第三讲闭口开口系统能量方程及例题 PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d d C m t Vin m in om u o t u tin (A )in c o( uA t )oc ut
• Case 3 for both steady state and one-dimensional flow:
(A)ic n (A)o cu t0
•查表取cv=0.656kJ/kg·K
• 所以ΔU=0.671×103×(100-200)=-44018J (说明系统的热力学能是减少的)
• 3)Q的计算:Q=ΔU+W=63425+(-44018)= 19407 J
• Comment:该例题中气体对外作出的功量大于气体热力学 能的减少量,减少的部分由外界对气体的加热量所补充。 另外此处能量的单位用焦耳显得不方便,用kJ则好些。
• 看问题的角度:进入系统的能量为正,
2.4闭口系统能量方程 A Conservation of Energy Principle for Closed Systems
A closed system undergoing a process between state 1 and state 2, the energy equation will be:
2.3 热力学第一定律的一般表达式
• 当系统由状态1经历一系列状态变化达到终状态2时,系 统总能量的变化为
• ΔEsys=Ein-Eout=(minein+Q)-(mouteout+W)
mout min
ΔEsys
W Q
• 当系统处于宏观上静止时
• ΔU=(minein+Q)-(mouteout+W)
•One-dimensional flow: if the properties at a flow boundary are uniform over the cross-sectional area.
• Case 1 For steady state:
0 m in m out
in
out
• Case 2 For one-dimensional flow:
• 1st: Conservation of Mass Principle for A Open System or Control Volume
dm CV
dt
in
m in m out
out
m Is defined as the mass flow rate kg/s
•Steady state: any system in steady state if the system properties are constant with time at every position within and on the boundaries of the systems.
ΔU=Q -W
or
Q=ΔU+W
or for 1kg of mass
q=Δu+w
Baidu Nhomakorabea• for a differential basis
•
δQ=dU+δW
or
δq=du+δw
For a reversible process, the work can be calculated as:
2
w pdv
这里功的数量并不等于可1 以利用的功
U Q W t t t
Then, in the limit as Δt approaches zero
ddUt QnetWnet
例题2.1
• 气缸内储有定量的CO2气体,初态p1=300kPa,T1= 200℃,V1=0.2m3。经历一可逆过程后温度下降至T2= 100℃。如果过程中压力和比容间的关系满足pv1.2=常 数,试确定该过程中CO2气体所作的功、比功、热力学 能变化量,气体与外界之间的热量交换。
• Solution:
• Given: initial and end states, process,
CO2 in a cylinder • Find: W, w, ΔU, Q
• Model: closed system
• Strategy: apply the basic closed
system energy balance to solve for the Q and ΔU, apply the
For a closed system, heat transfer and work transfer are the only mechanisms by which energy can be transferred across the boundary.
If we need to express the general energy balance on a rate basis by a finite time interval. This yields:
State1
State 2
definition of work to calculation W and w
•Analysis: •1)work:可逆δw=pdv
w 1 2p1 .2 v v d 1 .2 v1 2p 1 v 1 1 .2v d 1 .2 v0 1 .2(p 1 v 1p 2 v 2)
w94.5kJ/kg W6.342k5J
U4.0 41k8J Q19.40k7J
• Two steps of analysis
• 1st Conservation of Mass Principle for A Open System or Control Volume
• 2nd Conservation of Energy Principle for An Open System or Control Volume
0 R .2 g(T 1 T 2)1 0 .28 (2 90 10 )0 9 04J5/0 k0 g mp1V13010300.2 0.6k7g1
R1T18(9 203 07) 2
•W=mw=0.671×94500=63425 J
因气体体积变化,故此功称为膨胀功。W>0,为气体对 外做功。在终态,气体体积为V2=0.656m3 •2)系统内热力学能的变化:(ΔE)sys=ΔU=mcV(T2-T1)
• Case 3 for both steady state and one-dimensional flow:
(A)ic n (A)o cu t0
•查表取cv=0.656kJ/kg·K
• 所以ΔU=0.671×103×(100-200)=-44018J (说明系统的热力学能是减少的)
• 3)Q的计算:Q=ΔU+W=63425+(-44018)= 19407 J
• Comment:该例题中气体对外作出的功量大于气体热力学 能的减少量,减少的部分由外界对气体的加热量所补充。 另外此处能量的单位用焦耳显得不方便,用kJ则好些。
• 看问题的角度:进入系统的能量为正,
2.4闭口系统能量方程 A Conservation of Energy Principle for Closed Systems
A closed system undergoing a process between state 1 and state 2, the energy equation will be:
2.3 热力学第一定律的一般表达式
• 当系统由状态1经历一系列状态变化达到终状态2时,系 统总能量的变化为
• ΔEsys=Ein-Eout=(minein+Q)-(mouteout+W)
mout min
ΔEsys
W Q
• 当系统处于宏观上静止时
• ΔU=(minein+Q)-(mouteout+W)
•One-dimensional flow: if the properties at a flow boundary are uniform over the cross-sectional area.
• Case 1 For steady state:
0 m in m out
in
out
• Case 2 For one-dimensional flow:
• 1st: Conservation of Mass Principle for A Open System or Control Volume
dm CV
dt
in
m in m out
out
m Is defined as the mass flow rate kg/s
•Steady state: any system in steady state if the system properties are constant with time at every position within and on the boundaries of the systems.
ΔU=Q -W
or
Q=ΔU+W
or for 1kg of mass
q=Δu+w
Baidu Nhomakorabea• for a differential basis
•
δQ=dU+δW
or
δq=du+δw
For a reversible process, the work can be calculated as:
2
w pdv
这里功的数量并不等于可1 以利用的功
U Q W t t t
Then, in the limit as Δt approaches zero
ddUt QnetWnet
例题2.1
• 气缸内储有定量的CO2气体,初态p1=300kPa,T1= 200℃,V1=0.2m3。经历一可逆过程后温度下降至T2= 100℃。如果过程中压力和比容间的关系满足pv1.2=常 数,试确定该过程中CO2气体所作的功、比功、热力学 能变化量,气体与外界之间的热量交换。
• Solution:
• Given: initial and end states, process,
CO2 in a cylinder • Find: W, w, ΔU, Q
• Model: closed system
• Strategy: apply the basic closed
system energy balance to solve for the Q and ΔU, apply the
For a closed system, heat transfer and work transfer are the only mechanisms by which energy can be transferred across the boundary.
If we need to express the general energy balance on a rate basis by a finite time interval. This yields:
State1
State 2
definition of work to calculation W and w
•Analysis: •1)work:可逆δw=pdv
w 1 2p1 .2 v v d 1 .2 v1 2p 1 v 1 1 .2v d 1 .2 v0 1 .2(p 1 v 1p 2 v 2)
w94.5kJ/kg W6.342k5J
U4.0 41k8J Q19.40k7J
• Two steps of analysis
• 1st Conservation of Mass Principle for A Open System or Control Volume
• 2nd Conservation of Energy Principle for An Open System or Control Volume
0 R .2 g(T 1 T 2)1 0 .28 (2 90 10 )0 9 04J5/0 k0 g mp1V13010300.2 0.6k7g1
R1T18(9 203 07) 2
•W=mw=0.671×94500=63425 J
因气体体积变化,故此功称为膨胀功。W>0,为气体对 外做功。在终态,气体体积为V2=0.656m3 •2)系统内热力学能的变化:(ΔE)sys=ΔU=mcV(T2-T1)