第5章-1 曲线拟合(线性最小二乘法)
最小二乘法的曲线拟合
最小二乘法的曲线拟合曲线拟合是在给定一组离散数据的情况下,通过一个函数来逼近这些数据的过程。
最小二乘法是一种常用的拟合方法,它通过最小化实际观测值与拟合值之间的误差平方和,来确定最佳的曲线拟合。
在进行最小二乘法的曲线拟合之前,我们首先需要明确拟合的目标函数形式。
根据实际问题的不同,可以选择线性拟合函数、多项式拟合函数或者其他非线性拟合函数。
然后,我们通过求解最小二乘问题的优化方程,来得到拟合函数的系数。
最小二乘法的核心思想是将拟合问题转化为一个优化问题。
我们需要定义一个损失函数,用来衡量观测值与拟合值之间的差异。
常见的损失函数有平方损失函数、绝对损失函数等。
在最小二乘法中,我们选择平方损失函数,因为它能够更好地反映误差的大小。
具体来说,我们假设待拟合的数据点为{(x1,y1),(x2,y2),...,(xn,yn)},拟合函数为f(x)。
则拟合问题可表示为以下优化方程:min Σ(yi-f(xi))^2通过求解优化方程,即求解拟合函数的系数,我们可以得到最佳的曲线拟合。
最小二乘法的优势在于它能够考虑所有观测值的误差,并且具有较好的稳定性和可靠性。
在实际应用中,最小二乘法的曲线拟合被广泛应用于各个领域。
例如,在物理学中,可以利用最小二乘法来分析实验数据,拟合出与实际曲线相符合的函数。
在经济学中,最小二乘法可以用来估计经济模型中的参数。
在工程领域,最小二乘法可以用于信号处理、图像处理等方面。
总而言之,最小二乘法是一种常用的曲线拟合方法,通过最小化观测值与拟合值之间的误差平方和,来确定最佳的拟合函数。
它具有简单、稳定、可靠的特点,在各个领域都有广泛的应用。
第5章-1 曲线拟合(线性最小二乘法)讲解
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
曲线拟合方法及程序设计
摘要随着现代社会的发展,大量的统计数据和科学实验数据变得容易获得,数据变得越来越复杂,甚至还会有噪声等干扰信息。
曲线拟合就是找到一组数据点的内在规律,使用曲线近似的拟合这些数据,形成数学模型,对事务进行有效的预测和规划,来获得更大的效益,被广泛应用于社会各个领域,具有重要的实际应用价值。
本文旨在了解一些常用的曲线拟合方法及其原理,根据理解,设计并完成相应的曲线拟合程序,方便使用。
首先,对于有函数解析模型的曲线拟合,都是运用的最小二乘思想进行求解,根据模型种类分为三类:1,线性函数模型,举例一元线性函数的运算过程,通过正规方程求解得到拟合系数,最后根据这些原理,设计并完成了:从1阶到9阶的多项式拟合,幂函数拟合的线性最小二乘拟合程序;2,可线性化的非线性函数:通过变量变换将模型线性化,再进行线性最小二乘拟合;3,不可线性化的非线性函数,求解方法是将目标函数泰勒级数展开,迭代求解的方法有很多,本文实现的方法有3种:高斯牛顿法,信赖域—Dogleg法,LMF法。
最后通过五个实例计算,进行线性最小二乘拟合和非线性拟合,对比分析对于同一组数据,应用不同拟合方法或者不同模型所产生的结果,分析结果并结合实际发现,线性最小二乘拟合对于现实中的很多数据并不适用,将非线性函数线性化之后,有时会放大噪声,使得矩阵奇异,拟合不收敛或者没有非线性拟合准确。
进行非线性拟合时,对比三种方法,发现LMF法可以有效的避免矩阵为奇异值。
初始值只影响LMF法迭代的次数,对结果的影响并不大,而对于高斯牛顿法和信赖域—Dogleg法,很差的初始值会使得矩阵为奇异值或者接近奇异值,从而无法收敛,得不到拟合结果或者得到的结果拟合精度太差。
而当初始值良好的时候,高斯牛顿法的迭代求解速度最快。
而信赖域—Dogleg法,相较于另外两种方法,拟合精度和拟合速度都差了一些。
关键词:曲线拟合;最小二乘;高斯牛顿法;信赖域—Dogleg法;LMF法;对比分析1.绪论1.1.毕业论文研究的目的意义随着现代社会的发展,获取大量的数据将变得更加容易,在实际生活中,收集到的数据的复杂性将逐渐增加,并且会生成噪声,背景和其他干扰信息。
曲线拟合问题最常用的解法
曲线拟合问题最常用的解法——线性最小二乘法的基本思路第一步:先选定一组函数 r 1(x), r 2(x), …r m (x), m<n, 令f(x)=a 1r 1(x)+a 2r 2(x)+ …+a m r m (x) (1) 其中 a 1,a 2, …a m 为待定系数。
第二步: 确定a 1,a 2, …a m 的准则(最小二乘准则): 使n 个点(x i ,y i ) 与曲线 y=f(x) 的距离δi 的平方和最小 。
记221211211(,,)[()][()](2)n nm i i i i i nmk k i i i k J a a a f x y a r x y δ======-=-∑∑∑∑问题归结为,求 a 1,a 2, …a m 使 J(a 1,a 2, …a m ) 最小。
线性最小二乘法的求解:预备知识超定方程组:方程个数大于未知量个数的方程组111122111122 ()m m n n nm m nr a r a r a y n m r a r a r a y +++=⎧⎪>⎨⎪+++=⎩ 即 Ra=y其中111112112,,m n n nm m n a y r r r R a y r r r a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦超定方程一般是不存在解的矛盾方程组。
如果有向量a 使得211221()ni i im m i i r ar a r a y =+++-∑ 达到最小,则称a 为上述超定方程的最小二乘解。
线性最小二乘法的求解所以,曲线拟合的最小二乘法要解决的问题,实际上就是求以下超定方程组的最小二乘解的问题。
Ra=y (3)其中111111()(),,()()m n m n m n r x r x a y R a y r x r x a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦定理:当R T R 可逆时,超定方程组(3)存在最小二乘解,且即为方程组 R T Ra=R T y的解:a=(R T R)-1R T y线性最小二乘拟合f(x)=a1r1(x)+ …+a m r m(x)中函数{r1(x), …r m(x)}的选取1. 通过机理分析建立数学模型来确定f(x);2. 将数据(x i,y i) i=1, …n 作图,通过直观判断确定f(x):用MATLAB作线性最小二乘拟合1. 作多项式f(x)=a1x m+ …+a m x+a m+1拟合,可利用已有程序:例对下面一组数据作二次多项式拟合xi 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 yi 1.978 3.28 6.16 7.34 7.66 9.58 9.48 9.30 11.22123()f x a x a x a =++中 的123(,,)A a a a =使得:1121[()] iii f x y =-∑最小解法1.用解超定方程的方法211211111 1x x R x x ⎛⎫⎪=⎪ ⎪⎝⎭此时 1)输入以下命令:x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; R=[(x.^2)' x' ones(11,1)]; A=R\y'2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-解法2.用多项式拟合的命令 1)输入以下命令: x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x);plot(x,y,'k+',x,z,'r') %作出数据点和拟合曲线的图形 2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-用MATLAB 作非线性最小二乘拟合Matlab 的提供了两个求非线性最小二乘拟合的函数:lsqcurvefit 和lsqnonlin 。
最小二乘法与曲线拟合-PPT
量的矛盾方程组
0 + 1 1 + 2 12 + ⋯ + 1 = 1
其矩阵形式为
Ԧ =
0 + 1 2 + 2 22 + ⋯ +
其中
1
= 1
⋮
1
1
2
⋮
12
22
⋮
2
⋯
⋯
⋱
最小二乘法与曲线拟合
§5.0 问题的提出
如果实际问题要求解在[a,b]区间的每一点都“很
好地” 逼近f(x)的话,运用插值函数有时就要失败。
另外,插值所需的数据往往来源于观察测量,本身有
一定的误差。要求插值曲线通过这些本身有误差的点,
势必使插值结果更加不准确。
如果由试验提供的数据量比较大,又必然使得插值
不为零,从而有rankA=m+1。由引理2知,正则方程
组有唯一解。
证毕
四、最小二乘法拟合曲线的步骤
1..通过观察、分析得到拟合曲线的数学模型,或
根据经验公式确定数学模型。
2.将拟合曲线的数学模型转换为多项式。
3.写出矛盾方程组。
4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。
多项式的次数过高而效果不理想。
从给定的一组试验数据出发,寻求函数的一个近似
表达式y=(x),要求近似表达式能够反映数据的基本
趋势而又不一定过全部的点(xi,yi),这就是曲线拟合
问题,函数的近似表达式y=(x)称为拟合曲线。本章
介绍用最小二乘法求拟合曲线。
§5.1 用最小二乘法求解矛盾方程组
《数值分析》第5章 曲线拟合与函数插值
例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为
第5章最小二乘法
24
线性参数正规方程的矩阵形式
又因
(5-21)
有 即 若令 则正规方程又可写成 若矩阵C是满秩的,则有
(5-22)
(5-22) (5-23)
Xˆ 的数学期望
因 可见 Xˆ 是X的无偏估计。
式中Y、X为列向量(n ×1阶矩阵和t×l阶矩阵)
其中矩阵元素Y1,Y2,…,Yn为直接量的真值,而 Xl,X2,…,Xn为待求量的真值。
41
n
前面已证明
2 i
/
2
是自由度为(n-t)的χ2变量。
i 1
根据χ2变量的性质,有
(5-39) 取
(5-40) 可以证明它是σ2的无偏估计量
因为
42
习惯上,式5-40的这个估计量也写成σ2,即 (5-41)
因而测量数据的标准差的估计量为 (5-43)
43
例5.3
• 试求例5.1中铜棒长度的测量精度。 已知残余误差方程为 将ti,li,值代人上式,可得残余误差为
34
(2)用表格计算给出正规方程常数项和系数
(3)给出正规方程 (4)求解正规方程组
解得最小二乘法处理结果为
35
四、最小二乘原理与算术平均值原理 的关系
为了确定一个量X的估计量x,对它进 行n次直接测量,得到n个数据
l1,l2,…,ln,相应的权分别为p1, p2,…,pn,则测量的误差方程为
(5-35)
共得k个方程,称正规方程,求此联立方程的解可得 出诸参数估计值 aˆ j (j=1,2,…,k)。
10
最小二乘法的几何意义
从几何图形上可看出,最小二乘法就是要在穿过各 观测点(xi,yi)之间找出这样一条估计曲线,使各观测 点到该曲线的距离的平方和为最小。
最小二乘法的线性拟合
变化趋势,比较符合实际规律。曲线拟合的方法有 很多,这里我们只介绍最小二乘法(线性、多项式、
指数曲线)的数据拟合。
10
线性拟合
• 在直角坐标系中点大致呈线性分布, y(x)= a0+a1x
n
n
ei2 (f(xi) yi)2 ([ a0 a1xi) yi ]2 F(a0,a1)
i0
i0
i0
15
要使F(a0,a1)最小,必须满足
即:
F 0,F 0
a0
a1
F
a0
n
2 (a0 a1xi
i0
yi) 0
F
a1
(3)用曲线拟合的方法求出线图的拟合公式
(又称经验公式),再将公式编写成程
序。
2
4.2.1线图的数表化处理 所谓线图数表化处理是将线图离散转化为一
张数表,然后按数表的处理方法进行处理。
右Z图较少为时渐,开对齿线形齿系轮数影的响 一种齿较形大系,数节点曲的线区图间应取得
小些;
渐开线齿轮的齿数和齿形系数的关系
(1)按区域图的中线取值
找出区域中线的表达式, SH1
为此设齿面最小硬度为HB0 。
最高硬度为HBl ,SH0表示 最小硬度对应的极限应力中
SH0
值,SHl表示最大硬度对应 的极限应力中值,由此根据
直线的两点式方程可以写出
HB 0
HB1
极限应力中线的表达式为:
7
(2)按区域图的位置取值
在确定材料极限应力时只能取中值,不尽合理。为了 使设计者能根据所用材料的不同性能,按实际情况在区域 图内取不同的值,为此,增加两个参数,一个是极限应力 的幅度值SF,另一个是表示极限应力在区域图中的位置 参量ST。ST=1时表示取上限值,ST=0时表示取中值, ST=-1时表示取下限值。此时极限应力的计算式变为:
第五章曲线拟合PPT课件
华南师范大学数学科学学院 谢骊玲
曲线拟合的概念
在科学和工程试验中,经常产生一组数据 (x1,y1),…,(xN,yN),如果所有的数值 {xk}, {yk} 有多位有效数字精度,则能用多项式插值; 若数据的精度不高,或者有试验误差,则 只能使用多项式拟合。
问题:如何找到一个经过数据点附近(不总是穿过) 的最佳逼近表达式?
线性最小二乘法(续2)
矩阵形式:构造矩阵F
f1(x1)
f1(x2 )
F
f1(x3 )
f1(xN )
f2 (x1) f2 (x2 ) f2 (x3 )
f2 (xN )
fM (x1)
f
M
(
x2
)
f
M
(
x3
)
fM (xN )
f1(x1)
则
F'
f2(x1)
f1(x2) f2(x2)
f1(x3) f2(x3)
华南师范大学数学科学学院 谢骊玲
多项式拟合
使用函数集合{fj(x)=xj-1}, j=1,…, M+1作线性最小 二乘,则得到的拟合函数f(x)为M阶多项式 f(x)=c1+c2x+c3x2+…+cM+1xM
使用最小二乘多项式拟合非线性数据的方法简单有 效,但如果数据不具有多项式特性,则求出的曲线可 能产生大的振荡。这种现象称为多项式摆动,它在高 阶多项式情况下更容易发生。由于这个原因,一般很 少使用超过6阶的多项式,除非已知被拟合的曲线是 真实的多项式。
几何意义是:数据点到曲线的垂直距离平方和最小
华南师范大学数学科学学院 谢骊玲
最小二乘拟合直线
定理5.1 设{(xk, yk)}kN1有N个点,其中横坐标{xk}是
曲线拟合的最小二乘法
一、曲线拟合是什么?曲线拟合也就是求一条曲线,使数据点均在离此曲线的上方或下方不远处, 它既能反映数据的总体分布,又不至于出现局部较大的波动, 能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小。
设函数y=f(x)在m个互异点的观测数据为求一个简单的近似函数φ(x),使之“最好”地逼近f(x),而不必满足插值原则。
这时没必要取φ(xi) = yi, 而要使i=φ(xi)yi 总体上尽可能地小。
这种构造近似函数的方法称为曲线拟合,称函数y=φ(x)为经验公式或拟合曲线。
如下为一个曲线拟合示意图。
清楚什么是曲线拟合之后,我们还需要了解一个概念——残差。
曲线拟合不要求近似曲线严格过所有的数据点,但使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到总体上尽可能地小。
若令(1-1)则为残向量(残差)。
“使(1-1)尽可能地小”有不同的准则(1)残差最大值最小(2)残差绝对值和最小(绝对值的计算比较麻烦)(3)残差平方和最小(即最小二乘原则。
计算比较方便,对异常值非常敏感,并且得到的估计量具有优良特性。
)二、最小二乘法是什么?个人粗俗理解:按照最小二乘原则选取拟合曲线的方法,称为最小二乘法。
百度百科:最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。
其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
三、求解最小二乘法(包含数学推导过程)我们以最简单的线性模型来解释最小二乘法。
什么是线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。
回归分析中,n个自变量,且因变量和自变量之间是线性关系,则称为一/多元线性回归分析。
第五章 曲线拟合
泰勒展开
arctgx x x3 x5 .....取. arctgx x 35
R(x) | arctg11| 0.2146
以x=0,x=1 作线性插值
arctgx x 1 arctg0 x 0 arctg1 0.7854x
0 1
1 0
R(x) (1 2 ) x(x 1) 0.0711
n
ck j Pk (x j ) y j j 1
m
cik ai ck (k 0,1...m)
i0
写成方程组形式
c00a0 c01a1 c0mam c0 c10a0 c11a1 c1mam c1
cm0a0 cm1a1 cmmam cm
二、正交多项式的曲线拟合
1.) 概念:
)2
j 1
j 1 i0
对ak求偏导数(k=0,1…m)
ak
nm
2
(
ai
x
i j
j1 i0
y
j
)
x
k j
0
m
m
n
化简得
ai
xik j
y
j
x
k j
i0 j 1
j 1
n
n
记
x
k j
Sk
y
j
x
k j
Tk
j 1
j 1 m
aiSki Tk (k 0,1m)
i0
写成矩阵形式
S0 S1 S2 Sm S1 S2 S3 Sm1 S2 S3 S4 Sm2 Sm Sm1 Sm2 S mm
0 (k 0,1,m)
ak
n
m
j[ ai Pi (x j ) y j ]Pk (x j ) 0
线性最小二乘法
线性最⼩⼆乘法①前置知识:曲线拟合问题:已知⼀组⼆维数据,寻求⼀个函数(曲线)\(y=f(x)\)使\(f(x)\)在某种准则下与所有数据点最为接近,即曲线拟合得最好。
②线性最⼩⼆乘法:\(1.1\) 定义线性最⼩⼆乘法是解决曲线拟合最常⽤的⽅法,基本思路是,令:\[f(x)=a_1r_1(x)+a_2r_2(x)+...+a_mr_m(x), \]式中:\(r_k(x)\)为事先选定的⼀组线性⽆关的函数;\(a_k\)为待定系数。
\(1.2\) 拟合准则使\(y_i\)与\(f(x_i)\)的距离\(\delta_i\)的平⽅和最⼩\(1.3\) 系数确认记\[J(a_1,...,a_m)=\sum_{i=1}^n \delta_i^2=\sum_{i=1}^n [f(x_i)-y_i]^2, \]要使J最⼩,即令\(\frac{\partial J}{\partial a_j}=0(j=1,...,m)\),即:\[\sum_{i=1}^nr_j(x_i)[\sum_{k=1}^ma_kr_k(x_i)-y_i]=0,j=1,...,m, \]即:\[\sum_{k=1}^ma_k[\sum_{i=1}^n r_j(x_i)r_k(x_i)]=\sum_{i=1}^nr_j(x_i)y_i,j=1,...,m, \]记:\[R=\begin{bmatrix} r_1(x_1)& \cdots & r_m(x_1) \\ \vdots &\vdots& \vdots \\ r_1(x_n)& \cdots & r_m(x_n) \end{bmatrix} ,\]\[A=[a_1,\cdots,a_m]^T,Y=[y_1,\cdots,y_n]^T, \]则⽅程式可表⽰为:\[R^TRA=R^TY。
\]当\({r_1(x),\cdots,r_m(x)}\)线性⽆关时,R满秩,\(R^TR\)可逆,此时有唯⼀解:\[A=(R^TR)^{-1}R^TY \]1.4 实际意义在空间内,任意两个向量都可以组合成新的向量,我们不妨如下表⽰:\[a_1 x_1+a_2 x_2=b \Leftrightarrow A X=B \]对于拟合的向量\(y_i\),要使其与⽬标向量\(f(x_i)\)距离最⼩,即满⾜:\[\exists k\in N,\forall i \in N,|\vec {f(x_i)}-\vec y_i|\geq |\vec {f(x_k)}-\vec y_k| \]在此处,\(y_i=b\),\(f(x_i)\)对应的矩阵为\(AX\),故要满⾜距离最⼩,即使得\(\vec{b-AX}\)与\(\vec b\)所在平⾯正交,也就是使\(\vec{b-AX}\)与\(\vec b\)和\(\vec a\)都正交。
最小二乘法的曲线拟合问题
量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是 y 的误差。设 x 和 y 的
函数关系由理论公式
y=f(x;c1,c2,……cm)
(3-3-1)
给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。对于每组观测数据(xi,yi)
i=1,2,……,N。都对应于 xy 平面上一个点。若不存在测量误差,则这些数据点都准确
曲线拟合(5)
最小二乘法的曲线拟合问题 ——曲线拟合(5)
目录
1 绪论………………………..……………………………….………………………….1 1.1 课题研究的背景和方法………………………………………………………………1
2 曲线拟合……………………………….…………………………………...1 2.1 曲线拟合………………………………………………………...…………………….1 2.2 常用函数………………………………………………………...…………………….1
根据式(3-3-8)的要求,应有
a 0 i N 1 y i a 0 a 1 x i 2 a a ˆ 2 i N 1 y i a ˆ 0 a ˆ 1 x i 0 , a 1 i N 1 y i a 0 a 1 x i 2 a a ˆ 2 i N 1 y i a ˆ 0 a ˆ 1 x i 0 .
在 X 上满足 Haar 条件,此时(3.1.5)的解存在唯
从而得到最小二乘拟合曲线
可以证明对
,有
(3.1.6)
曲线拟合(5)
故(3.1.6)得到的 均方误差为
即为所求的最小二乘解.它的平方误差为 (3.1.7)
在最小二乘逼近中,若取
,则
,表示为
(3.1.8)
曲线拟合的最小二乘法原理及实现
曲线拟合的最小二乘法原理及实现
最小二乘法是一种用于拟合数据的常用方法,特别是在需要找到一条曲线或函数来最好地描述数据时。
它的基本思想是找到一条最适合数据的曲线,使得数据点与曲线之间的偏差最小。
具体来说,最小二乘法的原理是在给定一些数据点的情况下,通过最小化每个数据点到一条曲线或函数之间的垂直距离或水平距离来找到最适合这些数据的曲线或函数。
在实际应用中,可以使用最小二乘法来拟合各种类型的曲线,如线性、二次、三次、指数等。
下面是最小二乘法的基本步骤:
1.收集数据并确定要拟合的函数类型。
2.确定函数中的待定系数,例如线性函数中的截距和斜率,二次
函数中的二次项系数、一次项系数和截距等。
3.计算每个数据点到拟合曲线的垂直距离或水平距离。
4.通过最小化距离平方和来确定待定系数,例如线性函数中可以
使用公式(b-x)² + (c-y)² = 最小值,其中b和c是待定的截距和斜率。
5.求解方程组来确定待定系数,例如在线性函数中可以使用公式
b = ∑xiyi / ∑xi,
c = ∑xi² / ∑xi来计算截距和斜率。
6.使用确定的函数系数来绘制拟合曲线。
需要注意的是,最小二乘法可能不适用于所有类型的数据,并且可能需要使用其他曲线拟合方法来获得更好的结果。
在实际应用中,还需要考虑数据的准确性和可靠性,以及选择最适合数据类型的拟合方法。
最小二乘法曲线拟合算法
最小二乘法曲线拟合算法
最小二乘法是一种常见的曲线拟合算法,其原理是通过计算样本点与拟合曲线的误差平方和最小化,得到最佳的曲线拟合结果。
以下是最小二乘法曲线拟合算法的步骤:
步骤一:选择合适的拟合函数。
通常情况下,拟合函数的选择取决于数据集的特性和需要得到的拟合效果。
例如,对于线性拟合,拟合函数可采用一次多项式函数y=kx+b;对于非线性拟合,拟合函数可能需要采用高次多项式函数或指数函数等。
步骤二:确定误差函数。
误差函数的目的是衡量样本点与拟合曲线的偏差程度。
最常用的误差函数是均方误差,即将每个样本点的实际值与相应拟合函数的输出值之间的平方误差求和,得到样本点的一般均方误差。
公式为:E = Σ(yi-f(xi))^2。
步骤三:最小化误差函数。
最小二乘法的核心就是通过求解误差函数的最小值来得到最佳的拟合曲线。
最小化误差函数可以采用梯度下降法或牛顿法等优化算法进行求解。
步骤四:得到最佳的拟合曲线。
在得到最小化误差函数的解后,即可获得最佳的拟合曲线,该曲线可用于对数据集进行预测、分类或回归等任务。
步骤五:评估拟合效果。
为了验证最佳拟合曲线的精度和泛化能力,需要将新的数据样本输入到该曲线中进行预测,并通过各种评估指标(例如均方根误差、相关系数等)来评估拟合效果。
最小二乘法曲线拟合算法是数据分析领域中的重要算法之一,可用于各种领域中的数据拟合和模型预测任务,例如气象科学、金融投资、信号处理等。
在应用过程中,需要根据实际情况灵活选择拟合函数和误差函数,同时对拟合结果进行合理的评估和优化,以获得更好的预测效果。
曲线拟合 最小二乘法
曲线拟合的线性最小二乘法拟合是已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
线性最小二乘法曲线拟合问题的提法是,已知一组(二维)数据,即平面上的n 个点(,),i i x y 1,2,,i n =⋅⋅⋅,i x 互不相同,寻求一个函数(曲线)()y f x =,使()f x 在某种准则下与所有数据点最为接近,即曲线拟合的最好。
线性最小二乘法是解决曲线拟合最常用的方法,基本思路是,令1122()()()(),m m f x a r x a r x a r x =++⋅⋅⋅+其中:()k r x 是事先选定的一组线性无关的函数;k a 是待定系数(1,2,,;k m =⋅⋅⋅)m n <。
拟合准则是使(1,2,,)i y i n =⋅⋅⋅与()i f x 的距离i δ的平方和最小,称为最小二乘准则。
1.系数k a 的确定 记[]221211(,,,)()nnm i i i i i J a a a f x y δ====-∑∑为求12,,,m a a a ⋅⋅⋅使J 达到最小,只需利用极值的必要条件0jJa ∂=∂(1,2,,)j m =⋅⋅⋅,得到关于12,,,m a a a ⋅⋅⋅的线性方程组11()[()]0,1,2,,n mjik kiii k r x a r x y j m ==-==∑∑,即111[()()](),1,2,,.m n nkjikijiik i i a r x r x r x y j m =====∑∑∑ (1.1)记1111()()()()m n m n n mr x r x R r x r x ⨯⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ [][]TT1212,,,,,,,m n A a a a Y y y y =⋅⋅⋅=⋅⋅⋅方程(1.1)可表为T T .R RA R Y = (1.2) 当{}12(),(),,()m r x r x r x ⋅⋅⋅线性无关时,R 列满秩,T R R 可逆,于是方程组(1.2)有唯一解()1TT .A R R R Y -=2.函数()k r x 的选取面对一组数据(,),1,2,,i i x y i n =⋅⋅⋅,用线性最小二乘法作曲线拟合时,首要的也是关键的一步是恰当地选取12(),(),,()m r x r x r x ⋅⋅⋅。
最小二乘法线性详细说明
利用最小二乘法计算出b, a得出回归方程即两个变 量之间的关系式。
计算 s ,并利用肖维涅准则判断有无粗差。
如果有粗差,剔除后重复①,②,③步骤计算。
如无粗差,计算b , a ,给出最后的回归方程。
26
〔例题〕
用伏安法测电阻,测量数据如表。问能否拟 合成线性关系曲线?若可以,试判断有无粗
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。
24
回归方程的精密度
根据统计理论还可以求出a和b的标准偏差分别 为:
b s
sx x
a b
xi2 n
xi2
s
nsxx
25
回归分析法的运算步骤
首先计算R,判断是否能拟合成线性曲线。 R≥ R0
b2 s11 s2 y s12 s1y
s s s 11 22
2 12
a y b1x1 b2 x 2
32
公式中:
s11
x2 1i
(
x1i)2 n
s22
x2 2i
(
x2i)2 n
s12
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y=0.25x2+0.25x-0.25
拟合曲线为: y=0.25x2+0.25x-0.25
课堂练习
设给定观测数据如下,求线性拟合函数 y=ax2+bx+c
上题答案
▪ Xi4和354 ▪ Xi3和100 ▪ Xi2和=30 ▪ Xi和10 ▪ Xiyi和30 ▪ Yi和9
▪ N=4
▪ Xi2yi和106
▪ 354a+100b+30c=106 ▪ 100a+30b+10c=30 ▪ 30a+10b+4c=9
解得:a=1.1 b=-0.7
所以:线性拟合曲线函数为: y=1.1x-0.7
例2:试用二次曲线 y=ax2+bx+c 拟合下列数据:
xi
-3
-2 -1 0
1
23
Yi 4
2
3 0 -1 -2 -5
求得方程组为:
196a 28b
28a
+28c=-7 =-39
+7c=1
解得: b =-39/28 a=-11/84 c=2/3
4:拟合2次曲线y=ax2+bx+c
分析:
误差平方和表达公式:
Q=∑(y^i-yi)2
因为y=ax2+bx+c 所以 Q= ∑(axi2+bxi+c -yi) 2
又根据:Q分别对a、b、c求偏导值为0,最后求得公式为:
∑xi4 a + ∑xi3 b + ∑xi2 c = ∑xi 2yi ∑xi3
a + ∑xi2 b + ∑xi c = ∑xi yi ∑xi2 a +
误差平方和表达公式: Q=∑i=n(1y^i-yi)2
3:拟合1次曲线y=ax+b
根据公式: Q=∑i=n(1y^i-yi)2 因为y=ax+b 所以 Q= ∑(axi+b-yi) 2
根据最小二乘原理,为使Q有最小值,应满足如下式子:
Q a =0
Q =0 b
最后得到: a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
∑xi b +n c = ∑yi
例1:设给定的观测数据如下,求线性拟合函数
y=ax+b。
xi 1
2
yi 0 2
34 5 25 4
解:
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
xi平方和为:55 xi和为:15 xi乘yi和为:50 yi和为:13
代入公式,得到方程组为: 55a+15b=50 15a+5b=13
Y=0.050035x2+0.972579
课堂练习:设给定的观测数据如下,求线性拟合函
数 y=ax2+bx+c。
xi 1
2
yi 0
2
34 25
答案:
求得方程组为:
354a+100b +30c=106 100a+30b+10c=30 30a+10b+4c=9
解得: a=0.25 b=0.25 c=-0.25
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
y
1.61 1.64
1.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
1.68 1.71
1.58 1.63
练习1
根据左侧数据求拟合曲线函数:y=ax+b