《相交线与平行线》单元测试题及答案教学内容
相交线与平行线单元测试题(含答案)
相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
人教版七年级数学下册第5章《相交线与平行线》单元测试卷(解析版)
人教版七年级数学下册第5章《相交线与平行线》单元测试卷一.选择题1.下列说法,正确的是( )A. 若ac=bc,则a=bB. 两点之间的所有连线中,线段最短C. 相等的角是对顶角D. 若AC=BC,则C是线段AB的中点【答案】B【解析】【分析】根据等式的性质可判断A的正误;根据线段的性质判断B的正误;根据对顶角的性质判断C的正误;根据中点的性质判断D的正误.【详解】解:A、若ac=bc(c≠0),则a=b,故此选项错误,B、两点之间的所有连线中,线段最短,说法正确,故此选项正确,C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误,D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误,故选:B.【点睛】此题主要考查了等式的性质、对顶角的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )A. 50°B. 55°C. 60°D. 70°【答案】D【解析】【分析】先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.【详解】∵AB∥CD,∠1=40°,∠2=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故答案选D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A. 55°B. 60°C. 65°D. 70°【答案】D【解析】【分析】根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.【详解】∵EF∥MN,∠1=40°,∴∠1=∠3=40°.∵∠A=30°,∴∠2=∠A+∠3=70°.故选D.【点睛】本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.4.图中的∠1、∠2可以是对顶角的是( )A. B.C. D.【答案】C【解析】【分析】根据对顶角的定义,具有公共顶点且角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:A、∠1与∠2不是对顶角,B、∠1与∠2不是对顶角,C、∠1与∠2是对顶角,D、∠1与∠2不是对顶角,故选:C.【点睛】本题主要考查了对顶角的定义,熟练掌握定义是解题关键.5.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是( )A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角【答案】C【解析】【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【详解】解:∵∠AOE=90°,∴∠BOE=90°,∵∠AOD=∠BOC,∴∠EOC+∠BOC=90°,∠EOC+∠AOD=90°,∠AOE+∠EOB=180°,故A、B、D选项正确,C错误.故选:C.【点睛】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.6.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是( )A. 22°B. 46°C. 68°D. 78°【答案】C【解析】【分析】由垂直的定义可知∠AOB=90°,由角平分线的定义可知∠BOC=∠BOD=22°,从而求得∠AOC的度数. 【详解】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.故选C.【点睛】本题考查了垂直的定义,角平分线的定义.7.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为( )A. 78°B. 132°C. 118°D. 112°【答案】D【解析】【分析】根据补角的性质、对角的性质,再进行代换可以求出∠2-∠3的度数.【详解】延长直线c与b相交,令∠2的补角是∠4,则∠4=180º-∠2,令∠3的对顶角是∠5,则∠3=∠5,∵a∥b,∴∠6=∠1=68°.又∠4+∠5=∠6.∴(180º-∠2)+∠3=68°即:∠2-∠3= 112°【点睛】本题考查了补角的性质、对角的性质等知识点,熟练掌握是本题的解题关键.8.如图,下列条件中,能判断AB∥CD的是( )A. ∠FEC=∠EFBB. ∠BFC+∠C=180°C. ∠BEF=∠EFCD. ∠C=∠BFD【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A.由∠FEC=∠EFB,可得CE∥BF,故本选项错误;B.由∠BFC+∠C=180°,可得CE∥BF,故本选项错误;C.由∠BEF=∠EFC,可得AB∥CD,故本选项正确;D.由∠C=∠BFD,可得CE∥BF,故本选项错误.故选C.【点睛】本题考查了平行线的判定,解题时注意:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.9.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB 最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A. ②③B. ①②③C. ③④D. ①②③④【答案】A【解析】【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】①线段AP是点A到直线PC的距离,错误;②线段BP的长是点P到直线l的距离,正确;③P A,PB,PC三条线段中,PB最短,正确;④线段PC的长是点P到直线l的距离,错误.故选A.【点睛】本题考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.10.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED′=70°,则∠AED的大小是( )A. 60°B. 50°C. 75°D. 55°【答案】D【解析】【分析】根据折叠的性质得到∠AED=∠AED′,由平角的定义得到∠AED+∠AED′+∠CED′=180°,而∠CED′=60°,则2∠DEA=180°-70°=110°,即可得到∠AED的度数.【详解】解:∵长方形ABCD沿AE折叠得到△AED′,∴∠AED=∠AED′,而∠AED+∠AED′+∠CED′=180°,∠CED′=70°,∴2∠DEA=180°-70°=110°,∴∠AED=55°.故选:D.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.二.填空题11.如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=_____°.【答案】105【解析】【分析】直接利用平移的性质结合三角形外角的性质得出答案.【详解】由题意可得:m∥n,则∠CAD+∠1=180°.∵∠3=∠4,∴∠4+∠CAD=∠2,∴∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.【点睛】本题考查了平移的性质、三角形外角的性质以及平行线的性质,正确转化角的关系是解题的关键.12.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有_____.【答案】①④【解析】【分析】根据垂直定义可得∠BCA=90°,∠ADC=∠BDC=∠ACF=90°,然后再根据余角定义和补角定义进行分析即可.【详解】∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°.∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF.∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC.∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④.故答案为:①④.【点睛】本题考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.13.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°.【答案】40【解析】【分析】根据OA⊥OC,OB⊥OD,可得∠AOC=90°,∠BOD=90°,然后得到∠AOB与∠BOC互余,∠COD与∠BOC互余,根据同角的余角相等,继而可求解即可.【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为:40°.【点睛】本题考查了余角的知识,关键发现∠AOB、∠COD都是∠BOC余角,根据同角的余角相等解答.14.点P是直线l外一点,点A,B,C,D是直线l上的点,连接PA,PB,PC,PD.其中只有PA与l垂直,若PA=7,PB=8,PC=10,PD=14,则点P到直线l的距离是_____.【答案】7【解析】【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短.∵P A与l垂直, P A=7,∴点P到直线l的距离=PA,即点P到直线l的距离=7故答案为:7.【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为______.【答案】55°【解析】【分析】过点E作EF∥AB,则EF∥CD,可得∠ABE=∠BEF, ∠DEF=∠CDE.先根据角平分线的定义,得出∠ABE =∠CBE=20°,∠ADE=∠CDE=35°,进而求得∠E的度数.【详解】过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF, ∠DEF=∠CDE.∵AB∥CD,∴∠BCD=∠ABC=40°,∠BAD=∠ADC=70°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC=20°,∠ADE=∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=20°+35°=55°.故答案为:55°.【点睛】此题考查了平行线的性质,角平分线的定义,正确做出辅助线是解题的关键.本题也考查了数形结合的数学思想.16.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.【答案】40°【解析】【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°,即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故答案为:40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.三.解答题17.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.【答案】(1)见解析(2)35°【解析】【分析】(1)由知∠1=∠DCF,则∠2=∠DCF,即可证明;(2)由得∠B=90°-∠2=35°,再根据(1)可知的度数.【详解】∵∴∠1=∠DCF,∵∴∠2=∠DCF,∴;(2)∵,∴∠BEF=90°,∴∠B=90°-∠2=35°,又∵∴=∠B=35°.【点睛】此题主要考察平行线的性质与判定.18.如图,直线AB,CD相交于点O.OF平分∠AOE,OF⊥CD于点O.(1)请直接写出图中所有与∠AOC相等的角:______.(2)若∠AOD=150°,求∠AOE的度数.【答案】(1)∠BOD,∠DOE;(2)∠AOE=120°.【解析】【分析】(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;(2)根据垂直的定义得到∠DOF,根据角平分线的定义求出即可得到结论.【详解】解:(1)∵直线AB,CD相交于点O,∴∠AOC=∠BOD,∵OF平分∠AOE,∴∠AOF=∠EOF,∵OF⊥CD,∴∠COF=∠DOF=90°,∴∠DOE=∠AOC,∴与∠AOD相等的角有∠BOD,∠DOE,故答案为:∠BOD,∠DOE.(2)∵OF⊥CD,∴∠DOF=90°,∵∠AOD=150°,∴∠AOF=60°,∵OF平分∠AOE,∴∠AOE=2∠AOF=120°.【点睛】本题考查了垂线,余角和补角,对顶角相等的性质,角平分线的定义.19.如图,已知EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.(请在下面的解答过程的空格内填空或在括号内填写理由).理由:∵∠1=∠C,(已知)∴_______∥______,(_______)∴∠2=______.(______)又∵∠2+∠3=180°,(已知)∴∠3+_____=180°.(等量代换)∴______∥______,(______)∴∠ADC=∠EFC.(______)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴______⊥_____.【答案】略【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】∵∠1=∠C,(已知)∴GD∥AC,(同位角相等,两直线平行)∴∠2=∠DAC.(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC=180°.(等量代换)∴AD∥EF,(同旁内角互补,两直线平行)∴∠ADC=∠EFC.(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.故答案为:GD,AC,同位角相等,两直线平行;∠DAC,两直线平行,内错角相等;∠DAC;AD,EF,同旁内角互补,两直线平行;两直线平行,同位角相等;AD,BC.【点睛】本题考查平行线的判定和性质,已经垂线的定义,解题关键是注意平行线的性质和判定定理的综合运用.20.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF.(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.【答案】(1)证明见解析;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【解析】【分析】(1)依据AB⊥BC于点B,DC⊥BC于点C,即可得到AB∥CF,进而得出∠BAF+∠F=180°,再根据∠BAF =∠EDF,即可得出ED∥AF,依据三角形外角性质以及角平分线的定义,即可得到∠DAF=∠F;(2)结合图形,根据余角的概念,即可得到所有与∠CED互余的角.【详解】解:(1)∵AB⊥BC于点B,DC⊥BC于点C,∴∠B+∠C=180°,∴AB∥CF,∴∠BAF+∠F=180°,又∵∠BAF=∠EDF,∴∠EDF+∠F=180°,∴ED∥AF,∴∠ADE=∠DAF,∠EDC=∠F,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠DAF=∠F;(2)∵∠C=90°,∴∠CED+∠CDE=90°,∴∠CED与∠CDE互余,又∵∠ADE=∠DAF=∠EDC=∠F,∴与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.【点睛】本题主要考查了平行线的判定与性质、余角的概念,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】∠FOH=90°﹣α.【解析】【分析】(1)先根据角平分线的定义求出∠OFH,∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(2)先根据角平分线的定义求出∠OFH+∠FHO的度数,再根据三角形的内角和定理求出∠FOH的度数;(拓展)先根据角平分线的定义求出∠OFH=∠AFH,∠OHI=∠CHI=(180°-∠CHF),再根据两直线平行内错角相等得∠FOH=∠OHI﹣∠OFH即可。
2.22第五章_相交线与平行线_单元检测试题(含答案)
七年级数学(下)第五章单元检测时间120分钟,总分100分姓名: 得分:本单元须掌握的知识概要1、理解邻补角、对顶角的概念,掌握对顶角相等的性质;2、理解垂直的概念,理解垂直的性质,知道什么是点到直线的距离,能够过一点画已知直线(射线、线段的垂线);3、理解平行的概念,掌握两条直线在平面内的两种位置关系,了解平行公理;4、认识两条直线被第三条直线所截所形成的同位角、内错角、同旁内角,会从图形中找出这些角;5、掌握平行线判定的三种方法,并能运用这三种方法说明两条直线平行;6、掌握平行线的性质,并能运用平行线的性质说明两角之间的关系;7、了解什么是平行线间的距离,知道平行线间的距离处处相等;8、了解命题的概念以及命题的结构,能够把一个命题改写成“如果……,那么……”的形式。
9、了解平移的概念及平移的特征,能够画出一个图形平移后的图形,并能够组合出一些简单的图案。
一、填空题:(每题3分,共30分)1、如图1,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是________________。
2、如图2,AB ∥CD ,∠1=39°,∠C 和∠D 互余,则∠D=________,∠B=________。
图1 图2 图33、如图3,直线b a ,与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°,其中能判断a ∥b 的是_______________(填序号)。
4、设c b a ,,为平面内三条不同的直线,①若a ∥b ,l ⊥a ,则l 与b 的位置关系是______;②若l ⊥a ,l ⊥b ,则a 与b 的位置关系是___________;③若a ∥b ,l ∥a ,则l 与b 的位置关系是____________。
5、把命题“等角的余角相等”改写成“如果……,那么……”的形式是_________________。
新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)
人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。
【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。
人教版2022年七年级下册第5章《相交线与平行线》单元检测卷 word,含解析
人教版2022年七年级下册第5章《相交线与平行线》单元检测卷满分120分时间100分钟一.选择题(共8小题,满分24分,每小题3分)1.下面各图中,能够通过右图平移得到的是()A.B.C.D.2.下列图中,∠1与∠2属于对顶角的是()A.B.C.D.3.直线l外有一点P,直线l上有三点A、B、C,若P A=4cm,PB=2cm,PC=3cm,那么点P到直线l的距离()A.不小于2cm B.大于2cm C.不大于2cm D.小于2cm4.命题“同角的补角相等”改写成“如果……,那么……”的形式是()A.如果是同角的补角,那么相等B.如果两个角是同角的补角,那么这两个角相等C.如果两个角互补,那么这两个角相等D.如果两个角是同角,那么这两个角是补角5.在同一平面内,将两个完全相同的三角板如图所示摆放(直角边重合),可以画出两条互相平行的直线a,b.这样操作的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等A.24°B.26°C.34°D.44°7.如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于()A.116°B.118°C.120°D.124°8.如图,将△ABC沿BC所在直线向右平移2cm得到△DEF,连结AD.若△ABC的周长为10cm,则四边形ABFD 的周长为()A.10cm B.12cm C.14cm D.20cm二.填空题(共8小题,满分32分,每小题4分)9.如图,射线BD,CE相交于点A,则∠B的内错角是.10.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是.11.“平行于同一条直线的两条直线平行”是命题.(填“真”或“假”)12.如图所示方式摆放纸杯测量角的基本原理是.13.如图所示,添加一个条件使得AB∥CD.14.将一副三角板按如图放置,∠BAC=∠DAE=90°,∠B=45°,∠E=60°,则:①∠1=∠3;②∠CAD+∠2=180°;③如果∠2=30°,则有AC∥DE;④如果∠2=45°,则有BC∥AD.上述结论中正确的是(填写序号).15.已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC=.16.如图,在一块长8米,宽6米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移1米就是它的右边线,则这块草地的绿地面积为米2.三.解答题(共9小题,满分64分)17.(5分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点),请画出△ABC向右平移2单位再向下平移3个单位的△A1B1C1.18.(5分)如图所示,已知∠1+∠2=180°,∠4=110°,求∠3的度数.19.(6分)如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知),∠ABC=∠1 (),∴∠ABC=60°(等量代换).又∵∠2=120°(已知),∴()+∠2=180°(等式的性质),∴AB∥CD().又∵∠2+∠BCD=(°),∴∠BCD=60°(等式的性质).∵∠D=60°(已知),∴∠BCD=∠D(),∴BC∥DE().20.(6分)如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,求证:∠1=∠2.21.(7分)如图所示,已知∠1=115°,∠2=65°,∠3=100°.(1)图中所有角中(包含没有标数字的角),共有几对内错角?(2)求∠4的大小.22.(8分)如图所示、已知直线AB、CD交于点O、OE⊥CD.(1)若∠AOC=42°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,OF平分∠AOD,求∠EOF的度数.23.(9分)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.24.(9分)如图,直线AB,CD相交于点O,OE平分∠BOC.【基础尝试】(1)如图1,若∠AOC=40°,求∠DOE的度数;【画图探究】(2)作射线OF⊥OC,设∠AOC=x°,请你利用图2画出图形,探究∠AOC与∠EOF之间的关系,结果用含x 的代数式表示∠EOF.【拓展运用】(3)在第(2)题中,∠EOF可能和∠DOE互补吗?请你作出判断并说明理由.25.(9分)问题探究:如图①,已知AB∥CD,我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?张山同学:如图②,过点E作EF∥AB,把∠BED分成∠BEF与∠DEF的和,然后分别证明∠BEF=∠B,∠DEF =∠D.李思同学:如图③,过点B作BF∥DE,则∠E=∠EBF,再证明∠ABF=∠D.问题解答:(1)请按张山同学的思路,写出证明过程;(2)请按李思同学的思路,写出证明过程;问题迁移:(3)如图④,已知AB∥CD,EF平分∠AEC,FD平分∠EDC.若∠CED=3∠F,请直接写出∠F的度数.参考答案一.选择题(共8小题,满分24分,每小题3分)1.【解答】解:A、图形比原图少房顶的炊烟,形状发生改变,故错误;B、图形的形状和大小没有改变,符合平移的性质,故正确;C、屋顶里面的窗子与原图不同,形状发生改变,故错误;D、图形比原图少房顶的炊烟,屋顶里面的窗子与原图不同,形状发生改变,故错误.故选:B.2.【解答】解:由对顶角的定义可得B选项中的∠1与∠2是对顶角.故选:B.3.【解答】解:∵P A=4cm,PB=2cm,PC=3cm,∴PB最短,∵直线外一点与直线上点的连线中,垂线段最短,∴P到直线l的距离不大于2cm,故选:C.4.【解答】解:命题“同角的补角相等”改写成“如果……,那么……”的形式是:如果两个角是同角的补角,那么这两个角相等,故选:B.5.【解答】解:如图:∵两个完全相同的三角板,∴∠1=∠2,而∠1、∠2是一对内错角,∴a∥b,故选:A.6.【解答】解:∵EF⊥AB于E,∠CEF=56°,∴∠AEC=90°﹣∠CEF=90°﹣56°=34°,∴∠BED=∠AEC=34°.故选:C.7.【解答】解:∵AB∥CD,∴∠1=∠3,∵∠2+∠3=180°,∴∠1+∠2=180°,∵∠2=2∠1﹣6°,∴∠1+2∠1﹣6=180°,解得∠1=62°,∴∠2=2×62﹣6=118°,故选:B.8.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴AD=CF=2cm,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10cm,∴AB+BC+AC=10cm,∴四边形ABFD的周长=10+2+2=14(cm).故选:C.二.填空题(共8小题,满分32分,每小题4分)9.【解答】解:由内错角的意义可得,∠B与∠EAB是内错角,故答案为:∠EAB.10.【解答】解:这样做的数学道理是:垂线段最短,故答案为:垂线段最短.11.【解答】解:“平行于同一条直线的两条直线平行”是真命题.故答案为:真.12.【解答】解:图中的测量角的原理是:对顶角相等.故答案为:对顶角相等.13.【解答】解:∠A=∠ECD或∠A+∠ACD=180°,理由如下:∵∠A=∠ECD,∴AB∥CD(同位角相等,两直线平行);∵∠A+∠ACD=180°,故答案为:∠A=∠ECD或∠A+∠ACD=180°.14.【解答】解:①∵∠BAC=∠DAE=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,故①正确;②∵∠1+∠2+∠2+∠3=180°,∴∠CAD+∠2=180°,故②正确;③∵∠2=30°,∴∠1=∠E=60°,∴AC∥DE,故③正确;④∵∠2=45°,∴∠3=∠B=45°,∴BC∥AD,故④正确.故答案为:①②③④.15.【解答】解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.(8﹣1)×6=7×6=42(平方米),所以:这块草地的绿地面积为42平方米,故答案为:42.三.解答题(共9小题,满分64分)17.【解答】解:如图,△A1B1C1即为所求.18.【解答】解:∵∠1+∠2=180°,∠2=∠5,∴∠1+∠5=180°,∴CD∥EF,∴∠3=∠4,∵∠4=110°,∴∠3=110°.19.【解答】解∵∠1=60°(已知),∠ABC=∠1 (对顶角相等),∴∠ABC=60°(等量代换).又∵∠2=120°(已知),∴∠ABC+∠2=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行).又∵∠2+∠BCD=180°,∴∠BCD=60°(等式的性质).∵∠D=60°(已知),∴∠BCD=∠D(等量代换),∴BC∥DE(内错角相等,两直线平行).故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.20.【解答】证明:∵∠ADE=∠ABC,∵BE⊥AC,MN⊥AC,∴BE∥MN,∴∠2=∠EBC,∴∠1=∠2.21.【解答】解:如图所示:(1)直线c和d被直线b所截,有两对内错角,即∠2和∠6,∠5和∠7,同理还有六对内错角,共有8对内错角;(2)∵∠2+∠5=180°,∠2=65°,∴∠5=180°﹣65°=115°,∵∠1=115°,∴∠1=∠5,∴a∥b,∴∠3=∠6,又∵∠3=100°,∴∠6=100°,∴∠4=∠6=100°.22.【解答】解:(1)∵∠AOC=42°,OE⊥CD.∴∠DOE=90°,∠BOD=42°,∴∠BOE=90°﹣∠BOD=48°;(2)∵∠BOD:∠BOC=2:7,∴∠BOD=180°×=40°,∴∠BOC=180°﹣40°=140°,∵∠BOC=∠AOD=140°,∵OF平分∠AOD,∴∠DOF==°=70°,∵∠EOF=∠EOD+∠DOF,∴∠EOF=90°+70°=160°.23.【解答】(1)证明:∵∠E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∴∠E=∠BQM,∴EF∥BC;(2)证明:∵FP⊥AC,∴∠PGC=90°,∵EF∥BC,∴∠EAC+∠C=180°,∵∠2+∠C=90°,∴∠BAC=∠PGC=90°,∴AB∥FP,∴∠1=∠B;(3)解:∵∠3+∠4=180°,∠4=∠MNF,∴∠3+∠MNF=180°,∴AB∥FP,∴∠F+∠BAF=180°,∵∠BAF=3∠F﹣20°,∴∠F+3∠F﹣20°=180°,解得∠F=50°,∵AB∥FP,EF∥BC,∴∠B=∠1,∠1=∠F,∴∠B=∠F=50°.24.【解答】解:(1)∵∠AOC+∠BOC=180°,∠AOC=40°,∴∠BOC=180°﹣40°=140°,∵OE平分∠BOC,∴∠COE=∠BOC=70°,∵∠DOE+∠COE=180°,∴∠DOE=180°﹣70°=110°;(2)∠EOF=∠AOC或∠EOF=180°+∠AOC.当OF在∠BOC内部时,如图,∵∠AOC+∠BOC=180°,∠AOC=x°,∴∠BOC=(180﹣x)°,∵OE平分∠BOC,∴∠COE=∠BOC=(90﹣x)°,∵OF⊥OC,∴∠COF=90°,∴∠EOF=90°﹣∠COE=90°﹣(90﹣x)°=x°,即∠EOF=∠AOC;当OF在∠AOD内部时,如图,∵∠AOC+∠BOC=180°,∠AOC=x°,∴∠BOC=(180﹣x)°,∵OE平分∠BOC,∴∠COE=∠BOC=(90﹣x)°,∵OF⊥OC,∴∠COF=90°,∴∠EOF=90°+∠COE=90°+(90﹣x)°=(180+x)°,即∠EOF=180°+∠AOC.综上所述:∠EOF=∠AOC或∠EOF=180°+∠AOC;(3)∠EOF可能和∠DOE互补.当AB⊥CD,且OF与OB重合时,∠BOC=∠BOD=90°,∵OE平分∠BOC,∴∠BOE=BOC=45°,即∠EOF=45°,∴∠DOE=∠BOD+∠BOE=90°+45°=135°,∴∠EOF+∠DOE=180°,即∠EOF和∠DOE互补.25.【解答】解:(1)如图②中,过点E作EF∥AB,∵AB∥CD,EF∥AB,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠CEF,∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)如图③中,过点B作BF∥DE交CD的延长线于G.∵DE∥FG,∴∠EDC=∠G,∠DEB=∠EBF,∵AB∥CG,∴∠G=∠ABF,∴∠EDC=∠ABF,∴∠DEB=∠EBF=∠ABE+∠ABF=∠ABE+∠EDC.(3)如图④中,∵EF平分∠AEC,FD平分∠EDC,∴∠AEF=∠CEF,∠CDF=∠EDF,设∠AEF=∠CEF=x,∠CDF=∠EDF=y,则∠F=x+y,∵∠CED=3∠F,∴∠CED=3x+3y,∵AB∥CD,∴∠BED=∠CDE=2y,∵∠AEC+∠CED+∠DEB=180°,∴5x+5y=180°,∴x+y=36°,∴∠F=36°.。
七年级数学下册《相交线与平行线》单元测试卷(附答案)
七年级数学下册《相交线与平行线》单元测试卷(附答案)一、选择题(每题3分,共30分)1.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行2.如图,将一个含有30°角的直角三角尺放置在两条平行线a,b上.若∠1=135°,则∠2的度数为()A.95°B.110°C.105°D.115°3.如图,将△ABC沿BC方向平移1个单位得△DEF,若△ABC的周长等于10,则四边形ABFD 的周长为()A.12 B.10 C.9 D.84.下面四个图案中,能由如图经过平移得到的是()A.B. C. D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.4 B.5 C.6 D.以上都不对9.甲、乙、丙3人从图书馆各借了一本书(如下表所示),他们相约在每个星期天相互交换读完的书,经过数次交换后,他们都读完了这3本书.已知甲读的第三本书是乙读的第二本书,则丙读的第二本书是()甲乙丙书A书B书C A.书A B.书B C.书C D.无法确定10.下列各项正确的是()A.直线外一点到已知直线的垂线段叫做这点到直线的距离B.过一点有且只有一条直线与已知直线垂直C.同一平面内,两条直线的位置关系只有相交和平行两种D.有公共顶点且相等的两个角是对顶角二、填空题(每题3分,共24分)11.如图,已知∠1+∠2=180°,则图中与∠1相等的角共有_____个.12.如图,在图中标注的∠1、∠3、∠4、∠5中,当∠2 =∠_______时,AE∥BF.13.如图,已知a∥b,∠1=45°,则∠2=_________.14.“互补的两个角一定是同旁内角”是命题(填“真”或“假”).15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有个交点.17.如图所示,l1∥l2,点A,E,D在直线l1上,点B,C在直线l2上,满足BD平分∠ABC,BD⊥CD,CE平分∠DCB,若∠BAD=128°,那么∠AEC=.18.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E 交AF于点G,若∠CEF=70°,则∠GFD′=°.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,直线AB与CD相交于点O,OE平分∠BOC,∠AOD=110°,求∠AOE的度数.20.已知,如图a∥b,c∥d,∠1=73°,求∠2和∠3的度数.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.完成下列画图(1)如图,将△ABC向右平移4个单位,再向上平移2个单位长度,得到△A′B′C′,线段AB 与A′B′位置及数量关系是.(2)如图,一辆汽车在笔直的公路AB上由A向B行驶,M、是位于公路AB一侧的村庄.设汽车行驶到点P时,离村庄M的距离最小,请在图中公路AB上画出点P的位置,并说明数学原理.24.在ABC 中,D 是BC 边上一点,且CDA CAB ∠=∠,MN 是经过点D 的一条直线.(1)若直线MN AC ⊥,垂足为点E . ①依题意补全图1.②若70,CAB ︒∠=20DAB ︒∠=,则CAD ∠=________,CDE ∠=________. (2)如图2,若直线MN 交AC 边于点F ,且CDF CAD ∠=∠,求证:FD AB ∥.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CCABCDAAAC二、填空题:11.312.413.45°. 解析:∵a∥b,∠1=45°,∴∠2=∠1=45°.14.解:如图,∠1=∠2=90°,∵∠1+∠2=180°,∴∠1与∠2互补,但它们是一对内错角,不是同旁内角,∴“互补的两个角一定是同旁内角”是假命题,故答案为:假.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有个交点,∴8条直线两两相交,交点的个数最多为=28.故答案为:28.17.【分析】根据平行线的性质和角平分线的性质,可以得到∠AEC的度数,本题得以解决.【解答】解:∵l1∥l2,∴∠BAD+∠ABC=180°,∵∠BAD=128°,∴∠ABC=52°,∵BD平分∠ABC,∴∠DBC=26°,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=64°,∵CE平分∠DCB,∴∠ECB=32°,∵l1∥l2,∴∠AEC+∠ECB=180°,∴∠AEC=148°,故答案为:148°.【点评】本题考查平行线的性质、角平分线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】由AD∥BC可得∠AFE=∠CEF,∠CEF+∠DFE=180°,由翻折可得∠D'FE=∠DFE,进而求解.【解答】解:∵AD∥BC,∴∠AFE=∠CEF=70°,∵∠CEF+∠DFE=180°,∴∠DFE=180°﹣∠CEF=110°,由翻折可得∠D'FE=∠DFE=110°,∴∠GFD'=∠D'FE﹣∠AFE=110°﹣70°=40°,故答案为:40.【点评】本题考查角的相关计算,解题关键是掌握平行线的性质.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.【答案】解:∵∠AOD=110°,∴∠COB=110°,∠AOC=70°,∵OE平分∠BOC,∴∠COE=55°,∴∠AOE=70°+55°=125°.故答案为:∠AOE=125°.20.【答案】解:∵a∥b,∴∠1=∠2=73°,∵c∥d,∴∠3=180°-73°=107°.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B ,∴∠2+∠5+∠6=3∠B +∠B +∠B =180°, ∴∠B =36°, ∴∠2=108°, ∵∠1+∠2=180°, ∴∠1=72°.23.(1)解:如图,△A ′B ′C ′即为所求作;线段AB 与A ′B ′位置及数量关系分别是平行且相等, 故答案为:平行且相等. (2)解:如图,点P 即为所求.数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短, 24.(1)①如图所示.②70,CAB ︒∠=20DAB ︒∠=,50CAD ︒∴∠=.70CDA CAB ︒∠=∠=,18060C CAD CDA ︒︒∴∠=-∠-∠=.DE AC ⊥,第 11 页 共 11 页 9030CDE C ︒︒∴∠=-∠=. 故答案为50,︒30︒.(2)CDA CAB ∠=∠, 且,CDA CDF ADF ∠=∠+∠CAB CAD BAD ∠=∠+∠, CDF ADF CAD BAD ∴∠+∠=∠+∠. ,CDF CAD ∠=∠,ADF BAD ∴∠=∠FD AB ∴∥.。
相交线与平行线单元测试题含答案
相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。
人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案
人教版七年级数学下册《第五章 相交线与平行线》单元测试卷-附参考答案(测试时间:90分钟 卷面满分:100分)班级 姓名 学号 分数一 选择题(本大题共10个小题 每小题3分 共30分 在每小题给出的四个选项中 只有一项是符合题目要求的)1.(2022春·全国·七年级单元测试)下图中 1∠和2∠是对顶角的是( )A .B .C .D . 【答案】B 【分析】根据对顶角的定义解答即可.【详解】解:A 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意B 1∠和2∠是对顶角 则此项符合题意C 1∠和2∠没有公共顶点 则不是对顶角 此项不符合题意D 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意故选:B .【点睛】本题考查了对顶角 解题的关键是熟记对顶角的定义:有一个公共顶点 并且一个角的两边分别是另一个角的两边的反向延长线 具有这种位置关系的两个角 互为对顶角. 2.(2022·全国·七年级单元测试)如图 直线AD BE 、 被直线BF 和AC 所截 则2∠的同位角有( )个.A .2B .3C .4D .1【答案】B【分析】根据同位角的定义求解即可:同位角:两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角.【详解】解:∠2的同位角有:∠1 ∠F AC ∠4 共三个.故选:B .【点睛】本题考查了同位角熟记同位角定义是解题的关键.3.(2022春·七年级单元测试)如图所示的图案可以看作由“基本图案”经过平移得到的是()A.B.C.D.【答案】B【分析】根据平移的概念:在平面内把一个图形整体沿某一的方向移动这种图形的平行移动叫做平移变换简称平移即可选出答案.【详解】解:A 不是由“基本图案”经过平移得到故此选项不符合题意B 是由“基本图案”经过平移得到故此选项符合题意C 不是由“基本图案”经过平移得到故此选项不符合题意D 不是由“基本图案”经过平移得到故此选项不符合题意故选B.【点睛】本题考查生活中的平移现象仔细观察各选项图形是解题的关键.4.(2022秋·江苏连云港·七年级校考单元测试)下列语句中属于命题的是()A.等角的余角相等B.两点之间线段最短吗C.连接P Q两点D.花儿会不会在春天开放【答案】A【分析】根据命题的定义对选项一一进行分析即可.【详解】解:选项A:是用语言可以判断真假的陈述句是命题故符合题意选项B C D:都不是可以判断真假的陈述句都不是命题故不符合题意.故选:A【点睛】本题考查了命题的定义解本题的关键在判断给出的语句是否用语言符号或式子表达是否为可以判断真假的陈述句.一般地对某件事情作出正确或不正确的判断的句子叫做命题命题可看做由题设和结论两部分组成.5.(2022·全国·七年级单元测试)如图若图形A经过平移与下方图形(阴影部分)拼成一个长方形则平移方式可以是()A .向右平移4个格 再向下平移4个格B .向右平移6个格 再向下平移5个格C .向右平移4个格 再向下平移3个格D .向右平移5个格 再向下平移4个格 【答案】A【分析】根据平移的性质 结合图形解答即可.【详解】解:图形A 向右平移4个格 再向下平移4个格可以与下方图形(阴影部分)拼成一个长方形 故选:A .【点睛】本题考查的是平移的性质 把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.6.(2022春·黑龙江哈尔滨·七年级校考单元测试)如图 已知直线AB CD ∥ 130GEF ∠=︒ 135EFH ∠=︒ 则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒ 【答案】D【分析】由130GEF ∠=︒ 135EFH ∠=︒可得1324265︒∠+∠+∠+∠= 由ABCD 得34180∠+∠=︒ 进而可求出12∠+∠的度数.【详解】解:如下图所示∠130GEF ∠=︒∠13130︒∠+∠=∠135EFH ∠=︒∠24135︒∠+∠=∠1324265︒∠+∠+∠+∠=∠AB CD∠34180∠+∠=︒∠121324(34)26518085︒∠∠︒+∠=∠+∠+∠+∠-+∠=︒=-故选:D .【点睛】本题考查了平行线的性质 解题的关键是根据平行线的性质找出图中角度之间的关系.7.(2022春·江苏·七年级单元测试)下列说法中 错误的有( )①若a b ∥ b c ∥ 则a c ∥②若a 与c 相交 b 与c 相交 则a 与b 相交③相等的角是对顶角④过一点有且只有一条直线与已知直线平行.A .3个B .2个C .1个D .0个【答案】A【分析】根据平行公理及推论可判断① 若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 可判断② 对顶角相等 但相等的角不一定是对顶角 可判断③ 根据平行公理及推论可判断④.【详解】解:根据平行线公理及推论可知 ①正确若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 ②错误对顶角相等 但相等的角不一定是对顶角 ③错误过直线外一点有且只有一条直线与已知直线平行④错误.故错误的有3个故选:A.【点睛】本题考查平行公理及推论平行线的判定与性质熟练掌握平行线的判定与性质是解答本题的关键.8.(2022·全国·七年级单元测试)如图P为直线l外一点A B C在l上且PB∠l下列说法中正确的个数是()①P A PB PC三条线段中PB最短②线段PB叫做点P到直线l的距离③线段AB的长是点A到PB 的距离④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度叫做点到直线的距离从直线外一点到这条直线上各点所连的线段中垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段根据垂线段最短可知P A PB PC三条线段中PB 最短故原说法正确②线段BP是点P到直线l的垂线段故线段BP的长度叫做点P到直线l的距离故原说法错误③线段AB是点A到直线PB的垂线段故线段AB的长度叫做点P到直线l的距离故故原说法正确④由题意及图形无法判断线段AC的长是点A到PC的距离故原说法错误综上所述正确的说法有①③故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中垂线段最短.∥的是()9.(2022春·天津·七年级校考单元测试)如图下列条件中能判断AB CDA .12∠=∠B .34∠∠=C .180DAB ABC ∠+∠=︒D .B D ∠=∠ 【答案】A 【分析】结合图形分析两角的位置关系 根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:∠12∠=∠∠AB CD ∥故①选项符合题意∠34∠∠=∠AD BC ∥故②选项不符合题意∠180DAB ABC ∠+∠=︒∠AD BC ∥故③选项不符合题意∠B D ∠=∠ 不能判定AB CD ∥故④选项不符合题意故选:A .【点睛】本题主要考查了平行线的判定 能根据图形准确找出同位角 内错角和同旁内角是解决问题的关键.10.(2022秋·江苏盐城·七年级校联考单元测试)如图 在宽为20m 长为30m 的矩形地面上修建两条同样宽的道路 余下部分作为耕地.根据图中数据 计算耕地的面积为( )A .600m 2B .551m 2C .550m 2D .500m 2【答案】B【详解】由图可以看出两条路的宽度为:1m 长度分别为:20m 30m所以 可以得出路的总面积为:20×1+30×1-1×1=49m 2又知该矩形的面积为:20×30=600m 2所以 耕地的面积为:600-49=551m 2.故选B.二 填空题(本大题共8个小题 每题2分 共16分)11.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考单元测试)如图 要把池水引到C 处 可作CD AB ⊥于点D 然后沿CD 开渠 可使所开渠道最短 依据是______.【答案】垂线段最短【分析】根据直线外一点到直线的距离解答.【详解】解:因为直线外一点到直线上各点的连线中 垂线段最短所以沿CD 开渠故答案为:垂线段最短.【点睛】本题考查垂线段的性质 熟练掌握垂线段最短是解决本题的关键.12.(2022秋·重庆铜梁·七年级校考单元测试)如图 O 是直线AB 上一点 32COB ∠=︒ 则1∠=___.【答案】148︒##148度 【分析】依据邻补角进行计算 即可得到∠1的度数.【详解】解:∠O 是直线AB 上一点 32COB ∠=︒∠118032148∠=︒-︒=︒故答案为:148︒.【点睛】本题主要考查了邻补角的概念 只有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 互为邻补角.邻补角互补 即和为180︒.13.(2022秋·河南安阳·七年级统考单元测试)如图 给出下列条件:①∠1=∠2 ②∠3=∠4 ③∠A =∠CDE ④∠A +∠ADC =180°.其中 能推出AB //DC 的条件为_______.【答案】①③④【分析】根据平行线的判定定理逐个分析判断即可求解.【详解】解:①∠∠1=∠2∥符合题意∠AB DC②∠∠3=∠4∥不符合题意∠BC AD③∠∠A=∠CDE∥符合题意∠AB DC④∠∠A+∠ADC=180°∥符合题意∠AB DC故答案为:①③④.【点睛】本题考查了平行线的判定定理掌握平行线的判定定理是解题的关键.14.(2022秋·云南昭通·七年级校考单元测试)如图把三角尺的直角顶点放在直线b上.若∠1= 50° 则当∠2=____时a∥b.【答案】40°##40度【分析】根据三角尺的直角顶点在直线b上∠1=50° 即可得到∠3=180°−90°−∠1=40° 再根据a//b即可得到∠2=∠3=40°.【详解】解:如图∠三角尺的直角顶点在直线b上∠1=20°∠∠3=180°−90°−∠1=40°又∠要使得a b∠只需要∠2=∠3=40°故答案为:40.【点睛】本题主要考查了平行线的性质熟记两直线平行线同位角相等是解题的关键.15.(2022秋·河北石家庄·七年级统考单元测试)在同一平面内直线a b相交于P 若a∠c 则b与c的位置关系是______.【答案】相交【详解】解:因为a∠c 直线b相交所以直线b与c也有交点故答案为:相交.【点睛】本题考查了平行线和相交线.同一平面内一条直线与两条平行线中的一条相交则必与另一条直线也相交.16.(2022秋·北京·七年级校考单元测试)如图快艇从P处向正北航行到A处时向右转60︒航行到B处再向左转90︒继续航行此时的航行方向为北偏西______°.【答案】30【分析】根据平行线的性质与方位角的定义即可求解.【详解】解:如图∠//PC BE 60CAB ∠=︒∠60EBF ∠=︒∠906030DBE此时的航行方向为:北偏西30︒故答案为:30.【点睛】此题主要考查方位角 解题的关键是熟知方位角的定义及平行线的性质.17.(2022·全国·七年级单元测试)如图 在三角形ABC 中 90BAC ∠=︒ 4cm AB = 5cm =BC 3cm AC = 将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF 且AC 与DE 相交于点G 连接AD .(1)阴影部分的周长为______cm(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm 则a 的值为______.【答案】 12 4.5##92##142 【分析】(1)由平移的性质可得出cm AD BE a == 5cm DE AB ==.再根据()5cm CE BC BE a =-=- 即ADG S ABC CEG ABEG S S S =+四边形 即可得出1342ADG CEG S S =⨯⨯- 再根据24.8cm ADG CEG S S -= 列出关于a 的等式 解出a 即可.【详解】(1)∠三角形ABC 沿BC cm(5)a <得到三角形DEFCE BC =∴阴影部分的周长为故答案为:(2)过AABC S =3AH =ADG ABED S四边形 ADG S . ABC CEG ABEG S S S =+四边形1342CEG ABEG S S =⨯⨯-四边形121342ADG CEG BE S S ⨯-=⨯⨯- 即125ADG CEG S S -=ADG 的面积比三角形EGC 的面积大24.8cm 4.8cm ADG CEG SS -=4 4.8⨯= 18.(2022春·黑龙江哈尔滨·七年级单元测试)如图 直线AB CD ∥ 点E F 分别为直线AB 和CD 上的点 点P 为两条平行线间的一点 连接PE 和PF 过点P 作EPF ∠的平分线交直线CD 于点G 过点F 作FH PG ⊥ 垂足为H 若120DGP PFH ∠-∠=︒ 则AEP ∠=________︒.【答案】30︒【分析】设FPG x GPM y ∠∠=︒=︒, 过P 作PM CD ∥ 则AB CD PM ∥∥ 用x y ︒︒,表示PGD ∠ PFH ∠ 代入求出x y ︒-︒ 即AEP ∠的值可以解出.【详解】解:设FPG x GPM y ∠∠=︒=︒,PG 平分EPF ∠EPG FPG x ∠∠∴==︒过P 作PM CD ∥∥AB CDAB CD PM ∴∥∥AEP EPM EPG MPG x y ∠∠∠∠∴==-=︒-︒ 180180PGD MPG y ∠∠=︒-=︒-︒FH PG ⊥90PHF ∠∴=︒909090PFH FPG FPG x ∠∠∠∴=︒-=︒-=︒-︒120DGP PFH ∠-∠=︒()()18090120y x ∴︒-︒-︒-︒=︒ 即30x y ︒-︒=︒30AEP x y ∠∴=︒-︒=︒.故答案为:30︒.【点睛】本题考查平行线的性质 角平分线的性质 垂线的性质 熟练运用性质计算是解题的关键.三 解答题(本大题共8个小题 共54分 第19-22每小题6分 23-24每小题7分 25-26每小题8分)19.(2022·全国·七年级单元测试)如图 在边长为1个单位的正方形网格中 ABC 经过平移后得到A B C ''' 点B 的对应点为B ' 根据下列条件 利用网格点和无刻度的直尺画图并解答 保留痕迹:(1)画出A B C ''' 线段AC 扫过的图形的面积为______(2)在A B ''的右侧确定格点Q 使A B Q ''△的面积和ABC 的面积相等 请问这样的Q 点有______个? 根据平移的性质得出'''ABC线段)根据平行线之间的距离处处相等可得答案.A B C '''即为所求111022612411022A B ∥ 则点1234,,,Q Q Q Q 即为所求本题主要考查了作图——平移变换20.(2022秋·北京海淀·七年级校考单元测试)如图 点C 在MON ∠的一边OM 上 过点C 的直线AB ON ∥CD 平分ACM ∠.当60DCM ∠=︒时 求O ∠的度数.解:∠CD 平分ACM ∠∠ACM ∠= .∠60DCM ∠=︒∠ACM ∠= °.∠直线AB 与OM 交于点C∠OCB ∠=ACM ∠= °( )∠AB ON ∥∠+=180O OCB ∠∠︒( )∠O ∠= °.【答案】2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60【分析】根据角平分线的定义 即可得到∠ACM 的度数 进而得出∠OCB 的度数 再依据平行线的性质 即可得到∠O 的度数.【详解】解:∠CD 平分ACM ∠∠=2ACM DCM ∠∠.∠∠60DCM ∠=︒∠=120ACM ∠︒.∠直线AB 与OM 交于点C∠==120OCB ACM ∠∠︒(对顶角相等)∠AB ON ∥∠+=180O OCB ∠∠︒(两直线平行 同旁内角互补)∠=60O ∠︒.故答案为:2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60.【点晴】本题主要考查了角的计算 平行线的性质以及角平分线的定义 解题的关键是熟练掌握平行线的性质:两直线平行 同旁内角互补.21.(2022秋·重庆铜梁·七年级校考单元测试)如图 在四边形ABCD 中 130A ∠=︒ 50ADC ∠=︒ 试说明12∠=∠.【答案】AB CD 同旁内角互补 两直线平行 两直线平行 内错角相等【分析】由180A ADC ∠+∠=︒ 利用同旁内角互补 两直线平行可得AB CD ∥ 再利用平行线的性质可得答案.【详解】证明:∠130A ∠=︒ 50ADC ∠=︒(已知)∠180A ADC ∠+∠=︒(等式的性质)∠AB CD ∥ (同旁内角互补 两直线平行)∠12∠=∠(两直线平行 内错角相等).【点睛】本题考查的是平行线的判定与性质 熟记平行线的性质与判定方法是解本题的关键.22.(2022·全国·七年级单元测试)如图 己知点P Q 分别在AOB ∠的边OA OB 、上 按下列要求画图:(1)画射线PQ(2)过点P 画垂直于射线OB 的线段PC 垂足为点C(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图分别P画垂直于射线OB的射线PC垂足为点C过点Q画直线QM平行于射线OA.【详解】(1)如图射线PQ为所求(2)如图线段PC为所求(3)如图直线QM为所求【点睛】此题主要考查了基本作图正确把握相关定义是解题关键.23.(2022春·七年级单元测试)如图汽车站码头分别位于A B,两点直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线并说明理由(2)从码头B到公路b怎样走最近?画出最近路线BC并说明理由.【答案】(1)作图见解析 理由见解析(2)作图见解析 理由见解析【分析】(1)根据两点之间线段最短解决问题.(2)根据垂线段最短解决问题.【详解】(1)解:如图 连接,A B 线段AB 即为所求作.(2)如图 过点B 作BC b ⊥于点C 线段BC 即为所求作.【点睛】本题考查作图﹣应用与设计作图 垂线段最短 两点之间线段最短等知识 解题的关键是理解题意 灵活运用所学知识解决问题.24.(2022春·七年级单元测试)如图 AB CD ⊥ 垂足为O .(1)比较AOD EOB AOE ∠∠∠,,的大小 并用“<”号连接.(2)若28EOC ∠=︒ 求EOB ∠和EOD ∠的度数.【答案】(1)AOE AOD EOB ∠<∠<∠(2)118152EOB EOD ∠=︒∠=︒,【分析】(1)根据图形可判断各角的大小.(2)根据图形可得90118EOB EOC ∠=∠+︒=︒,根据平角的定义求得EOD ∠. 【详解】(1)解:∠AB CD ⊥∠909090AOD EOB EOC AOE EOC ∠=︒∠=︒+∠∠=︒-∠,,∠AOE AOD EOB ∠<∠<∠(2)∠AB CD ⊥∠90118EOB EOC ∠=∠+︒=︒∠180********EOD EOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角的关系 垂直的定义 通过已知角求得未知角 数形结合是解题的关键. 25.(2022春·广东·七年级单元测试)如图 直线CD EF 交于点O OA OB 分别平分COE ∠和DOE ∠ 已知1290∠+∠=︒ 且2:32:5∠∠=.(1)求BOF ∠的度数(2)试说明AB CD 的理由.∠+∠)解:12AOCAB CD.【点睛】本题主要考查了平行线的判定与性质是解题的关键.26.(2022秋·上海宝山·七年级校考单元测试)已知AB∠CD点M为平面内的一点∠AMD=90°.(1)当点M在如图1的位置时求∠MAB与∠D的数量关系(写出说理过程)(2)当点M在如图2的位置时则∠MAB与∠D的数量关系是(直接写出答案)(3)在(2)条件下如图3 过点M作ME∠AB垂足为E∠EMA与∠EMD的角平分线分别交射线EB于点F G回答下列问题(直接写出答案):图中与∠MAB相等的角是∠FMG=度.【答案】(1)∠MAB+∠D=90°见解析(2)∠MAB﹣∠D=90°(3)∠MAB=∠EMD45【分析】(1)在题干的基础上通过平行线的性质可得结论(2)仿照(1)的解题思路过点M作MN∠AB由平行线的性质可得结论(3)利用(2)中的结论结合角平分线的性质可得结论.【详解】(1)解:如图①过点M作MN∥AB∵AB∥CD∴MN∥AB∥CD(如果一条直线和两条平行线中的一条平行那么它和另一条也平行).∴∠D=∠NMD.∵MN∥AB∴∠MAB+∠NMA=180°.∴∠MAB+∠AMD+∠DMN=180°.∵∠AMD=90°∴∠MAB+∠DMN=90°.∴∠MAB+∠D=90°(2)解:如图②过点M作MN∥AB∵MN∥AB∴∠MAB+∠AMN=180°.∵AB∥CD∴MN∥AB∥CD.∴∠D=∠NMD.∵∠AMD=90°∴∠AMN=90°﹣∠NMD.∴∠AMN=90°﹣∠D.第21页共22页第22页共22页。
最新人教版七年级下册第五章《相交线与平行线》单元检测试题(含答案解析)
人教版七年级下册数学单元检测卷:第五章相交线与平行线一.填空题(共6小题)1.如图,直线DE经过三角形ABC的顶点A,则∠DAC与∠C的关系是.(填“内错角”或“同旁内角”)2.如图,AB∥CD,CF交AB于点E,∠AEC与∠C互余,则∠CEB是度.3.将一块60°的直角三角板DEF放置在45°的直角三角板ABC上,移动三角板DEF使两条直角边DE、DF恰分别经过B、C两点,若EF∥BC,则∠ABD= °.4.把命题“等角的余角相等”写成“如果……,那么……”的形式为.5.在体育课上某同学立定跳远的情况如图所示,l表示起跳线,在测量该同学的实际立定跳远成绩时,应测量图中线段PC的长,理由是.6.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).二.选择题(共10小题)7.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=35°15′.则∠AOD的度数为()A.55°15′B.65°15′C.125°15′D.165°15′8.图中∠1和∠2是对顶角的是()A.B.C.D.9.在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是()A.B.C.D.10.下列命题中是假命题的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行11.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D12.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°13.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠E=45°,∠B=60°,若AE∥BC,则∠AFD=()A.75°B.85°C.90°D.65°14.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°15.下列现象是平移的是()A.电梯从底楼升到顶楼B.卫星绕地球运动C.碟片在光驱中运行D.树叶从树上落下16.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48三.解答题(共6小题)17.如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21°,求∠AOB的度数.18.如图,已知直线AB,CD,EF相交于点O.(1)若∠COF=120°,∠AOD=100°,求∠AOF的度数;(2)若∠BOC-∠BOD=20°,求∠AOC的度数.19.填空或批注理由:如图,已知∠1=∠2,∠A=∠D,试说明:AE∥BD证明:∵∠1=∠2(已知)∴AB∥CD ( )∴∠A=()( )∵∠A=∠D(已知)∴=∠D ( )∴AE∥BD ( )20.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?21.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是.22.如图,已知点D、E、B、C分别是直线m、n上的点,且m∥n,延长BD、CE交于点A,DF 平分∠ADE,若∠A=40°,∠ACB=80°.求:∠DFE的度数.23.问题情境:(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答;问题迁移:如图3,点A、B在射线OM上,点C、D在射线ON上,AD∥BC,点P在射线OM上运动(点P与A、B、O三点不重合).(2)当点P在线段AB上运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由;(3)当点P在线段AB外运动时,试判断∠CPD与∠ADP、∠BCP之间的数量关系,并说明理由.参考答案1. 同旁内角2.1353.154. 如果两个角相等,那么这两个角的余角相等5. 垂线段最短6. ⑤⑥7-11 CADDD12-16 CACAD17. 解:(1)∵AO⊥CO,∴∠AOC=90°,∵∠AOC=2∠BOC,∴∠BOC=45°,∴∠AOB=∠AOC+∠BOC=135°,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=67.5°;(2)∵∠AOC=2∠BOC,∴∠AOB=3∠BOC,∵OD是∠AOB的平分线,∴∠BOD=∠AOB=∠BOC,∵∠COD=21°,∴21°+∠BOC=∠BOC,∴∠BOC=42°,∴∠AOB=3∠BOC=126°.18.解:(1)∵∠COF=120°,∴∠2=180°-120°=60°,∴∠DOF=∠2=60°,∵∠AOD=100°,∴∠AOF=100°-60°=40°;(2)∵∠BOC+∠BOD=180°,∠BOC-∠BOD=20°,∴∠BOC=100°,∠BOD=80°,∴∠AOC=∠BOD=80°.19. 内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.20. 解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF(已知),所以∠EAC=∠FBD=90°(垂直的定义).因为∠1=∠2(已知),所以∠EAC+∠1=∠FBD+∠2(等式的性质),即∠EAB=∠FBG,所以AE∥BF(同位角相等,两直线平行).21. 解:(1)如图①,PQ∥MN,PN⊥MN;(2)如图②,△EFG或△EFH即为所求;(3)三角形的面积为:3×3-×1×2-×1×3-×2×3=9-1-1.5-3=3.5,22.解:∵m∥n,∠ACB=80°∴∠AED=∠ACB=80°,∵∠A=40°,∴△ADE中,∠ADE=180°-(∠A+∠AED)=180°-(40°+80°)=60°,又∵DF平分∠ADE,∴∠EDF=∠ADE=30°,∴△DEF中,∠DFE=180°-∠EDF-∠DEF=180°-30°-80°=70°.23.解:(1)∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°-∠A=50°,∠CPE=180°-∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠ADP +∠BCP,理由如下:如图3,过P作PE∥AD交CD于点E,图3∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠ADP,∠CPE=∠BCP,∴∠CPD=∠DPE+∠CPE=∠ADP +∠BCP;(3)①当点P在射线AM上时,∠CPD=∠BCP-∠ADP;理由:如图4,过点P作PE∥AD交ON于点E,∵AD∥BC,∴AD∥PE∥BC,∴∠DPE=∠人教版七年级数学下册单元测试卷第五章相交线与平行线综合能力提升测试卷一、选择题(每小题4分,共24分)1.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 153°.2.“直角都相等”的题设是两个角是直角,结论是这两个角相等.3.如图,点A在直线DE上,当∠BAC=___57_____°时,DE∥BC.4. 如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是内错角 .5.互为邻补角的两个角相加等于180°.6.如图,AB∥CD,则∠1+∠3—∠2的度数等于 ___180° _____.二、选择题(每小题4分,共40分)7.如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°8.下列命题是真命题的是( C )A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交9.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为( C )A. ①②③B. ①②④C. ①③④D. ②③④10.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35°B.40°C.45°D.60°11 .经过直线外一点画直线,下列说法错误的是( B )A.可以画无数条直线与这条直线相交B.可以画无数条直线与这条直线平行C.能且只能画一条直线与这条直线平行D.能且只能画一条直线与这条直线垂直12.下列叙述中,正确的是( C )A. 在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B. 不相交的两条直线叫平行线C. 两条直线的铁轨是平行的D. 我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角13. 如图,点O为直线AB上一点,CO⊥AB于点O, OD在∠COB内,若∠COD=50°,则∠AOD的度数是( D )A.100°B.110°C.120°D.140°14. 下列图形中,周长最长的是( C )15. 如图,已知OA⊥OC,OB⊥OD, ∠BOC=50°,则∠AOD的度数为( C )A.100°B.120°C.130°D.140°16 .a、b、c是平面上的任意三条直线,它们的交点可以有( B )A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不正确三、解答题(共36分)17.(共7分)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和____是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____是内错角;(3)∠1和∠3是直线AB,AF被直线_____所截构成的_____角;(4)∠2和∠4是直线____,______被直线BC所截构成的_____角.17.(1) ∠2(2) ∠4(3) ED内错(4) AB, AF同位18. (共4分)如图,直线AB、CD是一条河的两岸,并且AB∥CD,E为直线AB、CD 外一点,现想过点E画岸CD的平行线,只需过点E画岸AB的平行线即可.画图,并说明理由.图略理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (共4分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).20. (共6分)根据下列要求画图.(1)如图1,过点P画AB的垂线;(2)如图2,过点P画OA,OB的垂线;(3)如图3,过点A画BC的垂线.答案:(1)如图1所示.(2)如图2所示.(3)如图3所示.21. (共7分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE 与DF的位置关系?试说明理由。
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。
人教版数学七年级下《第五章相交线与平行线》单元练习卷含试卷分析答题技巧
第五章相交线与平行线一、填空题1.如图所示,AB交CD于点O,已知∠AOC=60°,则∠AOD的度数为_______.【答案】120°2.直线a同侧有A,B,C三点,若过点A,B的直线m和过点B,C的直线n都与a平行,则A,B,C三点_______,原因是________________________________.【答案】共线经过直线外一点,有且只有一条直线与这条直线平行3.练习本中的横线格中的横线段位置关系是_______,如图所示.【答案】平行4.要在台阶上铺设某种红地毯,已知这种红地毯每平方米的售价是40元,台阶宽为3米,侧面如图所示.购买这种红地毯至少需要__________元.【答案】12005.如图,直线a,b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是 .【答案】70°二、选择题6.下列说法中正确的有( B )个.①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1B.2C.3D.47.(宁波中考)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为(B)A.40°B.50°C.60°D.70°8.下列说法正确的是(C)B.过一点作已知直线的平行线有一条且只有一条D.所含字母相同的项是同类项9.如图,将直线l1沿AB的方向平移得到l2,若∠1=40°,则∠2=(A)A.40°B.50°C.90°D.140°10.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是(C)A.①B.①②C.①②③D.①②③④11.如图所示,在这些四边形AB不平行于CD的是(D )12.如图,直线AB,CD相交于点O,下列条件中,不能说明AB⊥CD的是( C )A.∠AOD=90°B.∠AOC=∠BOCC.∠BOC+∠BOD=180°D.∠AOC+∠BOD=180°13. 在同一平面内,不重合的两条直线的位置关系是( C )A.平行B.相交C.平行或相交D.平行、相交或垂直14.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=(A)A.70°B.80°C.110°D.100°A.0 B.1 C.2 D.3三、解答题16.如图,直线AB,CD相交于点O,过点O作两条射线OM,ON,且∠AOM=∠CON=90°.(1)若OC平分∠AOM,求∠AOD的度数;(2)若∠1=∠BOC,求∠AOC和∠MOD.解:(1)因为∠AOM=∠CON=90°,OC平分∠AOM,所以∠1=∠AOC=45°,所以∠AOD=180°-∠AOC=180°-45°=135°.(2)因为∠AOM=90°,所以∠BOM=180°-90°=90°.因为∠1=∠BOC,所以∠1=∠BOM=30°,所以∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.17.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°).(1)①若∠DCE=45°,则∠ACB的度数为____;②若∠ACB=140°,求∠DCE的度数.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE 所有可能的度数(不必说明理由);若不存在,请说明理由.解:(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°-45°=45°.∴∠ACB=∠ACD+∠DCB=90°+45°=135°.故答案为:135°.②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°.∴∠DCE=90°-50°=40°.(2)∠ACB+∠DCE=180°.理由如下:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°.(3)存在,当∠ACE=30°时,AD∥BC;当∠ACE=∠E=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,BE∥CD;当∠ACE=165°时,BE∥AD.18.如图,点P,Q分别是∠AOB的边OA,OB上的点.(1)过点P画OB的垂线,垂足为H;(2)过点Q画OA的垂线,交OA于点C,连接PQ;(3)线段QC的长度是点Q到的距离,的长度是点P到直线OB的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ、PH的大小关系是(用“<”号连接).【答案】直线OA,线段PH;PH<PQ;19.如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).20.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm).(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.【解析】(1)地毯的面积为:(m+2h)n=mn+2nh.(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200 cm2.。
2023年七年级数学下第5章《相交线与平行线》测试卷及答案解析
2023年七年级数学下第5章《相交线与平行线》测试卷一.选择题(共10小题)
1.三条直线相交,交点最多有()
A.1个B.2个C.3个D.4个
2.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于(
)
A.159°B.161°C.169°D.138°
3.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC )
的度数为(
A.40°B.50°C.60°D.140°
4.下列命题正确的是()
A.圆内接四边形的对角互补
B.平行四边形的对角线相等
C.菱形的四个角都相等
D.等边三角形是中心对称图形
5.下列命题是假命题的是()
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
6.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中
第1页共16页。
第五章《相交线与平行线》单元测试卷(含答案)
第五章 相交线与平行线单元测试班级: 姓名: 考生得分:一、选择题(每小题3分,共30分) 1.已知∠α=35°,则∠α的补角的度数是( ) A.55° B.65° C.145° D.165° 2.将图中所示的图案平移后得到的图案是( )A. B. C. D.3.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数 是( )A.60°B.50°C.40°D.30°4.如图,a ∥b ,∠1=∠2,∠3=40°,则∠4等于( ) A.40° B.50° C.60° D.70° 5.如图所示,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为( ) A .30° B .35° C .40° D .45°6.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( ) A .1个 B .2个 C .3个 D .4个7.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( ) A .∠1=∠2 B .∠3=∠4 C .∠5=∠B D .∠B +∠BDC =180°8.如图,DH ∥EG ∥BC ,DC ∥EF ,那么与∠DCB 相等的角的个数为( ) A .2个 B .3个 C .4个 D .5个 9. 下列条件中能得到平行线的是( )①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线. A .①② B .②③ C .② D .③10. 两平行直线被第三条直线所截,同位角的平分线( ) A .互相重合 B .互相平行 C .互相垂直 D .相交二、填空题(每小题3分,满分24分) 11.图中是对顶角量角器,用它测量角的原理是 .12.如图,l ∥m ,∠1=120°,∠A =55°,则∠ACB 的大小是 . 13.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠, 能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB ,CD ,EF 相交于点O ,且AB ⊥CD ,∠1与∠2的关系是 .15.如图,在△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .16.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,则∠2= .1718第2题图第6题图 第7题图 第8题图第11题图第13题图 第14题图 第15题图 第16题图 第17题图第18题图第3题图三、解答题(共46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)21.(8分)已知:如图,∠BAP+∠APD =180°,∠1 =∠2.求证:∠E =∠F.22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.24.(9分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.25.(10分)如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?第19题图第五章相交线与平行线检测题参考答案1.C 解析:∵∠α=35°,∴∠α的补角的度数为180°35°=145°,故选C.2. C 解析:根据平移的性质可知C正确.3. C 解析:因为FE⊥DB,所以∠FED=90°,由∠1=50°可得∠FDE=90°-50°=40°.因为AB∥CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.4. D 解析:因为a∥b,所以∠2=∠4.又∠2=∠1,所以∠1=∠4.因为∠3=40°,所以∠1=∠4==70°.5. C 解析:由AB∥CD可得,∠FEB=∠C=70°,∵∠F=30°,又∵∠FEB=∠F+∠A,∴∠A=∠FEB∠F=70°30°=40°.故选项C是正确的.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11.对顶角相等解析:根据图形可知量角器测量角的原理是:对顶角相等.12. 65°解析:∵l∥m,∴∠ABC=180°-∠1=180°-120°=60°.在△ABC中,∠ACB=180°-∠ABC-∠A=180°-60°-55°=65°.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与直线a相交于点D,∵a∥b,∴∠ADC=∠DBE=50°. ∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 120 解析:∵AB∥CD,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°.理由:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621×5×621×2×521×4×221××121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD .∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF .∴ AE ∥FP .∴ ∠E =∠F .22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°,∴ ∠EDC =∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.25、解:(1)∵∠AOE +∠AOF =180°(互为补角),∠AOE =40°,∴∠AOF =140°; 又∵OC 平分∠AOF ,∴∠FOC =∠AOF =70°,∴∠EOD =∠FOC =70°(对顶角相等);而∠BOE =∠AOB ﹣∠AOE =50°,∴∠BOD =∠EOD ﹣∠BOE =20°; (2)(3)略。
人教版七年级数学下册《第5章 相交线与平行线》单元测试卷及答案解析
人教新版七年级下册《第5章相交线与平行线》单元测试卷(2)一、选择题(本大题10小题,每题4分,共40分)1.(4分)如图,能够证明a∥b的是()A.∠1=∠2B.∠4=∠5C.∠4=∠3D.∠1=∠5 2.(4分)将一个含30°角的直角三角板ABC如图所示放置,∠B=90°,点E为AC延长线上的点,若射线CD与直角边BC垂直,则∠DCE的度数是()A.10°B.20°C.30°D.50°3.(4分)直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm 4.(4分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.5.(4分)如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为()A.40°B.50°C.60°D.70°6.(4分)如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④7.(4分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°8.(4分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°9.(4分)如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC 沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC =DF;②ED⊥DF;③四边形ABFD的周长是16;④AD:EC=2:3.其中结论正确的个数有()A.1个B.2个C.3个D.4个10.(4分)如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°二、填空题(本大题10小题,每题3分,共30分)11.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:.12.(3分)如图,若∠1+∠2=220°,则∠3=.13.(3分)如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.14.(3分)如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB,CD的关系是,依据是.15.(3分)如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移格,再向上平移格.16.(3分)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MON=.17.(3分)如图,∠A与是内错角,∠B的同位角是,直线AB和CE被直线BC所截得到的同旁内角是.18.(3分)如图,AB∥CD∥EG,AC∥DF,若∠BAC=120°,则∠CDF=°.19.(3分)一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=度.20.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若AB∥CD,HG=18cm,MG=6cm,MC=3cm,则阴影部分的面积是cm2.三、解答题(本大题6小题,共80分)21.(12分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.22.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.23.(14分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.24.(14分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM 交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.25.(12分)如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠C2FE的度数;(2)若∠DEF=α,请你用含α的式子表示图③中∠C2FE的度数.26.(16分)如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC 的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.人教新版七年级下册《第5章相交线与平行线》单元测试卷(2)参考答案与试题解析一、选择题(本大题10小题,每题4分,共40分)1.(4分)如图,能够证明a∥b的是()A.∠1=∠2B.∠4=∠5C.∠4=∠3D.∠1=∠5【考点】平行线的判定.【分析】根据平行线的判定一一判断即可.【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.2.(4分)将一个含30°角的直角三角板ABC如图所示放置,∠B=90°,点E为AC延长线上的点,若射线CD与直角边BC垂直,则∠DCE的度数是()A.10°B.20°C.30°D.50°【考点】平行线的判定与性质.【分析】根据平行线的判定推出CD∥AB,根据平行线的性质得出∠A=∠DCE,代入求出即可.【解答】解:∵CD⊥BC,∴∠BCD=90°,∵∠B=90°,∴∠B=∠BCD,∴CD∥AB,∴∠DCE=∠A,∵∠A=30°,∴∠DCE=30°,故选:C.3.(4分)直线m外的一点P,它到直线m上三点A,B,C的距离分别是6cm,3cm,5cm,则点P到直线m的距离为()A.3cm B.5cm C.6cm D.不大于3cm【考点】点到直线的距离.【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【解答】解:∵垂线段最短,∴点P到直线m的距离≤3cm,故选:D.4.(4分)在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.5.(4分)如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为()A.40°B.50°C.60°D.70°【考点】垂线.【分析】根据垂直定义可得∠COB=90°,从而求出∠COF=40°,然后再根据对顶角相等,即可解答.【解答】解:∵AB⊥CD,∴∠COB=90°,∵∠1=50°,∴∠COF=∠COB﹣∠1=40°,∴∠2=∠COF=40°,故选:A.6.(4分)如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④【考点】同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【解答】解:①∠1与∠2是同旁内角,说法正确;②∠1与∠ACE是内错角,说法正确;③∠B与∠4是同位角,说法正确;④∠1与∠3是内错角说法正确,故选:D.7.(4分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【考点】平行线的性质.【分析】利用已知条件易求∠ACD的度数,再根据两线平行同位角相等即可求出∠1的度数.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选:B.8.(4分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【考点】平行线的性质.【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.9.(4分)如图,在三角形ABC中,∠BAC=90°,AB=3,AC=4,BC=5,将三角形ABC 沿直线BC向右平移2个单位得到三角形DEF,连接AD,则下列结论:①AC∥DF,AC =DF;②ED⊥DF;③四边形ABFD的周长是16;④AD:EC=2:3.其中结论正确的个数有()A.1个B.2个C.3个D.4个【考点】平移的性质.【分析】利用平移的性质依次判断可求解.【解答】解:∵将三角形ABC沿直线BC向右平移2个单位得到三角形DEF,∴AD=BE=CF=2,AC∥DF,AB∥DE,AB=DE=3,AC=DF=4,BC=EF=5,∠BAC=∠EDF=90°,∴BF=5+2=7,EC=5﹣2=3,DE⊥DF,故①和②正确;∵四边形ABFD的周长=AB+AD+DF+BF,∴四边形ABFD的周长=3+4+2+7=16,故③正确;∵AD=2,EC=3,∴AD:EC=2:3,故④正确,故选:D.10.(4分)如图,已知AB∥CD,BE和DF分别平分∠ABF和∠CDE,2∠E﹣∠F=48°,则∠CDE的度数为()A.16°B.32°C.48°D.64°【考点】平行线的性质.【分析】利用基本结论:∠E=∠ABE+∠CDE,∠F=∠CDF+∠ABF,构建方程组解决问题即可.【解答】解:设∠ABE=∠EBF=x,∠FDE=∠FDC=y,∵AB∥CD,∴易知∠E=∠ABE+∠CDE=x+2y,∠F=∠CDF+∠ABF=2x+y,∵2∠E﹣∠F=48°,∴2(x+2y)﹣(2x+y)=48°,∴y=16°,∴∠CDE=2y=32°,故选:B.二、填空题(本大题10小题,每题3分,共30分)11.(3分)把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【考点】命题与定理.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.12.(3分)如图,若∠1+∠2=220°,则∠3=70°.【考点】对顶角、邻补角.【分析】先根据对顶角相等求出∠1的度数,再根据平角等于180°列式求解即可.【解答】解:∵∠1+∠2=220°,∠1=∠2(对顶角相等),∴∠1=×220°=110°,∴∠3=180°﹣∠1=180°﹣110°=70°.故答案为:70°.13.(3分)如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:垂线段最短.【考点】垂线段最短.【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.【解答】解:为了使李庄人乘火车最方便(即距离最近),过李庄向铁路画垂线段,根据是垂线段最短.故答案为:垂线段最短.14.(3分)如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB,CD的关系是AB∥CD,依据是同旁内角互补,两直线平行.【考点】平行线的判定.【分析】由已知∠ABC=110°,∠BCD=70°,即∠ABC+∠BCD=180°,可得关于AB ∥CD的判定条件:同旁内角互补,两直线平行.【解答】解:∵∠ABC=110°,∠BCD=70°,∴∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故答案为:AB∥CD;同旁内角互补,两直线平行.15.(3分)如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移5格,再向上平移3格.【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:从点A看,向右移动5格,向上移动3格即可得到A′.那么整个图形也是如此移动得到.故两空分别填:5、3.16.(3分)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MON=56°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠NOE=∠FEO,由角平分线的性质求得答案.【解答】解:∵FE∥ON,∠FEO=28°,∴∠NOE=∠FEO=28°,∵OE平分∠MON,∠MON=2∠NOE=2∠FEO=56°.故答案为:56°.17.(3分)如图,∠A与∠ACD,∠ACE是内错角,∠B的同位角是∠ECD,∠ACD,直线AB和CE被直线BC所截得到的同旁内角是∠B与∠BCE.【考点】同位角、内错角、同旁内角.【分析】根据同位角、内错角、同旁内角的概念,在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.【解答】解:如图所示,∠A与∠ACD,∠ACE是内错角,∠B的同位角是∠ECD,∠ACD,直线AB和CE被直线BC所截得到的同旁内角是∠B与∠BCE,故答案为:∠ACD,∠ACE;∠ECD,∠ACD;∠B与∠BCE.18.(3分)如图,AB∥CD∥EG,AC∥DF,若∠BAC=120°,则∠CDF=60°.【考点】平行线的性质.【分析】先根据AB∥CD求出∠ACD的度数,再由AC∥DF即可得出结论.【解答】解:∵AB∥CD,∠BAC=120°,∴∠ACD=180°﹣120°=60°.∵AC∥DF,∴∠CDF=∠ACD=60°.故答案为:60.19.(3分)一大门的栏杆如图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=270度.【考点】平行线的性质.【分析】首先过点B作BF∥AE,易得∠BAE+∠ABC+∠BCD=360°,又由BA⊥AE,即可求得∠ABC+∠BCD的值.【解答】解:过点B作BF∥AE,∵CD∥AE,∴CD∥BF∥AE,∴∠BCD+∠CBF=180°,∠ABF+∠BAE=180°,∴∠BAE+∠ABF+∠CBF+∠BCD=360°,即∠BAE+∠ABC+∠BCD=360°,∵BA⊥AE,∴∠BAE=90°,∴∠ABC+∠BCD=270°.故答案为:270.20.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若AB∥CD,HG=18cm,MG=6cm,MC=3cm,则阴影部分的面积是99cm2.【考点】直角梯形;平移的性质;梯形.【分析】根据平移的变换只改变图形的位置不改变图形的形状与大小可得梯形ABCD的面积等于梯形EFGH的面积,CD=HG,从而得到阴影部分的面积等于梯形DMGH的面积,再求出DM的长,然后利用梯形的面积公式列式计算即可得解.【解答】解:由平移的性质,梯形ABCD的面积=梯形EFGH的面积,CD=HG=18cm,∴阴影部分的面积=梯形DMGH的面积,∵CM=3cm,∴DM=CD﹣CM=18﹣3=15(cm),∴阴影部分的面积=(DM+HG)•MG=(15+18)×6=99(cm2),答:阴影部分面积是99cm2.故答案为:99cm2.三、解答题(本大题6小题,共80分)21.(12分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.【考点】作图—基本作图.【分析】(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)利用两直线平行,同旁内角互补即可解决问题.【解答】解:(1)如图所示:PQ即为所求;(2)如图所示:PR即为所求;(3)∠PQC=60°理由:∵PQ∥CD,∴∠DCB+∠PQC=180°,∵∠DCB=120°,∴∠PQC=180°﹣120°=60°.22.(12分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【考点】平行线的判定与性质.【分析】(1)根据平行线的性质得出∠ABC+∠DAB=180°,求出∠ABC+∠DCB=180°,根据平行线的判定推出即可;(2)求出∠EAF和∠AEF的度数,即可求出答案.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.23.(14分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD=7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.【考点】垂线;角平分线的定义;对顶角、邻补角.【分析】(1)首先依据∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°可求得∠AOC、∠AOD的度数,然后可求得∠BOD的度数,依据角平分线的定义可求得∠DOE的度数,最后可求得∠COE的度数;(2)先求得∠FOD的度数,然后依据邻补角的定义求解即可.【解答】解:(1)∵∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°.∴∠BOD=70°.∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣35°=145°.(2)∵∠DOE=35°,OF⊥OE,∴∠FOD=55°,∴∠FOC=180°﹣55°=125°.24.(14分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM 交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.【考点】平行线的性质.【分析】先根据平行线的性质,得出∠ODC=∠BOD=30°,再根据∠EOF=90°,即可得到∠AOE=60°,再根据平行线的性质,即可得到∠AND的度数,进而得出∠ANM 的度数.【解答】解:∵扶手AB与底座CD都平行于地面,∴AB∥CD,∴∠ODC=∠BOD=30°,又∵∠EOF=90°,∴∠AOE=60°,∵DM∥OE,∴∠AND=∠AOE=60°,∴∠ANM=180°﹣∠AND=120°.25.(12分)如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠C2FE的度数;(2)若∠DEF=α,请你用含α的式子表示图③中∠C2FE的度数.【考点】平行线的性质.【分析】(1)因为长方形的对边是平行的,所以∠BFE=∠DEF=20°;在梯形EFC1D1中,∠HEF+∠EFC1+ED1C1+∠D1C1F=360°,∠C1FH=180°﹣20°﹣20°=140°;(2)由(1)的规律可以得到结果.【解答】解:(1)如图③,∵AD∥BC,∴∠BFE=∠DEF=20°,∴∠CFE=180°﹣∠BFE=160°,由折叠知∠C1FE=∠CFE=160°,∴∠C1FB=∠C1FE﹣∠BFE=160°﹣20°=140°,由折叠知∠C2FB=∠C1FB=140°,∴∠C2FE=∠C2FB﹣∠BFE=140°﹣20°=120°;(2)∵AD∥BC,∴∠BFE=∠DEF=α,∴∠CFE=180°﹣∠BFE=180°﹣α,由折叠知∠C1FE=∠CFE=∠180°﹣α,∴∠C1FB=∠C1FE﹣∠BFE=180°﹣α﹣α=180°﹣2α,由折叠知∠C2FB=∠C1FB=180°﹣2α,∴∠C2FE=∠C2FB﹣∠BFE=180°﹣2α﹣α=180°﹣3α.26.(16分)如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC 的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.【考点】平行线的性质;平移的性质.【分析】(1)由同旁内角互补,两直线平行证明.(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOCP=(∠BOF+∠FOA)=∠BOA,算出结果.(3)先得出结论,再证明.(4)由(2)(3)的结论可得.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF,又∵∠FOC=∠AOC,∴∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2;(4)由(1)知:OB∥AC,则∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,则∠OCA=∠BOC=2α+β,∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEC=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.。
北师大版七年级下第二章相交线与平行线单元测试(含答案)【最新精品】
第二章相交线与平行线单元测试(含答案)一.选择题:(每小题3分,共36分,四个选项中只有一个正确,选出正确答案填在题后括号内)1.在同一个平面内,不重合的两条直线的位置关系可能是 ( )A.相交或平行 B.相交或垂直 C.平行或垂直 D.不能确定2.已知∠A=25°,则∠A的余角、补角分别是 ( )A.65° B.75° C.155° D.165°3.如图,在所标识的角中,互为对顶角的是 ( )A.∠1和∠2 B.∠1和∠4 C.∠2和∠3 D.∠1和∠34.如图,下列说法不正确的是 ( )A.∠1和∠2是同旁内角 B.∠1和∠3是对顶角C.∠3和∠4是同位角 D.∠1和∠4是内错角第3题图第4题图5.下列作图能表示点A到BC的距离的是 ( )A. B. C. D.6.若A、B、C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离 ( )A.等于3 cm B.大于3 cm而小于4 cm C.不大于3 cm D.小于3 cm7.下列图形中AB∥CD,能得到∠1=∠2的是 ( )8.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是 ( )A.55° B.65° C.75° D.85°第8题图第9题图第10题图第12题图9.如图,∠BAC=90°,AD⊥BC,垂足为D,则下面的结论中,正确的个数为 ( )① AB与AC互相垂直;② AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离.A.2个 B.3个 C.4个 D.5个10.如图,直线a,b被直线c所截,下列条件能使a∥b的是 ()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠711.下列语句正确的有 ( )①任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b;④若直线a∥b,b∥c,则c∥a;A.4个 B.3个 C.2个 D.1个12.如图,l1∥l2,下列式子中,等于180°的是 ( )A.α+β+γ B.α+β-γ C.β+γ-α D.α-β+γ二.填空题:(每空3分,共18分,把正确答案填在题目相应的横线上)13.如图,直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD=;14.如图,已知∠1=∠2,则图中互相平行的线段是;理由是:__________________________________________;15.如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=30°,则∠2= ;16.将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=120°,则∠BOC=;第13题图第14题图第15题图第16题图17.如图,直线a∥b,直线l与直线a相交于点P,与直线b相交于点Q,且PM垂直于直线l,若∠1=58°,则∠2=;三.解答题:(共46分,写出必要的解答过程)18.(满分8分)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角;19.(满分8分)如图,在△ABC中,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为F;(1) CD与EF平行吗?为什么?(2) 如果∠1=∠2,且∠3=105°,求∠ACB的度数;20.(满分8分)如图,已知AB//CD,∠1=∠2,∠EFD=56°,求∠D的度数;21.(满分10分)如图,MN、EF分别表示两个互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4;试判断AB 与CD的位置关系,并说明理由;22.(满分12分)有一天李老师用“几何画板”画图,他先画了两条平行线AB,CD,然后在平行线间画了一点E,连接BE,DE后(如图1),他用鼠标左键点住点E并拖动后,分别得到如图2、图3、图4等图形,这时他突然一想,∠B,∠D与∠BED的度数之间有没有某种联系呢?接着李老师利用“几何画板”的“度量角度”和“计算”的功能,找到了这三个角之间的关系.(1) 请探讨得出图1至图4各图中的∠B,∠D与∠BED之间的关系;(直接写出角的关系)(2) 请从(1)所得的关系中,选一个并说明它成立的理由.七下第二章相交线与平行线单元测试参考答案:1~12 ACCAB CBBAB DB13.30°;14.AD//BC,内错角相等,两直线平行;15.15°;16.60°;17.32°;18.40°;19.(1) ∵ CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90 °∴ CD∥EF(2) ∵ EF∥DC ∴∠2=∠BCD∵∠1=∠2,∴∠1=∠BCD∴ DG∥BC∴∠ACB=∠3=105 °20.62°;21.AB∥CD;理由如下:∵MN∥EF (已知),∴∠2=∠3 (两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4(等量代换).∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°(平角的定义),∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).22.(1) 图1:∠BED=∠B+∠D;图2:∠B+∠BED+∠D=360°;图3:∠BED=∠D-∠B;图4:∠BED=∠B-∠D.(2) 选择:∠BED=∠B+∠D.理由:过点E作EF∥AB,∴∠ABE=∠BEF∵ AB∥CD,∴ EF∥CD∴∠FED=∠CDE∴∠B+∠D=∠BEF+∠FED即∠B+∠D=∠BED其他选择略;。
(完整版)《相交线与平行线》单元测试卷含答案
第4章相交线与平行线单元测试卷一、选择题(每题2分,共20分)1。
如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D。
对顶角2.如图,AB∥CD,AD平分∠BAC,若∠BAD=65°,那么∠ACD的度数为( )A.40°B.35° C。
50°D。
45°31 2 3。
如图,AB∥EC,下列说法不正确的是()A. ∠B=∠ECDB. ∠A=∠ECDC。
∠B+∠ECB=180° D. ∠A+∠B+∠ACB=180°4.如图,在俄罗斯方块游戏中,出现一小方块拼图向下运动,通过平移运动拼成一个完整的图案,最终所有图案消失,则对小方块进行的操作为( )A。
向右平移1格再向下 B。
向右平移3格再向下C.向右平移2格再向下D.以上答案均可5。
如图所示,3块相同的三角尺拼成一个图形,图中有很多对平行线,其中不能由下面的根据得出两直线平行的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.平行于同一直线的两直线平行D。
垂直于同一直线的两直线平行6。
如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是( )A.40°B.70°C.80° D。
140°7。
同一平面内的四条互不重合的直线满足a⊥b,b⊥c,c⊥d,则下列各选项中关系能成立的是( )A。
a∥d B。
a⊥c C。
a⊥d D。
b⊥d8。
如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A.120 ° B。
130° C.140° D。
150°9。
如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为( )A。
30° B.60° C。
80° D。
北师大版七年级数学下册第二章《相交线与平行线》单元测试卷附答案
第二章《相交线与平行线》单元测试卷(新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.已知∠A=25°,则∠A的补角等于()A.65°B.75°C.155°D.165°2.如图,直线a与直线c相交于点O,则∠1的度数是()A.60°B.50°C.40°D.30°第2题图第3题图第4题图3.如图,∠1=15°,AO⊥CO,直线BD经过点O,则∠2的度数为()A.75°B.105°C.100°D.165°4.如图,直线c与直线a,b都相交.若a∥b,∠1=55°,则∠2=()A.60°B.55°C.50°D.45°5.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2=()A.55°B.65°C.75°D.85°第5题图第6题图第7题图第8题图6.如图,下列说法中正确的是()A.若∠2=∠4,则AB∥CDB.若∠BAD +∠ADC=180°,则AB∥CDC.若∠1=∠3,则AD∥BCD.若∠BAD +∠ABC=180°,则AB∥CD7.(传统文化)一条古称在称物时的状态如图所示,已知∠1=80°,则∠2=()A.20°B.80°C.100°D.120°8.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2=()A.90°B.65°C.60°D.50°9.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4等于()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相交线与平行线》单元测试题(时间:90分钟 满分:100分)学校 班别 姓名 座号 成绩一、填空题:(每小题3分,共30分)把每小题的正确答案填在各题对应的横线上。
1、空间内两条直线的位置关系可能是 或 、 。
2、“两直线平行,同位角相等”的题设是 ,结论是 。
3、∠A 和∠B 是邻补角,且∠A 比∠B 大200,则∠A = 度,∠B = 度。
4、如图1,O 是直线AB 上的点,OD 是∠COB 的平分线,若∠AOC =400,则∠BOD =。
5、如图2,如果AB ∥CD ,那么∠B +∠F +∠E +∠D = 0。
6、如图3,图中ABCD-D C B A ''''是一个正方体,则图中与BC 所在的直线平行的直线有 条,与B A ''所在的直线成异面直线的直线有 条。
图1O DCB A FE 图2DC BA A 'B 'C 'D '图3D CB Aba12C图4BA7、如图4,直线a ∥b ,且∠1=280,∠2=500,则∠ACB = 0。
8、如图5,若A 是直线DE 上一点,且BC ∥DE ,则∠2+∠4+∠5= 0。
9、在同一平面内,如果直线1l ∥2l ,2l ∥3l ,则1l 与3l 的位置关系是 。
10、如图6,∠ABC =1200,∠BCD =850,AB ∥ED ,则∠CDE 0。
二、选择题:各小题只有唯一一个正确答案,请将正确答案的代号填在题后的括号内(每小题3分,共30分)11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是( )A 、700B 、600C 、500D 、40012、已知:如图8,下列条件中,不能判断直线1l ∥2l 的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180054321A BCDE图5A B CDE 图6 2l 1l 4321图72l 1l 54321图813、如图9,已知AB ∥CD ,HI ∥FG ,EF ⊥CD 于F ,∠1=400,那么∠EHI =( )A 、400B 、450C 、500D 、55014、一个角的两边分别平行于另一个角的两边,则这两个角( )A 、相等B 、相等或互补C 、互补D 、不能确定 15、在正方体的六个面中,和其中一条棱平行的面有( )A 、5个B 、4个C 、3个D 、2个 16、两条直线被第三条直线所截,则( )A 、同位角相等B 、内错角相等C 、同旁内角互补D 、以上结论都不对 17、如图10,AB ∥CD ,则( )A 、∠BAD +∠BCD =1800B 、∠ABC +∠BAD =180C 、∠ABC +∠BCD =1800 D 、∠ABC +∠ADC =18001IHGE DCBA 图9A BC D图10CB AD图1154321图1218、如图11,∠ABC =900,BD ⊥AC ,下列关系式中不一定成立的是( ) A 、AB >AD B 、AC >BC C 、BD +CD >BC D 、CD >BD 19、下列语句中,是假命题的个数是( )①过点P 作直线BC 的垂线;②延长线段MN ;③直线没有延长线;④射线有延长线。
A 、0个 B 、1个 C 、2个 D 、3个20、如图12,下面给出四个判断:①∠1和∠3是同位角;②∠1和∠5是同位角;③∠1和∠2是同旁内角;④∠1和∠4是内错角。
其中错误的是( )A 、①②B 、①②③C 、②④D 、③④ 三、完成下面的证明推理过程,并在括号里填上根据(每空1分,本题共12分)21、已知,如图13,CD 平分∠ACB ,DE ∥BC ,∠AED =820。
求∠EDC 的度数。
证明:∵DE ∥BC (已知)∴∠ACB =∠AED ( )∠EDC =∠DCB ( ) 又∵CD 平分∠ACB (已知)∴∠DCB =21∠ACB ( )又∵∠AED =820(已知)∴∠ACB =820( ) ∴∠DCB =08221=410( ) ∴∠EDC =410( )22、如图14,已知AOB 为直线,OC 平分∠BOD ,EO ⊥OC 于O 。
求证:OE 平分∠AOD 。
证明:∵AOB 是直线(已知)∴∠BOC +∠COD +∠DOE +∠EOA =1800( ) 又∵EO ⊥OC 于O (已知) ED CBA图13∴∠COD +∠DOE =900( )∴∠BOC +∠EOA =900( )又∵OC 平分∠BOD (已知)∴∠BOC =∠COD ( ) ∴∠DOE =∠EOA ( ) ∴OE 平分∠AOD ( )四、计算与证明:(每小题5分,共20分)23、已知,如图15,∠ACB =600,∠ABC =500,BO 、CO 分别平分∠ABC 、∠ACB ,EF 是经过点O 且平行于BC 的直线,求∠BOC 的度数。
F OE CBA图1524、已知,如图16,AB ∥CD ,GH 是相交于直线AB 、EF 的直线,且∠1+∠2=1800。
求证:CD ∥EF 。
HG321D F EC BA 图1625、如图17:AB ∥CD ,∠CEA =3∠A ,∠BFD =3∠D 。
求证:CE ∥BF 。
O E D CB A 图14DF ECBA图1726、如图18,已知AB ∥CD ,∠A =600,∠ECD =1200。
求∠ECA 的度数。
DEC BA图18五、探索题(第27、28题各4分,本大题共8分)27、如图19,已知AB ∥DE ,∠ABC =800,∠CDE =1400。
请你探索出一种(只须一种)添加辅助线求出∠BCD 度数的方法,并求出∠BCD 的度数。
14080D ECBA图1928、阅读下面的材料,并完成后面提出的问题。
(1)已知,如图20,AB ∥DF ,请你探究一下∠BCF 与∠B 、∠F 的数量有何关系,并说明理由。
(2)在图20中,当点C 向左移动到图21所示的位置时,∠BCF 与∠B 、∠F 又有怎样的数量关系呢?(3)在图20中,当点C 向上移动到图22所示的位置时,∠BCF 与∠B 、∠F 又有怎样的数量关系呢?(4)在图20中,当点C 向下移动到图23所示的位置时,∠BCF 与∠B 、∠F 又有怎样的数量关系呢?21FDE CB A图2021FDECBA图21FDCBA图22图分析与探究的过程如下: 在图20中,过点C 作CE ∥AB∵CE ∥AB (作图) AB ∥DF (已知)∴AB ∥EC ∥DF (平行于同一条直线的两条直线平行)∴∠B +∠1=∠F +∠2=1800(两直线平行,同旁内角互补)∴∠B+∠1+∠2+∠F=3600(等式的性质)即∠BCF+∠B+∠F=3600在图21中,过点C作CE∥AB∵CE∥AB(作图)AB∥DF(已知)∴AB∥EC∥DF(平行于同一条直线的两条直线平行)∴∠B=∠1,∠F=∠2(两直线平行,内错角相等)∴∠B+∠F=∠1+∠2(等式的性质)即∠BCF=∠B+∠F直接写出第(3)小题的结论:(不须证明)。
由上面的探索过程可知,点C的位置不同,∠BCF与∠B、∠F的数量关系就不同,请你仿照前面的推理证明过程,自己完成第(4)小题的推理证明过程。
图参考答案一、填空题:1、平行、相交、异面;2、两直线平行,同位角相等;3、1000、800;4、700;5、5400;6、3条、8条;7、780;8、1800;9、平行;10、250二、选择题:三、完成下面的证明过程,在后面的括号里填上根据(本题共6分) 21、证明:∵∠DE ∥BC (已知)∴∠ACB =∠AED (两直线平行,同位角相等) ∠EDC =∠DCB (两直线平行,内错角相等) 又∵CD 平分∠ACB (已知) ∴∠DCB =21∠ACB (角平分线定义) 又∵∠AED =820(已知)∴∠ACB =820(等量代换) ∴∠DCB =08221⨯=410(等量代换) ∴∠EDC =410(等量代换) 22、证明:∵AOB 是直线(已知)∴∠BOC +∠COD +∠DOE +∠EOA =1800(平角的定义) 又∵EO ⊥OC 于O (已知)∴∠COD +∠DOE =900(垂直的定义)∴∠BOC +∠EOA =900(等量代换)又∵OC 平分∠BOD (已知)∴∠BOC =∠COD (角平分线定义) ∴∠DOE =∠EOA (等角的余角相等) ∴OE 平分∠AOD (角平分线定义)23、证明:∵BO 平分∠ABC (已知) ∴∠OBC =21∠ABC (角平分线的定义) 又∵∠ABC =500(已知) ∴∠OBC =05021⨯=250(等量代换) 又∵EF ∥BC (已知)∴∠EOB =∠OBC (两直线平行,内错角相等)∴∠EOB =250(等量代换)同理∠FOC =300EDCBA图13O E DC BA 图14又∵∠BOC =1800-∠EOB -∠FOC (平角的定义)∴∠BOC =1800-250-300=1250(等量代换)24、证明:∵∠1+∠2=1800(已知) ∠1=∠3(对顶角相等)∴∠2+∠3=1800(等量代换)∴AB ∥EF (同旁内角互补,两直线平行) 又∵AB ∥CD (已知)∴CD ∥EF (平行于同一条直线的两条直线平行) 25、证明:∵AB ∥CD (已知)∴∠A =∠D (两直线平行,内错角相等) 又∵∠CEA =3∠A ,∠BFD =3∠D (已知) ∴∠CEA =∠BFD (等量代换)∴∠CED =∠BFA (等角的补角相等)∴CE ∥BF (内错角相等,两直线平行)26、解:∵AB ∥CD (已知)∴∠A +∠ACD =1800(两直线平行,同旁内角互补)又∵∠A =600(已知)∴∠ACD =1200(等量代换)又∵∠ECA =3600-∠ECD -∠ACD (周角的意义)∠ECD =1200(已知)∴∠ECA =1200(等量代换) 五、探索题:27、过C 作CF ∥DE∵CF ∥DE (作图) AB ∥DE (已知)∴AB ∥DE ∥CF (平行于同一条直线的两条直线平行)∴∠BCF =∠B =800(两直线平行,内错角相等)∠DCF +∠D =1800(两直线平行,同旁内角互补)又∵∠D =1400(已知)∴∠DCF =400(等量代换)又∵∠BCD =∠BCF -∠DCF (角的和差定义)∴∠BCD =800-400(等量代换)即∠BCD =40014080FD ECBA图19图28、第(3)小题的结论为:∠BCF =∠F -∠B证明:在图23中,过点C作CE∥AB∵CE∥AB(作图)AB∥DF(已知)∴CE∥AB∥DF(平行于同一条直线的两条直线平行)∴∠F=∠ECF,∠B=∠ECB(两直线平行,内错角相等)∴∠B-∠F=∠ECB-∠ECF(等式的性质)又∵∠BCF=∠ECB-∠ECF(角的和差定义)∴∠BCF=∠B-∠F(等量代换)。