是边长都为 厘米的小正方形, 块是长为 厘米,宽为 厘米的一模一样的小长方形,且 ,设图中所有裁剪线(虚线部分)长之和为 厘米.
故yx=( )-2=9.
故答案为9.
[点睛]此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
14.如图,将一条对边互相平行的纸带进行折叠,折痕为 ,若 时,则 _________度.
[答案]
[解析]
[分析]
利用平行线的性质以及翻折不变性即可解决问题.
[详解]由翻折可知:∠DMN=∠NMD′= (180°-42°)=69°,
3.如图,在平移三角尺画平行线的过程中,理由是( )
A.两直线平行,同位角相等
B.两直线平行,内错角相等

2023-2024学年七年级下册数学期中试卷及答案A卷北师大版

2023-2024学年七年级下册数学期中试卷及答案A卷北师大版

2023-2024学年七年级下册数学期中试卷及答案A 卷北师大版(考试时间:120分钟 试卷满分:120分)一、单选题1.下列由不能判断的是( )12∠=∠a b ∥A .B .C . D .2.下列五道题是小明的作业,那么小明做对的题数为( )(1)若,则; (2); 3,5m n a a ==15m n a +=()202320240.12588-⨯=(3); (4); (5)()222a b ab ab a -÷=()23624a a -=()()2321253x x x x --+=-A .2个 B .3个 C .4个 D .5个3.下列图形中,与是同位角的是( )1∠2∠A .B .C .D .4.如图,在中,边上的高是( )ABC ABA .B .C .D .CE BE AF BD 5.有以下说法:①;②一个三角形中至少有两个锐角;③两条直线被第三条直线所01a =截,同位角相等;④若三条线段的长满足,则以为边一定能构成a b c 、、a b c +>a b c 、、三角形.其中正确的个数为( )A .1个B .2个C .3个D .4个6.南宋数学家杨辉在其著作《详解九章算法》中揭示了为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.则展开式中所有项的系数()8a b +和是( ).A .128B .256C .512D .10247.某品牌的自行车链条每节长为,每两节链条相连部分重叠的圆的直径为,2.5cm 0.8cm 按照这种连接方式,节链条总长度为,则与的关系式是( )n cm y y nA .B .C .D .2.5y n = 1.7y n = 1.70.8y n =+ 2.50.8y n =-8.设 ,,.若,则的值是( )2022a x =-2024b x =-2023c x =-2216a b +=2c A .5 B .6 C .7 D .89.如图,在中,,点D 为边上一点,将沿直线折叠后,点ABC 42B ∠=︒BC ADC △AD C 落在点E 处,若,则的度数为( )DE AB ∥ADE ∠A .B .C .D .111︒110︒97︒121︒10.如图,正方形的边长为2,动点P 从点B 出发,在正方形的边上沿B →C →D 的ABCD 方向运动到点D 停止,设点P 的运动路程为x ,在下列图象中,能表示的面积y 与PAD x 的关系的图象是( )A .B .C .D .11.若,则代数式的值是 .210a a --=321a a -+12.如图,已知∠A =60°,∠B =20°,∠C =30°,则∠BDC 的度数为 .13.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点,处,E 交C 'D ¢C 'AF 于点G .若∠CEF=70°,则∠GF = °.D ¢14.一列慢车从地驶往地,一列快车从地驶往地.两车同时出发,各自抵达目的A B B A 地后停止,如图所示,折线表示两车之间的距离(km )与慢车行驶时间(h )之间的关y t 系.当快车到达地时,慢车与地的距离为 km .A B15.如图,于C ,E 是上一点,,平分平分AC BD ⊥AB CE CF ⊥//,DF AB EH ,BEC DH ∠,则:与之间的数量关系为 .BDG ∠H ∠ACF ∠16.(1);()()()2425x x x +-+-(2)先化简,再求值:,其中,. ()()()()2233362a b b a a b b b ⎡⎤+-+--÷-⎣⎦13a =-2b =-17.某学校自主研制了一种椅子(实物如图所示),可适应上课、课间休息、午睡三种状态,该椅子的凳面始终与地面保持平行,小明作出了椅子在不同状态下的主视图.上课时椅背与凳面垂直,腿托与凳面成夹角(如图1),有利于学生坐直听课.按下开关AD 70︒1,轴1(安装在点B 处)可以控制椅背以顺时针旋转,按下开关2,轴2(安装在点9/s ︒A 处)可以控制腿托以顺时针旋转.10/s ︒(1)课间可将椅背稍微调整一定的角度(如图2)作短时休息,此时腿托与椅背平行舒适度更佳,请作出此时腿托所在的直线;(要求:尺规作图,保留作图痕迹)AD (2)如图3,按下开关1,使椅背从与発面垂直时的状态顺时针旋转,此时测得54︒,求的度数;27BCN ∠=︒CNM ∠18.如图,在中,平分交于点D ,平分交于点E .ABC AD BAC ∠BC BE ABC ∠AD(1)若求的度数;8060C BAC ∠=︒∠=︒,,ADB ∠(2)若,求的度数.65BED ∠=︒C ∠19.如图,.12180,3A ∠+∠=︒∠=∠(1)求证:;AB CD (2)若,求的度数.78,23B BDE ∠=︒∠=∠DEA ∠20.如图,这是某学校操场的一角,在长为米,宽为米的长方形场地中()35a b +()4a b -间,有两个并排大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为b 米.(1)求这两个篮球场的总占地面积.(2)若篮球场每平方米的造价为200元,其余场地每平方米的造价50元,求整个长方形场地的造价.21.如图,点A 、F 、C 、D 在同一条直线上,,,.求BC EF =AF DC =BCD EFA ∠=∠证:.A D ∠=∠22.九河下梢,芳华天津.小明利用假期来到美丽的天津,已知他入住的酒店、文创馆、某老字号糕点店依次在同一条直线上,糕点店离酒店,文创馆离酒店小明从1.5km 2.5km 酒店骑共享单车到文创馆,在那里逛了后返回,匀速步行了到糕点店10min 20min 15min 买糕点,在糕点店停留了后,散步返回酒店.给出的图象反映了这个过程中10min 30min 小明离开酒店的距离与小明离开酒店的时间之间的对应关系.km y min x请根据相关信息,回答下列问题:(1)①填表: 离开酒店的时间/min57 25 50 60离开酒店的距离/km1.25 1.5 ②填空:小明从蛋糕店返回酒店的速度为__________;km/min ③当时,请直接写出小明离酒店的距离关于时间的函数解析式;1045x ≤≤y x (2)当小明离酒店时,请直接写出他离开酒店的时间.2km 23.在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如图①,若∠BPC =α,则∠A = ;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC 外角∠MBC 、∠NCB 的角平分线交于点Q ,试探究∠Q 与∠BPC 之间的数量关系,并说明理由;(3)如图③,延长线段CP 、QB 交于点E ,△CQE 中,存在一个内角等于另一个内角的2倍,求∠A 的度数.一、单选题1.下列由不能判断的是( )12∠=∠a b ∥A .B .C .D . 【答案】C【分析】本题考查了同位角相等两直线平行,据此即可进行判断.【详解】解:由图可知:A 、B 中,均是直线被第三条直线所截形成的同位角, 12∠∠,,a b 根据同位角相等两直线平行,可得;a b ∥D 中:若,12∠=∠∵23∠∠=∴,13∠=∠根据同位角相等两直线平行,可得;a b ∥而C 中,是另两条直线被直线所截形成的同位角,不能得出;12∠∠,b a b ∥故选:C2.下列五道题是小明的作业,那么小明做对的题数为( )(1)若,则; (2); 3,5m n a a ==15m n a +=()202320240.12588-⨯=(3); (4); (5)()222a b ab ab a -÷=()23624a a -=()()2321253x x x x --+=-A .2个B .3个C .4个D .5个 【答案】B【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法,乘法法则计算各式进行判断即可.【详解】解:(1)若,,则,小明计算正确;3m a =5n a =3515m n m n a a a +==⨯= (2);小明计算错误;()()2023202320240.12580.125888-⨯=-⨯⨯=-(3);小明计算错误; ()222221a b ab ab a b ab ab ab a -÷=÷-÷=-(4);小明计算正确;()23624a a -=(5).小明计算正确; ()()22321263253x x x x x x x -+=+--=--综上分析可知,正确的有3个故选:B .3.下列图形中,与是同位角的是( )1∠2∠A .B .C .D .【答案】D【分析】本题考查了同位角.熟练掌握同位角的定义是解题的关键.根据两条直线被第三条直线所截,在截线的同旁且在被截两直线的同一侧的a b ,c c a b ,角为同位角,进行判断作答即可.【详解】解:由题意知,D 选项中与是同位角,故符合要求;1∠2∠故选:D .4.如图,在中,边上的高是( )ABC ABA .B .C .D .CE BE AF BD 【答案】A 【分析】本题考查三角形的高,根据三角形的高的定义判断即可解答.【详解】∵过点C ,且,CE CE AB ⊥∴边上的高是.AB CE 故选:A5.有以下说法:①;②一个三角形中至少有两个锐角;③两条直线被第三条直线所01a =截,同位角相等;④若三条线段的长满足,则以为边一定能构成a b c 、、a b c +>a b c 、、三角形.其中正确的个数为( )A .1个B .2个C .3个D .4个 【答案】A【分析】根据零指数幂的意义,三角形内角和定理,平行线的性质,三角形三条边的关系逐项分析即可.【详解】①当时,,故原说法不正确;0a ≠01a =②一个三角形中至少有两个锐角,正确;③两条平行直线被第三条直线所截,同位角相等,故原说法不正确;④若三条线段的长满足,则以为边不一定能构成三角形,故原说a b c 、、a b c +>a b c 、、法不正确.故选A .【点睛】本题考查了零指数幂的意义,三角形内角和定理,平行线的性质,三角形三条边的关系,熟练掌握各知识点是解答本题的关键.6.南宋数学家杨辉在其著作《详解九章算法》中揭示了为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下表称为“杨辉三角”.则展开式中所有项的系数()8a b +和是( ).A .128B .256C .512D .1024【答案】B 【分析】本题考查了“杨辉三角”展开式中所有项的系数和的求法,通过观察展开式中所有项的系数和,得到规律是解题的关键.根据“杨辉三角”展开式中所有项的系数和规律确定出(n 为非负整数)展开式的项系数和为,求出系数之和即可.()n a b +2n 【详解】解:当时,展开式中所有项的系数和为,0n =012=当时,展开式中所有项的系数和为,1n =11122+==当时,展开式中所有项的系数和为,2n =212142++==当时,展开式中所有项的系数和为3n =3133182+++==,⋯由此可知展开式的各项系数之和为,()n a b +2n 则展开式中所有项的系数和是,8()a b +82256=故选:B .7.某品牌的自行车链条每节长为,每两节链条相连部分重叠的圆的直径为,2.5cm 0.8cm 按照这种连接方式,节链条总长度为,则与的关系式是( )n cm y y nA .B .C .D .2.5y n = 1.7y n = 1.70.8y n =+ 2.50.8y n =-【答案】C 【分析】本题考查规律型:图形的变化类,从数字找规律是解题的关键.依据题意,先求出节链条的长度,节链条的总长度,节链条的总长度,然后从数字找规律,进行计算123即可解答.【详解】解:由题意得:节链条的长度为,1 2.5cm 节链条的总长度为:,2()()2.5 2.50.8cm +-⎡⎤⎣⎦节链条的总长度为,3()()2.5 2.50.82cm +-⨯⎡⎤⎣⎦⋯⋯∴节链条总长度,n ()()()()2.5 2.50.81 1.70.8cm y n n =+-⨯-=+⎡⎤⎣⎦∴与的关系式是:.y n 1.70.8y n =+故选:C .8.设 ,,.若,则的值是( ) 2022a x =-2024b x =-2023c x =-2216a b +=2cA .5B .6C .7D .8 【答案】C 【分析】根据完全平方公式得出,,进而根据已知条件得出6ab =2a b -=,进而即可求解.2)1()(1c a b =-+【详解】,,,2022a x =- 2024b x =-2023c x =-,,120231a x c b ∴-=-==+2a b -=,2216a b +=,∴26(2)1a b ab -+=,∴6ab =∴2)1()(1c a b =-+1ab a b =+--621=+-,7=故选:C .【点睛】本题考查了完全平方公式变形求值,根据题意得出是解题的关2)1()(1c a b =-+键.9.如图,在中,,点D 为边上一点,将沿直线折叠后,点ABC 42B ∠=︒BC ADC △AD C 落在点E 处,若,则的度数为( )DE AB ∥ADE ∠A .B .C .D .111︒110︒97︒121︒【答案】A 【分析】本题考查了翻折变换(折叠问题),平行线的性质,熟练掌握折叠的性质是解题的关键.根据平行线的性质得到,然后由邻补角得到42BDE B ∠=∠=︒180138EDC BDE ∠=︒-∠=︒10.如图,正方形的边长为2,动点P 从点B 出发,在正方形的边上沿B →C →D 的ABCD 方向运动到点D 停止,设点P 的运动路程为x ,在下列图象中,能表示的面积y 与PAD x 的关系的图象是( )A .B .C .D .11.若,则代数式的值是 .210a a --=321a a -+【答案】2【分析】根据题意推出和,原式进行变形把和分别代21a a -=21a a -=21a a -=21a a -=入求解即可.【详解】解:∵,易知和210a a --=21a a -=21a a -=∴()3221111a a a a -+=--+将代入,则原式21a a -=()11a a =-+原式将代入得,原式21a a =-+21a a -=2=故答案为2.【点睛】本题主要考查了整式的运算,运用到了整体代入的思想,根据题意推出21a a -=和是解答本题的关键.21a a -=12.如图,已知∠A =60°,∠B =20°,∠C =30°,则∠BDC 的度数为 .【答案】110°/110度【分析】延长BD 交AC 于点E ,根据三角形的外角性质计算,得到答案.【详解】延长BD 交AC 于点E ,∵∠DEC 是△ABE 的外角,∠A =60°,∠B =20°,∴∠DEC =∠A+∠B =80°,则∠BDC =∠DEC+∠C =110°,故答案为:110°.【点睛】本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE 是解题的关键.13.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点,处,E 交C 'D ¢C 'AF 于点G .若∠CEF=70°,则∠GF = °.D ¢【答案】40【详解】解:根据折叠的性质,得∠DFE=∠FE.D¢∵ABCD是矩形,∴AD∥BC.∴∠GFE=∠CEF=70°,180∠DFE=-∠CEF=110°.∴∠GF=∠FE-∠GFE=110°-70°=40°.D¢D¢故答案为:40.【点睛】本题考查折叠问题矩形的性质,平行的性质.14.一列慢车从地驶往地,一列快车从地驶往地.两车同时出发,各自抵达目的A B B Ay t地后停止,如图所示,折线表示两车之间的距离(km)与慢车行驶时间(h)之间的关系.当快车到达地时,慢车与地的距离为 km.A B【点睛】本题考查一次函数的应用,理解图象上点表示的具体含义是解答的关键.15.如图,于C ,E 是上一点,,平分平分AC BD ⊥AB CE CF ⊥//,DF AB EH ,BEC DH ∠,则:与之间的数量关系为 .BDG ∠H ∠ACF ∠16.(1);()()()2425x x x +-+-(2)先化简,再求值:,其中,. ()()()()2233362a b b a a b b b ⎡⎤+-+--÷-⎣⎦13a =-2b =-【点睛】本题主要考查整式的混合运算和化简求值,解答的关键是对相应的运算法则的掌握.17.某学校自主研制了一种椅子(实物如图所示),可适应上课、课间休息、午睡三种状态,该椅子的凳面始终与地面保持平行,小明作出了椅子在不同状态下的主视图.上课时椅背与凳面垂直,腿托与凳面成夹角(如图1),有利于学生坐直听课.按下开关AD 70︒1,轴1(安装在点B 处)可以控制椅背以顺时针旋转,按下开关2,轴2(安装在点9/s ︒A 处)可以控制腿托以顺时针旋转.10/s ︒(1)课间可将椅背稍微调整一定的角度(如图2)作短时休息,此时腿托与椅背平行舒适度更佳,请作出此时腿托所在的直线;(要求:尺规作图,保留作图痕迹)AD (2)如图3,按下开关1,使椅背从与発面垂直时的状态顺时针旋转,此时测得54︒,求的度数;27BCN ∠=︒CNM ∠【答案】(1)见解析(2)117︒【分析】本题考查平行线的判定和性质,三角形的外角的性质:(1)以点A 为顶点,作,即可得到所在的直线;BAD ABD ∠=∠AD (2)延长,交于点,利用外角的性质和两直线平行,同位角相等,进行求解即AB CN E 可;熟练掌握相关知识点并灵活运用是解题的关键.【详解】(1)解:(1)如图所示,直线即为所求;AD ,DAB ABC ∠=∠,AD BC ∴∥直线即为所求.∴AD (2)延长,交于点,如图:AB CN E当时,.6t =9096144ABC ∠=︒+︒⨯=︒又,27BCN ∠=︒ ;117CEB ABC BCN ∴∠=∠-∠=︒,AE MN ∥.117CNM CEB ∴∠=∠=︒18.如图,在中,平分交于点D ,平分交于点E .ABC AD BAC ∠BC BE ABC ∠AD(1)若求的度数;8060C BAC ∠=︒∠=︒,,ADB ∠(2)若,求的度数.65BED ∠=︒C ∠【答案】(1)110ADB ∠=︒(2)50C ∠=︒【分析】本题主要考查了三角形外角的性质,三角形内角和定理,角平分线的定义,熟知三角形一个外角等于与其不相邻的两个内角之和是解题的关键.(1)根据角平分线的定义得到,再由三角形外角的性质即可得到30DAC ∠=︒;110ADB C DAC ∠=∠+∠=︒(2)根据角平分线的定义得到.再由三角形外角的性22BAC BAD ABC ABE ∠=∠∠=∠,质得到,即可利用三角形内角和定理得到答案.130BAC ABC ∠+∠=︒【详解】(1)解:∵平分,,AD BAC ∠60BAC ∠=︒19.如图,.12180,3A ∠+∠=︒∠=∠(1)求证:;AB CD (2)若,求的度数.78,23B BDE ∠=︒∠=∠DEA ∠【答案】(1)见解析(2)146DEA ∠=︒【分析】(1)由得到,即可得到,再根据等量代换得12180∠+∠=︒DE AC ∥A DEB ∠∠=到即可证明;3DEB ∠∠=(2)由平行的性质得到,求出即可求出答案.180BDC B ∠+∠=︒334∠=︒【详解】(1),12180∠+∠=︒ ,DE AC ∴∥,∴A DEB ∠∠=,3A ∠∠=,∴3DEB ∠∠=;∴AB CD(2),AB CD ,∴180BDC B ∠+∠=︒,, 78B ∠=︒23BDE ∠=∠,∴23378180∠+∠+︒=︒,∴334∠=︒,AB CD ,∴3180DEA ∠+∠=︒.∴146DEA ∠=︒【点睛】本题主要考查平行的判定与性质,熟练掌握平行的判定与性质是解题的关键.20.如图,这是某学校操场的一角,在长为米,宽为米的长方形场地中()35a b +()4a b -间,有两个并排大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为b 米.(1)求这两个篮球场的总占地面积.(2)若篮球场每平方米的造价为200元,其余场地每平方米的造价50元,求整个长方形场地的造价.【答案】(1)这两个篮球场的总占地面积是平方米 ()22126a ab b --(2)整个长方形场地的造价为元 ()2224007001150a ab b +-【分析】本题考查列代数式,能正确根据题意列出代数式是解此题的关键.(1)把篮球场平移为一个长方形,求出这个长方形的长和宽,即可求出面积;(2)根据篮球场每平方米的造价为200元,其余场地每平方米的造价50元,列出代数式即可.【详解】(1)解:()()35342a b b a b b +--- ()()3243a b a b =+-平方米.()22126a ab b =--答:这两个篮球场的总占地面积是平方米.()22126a ab b --(2)平方米,()()()2235412175a b a b a ab b +-=+-()()222212175126aab b a ab b +----222212175126a ab b a ab b =+--++平方米,()218ab b =+()()2222001265018a ab b ab b --++2222400200120090050a ab b ab b =--++元.()2224007001150a ab b =+-答:整个长方形场地的造价为元.()2224007001150a ab b +-21.如图,点A 、F 、C 、D 在同一条直线上,,,.求BC EF =AF DC =BCD EFA ∠=∠证:.A D ∠=∠【答案】见解析【分析】本题主要考查了全等三角形的性质与判定,先证明,,AC DF =ACB DFE ∠=∠进而证明,即可证明. ()SAS ACB DFE ≌A D ∠=∠【详解】证明:∵, AF DC =∴,即, AF CF DC CF +=+AC DF =∵,BCD EFA ∠=∠∴,即, 180180BCD EFA ︒-∠=︒-∠ACB DFE ∠=∠在和中,ACB △DFE △, AC DF ACB DFE BC EF =⎧⎪∠=∠⎨⎪=⎩∴, ()SAS ACB DFE ≌∴.A D ∠=∠22.九河下梢,芳华天津.小明利用假期来到美丽的天津,已知他入住的酒店、文创馆、某老字号糕点店依次在同一条直线上,糕点店离酒店,文创馆离酒店小明从1.5km 2.5km 酒店骑共享单车到文创馆,在那里逛了后返回,匀速步行了到糕点店10min 20min 15min 买糕点,在糕点店停留了后,散步返回酒店.给出的图象反映了这个过程中10min 30min 小明离开酒店的距离与小明离开酒店的时间之间的对应关系.km y min x请根据相关信息,回答下列问题: (1)①填表: 离开酒店的时间/min57 25 50 60离开酒店的距离/km1.251.5②填空:小明从蛋糕店返回酒店的速度为__________;km/min ③当时,请直接写出小明离酒店的距离关于时间的函数解析式; 1045x ≤≤y x (2)当小明离酒店时,请直接写出他离开酒店的时间.2km23.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC =α,则∠A = ;(用α的代数式表示,请直接写出结论) (2)如图②,作△ABC 外角∠MBC 、∠NCB 的角平分线交于点Q ,试探究∠Q 与∠BPC 之间的数量关系,并说明理由;(3)如图③,延长线段CP 、QB 交于点E ,△CQE 中,存在一个内角等于另一个内角的2倍,求∠A 的度数.∵∠ABC 与∠ACB 的平分线相交于点∴∠BPC=180°﹣(∠=180°(∠ABC+12-=180°(180°﹣∠1-∵外角∠MBC ,∠NCB 的角平分线交于点∴∠QBC+∠QCB (∠MBC+12=(360°﹣∠ABC ﹣∠12=(180°+∠A ) 12==90°∠A ,12+∴∠Q=180°﹣(90°1+一、单选题1.下列各图中,与是同位角的是( )1∠2∠A . B . C . D .2.下列多项式中,可以用平方差公式计算的是( ) A . B . (23)(23)a b a b --+(34)(43)a b b a -+--C .D .()()a b b a --()()a b c a b c ---++3.在学习“认识三角形”一节时,嘉嘉用四根长度分别为的小棒摆三2cm,4cm,5cm,6cm 角形,那么所摆成的三角形的周长不可能是( ) A .B .C .D .11cm 12cm 13cm 15cm4.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .5.如图,观察用直尺和圆规作一个角等于已知角的示意图的作图依据是A O B '''∠AOB ∠( )A .边边边B .边角边C .角边角D .角角边6.下列说法中:①同角或等角的补角相等;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线,叫做点到直线的距离,正确的有( ) A .1个B .2个C .3个D .4个7.如图所示,,,,结论:①;②;90E F ∠=∠=︒B C ∠=∠AE AF =EM FN =CD DN =③;④,其中正确的是有( )FAN EAM ∠=∠ACN ABM ≌A .1个B .2个C .3个D .4个8.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入AB CD 50ABC ∠=︒深井底部,则需要调整平面镜与地面的夹角( )EF EBC ∠=A .B .C .D .60︒70︒80︒85︒9.若AB ∥CD ,∠CDE =∠CDF ,∠ABE =∠ABF ,则∠E :∠F =( ) 3434A .1:2B .1:3C .3:4D .2:310.如图所示,已知△ABC 和△BDE 都是等边三角形.则下列结论:①AE=CD ;②BF=BG ;③∠AHC=60°;④△BFG 是等边三角形;⑤HB 平分∠AHD .其中正确的有( )A .2个B .3个C .4个D .5个11.已知,则 .14x x -=24251x x x =-+12.如图,在中,已知点分别为边的中点,且,则ABC ,,D E F ,,BC AD CE 2=4cm BEF S .ABC S = 2cm13.已知,则的值为 .2250x x --=432442000x x x -++14.如图,在中,,,点D 为上一点,连接.过点Rt ABC △90BAC ∠= AB AC =BC AD B 作于点E ,过点C 作交的延长线于点F .若,,则BE AD ⊥CF AD ⊥AD 4BE =1CF =的长度为 .EF15.一副三角板按如图所示(共顶点A )叠放在一起,若固定三角板,改变三角板ABC 的位置(其中A 点位置始终不变),当 时,.ADE BAD ∠=︒DE AB ∥16.阅读理解:我们把称作二阶行列式,规定它的运算法则为,例如a b c da bad bc c d =-,请根据阅读理解解答下列各题: 232534245=⨯-⨯=-________;(2)计算:; 12569798347899100+++ (3)已知实数,满足行列式,则代数式的值. a b 2151aa b a -=-+-2222a b ab +-+17.作图题:(1)在图①中,作过点P 作直线,垂足为H :作直线; PH AB ⊥PQ CD ∥(2)请直接写出图①中三角形的面积是 平方单位;PAB (3)在图②中过点P 作直线(要求:尺规作图,不写作法,但要保留作图痕迹.) PC OA ∥18.阅读下面的解题过程:已知,求的值. 2113x x =+241x x +解:由知,所以,即. 2113x x =+0x ≠213x x+=13x x +=所以,故的值为.2422221112327x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭241x x +17该题的解法叫做“倒数求值法”,请你利用“倒数求值法”解下面的题目:(1)若,求的值. 2115x x =+241x x +(2)若,求的值. 211x x =-48431x x x -+19.如图1,一条笔直的公路上有A ,B ,C 三地,甲,乙两辆汽车分别从A ,B 两地同时开出,沿公路匀速相向而行,驶往B ,A 两地,甲、乙两车到C 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图2所示.(1)A ,B 两地之间的距离为 千米;(2)图中点M 代表的实际意义是什么?(3)分别求出甲,乙两车的速度,并求出他们的相遇点距离点C 多少千米.20.已知:如图,在中,是的平分线,E 为上一点,且于点ABC AD BAC ∠AD EF BC ⊥F .若,,求的度数.35C ∠=︒15DEF ∠=︒B ∠21.如图,已知和,,,,与交于ABC ADE V AB AD =BAD CAE ∠=∠B D ∠=∠AD BC 点P ,点C 在上. DE(1)求证:;BC DE =(2)若,求的度数.3070B APC ∠=︒∠=︒,CAE ∠22.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图,延长AD 到点E ,使DE =AD ,连结BE .请根据小明的方法思考:(1)由已知和作图能得到的理由是( ).ADC EDB ≌△△A .SSS B .SAS C . AAS D .ASA(2)AD 的取值范围是( ).A .B .C .D .68AD <<1216AD <<17AD <<214AD <<(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】如图,AD 是△ABC 的中线,BE 交AC 于点E ,交AD 于F ,且AE =EF .求证:AC =BF .23.(1)问题发现:如图1, 和均为等边三角形,点在同一直线上,连ABC ADE V B D E 、、接.CE ①求证:; ②求的度数.BD CE =BEC ∠(2)拓展探究:如图2, 和均为等腰直角三角形,,点AB C ADE V 90BAC DAE ∠=∠=︒在同一直线上为中边上的高,连接B D E 、、AF ,ADE V DE .CE ①求的度数:BEC ∠②判断线段之间的数量关系(直接写出结果即可).AF BE CE 、、解决问题:如图3,和均为等腰三角形,,点在()3AB ADE V BAC DAE n ∠=∠= B D E 、、同一直线上,连接.求的度数(用含的代数式表示,直接写出结果即可).CE AEC ∠n一、单选题1.下列各图中,与是同位角的是( )1∠2∠A . B . C . D . 【答案】B【分析】根据同位角的意义,结合图形进行判断即可.【详解】解:A .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;B .选项中的两个角符合同位角的意义,符合题意;C .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;D .选项中的两个角不是两条直线被一条直线所截出现的角,不符合题意;故选:B .选项【点睛】本题考查了同位角、内错角、同旁内角,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.2.下列多项式中,可以用平方差公式计算的是( )A .B . (23)(23)a b a b --+(34)(43)a b b a -+--C .D .()()a b b a --()()a b c a b c ---++【答案】B【分析】本题考查了平方差公式,熟练掌握平方差公式的特点是解题的关键.平方差公式的形式是,平方差公式的特点是两个数的和乘以两个数的()()22a b a b a b +-=-差,逐一判断四个选项,即可求解.【详解】解:A 、,不可以用平方差公式计算.(23)(23)(23)(23)a b a b a b a b --+=---B 、,可以用平方差公式计算;(34)(43)(34)(34)a b b a a b a b -+--=-+--C 、,不可以用平方差公式计算;()()()()a b b a a b a b --=---D 、,不可以用平方差公式计算.()()()()a b c a b c a b c a b c ---++=-----故选:B .3.在学习“认识三角形”一节时,嘉嘉用四根长度分别为的小棒摆三2cm,4cm,5cm,6cm 角形,那么所摆成的三角形的周长不可能是( )A .B .C .D .11cm 12cm 13cm 15cm 【答案】B【分析】本题考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边,据此逐个分析即可作答.【详解】解:A 、当三边为,则周长为,故该选项不符合题意;2cm,4cm,5cm,11cm B 、当三边为,则周长为,但,不能构成三角形,故2cm,4cm,6cm 12cm 2cm 4cm 6cm +=该选项是符合题意的;C 、当三边为,则周长为,故该选项不符合题意;2cm,5cm,6cm 13cm D 、当三边为,则周长为,故该选项不符合题意;4cm,5cm,6cm 15cm 故选:B4.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D . 【答案】D【详解】三角形的高线的定义可得,D 选项中线段BE 是△ABC 的高.故选:D5.如图,观察用直尺和圆规作一个角等于已知角的示意图的作图依据是A O B '''∠AOB ∠( )A .边边边B .边角边C .角边角D .角角边 【答案】A 【分析】本题考查了全等三角形的判定与性质.由作图过程得,,,得到三角形全等,即可求解.OC O C =''OD O D =''CD C D =''【详解】解:由作图过程得:,,,OC O C =''OD O D =''CD C D ='',()OCD O C D SSS ∴''' ≌(全等三角形的对应角相等).AOB A O B ∴∠∠'''=故选:A .6.下列说法中:①同角或等角的补角相等;②过直线上一点有且只有一条直线垂直于已知直线;③连接直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线,叫做点到直线的距离,正确的有( )A .1个B .2个C .3个D .4个 【答案】B【分析】根据补角的性质判定①;根据垂线公理判定②;根据垂线段最短判定③;根据点到直线的距离概念判定④.【详解】解:①同角或等角的补角相等,故①正确;②在同一平面内,过直线上(或直线外)一点有且只有一条直线垂直于已知直线,故②错误;③连接直线外一点与直线上各点的所有线段中,垂线段最短,故③正确;④从直线外一点到这条直线的垂线段长度,叫做点到直线的距离,故④错误; ∴正确的有①③,共2个,故选:B .【点睛】本题考查补角的性质,垂线公理,垂线段最短,点到直线的距离概念.熟练掌握相关性质定理及概念是解题的关键.7.如图所示,,,,结论:①;②;90E F ∠=∠=︒B C ∠=∠AE AF =EM FN =CD DN =③;④,其中正确的是有( ) FAN EAM ∠=∠ACN ABM ≌A .1个B .2个C .3个D .4个 【答案】C 【分析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:∵,90E F B C AE AF ∠∠︒⎧⎪∠∠⎨⎪⎩====∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选:C .【点睛】此题考查了全等三角形的性质与判别,考查了学生根据图形分析问题,解决问题的能力.其中全等三角形的判别方法有:SSS ,SAS ,ASA ,AAS 及HL .学生应根据图形及已知的条件选择合适的证明全等的方法.8.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线与地面所成夹角时,要使太阳光线经反射后刚好垂直于地面射入AB CD 50ABC ∠=︒深井底部,则需要调整平面镜与地面的夹角( )EF EBC ∠=A .B .C .D .60︒70︒80︒85︒【答案】B【分析】如图,过作平面镜,可得,B BQ ⊥EF 90QBE QBF ∠=∠=︒。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。

小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。

2020人教版七年级下册数学《期中考试试题》附答案

2020人教版七年级下册数学《期中考试试题》附答案

人教版七年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. -2的相反数是( )A. -2B. 2C. ±2D. 122.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102 3.将如图所示直角梯形绕直线l 旋转一周,得到的立体图形是( )A.B. C.D.4.在227,π,这些实数中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 5.已知关于x 的一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( ) A. ﹣1 B. 1 C. ﹣2 D. ﹣36.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为( )A. 55°B. 45°C. 35°D. 25° 7.半面直角坐标系中,点A (-2,1)到y 轴的距离为( )A. -2B. 1C. 2D. 8.下列计算正确的是( )A.B. C. ∥2 D. ∥±29.把不等式x+2>4的解集表示在数轴上,正确的是 ( )A. B. C. D.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6 B. -6 C. 1 D. -1二、填空题13.比较实数的大小:3.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.15.如图:已知:a∥b,∥1=80°,则∥2=______.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.17.不等式8x2>1的解集是______.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.三、解答题19.求值:(-1)2018-|1|20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC面积.21.已知关于x,y方程组4x y53x y9-=⎧⎨+=⎩和13418ax byx by+=-⎧⎨+=⎩有相同的解.(1)求出它们相同的解;(2)求(2a+3b)2019的值.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∥1=∥2,CD 平分∥ACB ,且∥3=120°,求∥ACB 与∥1的度数.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b 20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.的26.已知a+1是4的算术平方根,b-1是27的立方根,化简求值:2(2a-b2)-(4a-a2).答案与解析一、选择题1. -2的相反数是()A. -2B. 2C. ±2D. 1 2【答案】B【解析】【分析】直接利用相反数的定义进而分析得出答案.【详解】解:-2的相反数是:2.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:7600=7.6×103,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】A【解析】【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【详解】题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:A .【点睛】本题主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.4.在227,π,这些实数中,无理数有( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据无限不循环小数是无理数的定义进行判断选择即可.2=-,所以在227,π,这些实数中,无理数有,π共两个,故答案选B.【点睛】本题考查的是无理数的概念,能够准确区别无限不循环小数是解题的关键. 5.已知关于x 一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( )A. ﹣1B. 1C. ﹣2D. ﹣3【答案】A【解析】【分析】把x=1代入方程,即可得到一个关于a 的方程,即可求解.【详解】把x =4代入方程得()24133,a -+=解得: 1.a =-故选∥A.【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解. 6.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为()A. 55°B. 45°C. 35°D. 25°【答案】C【解析】【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∥1=55°,∥ABC=90°,∴∥3=90°-55°=35°.∵a ∥b ,∴∥2=∥3=35°. 的故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.半面直角坐标系中,点A(-2,1)到y轴的距离为()A. -2B. 1C. 2【答案】C【解析】【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】解:∵点A(-2,1),∴点A(-2,1)到y轴的距离=|-2|=2,故选:C.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.8.下列计算正确的是()∥2∥±2【答案】A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】A=2故B是错误C=4故C、D都是错误所以本题答案应为:A【点睛】算术平方根的定义是本题的考点,注意区别算数平方根和平方根.9.把不等式x+2>4的解集表示在数轴上,正确的是( )A. B.C.D.【答案】B【解析】 试题分析:移项得,x >4-2,合并同类项得,x >2,把解集画在数轴上,故选B .考点: 在数轴上表示不等式的解集.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 【答案】C【解析】【分析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A.若a >b ,则a+3>b+3,正确,是真命题;B.若a >b ,则-a <-b ,正确,是真命题;C.若a >b ,则a 2>b 2不一定成立,错误,是假命题;D.若a >b ,则33a b >,正确,是真命题; 故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大. 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 【答案】A【解析】 【分析】每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】由题意可得,5210258x y x y +=⎧⎨+=⎩∥ 故选A∥【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找准等量关系列出相应的方程组.12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6B. -6C. 1D. -1【答案】B【解析】【分析】把方程的两个解代入,则可得到一个关于a 和b 的二元一次方程组,解答即可. 【详解】解:把两个解10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩分别代入方程ax+by=10中, 得:10510a a b -=⎧⎨+=⎩, 解得:104a b =-⎧⎨=⎩, ∴a+b=-10+4=-6,故选:B.【点睛】本题考查了二元一次方程的解,解题关键把方程的两个解代入原方程,得到关于a和b的二元一次方程组,再求解.二、填空题13.比较实数的大小:.【答案】>【解析】【分析】此题涉及的知识点是二次根式的性质,根据二次根式的性质,将3化成根号的形式即可比较出两实数的大小.【详解】将39>5,所以3【点睛】此题重点考察学生对二次根式的理解,熟练掌握二次根式的性质是本题解题的关键.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.【答案】-3【解析】【分析】根据x轴上点的纵坐标为0列式计算即可得解.【详解】解:∵点A(m-2,3+m)在x轴上,∴3+m=0,解得:m=-3.故答案为:-3.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.15.如图:已知:a∥b,∥1=80°,则∥2=______.【答案】100°【解析】【分析】利用两直线平行,同位角相等和邻补角的定义求∠2的度数.【详解】解:∵a∥b,∴∥3=∥1=80°.∥∥2=180°-∥3=100°.故答案为:100°.【点睛】本题比较简单,考查的是平行线的性质和邻补角的定义.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.【答案】7.5【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=10cm,继而即可求出答案.【详解】解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=12AB=5cm,CD=12BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm.故答案为:7.5.【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.17.不等式8x2->1的解集是______.【答案】x<6【解析】【分析】先去分母,去括号,然后移项,合并同类项,系数化成1即可.【详解】解:8x1 2->,82x ->,28x->-,x->-,6x<,6x<.故答案为:6【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.【答案】(16,-22)【解析】【分析】观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.依此先确定2025的坐标为(22,-22),再根据图的结构求得2019的坐标.【详解】解:观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.452=2025,由2n+1=45得n=22,∴2025的坐标为(22,-22),由9的对应点是(1,1),在同一直线上且在第四象限,9的前面有0个点,25的对应点是(2,2),在同一直线上且在第四象限,10的前面有1个点,∴2019在同一直线上且在第四象限,2019的前面有21个点,2019=2025-6,22-6=16,∴2019坐标是(16,-22).故答案为:(16,-22).【点睛】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.三、解答题19.求值:(-1)2018-|1|【答案】2【解析】【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【详解】解:原式=1--1)-2+2=1+1-2+2=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC的面积.【答案】(1)详见解析;(2)(3,5),(2,2),(6,3);(3)5.5【解析】【分析】(1)、(2)利用点平移的坐标变换规律,然后写出A1、B1、C1的坐标,然后描点、连线即可;(3)用一个矩形的面积分别减去三个直角三角形的面积可计算出△ABC的面积.【详解】解:(1)如图,∥A1B1C1为所作.(2)写出下列点的坐标:A1坐标为(3,5);B1坐标为(2,2);C1坐标为(6,3).故答案为:(3,5),(2,2),(6,3);(3)∥ABC 的面积=4×3-12×1×3-12×4×1-12×3×2=5.5. 【点睛】本题考查了作图-平移变换:确定平移后图形基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.已知关于x ,y 的方程组4x y 53x y 9-=⎧⎨+=⎩和13418ax by x by +=-⎧⎨+=⎩有相同的解. (1)求出它们相同的解;(2)求(2a+3b )2019的值.【答案】(1)x 2y 3=⎧⎨=⎩;(2)-1 【解析】【分析】(1)求出第一个方程组的解即可;(2)求出a 、b 的值,再代入求出即可.【详解】解:(1)∵解方程组4x y 5{3x y 9-=+=得:x 2{y 3==, ∴它们的相同的解是x 2{y 3==; (2)把x 2{y 3==代入方程组ax by 1{3a 4by 18+=-+=, 得:2a 3b 1{612b 18+=-+=, 解得:a 2{b 1=-=, ∴(2a+3b )2019=[2×(-2)+3×1]2019=-1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和求代数式的值等知识点,能求出两方程组的相同的解是解此题的关键.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如的的(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【答案】(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【解析】【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:500{243313800 x yx y+=+=,解得:300 {200 xy==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∥1=∥2,CD平分∥ACB,且∥3=120°,求∥ACB与∥1的度数.【答案】(1)详见解析;(2)∥ACB=120°,∥1=60°【解析】(1)根据垂直于同一直线的两直线平行判定;(2)根据平行线的性质和已知求出∠1=∠2=∠DCB,推出DG∥BC,根据平行线的性质得出∠ACB的度数即可;再由∠ACB的度数和已知得∠DCG的度数,利用三角形的外角的性质即可求出∠1的度数.【详解】解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)∵CD∥EF,∴∥2=∥DCB,∵∥1=∥2,∴∥1=∥DCB,∴DG∥BC,∴∥ACB=∥3,∵∥3=120°,∴∥ACB=120°.∵CD平分∥ACB,∴∥DCG=12∥ACB=60°,∵∥3=∥1+∥DCG,∴∥1=120°-60°=60°.∴∥ACB=120°,∥1=60°.【点睛】本题考查了对平行线的性质和判定的应用,三角形的内角和定理以及三角形外角的性质,角平分线的定义.熟练掌握平行线的判定与性质是解决本题的关键.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18 xy=⎧⎨=⎩就是方程3x+y=11的一组“好解”;123xyz=⎧⎪=⎨⎪=⎩是方程组3206x y zx y z++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.【答案】(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【解析】【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0 {7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k 04{559k 04+->>,即-1<k <559, ∴当k=3时,x=5,y=7,∴方程组x y k 15{x 5y 10k 70++=++=有“好解“, ∴“好解”为x 3{y 7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=, ∵201923m 010{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m 的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.【答案】(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC ∠∠∠+进行计算即可.详解:(1+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D S OP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=V V (),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1;(3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°.又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.26.已知a+1是4的算术平方根,b -1是27的立方根,化简求值:2(2a -b 2)-(4a -a 2).【答案】-31【解析】【分析】先根据算术平方根和立方根的定义得出a 、b 的值,再去括号、合并同类项化简原式,继而代入计算可得.【详解】解:∵a+1是4的算术平方根,b -1是27的立方根,∴a+1=2,b -1=3,解得a=1,b=4,原式=4a -2b 2-4a+a 2=a 2-2b 2,当a=1,b=4时,原式=1-2×16=1-32=-31.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则是解题的关键.。

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。

人教版七年级下册数学期中考试卷含答案

人教版七年级下册数学期中考试卷含答案

1.2点O∠10.一个多边形的每一个外角等于30,则这个多边形是边形,其内角和是。

11.直角三角形两个锐角的平分线所构成的钝角等于度。

12.如图3,四边形ABCD中,12∠∠与满足关系时AB1,3) C.(1,6) D.(3,3)5. 如图4,下列条件中,不能判断直线a列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形D.平行四边形三.作图题。

(每小题4分,共12分1.作出钝角ABC的三条高线。

2.在下面所示的方格纸中,画出将图中△ABC向右平移4格后的△A、B、C、,然后再画出△A、B、C、向下平移3格后的△A"B"C"3、写出图中A、B、C、D、E、F各点的坐标:cba54321CBA四、学着说点理。

(每小题3分,共6分) 1、如图四(1):∠1=∠2=∠3,完成说理过程并注明理由:(1)因为∠1=∠2所以____∥____ ( ) (2)因为 ∠1=∠3所以____∥____( )2、已知:如图,∠1=∠2.求证:∠3+∠4=180°证明:∵∠1=∠2 ∴a∥b( ) ∴∠3+∠5=180°( )又∵∠4=∠5( )∴∠3+∠4=180°五.用心解一解:(每小题5分,共20分) 1、如图五(1):∠1=∠2,∠3=108°.求∠4的度数2、如图五(2),直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F ,若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数3.一个多边形的内角和是它外角和的2倍,求这个多边形的边数。

4.如图B 点在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,求∠ACB。

六.简单推理。

.每小题5分,第3题6分,共16分)1.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?为什么?2.如图,如果ABNM321M1A2A3AA4A2A1NM2.略;(2,3);B(3,2);C(-3,1);D(-2,-2);E(1,0);F(0,-3)四、学着说点理。

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,是一元一次方程的是()A .43x +B .0a b +=C .21275x x -=D .370x -=2.下列方程中,解为x =2的方程是()A .2(x+1)=6B .5x ﹣3=1C .223x =D .3x+6=03.下列等式的变形错误的是()A .若a b =,则33a b -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x =4.若x >y ,则下列不等式成立的是()A .x -1<y -1B .x+5>y+5C .-2x >-2yD .2x <y 25.把方程0.150.710.30.02x x--=分母化为整数,正确的是()A .11570132xx --=B .101570132x x --=C .10157132xx --=D .10 1.57132x x --=6.不等式240x -≥的解集在数轴上表示为()A .B .C .D .7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折8.如果2150x y x y -+++-=,则x 、y 的值分别是()A .10x y =-⎧⎨=⎩B .14x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .23x y =⎧⎨=⎩9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是()A .8374x y y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374x y y x -=⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩10.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤二、填空题11.若1x =-是方程32ax x +=的解.则a 的值是_________.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为______.13.已知三元一次方程组345x y y z x z +=⎧⎪+=⎨⎪+=⎩,则x y z ++=________.14.不等式42564x x -≥⎧⎨+>⎩解集是______.15.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足等式2x +y =8,则m 的值是__.16.已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是________.三、解答题17.解方程:()()44329x x --=-18.解方程:131142x x +--=-(要求步骤完整)19.解方程组:43524x y x y +=⎧⎨-=⎩.20.解不等式121123y y +--≥,并把解集在数轴上表示出来.21.解不等式组42(1)411223x x x x --<⎧⎪-+⎨≤⎪⎩,并求出它的整数解.22.已知关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,(1)求a 的取值范围;(2)化简:241a a +--23.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求(3a+b )2020的值.24.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?25.请阅读求绝对值不等式3x <和3x >的解集过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的绝对值是是小于3的,所以3x <的解集为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-而大于3的绝对值是是大于3的,所以3x >的解集为3x <-或3x >.已知关于x、y的二元一次方程组245472x y mx y m-=-⎧⎨+=-+⎩的解满足3x y+≤,其中m是负整数,求m的值.26.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中购进电饭煲和电压锅各多少台?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案1.D【分析】只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.根据一元一次方程的定义逐个判断即可.解:A .不是方程,故本选项不符合题意;B .是二元一次方程,不是一元一次方程,故本选项不符合题意;C .是一元二次方程,不是一元一次方程,故本选项不符合题意;D .是一元一次方程,故本选项符合题意;故选:D .2.A 【分析】把x=2代入各个方程,看左右两边是否相等即可.【详解】A .把x =2代入方程2(x+1)=6得:左边=6,右边=6,左边=右边,所以x =2是方程2(x+1)=6的解,故本选项符合题意;B .把x =2代入方程5x ﹣3=1得:左边=7,右边=1,左边≠右边,所以x =2不是方程5x ﹣3=1的解,故本选项不符合题意;C .把x =2代入方程23x =2得:左边=43,右边=2,左边≠右边,所以x =2不是方程23x =2的解,故本选项不符合题意;D .把x =2代入方程3x+6=0得:左边=12,右边=0,左边≠右边,所以x =2不是方程3x+6=0的解,故本选项不符合题意;故选:A .3.C 【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】解:A 、利用等式性质1,两边都减去3,得到a-3=b-3,所以A 成立;B 、利用等式性质2,两边都除以-3,得到33a b =--,所以B 成立;C 、因为x 必须不为0,所以C 不成立;D 、利用等式性质2,两边都乘x ,得到x 2=2x ,所以D 成立;故选:C .4.B根据不等式的性质逐个判断即可.【详解】A 、∵x >y ,∴x -1>y -1,故本选项不符合题意;B 、∵x >y ,∴x+5>y+5,故本选项符合题意;C 、∵x >y ,∴-2x ﹤-2y ,故本选项不符合题意;D 、∵x >y ,∴2x >y2,故本选项不符合题意;故选:B .5.B 【分析】根据分数的基本性质,分子分母同时乘使它们化为整数的数即可.【详解】解:0.150.710.30.02x x --=,方程左边第一项,分子分母同时乘10,第二项分子分母同时乘100得,101570132xx --=,故选:B .【点睛】本题考查了方程的化简,解题关键是根据分数的基本性质对每个含分母的式子分别变形.6.C 【分析】先正确求得解集,后准确在数轴表示即可.【详解】∵240x -≥,∴x≥2,数轴表示为,【点睛】本题考查了不等式的解集,解集的数轴表示,熟练掌握不等式的解法和数轴表示法是解题的关键.7.B 【解析】【分析】设可打x 折,根据售价=标价×打折率和利润=售价-进价=进价×利润率列出不等式求解即可.【详解】解:设可打x 折,则有1200x÷10-800≥800×5%,解得:x≥7,即最多打7折.故选:B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.8.C 【解析】【分析】根据非负数的性质得关于x 、y 的二元一次方程组,再解方程组即可求出x 、y 的值.【详解】解:∵2150x y x y -+++-=,∴21050x y x y -+=⎧⎨+-=⎩,解此方程组得:32x y =⎧⎨=⎩.故选:C .此题考查的知识点是解二元一次方程组,关键是根据非负数的性质得关于x 、y 的二元一次方程组.9.A 【解析】【分析】直接根据题意列出二元一次方程组即可.【详解】解:根据题意,得:8374x y y x -=⎧⎨-=⎩,故选:A .【点睛】本题考查二元一次方程组的应用,读懂题意,找到等量关系是解答的关键.10.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.5-【解析】把x 的值代入方程计算即可求出a 的值.【详解】解:把1x =-代入方程得:32a --=,解得:5a =-,故答案为:5-.【点睛】本题考查了一元一次方程的解以及解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.12.7【解析】【分析】先解32y y +=得到y 的值,把y 的值代入到32y k -=得到关于k 的方程,再解方程即可.【详解】解:解32y y +=得3y =代入到32y k -=得332k ⨯-=,解得7k =.故答案为:7.【点睛】此题考查方程的解,解一元一次方程,理解两个方程的解相同的含义是解题的关键.13.6【解析】【分析】方程组中三个方程左右两边相加,变形即可得到x+y+z 的值.【详解】解:345x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得2x+2y+2z =12,∴x+y+z =6,故答案为:6.【点睛】此题考查了解三元一次方程组,本题的技巧为将三个方程相加.14.122x -<≤-【解析】【分析】分别解不等式组中的两个不等式,再取解集的公共部分即可得到答案.【详解】解:42564x x -≥⎧⎨+>⎩①②由①得:21x -≥,1,2x ∴≤-由②得:x >2,-所以不等式组的解集是:122x -<≤-.故答案为:122x -<≤-.【点睛】本题考查的是不等式组的解法,掌握解不等式组的方法与步骤是解题的关键.15.-6【解析】【分析】根据加减消元法,用含m 的式子表示出x 和与y 的值,将其代入2x+y =8即可求得m 的值.【详解】解:4375x y m x y m +=⎧⎨-=-⎩①②①+②,得5x =10m ﹣5,解得x =2m ﹣1,把x =2m ﹣1代入②,得2m ﹣1﹣y =7m ﹣5,解得y=4﹣5m,把x=2m﹣1,y=4﹣5m代入方程2x+y=8,得2(2m﹣1)+4﹣5m=8解得m=﹣6.故答案为:﹣6.【点睛】本题考查了二元一次方程的解、二元一次方程组的解,熟悉二元一次方程的解、二元一次方程组的解是解题的关键.16.m≥-3【解析】【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集即可.【详解】解:2145x xx m->+⎧⎨>⎩①②,∵不等式①的解集是x<−3,不等式②的解集是x>m,又∵不等式组2145x xx m->+⎧⎨>⎩无解,∴m≥−3,故答案为:m≥−3.【点睛】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m的不等式组.17.1x=-【解析】【分析】先去括号,再移项,合并同类项,最后未知数系数化为“1”即可解方程.【详解】()()44329x x--=-,去括号得:4412182x x -+=-,移项得:4218124x x -+=--,合并同类项得:22x -=,未知数系数化为“1”得:1x =-.【点睛】本题考查解一元一次方程.掌握解一元一次方程的步骤是解答本题的关键.18.15x =-【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】解:去分母得:()()41231x x -+=--去括号得:4162x x --=-+移项合并得:51x =-解得:15x =-.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.21x y =⎧⎨=-⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:43524x y x y +=⎧⎨-=⎩①②,①﹣②×4得:11y =﹣11,即y =﹣1,把y =﹣1代入②得:x =2,则方程组的解为21x y =⎧⎨=-⎩.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.20.1y ≤-,数轴表示见解析【解析】【分析】去分母、去括号、移项、合并同类项,然后系数化成1即可求解,再在数轴上表示出解集.【详解】解:121123y y +--≥,去分母得:()()316221y y +-≥-,去括号得:33642y y +-≥-,移项合并得:1y ≤-.数轴表示如下:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.21.﹣5≤x <1,整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.【详解】解:解不等式4x ﹣2(x ﹣1)<4,得:x <1,解不等式12x -≤123x +,得:5x ≥-,则不等式组的解集为51x -≤<,∴不等式组的整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0.【点睛】本题考查了解一元一次不等式组及不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)21a -≤≤-;(2)33a +【解析】【分析】(1)先利用加减消元法求出方程组的解,然后利用方程组的解均为非负数建立一个关于a 的不等式组,解不等式组即可求出a 的取值范围;(2)利用(1)中a 的取值范围,可判断24,1a a +-的正负,然后利用绝对值的性质去掉绝对值符号,然后合并同类项即可.【详解】(1)33957x y a x y a +=+⎧⎨-=+⎩①②①+②得,4816x a =+,解得24x a =+③,将③代回②中得,2457a y a +-=+,解得33y a =--∴方程组的解为2433x a y a =+⎧⎨=--⎩.∵关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,∴240330x a y a =+≥⎧⎨=--≥⎩,解得21a -≤≤-;(2)∵21a -≤≤-,240,10a a ∴+≥-<,∴24124(1)24133a a a a a a a +--=+--=+-+=+.【点睛】本题主要考查解二元一次方程组和一元一次不等式组,绝对值的性质,掌握加减消元法和一元一次不等式的解法,绝对值的性质是解题的关键.23.25ab=-⎧⎨=⎩,1.【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值,代入(3a+b)2020计算即可.【详解】解:由题意可得233 3211 x yx y-=⎧⎨+=⎩,解得31 xy=⎧⎨=⎩,将31xy=⎧⎨=⎩代入1233ax byax by+=-⎧⎨+=⎩得31633a ba b+=-⎧⎨+=⎩,解得25ab=-⎧⎨=⎩,∴(3a+b)2020=(﹣6+5)2020=1.【点睛】本题考查了二元一次方程组的解,解答此题的关键是根据两方程组有相同的解得到关于x、y的方程组,求出x、y的值,再将x、y的值代入含a、b的方程组即可求出a、b的值,即可求出代数式的值.24.每次购买酒精20瓶,消毒液30瓶【解析】【分析】设每次购买酒精x瓶,消毒液y瓶,根据总价=单价×数量,结合两次购买所需费用,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设每次购买酒精x瓶,消毒液y瓶,依题意得:()()10535010130%5120%260x y x y +=⎧⎨⨯-+⨯-=⎩,解得:2030x y =⎧⎨=⎩,答:每次购买酒精20瓶,消毒液30瓶.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.-4或-3或-2或-1.【解析】【分析】根据题意由3x y +≤得出-3≤x+y≤3,解二元一次方程组,得出x+y=-m-1,得到不等式组-3≤-m-1≤3,求出m 值,结合m 为负整数即可得出结果.【详解】解:∵3x y +≤,∴-3≤x+y≤3,解245 472x y m x y m -=-⎧⎨+=-+⎩①②,①+②得:3x+3y=-3m-3,∴x+y=-m-1,则-3≤-m-1≤3,解得:-4≤m≤2,又m 是负整数,∴m 的值为-4或-3或-2或-1.【点睛】本题考查了解一元一次不等式组和绝对值的意义,能正确去掉绝对值符号是解此题的关键.26.(1)橱具店购进电饭煲20台,电压锅10台;(2)三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)购进电饭煲、电压锅各25台厨具店赚钱最多.【解析】【分析】(1)设橱具店购进电饭煲x 台,电压锅y 台,根据图表中的数据列出关于x 、y 的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a 台,则购买电压锅(50-a )台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56”列不等式组求解即可;(3)结合(2)中的数据进行计算.【详解】(1)设橱具店购进电饭煲x 台,电压锅y 台,依题意得x 302001605600y x y +=⎧⎨+=⎩,解得x=20y=10⎧⎨⎩,答:橱具店购进电饭煲20台,电压锅10台;(2)设购买电饭煲a 台,则购买电压锅(50﹣a )台,依题意得200+16050-a)90005(50)6a a a ≤⎧⎪⎨≥-⎪⎩(,解得22811≤a≤25.又∵a 为正整数,∴a 可取23,24,25.故有三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)设橱具店赚钱数额为W 元,当a=23时,W=23×50+27×40=2230;当a=24时,W=24×50+26×40=2240;当a=25时,W=25×50+25×40=2250;综上所述,当a=25时,W 最大,此时购进电饭煲、电压锅各25台.【点睛】本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。

重庆市第一中学校2021—2022学年 七年级下学期半期考试数学试题

重庆市第一中学校2021—2022学年 七年级下学期半期考试数学试题

重庆一中初2024届21—22学年度下期半期消化作业数学试题(满分:150分;考试时间:120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项.一、选择题:(本大题共12个小题,每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.31-的相反数是(▲)A .31-B .31C .3-D .32.下列图形是轴对称图形的是(▲)A B CD3.下列长度的三条线段能构成三角形的是(▲)A .4cm ,6cm ,10cm B .2cm ,5cm ,8cm C .3cm ,4cm ,5cm D .5cm ,7cm ,13cm4.下表列出了一次实验的统计数据,表示皮球从高处落下时,弹跳高度b 与下落高度d 的关系,试问下面哪个式子能表示这种关系(▲)d /cm5080100150......b /cm25405075......A .2d b =B .d b 2=C .2d b =D .25+=d b 5.下列说法中,错误..的是(▲)A .等边三角形的三个内角相等B .有一个内角为60°的等腰三角形是等边三角形C .等边三角形不是轴对称图形D .等边三角形一边上的高线也是这边的中线6.下列调查,最适合普查的是(▲)A .为了解一中师生对第十一届体艺文化节感兴趣的程度B .为了解初中年级某班学生周末阅读的时间C .为了解某超市一批冰淇淋的质量D .为了解全国中学生2021年寒假期间参与社会实践的情况7.如图,若△ABC 与△A 1B 1C 1关于直线MN 对称,BB 1交MN 于点O ,则下列说法不.一定..正确的是(▲)A .AC=A 1C 1B .BO=B 1O C .CC 1⊥MND .AB ∥B 1C 18.如图,E 、B 、F 、C 四点在一条直线上,EB =FC ,AC //DF ,再添一个条件仍不能..证明△ABC ≌△DEF 的是(▲)A .AB //ED B .DF =AC C .ED =AB D .∠A =∠D9.在△ABC 中,∠A :∠B :∠C =2:3:4,则△ABC 是(▲)A .钝角三角形B .直角三角形C .锐角三角形D .等腰直角三角形10.若2a +3b -3=0,则4a ×23b 的值为(▲)A .23B .24C .25D .2611.如图,将若干颗棋子按箭头方向依次摆放,记第一颗棋子摆放的位置为第1列第1排,第二颗棋子摆放的位置为第2列第1排,第三颗棋子摆放的位置为第2列第2排......,按此规律摆放在第16列第8排的是第(▲)颗棋子.A .85B .86C .87D .8812.如图,直线AB//MN ,点C 为直线MN 上一点,连接AC 、BC ,∠CAB =40°,∠ACB =90°,∠BAC 的角平分线交MN 于点D ,点E 是射线AD 上的一个动点,连接CE 、BE ,∠CED 的角平分线交MN 于点F .当∠BEF =70°时,令∠ECM =α,用含α的式子表示∠EBC 为(▲).A .α25B .α- 10 C.α2110- D. 1021-α二、填空题:(本大题共9个小题,每小题3分,共27分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.据统计,全球每分钟约有8500000吨污水排向江河湖海,将数8500000用科学记数法表示为▲.14.一个角的补角是它的余角的三倍,则这个角的度数为▲.15.等腰三角形的两边长分别为2和4,则这个等腰三角形的周长为▲.第7题图第8题图第11题图第12题图第20题图第21题图第17题图第18题图第19题图16.已知三角形的三边长为4、x 、11,化简=-+-165x x ▲.17.如图,在△ABC 中,DE 垂直平分AB ,交AC 于点E ,连接BE ,已知AD=3,△ABC 的周长为23,则△BCE 的周长为▲.18.如图,将长方形纸片ABCD 沿着BM 、CM 折叠,使点A 落在点A 1处,点D 落在点D 1处,其中BM =MC .若∠1=17°,则∠A 1MD 1的度数为▲.19.如图,在△ABC 中,D 为BC 中点,E 为AC 上一点,AE :EC =1:3,AD 、BE 相交于点F ,△ABC 的面积为10,则△ABF 的面积为▲.20.依依服装店购入一批最新潮牌T 恤,先在进价的基础上提价45%售出25件,后因店面周年庆,当天每件T 恤降价6元售出30件,第二天恢复原售价卖完剩下的T 恤.在此销售过程中,依依服装店销售此款T 恤的总利润y (单位:元)与销售数量x (单位:件)的关系如图所示,那么依依服装店销售完这批T 恤的总利润为▲元.21.如图,在△ABC 中∠ACB =90°,AC=BC ,点E 为BC 延长线上一点,连接AE.延长CB 至点D ,使BD=CE ,连接AD ,过点B 作CD 的垂线,过点C 作AD 的垂线交AD 于点F ,两条垂线相交于点H ,连接AH 、DH .下列结论:①CH=AD ②∠ACH+∠BAD=45°③BD+CG=GH ④GHB ΔAECG S S =四边形⑤若HB :CB =5:4,则5:21:=∆∆ABD AHD S S 其中正确的有▲(请填写序号).三、解答题:(本大题共6个小题,其中第22题10分,第23题8分,第24题9分,第25、26、27题各10分,共57分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.22.计算题:(1)20231(4)5(3-+---+-π)((2)a ab b b a 8)2(21)(25322÷+⋅-⋅23.作图题:按要求尺规作图(不写作法,但要保留作图痕迹,并写出结论)如图所示,点A 、B 、C 表示三个住宅小区,现要修建一个快递中转站,使它到三个住宅小区的距离相等,求快递中转站的位置P .24.先化简,再求值:(x -2y )2+(x -y )(x +y )-(x -3y )(3x -y ),其中x ,y 满足:y 2-4y +4+(x -2y )2=0.第23题图25.如图,∠1+∠2=180°,GP平分∠BGH.(1)试说明:GH=PH;(2)若∠1=116°,求∠GPD的度数.第25题图26.根据已知条件,求出下列代数式的值:(1)已知x+2y=4,xy=1,求代数式x2+4y2+3xy的值;(2)已知m2+m-1=0,求代数式m3+2m2+2022的值.27.如图,在△ABC中,点D、E分别是AB、AC上的点,BD=CE,∠1=∠2,BE与CD相交于点F,求证:AB=AC.第27题图四、解答题:(本大题共3个小题,第28、29、30题各10分,共30分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.28.小华和爸爸从家出发去看电影,爸爸步行去电影院,出发7分钟后小华骑共享单车出发.小华途经电影院继续骑行若干米到达还车点,然后立即跑步返回电影院(还车时间忽略不计).已知小华跑步的速度比骑车慢50米/分钟.在此过程中,小华、爸爸与家的距离y (单位:米)与小华出发时间x(单位:分钟)的关系如图所示,(1)爸爸的行驶速度为_______米/分钟,小华出发时爸爸与家的距离为__________米.(2)小华从家到还车点用了多少分钟?(3)当小华与爸爸相距595米时,小华与电影院之间的距离为多少米?第28题图29.如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.(1)当∠A=80°时,求∠EDC的度数;(2)求证:CF=FG+CE.第29题图备用图30.如图,等腰三角形ABC 和等腰三角形ADE ,其中AB =AC ,AD =AE.(1)如图1,若∠BAC =90°,当C 、D 、E 共线时,AD 的延长线AF ⊥BC 交BC 于点F ,则∠ACE=;(2)如图2,连接CD 、BE ,延长ED 交BC 于点F ,若点F 是BC 的中点,∠BAC =∠DAE ,证明:AD ⊥CD ;(3)如图3,延长DC 到点M ,连接BM ,使得∠ABM +∠ACM =180°,延长ED 、BM 交于点N ,连接AN ,若∠BAC=2∠NAD ,请写出∠ADM 、∠DAE 它们之间的数量关系,并写出证明过程.命题人:李明杨锦莹审题人:石含军做题人:张帅图3图1图2。

七年级下数学半期考试试卷及答案

七年级下数学半期考试试卷及答案

l图5O M N O2009~2010第二学期数学半期考试试卷一、选择题:(每小题3分,共24分)1.如图,直线AB 、CD 、EF 相交于点O ,且AB ⊥CD ,若∠BOE =70°,则∠DOF 的度数为( )A. 10°B. 20°C. 30°D. 70°2、如右图所示,点E 在AC 的延长线上,下列条件中不能判断....BD AC //( )A. 43∠=∠B. 180=∠+∠ACD DC. DCE D ∠=∠D. 21∠=∠3、 如图5,已知ON ⊥L ,OM ⊥L ,所以OM 与ON 重合,其理由是( ) A. 两点确定一条直线B. 过一点有且只有一条直线垂直于已知直线C. 垂线段最短D. 过一点只能作一条垂线EDC BA43214、如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(-2,2)5、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位6、以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限7、已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是( )A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩8、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是100°,第二次拐130°70°αl 1 l 2第10题图的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( )A. 150°B. 140°C. 130°D. 120°二、填空题:(每小题3分,共24分) 9、如图1,直线AB 、CD 相交于点O , 已知∠AOC+∠BOD=90°,则∠BOC = .10、如图,直线l 1∥l 2,则∠α的度数为11、把命题“等角的补角相等”改写成“如果……那么………”的形式是:12、已知点P 在第二象限,到x 轴的距离为2,到y 轴的距离为1,则点P 的坐标是13、已知点M ()1,1-+a a 在y 轴上,则点M 的坐标是___________.14、方程组⎩⎨⎧=+=-31y x y x 的解是 .15、若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需 元.16、某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要_____元.三、解答题(要求写出主要的解题步骤或过程,共52分) 17、(8分) 如图,点D 、E 、F 分别在AB 、BC 、AC 上, 且DE ∥AC ,EF ∥AB ,下面写出了证明“∠A+∠B+∠C =180°” 的过程,请补充完整: ∵DE ∥AC ,AB ∥EF ( )∴∠1=∠ ,∠3=∠ .( ) ∵AB ∥EF (已知)∴∠2=∠___( ) ∵DE ∥AC (已知)∴∠4=∠___( )ABC ED F 1234第21题Xy1-11-1图10OABCD∴∠2=∠A (等量代换).∵∠1+∠2+∠3=180°(平角定义) ∴∠A+∠B+∠C =180°(等量代换).18、(6分)如图,描出A (– 3,– 2)、B (2,– 2)、C (3,1)、D (– 2,1)四个点,线段AB 、CD 有什么关系?顺次连接A 、B 、C 、D 四点组成的图形是什么图形?19、(6分)代数式by ax +,当2,5==y x 时,它的值是7;当1,3==y x 时,它的值是4,试求当5,7-==y x 时,代数式by ax -的值.20、(6分) 已知:如图,AD ∥BC ,∠D =100°, AC 平分∠BCD ,求∠DAC 的度数.21、(8分) 如图10,直线AB 、CD 相交于点O ,若∠BOC 比∠AOC 的2倍多33°,求各角的度数。

人教版七年级下册数学《期中考试试卷》(带答案)

人教版七年级下册数学《期中考试试卷》(带答案)
A.22019-1B.22019+1C.22020-1D.22020+1
【答案】C
【解析】
【分析】
观察可知2n-2n-1=2n-1,据此规律裂项计算即可.
【详解】∵21-20=20,22-21=21,23-22=22,…,
∴20+21+22+23+…+22018+22019
=21-20+22-21+23-22+…+22019-22018+22020-22019
17.如图,把一张长方形纸片ABCD沿EF折叠,C点落在C′处,D点落在D′处,ED′交BC于点G.已知∠EFG=50°.则∠BGD′的度数为______.
18.三个同学对问题“若方程组 的解是 求方程组 的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组中两个方程的两边都除以9,通过换元替代的方法来解决”.参照他们的讨论,你认为这个题目的解应该是_______.
∵原式的乘积中不含 项,
∴ ,解得: .
故答案为:0.2.
【点睛】本题解题有两个要点:(1)熟知“多项式乘以多项式的乘法法则”;(2)若将一个关于x的式子化简后的结果中不含x2项,则化简后所得的式子中,x2项的系数为0.
13.若 则 _______.
【答案】5
【解析】
【分析】
由 根据完全平方公式先求出xy的值,继而根据(x-y)2=x2-2xy +y2即可求得答案.
A.5B.4C.8D.6
6.如果a=(﹣99)0,b=(-3)﹣1,c=(﹣2)﹣2,那么a,b,c三数的大小为( )
A a>b>cB. c>a>bC. c<b<aD. a>c>b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l图5O M N O2009~2010第二学期数学半期考试试卷一、选择题:(每小题3分,共24分)1.如图,直线AB 、CD 、EF 相交于点O ,且AB ⊥CD ,若∠BOE =70°,则∠DOF 的度数为( )A. 10°B. 20°C. 30°D. 70° 2、如右图所示,点E 在AC 的延长线上,下列条件中不.能判断...BD AC //( )A. 43∠=∠B. 180=∠+∠ACD DC. DCE D ∠=∠D. 21∠=∠3、 如图5,已知ON ⊥L ,OM ⊥L ,所以OM 与ON 重合,其理由是( )A . 两点确定一条直线B . 过一点有且只有一条直线垂直于已知直线C . 垂线段最短D . 过一点只能作一条垂线4、如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( ) A .(3,2) B .(3,1) C .(2,2) D .(-2,2)5、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位6、以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限7、已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是( )A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩8、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是100°,第二次拐EDC BA4321130°70°αl 1l 2 第10题图的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( )A. 150°B. 140°C. 130°D. 120°二、填空题:(每小题3分,共24分) 9、如图1,直线AB 、CD 相交于点O ,已知∠AOC+∠BOD=90°,则∠BOC = .10、如图,直线l 1∥l 2,则∠α的度数为 11、把命题“等角的补角相等”改写成“如果……那么………”的形式是: 12、已知点P 在第二象限,到x 轴的距离为2,到y 轴的距离为1,则点P的坐标是13、已知点M ()1,1-+a a 在y 轴上,则点M 的坐标是___________.14、方程组⎩⎨⎧=+=-31y x y x 的解是 .15、若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需 元. 16、某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要_____元. 三、解答题(要求写出主要的解题步骤或过程,共52分) 17、(8分) 如图,点D 、E 、F 分别在AB 、BC 、AC 上, 且DE ∥AC ,EF ∥AB ,下面写出了证明“∠A+∠B+∠C =180°”的过程,请补充完整: ∵DE ∥AC ,AB ∥EF ( )∴∠1=∠ ,∠3=∠ .( ) ∵AB ∥EF (已知)∴∠2=∠___( ) ∵DE ∥AC (已知)∴∠4=∠___( ) ∴∠2=∠A (等量代换).∵∠1+∠2+∠3=180°(平角定义) ∴∠A+∠B+∠C =180°(等量代换).18、(6分)如图,描出A (– 3,– 2)、B (2,– 2)、C (3,1)、D (– 2,1)四个点,线段AB 、CD 有什么关系?顺次连接A 、B 、C 、D 四点组成的图形是什么图形? 19、(6分)代数式by ax +,当2,5==y x 时,它的值是7;当1,3==y x 时,它的值是4,试求当5,7-==y x 时,代数式by ax -的值.ABC ED F 1234第21题图10OA BC D20、(6分) 已知:如图,AD ∥BC ,∠D =100°, AC 平分∠BCD ,求∠DAC 的度数.21、(8分) 如图10,直线AB 、CD 相交于点O ,若∠BOC 比∠AOC 的2倍多33°,求各角的度数。

22、(8分)一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.问题:根据这些信息,请你推测这群学生共有多少人? 23、(10分)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一。

其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.问金、银、铜牌各多少枚?附加题(20分) 1、(10分)如图,四边形ABCD 各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0). (1)你确定这个四边形的面积是 . (2)如果把原来四边形ABCD 各个顶点横、纵坐标都增加2,则所得的四边形的面积是 .2、(10分)如图,已知AB ∥DE ,︒=∠1201︒=∠1052,求∠3的度数.(提示:过点C 作CF ∥AB )2009~2010第二学期数学半期考试试卷答题卡班级 姓名 学号 成绩一、 选择题:(每小题3分,共24分)题号 12345 678答案9. ;10. ;11. ; 12. ;13. ;14. ; 15. ;16. ;三、 解答题(要求写出主要的解题步骤或过程,共52分) 17、(8分) 如图,点D 、E 、F 分别在AB 、BC 、AC 上, 且DE ∥AC ,EF ∥AB ,下面写出了证明“∠A+∠B+∠C =180°” 的过程,请补充完整:ABC ED F 1234第21题Xy01-11-1∵DE ∥AC ,AB ∥EF ( )∴∠1=∠ ,∠3=∠ .( ) ∵AB ∥EF (已知)∴∠2=∠___( ) ∵DE ∥AC (已知)∴∠4=∠___( ) ∴∠2=∠A (等量代换).∵∠1+∠2+∠3=180°(平角定义) ∴∠A+∠B+∠C =180°(等量代换). 18.(6分)(1)在图中描出所给的四个点;(2)线段AB 、CD 的关系是 . (3) 顺次连接A 、B 、C 、D 四点组成的图形是: . 19.(6分) 解: 20.(6分) 解: 21.(8分) 解: 22.(8分) 解: 23.(10分) 解:附加题(20分)1、(10分)(1) . (2) . 2、(10分)证明:过点C 作CF ∥AB参考答案一、 选择题:(每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案BDBADACCF9. 135° ;10. 120° ;11. 如果两个角相等,那么这两个角的补角也相等 ;12. (-1,2) ;13. (0,-2) ;14.⎩⎨⎧==12y x ;15. 12 ;16. 504 ;三、 解答题(要求写出主要的解题步骤或过程,共52分) 17、(8分) 如图,点D 、E 、F 分别在AB 、BC 、AC 上, 且DE ∥AC ,EF ∥AB ,下面写出了证明“∠A+∠B+∠C =180°” 的过程,请补充完整:(每空1分) ∵DE ∥AC ,AB ∥EF ( 已知 )∴∠1=∠ C ,∠3=∠ B .(两直线平行,同位角相等) ∵AB ∥EF (已知)∴∠2=∠_4__(两直线平行,内错角相等) ∵DE ∥AC (已知)∴∠4=∠_A _(两直线平行,同位角相等) ∴∠2=∠A (等量代换).∵∠1+∠2+∠3=180°(平角定义) ∴∠A+∠B+∠C =180°(等量代换). 18.(6分)(1)在图中描出所给的四个点;(每个点1分) (2)线段AB 、CD 的关系是 AB ∥CD …………1分 (3) 顺次连接A 、B 、C 、D 四点组成的图形是: 平行四边形 …………1分 19.(6分)解:根据题意,得 ⎩⎨⎧=+=+43725b a b a …………………………2分解得 ⎩⎨⎧==11b a …………………………2分 当5,7-==y x 时,()125171=-⨯-⨯=-by ax …………………………2分 20.(6分) 解:∵AD ∥BC∴∠BCD =180°-∠D =180°-100°=80°…………………………2分 ∵AC 平分∠BCDABC ED F 1234第21题A BCDXy1-11-1∴∠ACB =21∠BCD =40°…………………………2分 又∵AD ∥BC∴∠DAC =∠ACB =40°…………………………2分 21.(8分)解:设∠AOC =x °,则∠BOC =(2x+33)°…………………………2分 ∵∠AOC+∠BOC =180°∴x+(2x+33)=180 …………………………2分 x =49 …………………………1分∴∠AOC =49°,∠BOC =131°…………………………1分从而∠BOD =∠AOC =49°,∠AOD =∠BOC =131°………………………2分 22.(8分)解:解法一:设男生有x 人,则女生有(x -1)人. …………………………………1分根据题意,得x =2(x -1-1) ………………………………………………… 3分 解得x =4, ………………………………………………………………………2分 x -1=3. ………………………………………………………………………1分 答:这群学生共有7人. ………………………………………………………1分 解法二:设男生有x 人,女生有y 人. ………………………………………………1分根据题意,得⎩⎨⎧==-).1-(2,1y x y x ……………………………………………………3分解得⎩⎨⎧==.3,4y x …………………………………………………………………3分答:这群学生共有7人………………………………………………………1分23.(10分)解:设金、银、铜牌各x 枚、y 枚和z 枚. …………………………1分则 ⎪⎩⎪⎨⎧-=++==++72100z y z y x z y x ………………………………………………………4分解得 ⎪⎩⎪⎨⎧===282151z y x ………………………………………………………4分答:设金、银、铜牌各51枚、21枚和28枚. …………………………1分附加题(20分) 1、(10分)(1) 80(平方单位) .(5分)(2)80(平方单位) .(5分)2、(10分)证明:过点C作CF∥AB则∠ACF=180°-∠1F =180°-120°=60°………………………2分又∵AB∥DE,CF∥AB∴CF∥DE…………………………2分∴∠FCD=180°-∠2=180°-105°=75°……………………2分∴∠ACD=∠ACF+∠FCD=135°……………………2分∴∠3=180°-∠ACD=180°-135°=45°…………………………2分。

相关文档
最新文档