总传热系数K

合集下载

总传热系数计算范文

总传热系数计算范文

总传热系数计算范文
对数平均温差法是一种基于热传导定律的方法,适用于许多传热装置。

该方法假定热量传导是均匀的,并且传热界面两侧温度的梯度是线性的。

对于热交换器,总传热系数可以使用下面的公式计算:
1/U=(1/h₁+δ₁/k₁+δ₂/k₂+1/h₂)
其中,U是总传热系数,h₁和h₂是导热界面两侧的对流换热系数,δ₁
和δ₂是导热界面两侧的对流膜层厚度,k₁和k₂是导热界面两侧的导热系数。

确定传热系数的方法是基于实验数据或理论计算。

实验方法包括传热
系数的测量和确定,包括测量两侧的温度和流体的流速,然后根据传热定
律求得传热系数。

理论方法则基于流体力学、传热学和边界层理论等原理,通过数学模型计算传热系数。

总传热系数的计算对于工程设计和设备优化非常重要。

通过合理选择
传热界面材料、优化流体流动、控制膜层厚度等措施,可以提高传热效果,减少能量损失。

此外,总传热系数还可以用于计算设备的传热效率和热量
损失,在工业生产中具有重要的经济和环境意义。

总的来说,总传热系数是热力学和传热学中的重要参数,用于描述传
热界面的传热效果。

计算总传热系数需要考虑导热界面的对流换热和传热
系数,可以通过实验和理论计算来确定。

通过合理选择材料和优化设计,
可以提高传热效果,减少能量损失。

总传热系数的研究对于工程设计和设
备优化具有重要意义。

计算总传热系数实验报告

计算总传热系数实验报告

一、实验目的1. 了解总传热系数的概念和影响因素;2. 掌握计算总传热系数的方法;3. 通过实验验证理论计算结果,提高对传热学知识的理解。

二、实验原理总传热系数(U)是指在单位时间内,通过单位面积的热量,在固体壁面两侧流体之间的温差下,所需要的热传递速率。

总传热系数是衡量传热设备传热效率的重要参数。

计算总传热系数的公式如下:U = 1 / (1/h1 + k/L + 1/h2)其中,h1和h2分别为热流体和冷流体侧的对流换热系数,k为固体壁面的导热系数,L为固体壁面的厚度。

三、实验仪器与材料1. 实验装置:套管换热器、温度计、流量计、压力计、电子天平等;2. 实验材料:热水、冷水、套管换热器、温度传感器、流量传感器等;3. 实验软件:数据采集与分析软件。

四、实验步骤1. 调整套管换热器,使其符合实验要求;2. 将热水和冷水分别加入套管换热器,调节流量和压力;3. 利用温度传感器测量热水和冷水的进出口温度;4. 利用流量传感器测量热水和冷水的流量;5. 记录实验数据,进行数据采集;6. 利用实验数据,计算总传热系数。

五、实验数据与结果1. 实验数据:| 流量(m³/h) | 温度差(℃) | 热水进出口温度(℃) | 冷水进出口温度(℃) | 厚度(mm) | 导热系数(W/m·K) ||--------------|--------------|---------------------|---------------------|------------|-------------------|| 0.5 | 20 | 80 | 60 | 10 | 0.15 |2. 计算结果:h1 = (Q m1 cp1) / (A ΔT) = 358.3 W/m²·Kh2 = (Q m2 cp2) / (A ΔT) = 224.2 W/m²·KU = 1 / (1/h1 + k/L + 1/h2) = 2.19 W/m²·K·℃六、实验分析与讨论1. 实验结果分析:根据实验数据,计算得到的总传热系数U为2.19 W/m²·K·℃,与理论计算值较为接近,说明实验结果较为可靠。

总传热系数的公式

总传热系数的公式

总传热系数的公式总传热系数是热传递领域中的一个重要概念,它的公式对于理解和计算热交换过程至关重要。

咱们先来说说总传热系数到底是啥。

想象一下,在冬天,你坐在一个窗户旁边,感觉有冷风从窗户缝里钻进来,让你觉得冷飕飕的。

这时候,热量就从室内通过窗户传递到了室外。

而总传热系数呢,就像是衡量这个传递过程“快慢”的一个指标。

那总传热系数的公式到底是啥呢?它可以表示为 1 / U = 1 / h₁ + δ / λ + 1 / h₂。

这里的 U 就是总传热系数啦,h₁和 h₂分别代表热流体和冷流体与壁面之间的对流传热系数,δ 是壁面的厚度,λ 是壁面材料的热导率。

为了让您更明白这个公式,我给您讲个我自己的经历。

有一次,我去一个工厂参观,看到工人们正在调试一个大型的换热器。

那个换热器长得就像一个巨大的铁盒子,里面有各种管道和隔板。

我就好奇地问一个老师傅,这玩意儿是咋工作的。

老师傅特别耐心,跟我说:“你看啊,这边流进来热的液体,那边流进来冷的液体,它们在这盒子里交换热量。

而这个交换热量的效率,就得看总传热系数。

”他指着换热器的外壳说:“这外壳的厚度,还有这材料的导热性能,就影响着总传热系数。

就好比这外壳厚了,热量就不容易传过去,总传热系数就小了;要是这材料导热好,那系数就大。

”然后他又说:“还有这两边的流体,流动得快还是慢,也有讲究。

流得快,对流传热系数就大,总传热系数也跟着变。

”我当时听得似懂非懂,但回去好好琢磨了一下,结合这个公式,就豁然开朗了。

在实际应用中,这个公式用处可大了。

比如说,在设计暖气系统的时候,工程师们就得用这个公式来算一算,管道和散热器得做成啥样,才能让房间里快速暖和起来,还不浪费太多能源。

再比如,在化工生产中,要控制反应温度,就得通过调整换热器的参数,这时候就得靠总传热系数的公式来帮忙。

总之,总传热系数的公式虽然看起来有点复杂,但只要您结合实际的例子去理解,就会发现它其实是个很有用的工具,能帮助我们解决很多和热传递相关的问题。

总传热系数的物理意义

总传热系数的物理意义

总传热系数的物理意义
总传热系数(Overall heat transfer coefficient)是指在一个传热
过程中各种传热方式的综合影响,表示单位面积上的总传热量与总温差之比。

总传热系数的物理意义主要体现在以下几个方面:
1. 总传热系数反映了传热过程中的阻力和热导率等参数的综合影响。

传热过程中,不同的传热方式具有不同的传热特性,包括对流传热、辐射传热和传导传热等。

总传热系数可以将各种传热方式的影响整合起来,综合考虑了传热面的材料特性、流体性质、传热表面形状等因素,从而提供了衡量传热性能的综合指标。

2. 总传热系数揭示了传热过程中的傅里叶定律。

根据傅里叶定律,传热量正比于传热面上的温度差。

总传热系数是传热量与温度差之比,反映了单位面积上的传热量。

通过总传热系数,可以确定传热过程中的传热速率。

3. 总传热系数还可用于设计和优化传热设备。

在传热设备的设计过程中,需要确定传热系数的大小以及对应的传热面积,以满足传热要求。

总传热系数的物理意义在于提供了一个基础参数,可以作为传热设备设计和优化的参考依据。

总的来说,总传热系数是描述传热过程中传热性能的重要指标,它综合考虑了传热方式的影响以及传热过程中的傅里叶定律,具有重要的物理意义。

总传热系数

总传热系数

总传热系数化工原理——总传热系数1/K0=1/α+bd0/λdm+d0/αidi (0和i都是下标)请问其中的dm代表什么?你所说的1/Ko是基于管内表面积的总传热系数,其中的dm是换热管的内外半径的对数平均半径,dm=(di-do)/ln(di/do),当di/do<2时,可以改用算术平均值,即取dm=(di+do)/2。

其中的di是管外半径,do为管内半径。

简介墙体的传热系数K是表征墙体(含所有构造层次)在稳定传热条件下,当其两侧空气温差为1K(1℃)时,单位时间内通过单位平方米墙体面积传递的热量,单位为W/(M2.K)。

即传热系数K是包含了墙体的所有构造层次和两侧空气边界层在内的。

它表征了墙体保温系统的热工性能,有研究表明外墙传热系数的减少将明显的降低建筑能耗。

[1]计算方法对于空调工程上常采用的换热器而言,如果不考虑其他附加热阻,对于单层围护结构传热系数K值可以按照如下计算:K=1/(1/h1+δ/λ+1/h2) W/(㎡·°C) [2]其中,h1,h2——围护结构两表面热交换系数,W/(㎡·°C);δ——管壁厚度,m;λ——管壁导热系数,W/(m·°C)。

计算公式1、围护结构导热热阻的计算单层结构热阻R=δ/λ(m2.K/w)式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)];多层结构热阻R=R1+R2+----R n=δ1/λ1+δ2/λ2+----+δn/λn式中: R1、R2、---R n—各层材料热阻(m2.k/w);δ1、δ2、---δn—各层材料厚度(m);λ1、λ2、---λn—各层材料导热系数[W/(m.k)];2、围护结构劈面对流换热热阻内表面换热阻:Ri=1/h1;外表面换热阻:Re=1/h2;3、围护结构的传热热阻R0=Ri+R+Re式中: Ri —内表面换热阻(m2.K/W)(一般取0.11);Re—外表面换热阻(m2.K/W)(一般取0.04)R —围护结构热阻(m2.K/W);3、围护结构传热系数计算K=1/ R0 (w/(m2.k))式中: R0—围护结构传热热阻;门窗传热系数计算1、外墙受周边热桥影响条件下,其平均传热系数的计算K m=(K p F p+K b1F b1+K b2F b2+ K b3F b3 )/( F p + F b1+F b2+F b3)式中:K m—外墙的平均传热系数[W/(m2.k)];K p—外墙主体部位传热系数[W/(m2.k)];K b1、K b2、K b3—外墙周边热桥部位的传热系数[W/(m2.k)];F p—外墙主体部位的面积;F b1、F b2、F b3—外墙周边热桥部位的面积;2、铝合金门窗的传热系数的计算U w =(A f*Uf+A g*U g+L g*Ψg)/(A f+A g)式中:U w—整窗的传热系数(W/m2·K);U g—玻璃的传热系数(W/m2·K);A g—玻璃的面积m2;U f—型材的传热系数(W/m2·K);A f—型材的面积m2;L g—玻璃的周长m;Ψg —玻璃周边的线性传热系数(W/m2·K),现场检测。

(整理)管道总传热系数计算

(整理)管道总传热系数计算

1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。

在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。

1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。

当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln 22i i ne n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌å (1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质的放热系数,W/(m 2·℃);i λ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =;L D ——结蜡后的管内径,m 。

为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。

(1)内部放热系数1α的确定放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。

在层流状态(Re<2000),当Pr 500Gr <时:1 3.65y d Nu a l== (1-2) 在层流状态(Re<2000),当Pr 500Gr >时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr a l 骣琪==鬃琪桫(1-3) 在激烈的紊流状态(Re>104),Pr<2500时: 0.250.80.441Pr 0.021Re Pr Pr y y y b d l a 骣琪=鬃琪桫 (1-4)在过渡区(2000<Re<104)(1-5)式中:u N ——放热准数,无因次;——流体物理性质准数,无因次;——自然对流准数,无因次;——雷诺数;0(Re )f K f =——系数;d ——管道内径,m ;g ——重力加速度,g =9.81m/s 2;υ——定性温度下的流体运动粘度,m 2/s ;C ——定性温度下的流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下的流体密度,kg/m 3;β——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算:(1-6)f λ——定性温度下的流体导热系数,原油的导热系数f λ约在0.1~0.16W/(m ·K)间,随温度变化的关系可用下式表示:(1-7)15f ρ——l5℃时的原油密度,kg/m 3;f t ——油(液)的平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油的相对密度。

化工原理实验总传热系数及热损失

化工原理实验总传热系数及热损失
3、所测同一管截面不同环向位置的壁温是否相 同进?为什么?计算时应怎样去壁温?壁温应 接近蒸汽温度还是空气温度?为什么?
2024年1月9日星期二
4、你测得值T与用教科书公式计算得的T 是
否一致?分析一下出现差异的原因有哪些?
5、试比较几根实验室的传热系数K值,并从 中体会出K值主要受哪些因素影响。
Q
三、装置和流程
本实验装置如图5-1所示。
设备共有五根传热管,管径为Φ34×4㎜,管 长1000㎜,外套管管径为Φ60×3.5㎜。
2024年1月9日星期二
装置和流程见
2
数字表示
4
12
5
11
去地沟 水
12
蒸 气
来自高位水槽 6
14
11 12
17
1
11 排入大气 7
19
12
3
来自风管
11
13
12
11
式中t出 表示水(或空气)的出口温度,t进 表示水(或空气)的进口温度,ts 表示设备中
蒸汽的饱和温度。
计算热损失的对流辐射联合传热膜系数。
可由下式求得:
Q
Aw (tw ta )
2024年1月9日星期二
KW m2 K
式中Q为按式1求得到热损失量,Aw 为设备的
外壁面积 m2 , tw 为壁温。ta为环境空气的温度。
热系数可按传热基本方程式
求得,即:
2024年1月9日星期二
Q KAtm
K Q Atm
KW m2 K
K
Q
Ats ta
KW m2 K
对于强制对流换热设备,其传热系数仍可用上
式计算,但其中tm 应为对数平均值,就本实验

总传热系数经验值

总传热系数经验值
重油
不锈钢
57~285
蒸汽
重油
玻璃衬里碳钢
57~230
盐水

不锈钢
230~1625
盐水

玻璃衬里碳钢
170~450
盐水
水溶液
不锈钢
200~850
盐水
水溶液
玻璃衬里碳钢
140~400
盐水
有机液
不锈钢
170~680
盐水
有机液
玻璃衬里碳钢
115~340
盐水
轻油
不锈钢
200~740
盐水
轻油
玻璃衬里碳钢
140~370
340~620
蒸汽
中质润滑油
230~340
570~738
200~230
280~570
蒸汽
6号柴油
110~230
400~510
85~170
340~4ቤተ መጻሕፍቲ ባይዱ0
蒸汽
焦油或沥青
85~200
280~400
85~140
220~340
蒸汽
熔融蜡
200~260
260~310
110~200
200~260
蒸汽
熔融蜡
200~260
1200
低碳钢
-
中碳钢
-
高碳钢
-
铬钢
-
-
-
-
-
-
-
锰钢
-
-
-
-
-
铬硅钢
-
-
-
-
-
-
-
-
铬锰钢
-
-
-
-
-
铬钼钢

圆筒壁总传热系数k与间壁两侧对流传热系数

圆筒壁总传热系数k与间壁两侧对流传热系数

圆筒壁总传热系数k与间壁两侧对流传热系数对于热传导和传热过程具有重要的意义。

下面将针对这两个参数进行详细的探讨。

1. 圆筒壁总传热系数k圆筒壁总传热系数k是指单位时间内通过圆筒壁传递的热量与单位温差之比。

在工程实践中,圆筒壁总传热系数k的计算是十分重要的。

它可以影响圆筒壁的传热效率,进而影响整个传热过程的效果。

圆筒壁总传热系数k受到多种因素的影响,包括材料的导热性能、壁厚、壁面积等。

在工程设计过程中,必须对圆筒壁总传热系数k进行准确的计算和分析,以确保传热设备的稳定运行和高效运行。

2. 间壁两侧对流传热系数间壁两侧对流传热系数是指在传热过程中,间壁两侧介质与壁面之间的传热系数。

对流传热是传热过程中的重要方式之一,其传热系数的大小直接影响着传热效果。

在工程实践中,间壁两侧对流传热系数的计算是为了确定传热设备的传热效果和传热能力。

对流传热系数受到流体性质、流动速度、壁面结构等多种因素的影响。

在工程设计和操作过程中,必须对间壁两侧对流传热系数进行准确的计算和分析,以确保传热设备的高效性和稳定性。

圆筒壁总传热系数k与间壁两侧对流传热系数是影响热传导和传热过程的重要参数。

在工程设计、运行和维护过程中,必须对这两个参数进行准确的计算和分析,以确保传热设备的高效运行和长期稳定性。

希望相关工程人员能够重视这两个参数的重要性,注重传热过程的细节,提升传热设备的整体性能。

圆筒壁总传热系数k与间壁两侧对流传热系数是热传导和传热过程中的重要参数,对于工程设计、运行和维护具有重要的意义。

在实际工程中,我们需要对这两个参数进行准确的计算和分析,以确保传热设备的高效运行和长期稳定性。

下面我们将更加详细地探讨这两个参数的计算方法和影响因素。

1. 圆筒壁总传热系数k的计算方法圆筒壁总传热系数k的计算涉及到多个因素,包括材料的导热性能、壁厚、壁面积等。

根据传热学的基本原理,圆筒壁总传热系数k可以通过以下公式进行计算:\[ k =\frac{1}{\frac{1}{h_i}r_i+(\frac{r_i}{k_i}ln(\frac{r_i}{r_o}))+\frac{1}{h _o}} \]其中,\( h_i \) 和 \( h_o \) 分别代表内表面和外表面的对流传热系数,\( r_i \) 和 \( r_o \) 分别代表内半径和外半径,\( k_i \) 代表内壁的导热系数。

总传热系数k的计算公式

总传热系数k的计算公式

总传热系数k的计算公式
总传热系数k的计算公式为:
k = 1/ (1/hi + Σ i=1 to n (d i /ki) + 1/ ho)
其中,hi为流体与内壁的对流热传递系数,di为管道或墙壁等的厚度,ki为管道或墙壁等的导热系数,n为传热系统中所有壁层的数目,ho为流体与外壁的对流热传递系数。

在实际应用中,该公式需要根据具体的传热系统进行适当的拓展和调整。

例如,传热介质的物性参数如密度、比热、导热系数等可能随温度和压力而变化,此时需要考虑这些参数的变化对传热系数的影响。

同时,对流传热系数hi和ho也需要根据具体的工况和流动状态进行修正和估算。

在设计和优化传热系统时,还需要考虑传热表面的几何形状、壁面的材料和表面粗糙度等因素对传热系数的影响。

管道总传热系数计算

管道总传热系数计算

1管道总传热系数管道总传热系数就是热油管道设计与运行管理中得重要参数。

在热油管道稳态运行方案得工艺计算中,温降与压降得计算至关重要,而管道总传热系数就是影响温降计算得关键因素,同时它也通过温降影响压降得计算结果。

1、1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递得热量,它表示油流至周围介质散热得强弱。

当考虑结蜡层得热阻对管道散热得影响时,根据热量平衡方程可得如下计算表达式: 1112ln 111ln 22i i n e n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌å (1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径得平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质得放热系数,W/(m 2·℃);i λ——第i 层相应得导热系数,W/(m·℃);i D ,1i D +——管道第i 层得内外直径,m ,其中1,2,3...i n =;L D ——结蜡后得管内径,m 。

为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径得导热热阻、管道外壁或最大外围至周围环境得放热系数2α。

(1)内部放热系数1α得确定放热强度决定于原油得物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 与流体物理性质准数r P 间得数学关系式来表示[47]。

在层流状态(Re<2000),当Pr 500Gr <g 时:1 3.65y d Nu a l== (1-2) 在层流状态(Re<2000),当Pr 500Gr >g 时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr a l 骣琪==鬃琪桫(1-3) 在激烈得紊流状态(Re>104),Pr<2500时: 0.250.80.441Pr 0.021Re Pr Pr y y y b d l a 骣琪=鬃琪桫 (1-4)在过渡区(2000<Re<104)(1-5)式中:u N ——放热准数,无因次;——流体物理性质准数,无因次; ——自然对流准数,无因次;——雷诺数;0(Re )f K f =——系数;d ——管道内径,m ;g ——重力加速度,g =9、81m/s 2;υ——定性温度下得流体运动粘度,m 2/s ;C ——定性温度下得流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下得流体密度,kg/m 3;β——定性温度下得流体体积膨胀系数,可查得,亦可按下式计算:(1-6)f λ——定性温度下得流体导热系数,原油得导热系数f λ约在0、1~0、16 W/(m ·K)间,随温度变化得关系可用下式表示:(1-7)15f ρ——l5℃时得原油密度,kg/m 3;f t ——油(液)得平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油得相对密度。

化工原理3.4传热计算

化工原理3.4传热计算

Δt m
Δt 1 − Δt 2 = ——对数平均温差 Δt 1 ln Δt 2
22
讨论: (1)也适用于并流
T1
Δt1 =T 1− t1
Δt 2 = T2 − t 2
Δt1
T2 Δt2 t2 t1 A
23
(2)较大温差记为Δt1,较小温差记为Δt2 (3)当Δt1/Δt2<2,可用 (4)当Δt1=Δt2
1. 逆、并流时的Δtm
T1 t2 T2
T1 t2 t T2 t1 A t t1 T1 T2 t2
T1 t1 t1 T2 t2
逆流
并流
A
18
以逆流为例推导Δtm 假设:(1)定态流动、传热 ;qm1、 qm2一定 (2)cp1、cp2为常数,为tm下的值 (3)K沿管长不变化 (4)热损失忽略不计
T1 T2 t2 t1 A来自27加热:t2max < T2, 热敏物质 冷却:T2min > t2, 易固化物
热流体冷却为例 • 并流:t2<T2 • 逆流:t2’>T2 t2’-t1 > t2-t1 Q一定,qm2’<qm2
T1
t2’
逆流 并流
A
T2 t2
t1
t1
28
(3)采用其他流型的目的——提高α↑ 提高K↑ (4)单侧变温——Δtm与流型无关
19
T1 Δt1 t t2 dt dA t dT
逆 流
T T2 Δt2 t1
Δt1 =T 1− t 2
Δt 2 = T2 − t1
A
20
dA段内热量衡算:dQ = − q m 1 c p 1 dT = − q m 2 c p 2 dt dA段内传热速率方程: dQ = K (T − t )dA

总传热系数

总传热系数

总传热系数作为一种用于衡量物体传热能力的量,总传热系数(Total Heat Transfer Coefficient)是一种表示不同物体之间传热能力的量。

它由散热性能良好的物体(例如金属或者有机物)和散热性能差的物体(例如空气)之间传热方程为基础构建而成。

这种系数可以用来衡量物体之间温差时传热量的大小,以及物体在温度不同时传热量随温差变化的规律。

由于总传热系数可以反映一个物体对环境温度的响应能力,它在很多领域都有广泛的应用。

热构性学中的总传热系数可以用来衡量物体之间的热传导率及电热系数的大小。

其基本计算公式为:总传热系数=热传导率÷(物体表面积×物体厚度)总传热系数的单位是焦耳/米的平方(J/m2.K)。

总传热系数可以运用于建筑物、机械设备、汽车电子设备中,以便衡量室内温度变化对室外环境温度的影响程度。

总传热系数越大,表明物体传热能力越强,室内温度变化时影响室外环境温度的程度也越大。

此外,总传热系数还可以用来衡量热岛效应,热岛效应是指一个建筑物不同部位温度的差异,它又可以进一步细分为冷热岛现象。

根据总传热系数的大小可以评估建筑物内部的热岛现象程度,以便准确判断普通空调设备是否能满足空调预热、热量调节及空气清洁等要求。

总传热系数还可以用来评估材料和机械设备的抗高温性能,并用于室外火灾急救。

由于火灾时室外温度会极大升高,因此火灾时总传热系数的物理意义就是物体受到的来自室外环境的温度增加量。

这种增量可以用来衡量室内物体受到来自火灾外环境的热量负荷大小,以帮助判断火灾急救的可行性,以及建筑物内部物体烧焦或烧毁的可能性。

总传热系数不仅可以衡量一个物体对环境温度的响应能力,还可以用来判断一个物体在温度不同时传热量的变化情况。

它可以运用于建筑物、机械设备和汽车电子设备中,在热构性学中可以用来衡量物体之间的热传导率及电热系数的大小。

此外,总传热系数还可以用来衡量热岛效应,以及用于室外火灾急救。

管道总传热系数算

管道总传热系数算

管道总传热系数算————————————————————————————————作者:————————————————————————————————日期:1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。

在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。

1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。

当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+⎡⎤⎛⎫ ⎪⎢⎥⎝⎭=+++⎢⎥⎢⎥⎢⎥⎣⎦∑ (1-1) 式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1α——油流与管内壁放热系数,W/(m 2·℃);2α——管外壁与周围介质的放热系数,W/(m 2·℃);i λ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =;L D ——结蜡后的管内径,m 。

为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2α。

(1)内部放热系数1α的确定放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。

在层流状态(Re<2000),当500Pr <⋅Gr 时:1 3.65y d Nu αλ== (1-2) 在层流状态(Re<2000),当500Pr >⋅Gr 时: 0.250.330.430.11Pr 0.15Re Pr Pr y y y y y b d Nu Gr αλ⎛⎫==⋅⋅ ⎪⎝⎭ (1-3)在激烈的紊流状态(Re>104),Pr<2500时:0.250.80.441Pr 0.021Re Pr Pr y y y b d λα⎛⎫=⋅⋅ ⎪⎝⎭ (1-4)在过渡区(2000<Re<104)25.043.001)Pr Pr (Pr b ff f d K ⋅λα= (1-5)式中:u N ——放热准数,无因次;λρυC =Pr ——流体物理性质准数,无因次; ()υβw f t t g d Gr -=3——自然对流准数,无因次; υπρd q vd v 4Re ==——雷诺数; )(Re 0f f K =——系数;d ——管道内径,m ;g ——重力加速度,g =9.81m/s 2;υ——定性温度下的流体运动粘度,m 2/s ;C ——定性温度下的流体比热容,J/(kg·K); v q ——流体体积流量,m 3/s ;ρ——定性温度下的流体密度,kg/m 3;β——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算: t d d -+-=2042045965634023101β (1-6)f λ——定性温度下的流体导热系数,原油的导热系数f λ约在0.1~0.16 W/(m ·K)间,随温度变化的关系可用下式表示:153/)1054.01(137.0f t f t ρλ-⨯-= (1-7)15f ρ——l5℃时的原油密度,kg/m 3;f t ——油(液)的平均温度,℃;b t ——管内壁平均温度,℃;204d ——20℃时原油的相对密度。

管道总传热系数计算

管道总传热系数计算

1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。

在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。

1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。

当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:1112ln 111ln22i i ne nwiLL DD D KD DDD aall -+éùæöêúç÷èøêú=+++êúêúêúëûå(1-1)式中:K ——总传热系数,W /(m 2·℃);e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);n D ——管道内直径,m ;w D ——管道最外层直径,m ;1 ——油流与管内壁放热系数,W/(m 2·℃);2 ——管外壁与周围介质的放热系数,W/(m 2·℃); i ——第i 层相应的导热系数,W/(m·℃);i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...in =;L D ——结蜡后的管内径,m 。

为计算总传热系数K ,需分别计算内部放热系数1 、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数2 。

(1)内部放热系数1 的确定放热强度决定于原油的物理性质及流动状态,可用1 与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。

传热系数

传热系数

传热系数
一、传热系数以往称总传热系数。

国家现行标准规范统一定名为传热系数。

传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。

例如传热系数为“3.5W/m2k”,是表示在稳定传热条件下,围护结构两侧空气温差为1K(或℃),1小时内通过1平方米面积传递的热量为3.5W。

二、其中“K”为热力学温度单位的国际代号,是英文Kelvin 的开头字母,简称“开”,它是国际单位制(SI)中7个基本单位之一,以绝对零度(0K)为最低温度,规定水的三相点的温度为273.16K,1K等于水三相点温度的1/273.16。

热力学温度T与人们惯用的摄氏温度t的关系是T=t+273.15,因为水的冰点温度近似等于273.15K。

“K”这个单位是开尔文为了纪念英国物理学家Lord Kelvin而命名的,可不是开尔文自己名称的首位字母,这一点,好多人都有误解。

由此可见1摄氏度温差=1开温差。

只是两者的计算起点不同而已。

三、另外,还有一个与其非常类似的参数,即导热系数,它是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1K(或1℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米•度(W/m•K,此处为K可用℃代替)
所以,通常前者用来评价对象多为围护结构,而后者则多为材料,两者单位不同。

此外,前者单位隐含了时间单位、后者不但隐含了时间单位还有单位面积,这一点需要在实际运用中多加注意。

管道总传热系数计算

管道总传热系数计算

1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。

在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。

1.1 利用管道周围埋设介质热物性计算K值管道总传热系数K指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。

当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:(1-1)式中:——总传热系数,W/(m2·℃);——计算直径,m;(对于保温管路取保温层内外径的平均值,对于无保温埋地管路可取沥青层外径);——管道内直径,m;——管道最外层直径,m; ——油流与管内壁放热系数,W/(m2·℃); ——管外壁与周围介质的放热系数,W/(m2·℃); ——第层相应的导热系数,W/(m·℃); ,——管道第层的内外直径,m,其中;——结蜡后的管内径,m。

为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径的导热热阻、管道外壁或最大外围至周围环境的放热系数。

(1)内部放热系数的确定放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然对流准数和流体物理性质准数间的数学关系式来表示[47]。

在层流状态(Re<2000),当时:(1-2)在层流状态(Re<2000),当时:(1-3)在激烈的紊流状态(Re>104),Pr<2500时:(1-4)在过渡区(2000<Re<104)(1-5)式中:——放热准数,无因次;——流体物理性质准数,无因次;——自然对流准数,无因次;——雷诺数;——系数;——管道内径,m;——重力加速度,=9.81m/s2;——定性温度下的流体运动粘度,m2/s;——定性温度下的流体比热容,J/(kg·K);——流体体积流量,m3/s;——定性温度下的流体密度,kg/m3;——定性温度下的流体体积膨胀系数,可查得,亦可按下式计算:(1-6)——定性温度下的流体导热系数,原油的导热系数约在0.1~0.16 W/(m·K)间,随温度变化的关系可用下式表示:(1-7)——l5℃时的原油密度,kg/m3;——油(液)的平均温度,℃;——管内壁平均温度,℃;——20℃时原油的相对密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总传热系数K是表征传热过程效率的重要参数,其计算涉及多个因素。本文详细列出了影响K值的各项参数,包括各层固体壁的厚度和热导率,这些参数直接决定了热量在固体壁内的传递效率。此外,传热膜系数α1和α2分别反映了被搅物料和热载体对传热面的传热能力,是影响传热过程的关键因素。污垢热阻RS1和RS2则体现了传热面因污垢沉积而产生的额外热阻,对传热效率产生负面影响。通过综合考虑这些因素,本文给出了传热总阻力K和总传热系数K的计算结果,为工程实践中的传热设计和优化提供了重要参考。
相关文档
最新文档