实验二 MATLAB程序设计
matlab实验二
北京工业大学Matlab实验报告**: ***学号: ************: **实验二、Matlab 的基本计算(一)实验目的1.掌握建立矩阵的方法。
2.掌握Matlab 各种表达式的书写规则以及常用函数的使用。
3.能用Matlab 进行基本的数组、矩阵运算。
4.掌握矩阵分析的方法以及能用矩阵运算或求逆法解线性方程组。
5.掌握Matlab 中的关系运算与逻辑运算。
(二)实验环境1.计算机2.MATLAB7.0集成环境(三)实验内容及要求1、熟练操作MATLAB7.0运行环境;2、自主编写程序,必要时参考相关资料;3、实验前应写出程序大致框架或完整的程序代码;4、完成实验报告。
(四)实验程序设计1.利用diag 等函数产生下列矩阵。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032570800a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=804050702b2.利用reshape 函数将1题中的a 和b 变换成行向量。
3.产生一个均匀分布在(-5,5)之间的随机矩阵(10×2),要求精确到小数点后一位。
4.已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=76538773443412A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=731203321B求下列表达式的值:(1) B A K *611+=和I B A K +-=12(其中I 为单位矩阵)(2) B A K *21=和B A K *.22=(3) 331^A K =和3.32^A K =(4) B A K /41=和A B K \42=(5) ],[51B A K =和]2:);],3,1([[52^B A K = 5.下面是一个线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡52.067.095.03216/15/14/15/14/13/14/13/12/1x x x(1)求方程的解(矩阵除法和求逆法)(2)将方程右边向量元素3b 改为0.53,再求解,并比较3b 的变化和解的相对变化。
matlab实验报告
2015秋2013级《MATLAB程序设计》实验报告实验一班级:软件131姓名:陈万全学号:132852一、实验目的1、了解MATLAB程序设计的开发环境,熟悉命令窗口、工作区窗口、历史命令等窗口的使用。
2、掌握MATLAB常用命令的使用。
3、掌握MATLAB帮助系统的使用。
4、熟悉利用MATLAB进行简单数学计算以及绘图的操作方法。
二、实验内容1、启动MATLAB软件,熟悉MATLAB的基本工作桌面,了解各个窗口的功能与使用。
图1 MATLAB工作桌面2、MATLAB的常用命令与系统帮助:(1)系统帮助help:用来查询已知命令的用法。
例如已知inv是用来计算逆矩阵,键入help inv即可得知有关inv命令的用法。
lookfor:用来寻找未知的命令。
例如要寻找计算反矩阵的命令,可键入lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。
找到所需的命令後,即可用help进一步找出其用法。
(2)数据显示格式:常用命令:说明format short 显示小数点后4位(缺省值)format long 显示15位format bank 显示小数点后2位format + 显示+,-,0format short e 5位科学记数法format long e 15位科学记数法format rat 最接近的有理数显示(3)命令行编辑:键盘上的各种箭头和控制键提供了命令的重调、编辑功能。
具体用法如下:↑----重调前一行(可重复使用调用更早的)↓----重调后一行→----前移一字符←----后移一字符home----前移到行首end----移动到行末esc----清除一行del----清除当前字符backspace----清除前一字符(4)MATLAB工作区常用命令:who--------显示当前工作区中所有用户变量名whos--------显示当前工作区中所有用户变量名及大小、字节数和类型disp(x) -----显示变量X的内容clear -----清除工作区中用户定义的所有变量save文件名-----保存工作区中用户定义的所有变量到指定文件中load文件名-----载入指定文件中的数据三、源程序和实验结果1、在命令窗口执行命令完成以下运算,观察workspace 的变化,记录运算结果。
程序设计实验报告(matlab)
程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。
实验内容:运用Matlab进行简单的程序设计。
实验方法:基于Matlab环境下的简单程序设计。
实验结果:成功掌握简单的程序设计和Matlab基本编程语法。
实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。
实验内容:在Matlab环境下进行多项式拟合和插值的计算。
实验方法:结合Matlab的插值工具箱,进行相关的计算。
实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。
实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。
实验内容:利用Matlab进行最小二乘法计算。
实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。
实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。
实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。
实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。
实验方法:基于Matlab的ODE工具箱,进行ODE求解。
实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。
总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。
通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。
这些知识和技能对我未来的学习和工作都将有着重要的帮助。
MATLAB程序设计及应用(第二版)课后实验答案
Matlab课后实验题答案实验一 MATLAB运算基础1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)0 122sin851ze =+(2)21ln( 2z x=+,其中2120.455i x+⎡⎤=⎢⎥-⎣⎦(3)0.30.330.3sin(0.3)ln, 3.0, 2.9,,2.9,3.0 22a ae e az a a--+=++=--(4)2242011122123t tz t tt t t⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t=0:0.5:2.52. 已知:1234413134787,2033657327A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1) A+6*B 和A-B+I (其中I 为单位矩阵) (2) A*B 和A.*B (3) A^3和A.^3 (4) A/B 及B\A(5) [A,B]和[A([1,3],:);B^2] 解:3. 设有矩阵A 和B123453166789101769,111213141502341617181920970212223242541311A B ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1) 求它们的乘积C 。
(2) 将矩阵C 的右下角3×2子矩阵赋给D 。
(3) 查看MATLAB 工作空间的使用情况。
4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2). 建立一个字符串向量 例如:ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。
Matlab实验指导书(含参考程序)
Matlab实验指导书(含参考程序)1实验一:matlab操作环境熟悉一、实验目的1.初步了解matlab操作环境。
2.自学采用图形函数计算器命令funtool及其环境。
二、实验内容熟识matlab操作方式环境,重新认识命令窗口、内存工作区窗口、历史命令窗口;学会采用format命令调整命令窗口的数据表明格式;学会采用变量和矩阵的输出,并展开直观的排序;学会采用who和whos命令查阅内存变量信息;学会采用图形函数计算器funtool,并展开以下排序:funtool(回车),出现三个窗口:figureno.1、figureno.2为函数曲线视窗,figureno.3为运算控制器。
1.单函数运算操作方式。
求下列函数的符号导数(1)y=sin(x);(2)y=(1+x)^3*(2-x);?求下列函数的符号积分(1)y=cos(x);(2)y=1/(1+x^2);(3)y=1/sqrt(1-x^2);(4)y=(x-1)/(x+1)/(x+2);?谋反函数(1)y=(x-1)/(2*x+3);(2)y=exp(x);(3)y=log(x+sqrt(1+x^2));?代数式的化简(1)(x+1)*(x-1)*(x-2)/(x-3)/(x-4);(2)sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x-3*cos(x)+4*x*sin(x);在3号窗口的第一排按键是单函数运算操作键df/dx------求函数f对x的符号导数intf------求函数对x的符号积分simplef------对函数作尽可能的化简numf------取函数的分子表达式denf------取函数的分母表达式1/f------求函数的倒数1/ffinv------f-1求函数的反函数,即g(f(x))=x2.函数与参数的运算操作方式。
从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2《matlab语言及其在电子信息科学中的应用》实验指导书2(2)y2=(x+2)^2(3)y3=2*x^2(4)y4=x^2+2(5)y5=x^4(6)y6=x^2/2在3号窗口的第二排按键就是函数与参数的运算操作方式键f+a-------求函数与a的和f-a-------求函数与a的差f*a-------求函数与a的积f/a-------求函数除与a的商f^a-------求函数以a为指数的值f(x+a)-------并作自变量的转换,以x+a替代xf(x*a)-------并作自变量的转换,以a*x替代x其中a的默认值为1/2,可以在控制栏中去修改参数a的数值。
MATLAB实验二
3. 三维图形
• 三、视点
➢view(az,el)-------------设置观察点方向
az为方位角,el为仰角。 • 方位角为视点位置在XY平面上的投影与X轴形成的角度,
正值表示逆时针,负值表示顺时针。 • 仰角为XY平面的上仰或下俯角,正值表示视点在XY平
面上方,负值表示视点在XY平面下方。
figure grid gtext hold subplot text title xlabel ylabel
创建图形窗口 放置坐标网格线 用鼠标放置文本 保持当前图形窗口内容 创建子图 放置文本 放置图形标题 放置X轴坐标标记 放置Y轴坐标标记
3. 三维图形 • 一、 plot3函数
• 将二维函数plot的功能扩展到三维空间,绘制三维图形。 • 函数格式:plot3(x1,y1,z1,c1,x2,y2,z2,c2,…)
theta=[0:0.01:2*pi];
rho=sin(2*theta).*cos(2*theta);
polar(theta,rho); 绘制极坐标图命令
title('polar plot');
例9、程序:
theta=linspace(0, 2*pi);
r=cos(4*theta);
polar(theta, r);
所组成的画面。
4. 动画设计
• 【例14】 播放一个不断变化的眼球程序段。
• m=moviein(20); 建立一个20个列向量组成的矩阵
• for j=1:20
•
plot(fft(eye(j+10))) %绘制出每一幅眼球图并保存到m矩阵中
• m(:,j)=getframe;
实验二 MATLAB的科学计算
实验二 MATLAB的科学计算一、实验目的1、了解MATLAB的基本计算功能2、符号运算功能二、实验内容(一)基本计算功能例1、求[12+2× (7-4)]÷32的运算结果>>(12+2*(7-4))/3^2ans=2例2、用MATLAB求下面线性方程组的解3x1+ x2 - x3 = 3.6x1+2x2+4x3 = 2.1-x1+4x2+5x3 = -1.4>>A=[3 1 -1;1 2 4;-1 4 5];b=[3.6;2.1;-1.4];>>x=A\bx =1.4818-0.46060.3848例3、求两个矩阵的乘积a=[1 2 3;3 4 5;3 2 1]b=[1 2;3 4; 5 6]c=a*bc =22 2840 5214 20(二)符号运算功能1、求极限通常在MATLAB软件中,用limit 函数来求极限,其用法如表9-5所示:表9-5 limit 函数的用法例1、 求42cos lim 202x x e x -→.>> syms x % 把字符x 定义为符号 >>limit((cos(x)-exp(-x^2/2))/x^4)ans =-1/12例2 求42lim 22--→x x x .>> limit((x-2)/(x^2-4),x,2)ans =1/4例3 求t x t x t )cos()cos(lim 0-+→>> syms t x>> limit((cos(x+t)-cos(x))/t,t,0)ans =-sin(x)2 、求导数MATLAB 软件提供求函数导数的指令是diff ,具体使用格式如下:(1)diff(f, x) 表示对f (这里f 是一个函数表达式)求关于符号变量x 的一阶导数.若x 缺省,则表示求f 对预设独立变量的一阶导数.(2)diff(f, x, n) 表示对f 求关于符号变量x 的n 阶导数.若x 缺省,则表示求f 对预设独立变量的n 阶导数.例9-7 已知,c bx ax x f ++=2)(求)(x f 的一阶、二阶导数.>> syms a b c x>> f='a*x^2+b*x+c'f =a*x^2+b*x+c>> diff(f, x)ans =2*a*x+b>> diff(f,2)ans =2*a3 、求积分MATLAB软件提供求函数积分的指令是int,具体使用格式如下:(1)int(f) 返回f对预设独立变量的积分值;(2)int(f,v) 返回f对独立变量v的积分值;(3)int(f,a,b) 返回f对预设独立变量的积分值,积分区间为[a,b],a和b为数值式;(4)int(f,v,a,b) 返回f对独立变量的积分值,积分区间为[a,b],a和b为数值式;(5)int(f,m,n) 返回f对预设变量的积分值,积分区间为[m,n],m和n为符号式;例1、求下列函数的积分 :例:求不定积分⎰-dxex x23,⎰+12xxdx;>> syms x>> f=sym('x^3*exp(-x^2)') % 或 int('x^3*exp(-x^2)') f =x^3*exp(-x^2)>> int(f)ans =-1/2*x^2/exp(x^2)-1/2/exp(x^2)>> int('1/(x*sqrt(x^2+1))')ans =-atanh(1/(x^2+1)^(1/2))4 、数学表达式的化简例、 将下面表达式进行因式分解. 132-=a f>> f2=sym('a^3-1');>> factor(f2)ans =(a-1)*(a^2+a+1)。
《MATLAB程序设计》实验指导书
三、
实验仪器和设备
1、 计算机一台。 2、 MATLAB7.0 以上集成环境。
四、
预习要求
2
《MATLAB 程序设计》实验指导书
1、 复习 MATLAB 的启动与Байду номын сангаас出,熟悉 MATLAB 运行环境。 2、 复习 MATLAB 中矩阵的生成以及矩阵运算的基本原理。
五、
实验内容及步骤
实验内容:
1、 求下列表达式的值 1) z1
5
《MATLAB 程序设计》实验指导书
2) 函数调用 函数文件编制好后,就可调用函数进行计算了。函数调用的一般格式为 [输出实参表]=函数名(输入实参表) 注意:函数调用时各实参出现的顺序、个数,应与函数定义时形参的顺序、个 数一致,否则会出错。函数调用时,实参先传递给形参,然后再执行函数功能。 5、 选择结构 1) if 语句 a) 单分支 if 语句 if 条件 语句块 end b) 双分支 if 语句 if 条件 语句块 1 else 语句块 2 end c) 多分支 if 语句 if 条件 1 语句块 1 elseif 条件 2 语句块 2 …… elseif 条件 n 语句块 n else 语句块 n+1 end 2) switch 语句 switch 表达式 case 结果表 1 语句块 1 case 结果表 2 语句块 2 ……
二、
实验原理
1、 M 文件 用 MATLAB 语言编写的程序,称为 M 文件,它们的扩展名均为.m。M 文件根据 调用方式的不同分为两类,命令文件(Script file)和函数文件(Function file) 。 2、 建立新的 M 文件 启动 MATLAB 文本编辑器有 3 种方法: 1) 单击工具栏上的“New M-File”命令按钮。 2) 从 MATLAB 主窗口的“File”菜单中选择“New”菜单项,再选择“M-file”命令。 3) 在 MATLAB 命令窗口输入命令“edit”。 3、 打开已有的 M 文件 1) 在当前目录窗口选中要打开的 M 文件,双击鼠标左键。 2) 单击 MATLAB 主窗口工具栏上的“Open File”命令按钮,再从弹出的对话框中 选择所需打开的 M 文件。 3) 从 MATLAB 主窗口的“File”菜单中选择“Open”命令,在“Open”对话框中选中 所需打开的文件。 4) 在 MATLAB 命令窗口输入命令“edit 文件名” 。 4、 函数文件 1) 函数文件的基本结构 函数文件由 function 语句引导,其基本结构为: function 输出形参表=函数名(输入形参表) 注释说明部分 函数体语句 注意:函数名的命名规则与变量名相同。当输出形参多于一个时,应用方括号 括起来。
matlab实验报告
实验一:MATLAB基本操作一、实验目的1、学习掌握MA TLAB语言的基本操作方法2、掌握命令窗口的使用3、熟悉MA TLAB的数据表示、基本运算和程序控制语句4、熟悉MA TLAB程序设计的基本方法二、实验内容和要求2.b.帮助命令的使用,查找SQRT函数的使用方法按Start-help-search,输入sqrtc.矩阵运算(1)已知A=[1 2;3 4];B=[5 5;7 8];求A^2*B输入A=[1 2;3 4];B=[5 5;7 8];A^2*B结果为:ans =105 115229 251(2)矩阵除法已知A=[1 2 3 ;4 5 6;7 8 9];B=[1 0 0;0 2 0;0 0 3];求A/B,A\BA/B=1.0000 1.0000 1.00004.0000 2.5000 2.00007.0000 4.0000 3.0000A\B=1.0e+016 *0.3152 -1.2609 0.9457-0.6304 2.5218 -1.89130.3152 -1.2609 0.9457(3)矩阵的转置及共轭转置已知A=[15+i,2-i,1;6*i,4,9-i];求A.',A'A=15.0000 + 1.0000i 2.0000 - 1.0000i 1.00000 + 6.0000i 4.0000 9.0000 - 1.0000iA.'=15.0000 + 1.0000i 0 + 6.0000i2.0000 - 1.0000i 4.00001.0000 9.0000 - 1.0000iA'=15.0000 - 1.0000i 0 - 6.0000i2.0000 + 1.0000i 4.00001.0000 9.0000 + 1.0000i(4)使用冒号选出指定元素已知A=[1 2 3;4 5 6;7 8 9];求A中第三列前两个元素;A中所有第二行的元素A =1 2 34 5 67 8 9求A中第三列前两个元素:A([1,2],3)ans =36求A中所有第二行的元素:A(2,1:1:end)ans =4 5 6(5)方括号[]用magic函数生成一个4阶魔方矩阵,删除该矩阵的第四列magic(4)ans =16 2 3 135 11 10 89 7 6 124 14 15 1a=ans;a(:,[1,2,3])ans =16 2 35 11 109 7 64 14 153..多项式(1)求多项式p(X)=x^3-2x-4的根(2)已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4]求矩阵A的特征多项式;求矩阵多项式中未知数为20时的值;把矩阵A作为未知数代入到多项式中;(1)a=[1,0,-2,-4]x=roots(a)x =2.0000-1.0000 + 1.0000i-1.0000 - 1.0000i(2)求特征多项式系数:A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4]p=poly(A)p =1.0000 -6.9000 -77.2600 -86.1300 604.5500求矩阵多项式中未知数为20时的值:c=polyval(p,20)c =7.2778e+004把矩阵A作为未知数代入到多项式中:c=polyval(p,A)c =1.0e+003 *0.3801 -0.4545 -1.9951 0.4601-1.9951 0.2093 -1.9951 -2.8880-0.4545 -4.8978 0.6046 0.43530.4353 0.0840 -0.4545 -1.16174、基本程序设计(1)编写命令文件:计算1+2+3+……+n<2000;n=0;s=0;while s<2000n=n+1;s=s+n;endn=n-1n =62(2)编写函数文件:分别用for和while循环结构编写程序,求2的0到n次幂的和。
MATLAB与数学实验第二版教学设计 (2)
MATLAB与数学实验第二版教学设计1. 前言MATLAB作为一种通用的科学计算软件,已得到广泛地应用。
其提供的语言和工具使得数学实验教学在许多方面得到了极大的改进。
本文将介绍MATLAB与数学实验第二版的教学设计,包括教学目标、教学内容、教学策略等内容。
2. 教学目标本次教学的主要目标是:让学生掌握MATLAB软件的基本操作、实验数据的处理、以及MATLAB在数学实验中的应用。
通过本次课程的学习,学生应具备以下知识和能力:•掌握MATLAB软件基本操作;•理解实验数据的处理方法;•学会利用MATLAB进行数学实验分析。
3. 教学内容3.1 MATLAB软件基础本部分教学内容主要涵盖MATLAB软件的基础知识,包括MATLAB编程语言、MATLAB环境基础等。
3.2 实验数据处理本部分教学内容主要涵盖实验数据的处理方法,包括数据读入和输出、数据预处理、数据分析等。
3.3 MATLAB在数学实验中的应用本部分教学内容主要涵盖MATLAB在数学实验中的应用,包括实验模型建立、实验分析与可视化、数学模型解决等。
4. 教学策略本节将介绍本次教学中所采用的教学策略。
4.1 教学方法本次教学采用“理论结合实践”教学方法,旨在让学生通过理论学习和实践操作相结合,提高学生的动手能力和应用能力。
4.2 实验设计本次教学将通过数学实验的方式实现知识点的教学,旨在增强学生的实践操作能力。
实验的设计将分为三个部分:•第一部分:MATLAB软件基础操作练习;•第二部分:实验数据处理;•第三部分:MATLAB在数学实验中的应用。
4.3 教学环节本次教学将分为讲授和实践两部分。
在讲授环节中,教师将通过授课、演示等方式进行教学;在实践环节中,学生将通过实验操作的方式进行学习。
5. 教学评价本节将介绍本次教学的评价方式。
5.1 考试评价本次教学将通过考试的方式进行评价,考试内容将涵盖教学内容的全部知识点,旨在全面考核学生的学习效果和能力。
MATLAB程序设计与应用(第二版)课后实验答案
Matlab课后实验题答案实验一 MATLAB运算基础1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)0 122sin851ze =+(2)21ln(2z x=,其中2120.455ix+⎡⎤=⎢⎥-⎣⎦(3)0.30.330.3sin(0.3)ln, 3.0, 2.9,,2.9,3.0 22a ae e az a a--+=++=--(4)2242011122123t tz t tt t t⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t=0:0.5:2.52. 已知:1234413134787,2033657327A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1) A+6*B 和A —B+I(其中I 为单位矩阵) (2) A*B 和A.*B (3) A^3和A.^3 (4) A/B 及B\A(5) [A,B ]和[A ([1,3],:);B^2] 解:3. 设有矩阵A 和B123453166789101769,111213141502341617181920970212223242541311A B ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1) 求它们的乘积C 。
(2) 将矩阵C 的右下角3×2子矩阵赋给D 。
(3) 查看MATLAB 工作空间的使用情况。
4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2).建立一个字符串向量 例如: ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1。
设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。
MATLAB实验二
MATLAB实验二李彤自动化04班学号:201041803042一、实验目的:1. Learn to design branch and loop statements program2. Be familiar with relational and logical operators3. Practice 2D plotting二、实验内容:1. Assume that a,b,c, and d are defined, and evaluate the following expression.a=20; b=-2; c=0; d=1;(1)a>b; 1(2)b>d; 0(3)a>b&c>d; 0(4)a==b; 0(5)a&b>c; 0(6)~~b; 1a=2; b=[1 -2;-0 10]; c=[0 1;2 0]; d=[-2 1 2;0 1 0];(1)~(a>b)0 00 1(2)a>c&b>c;1 00 1⑶ c<=d;??? Error using ==> <= Matrix dimensions must agree. a=2; b=3; c=10; d=0;(9)a*b^2>a*c ; 0(10)d|b>a; 1(11)(d|b)>a; 0(12)isinf(a/b) ; 0(13)isinf(a/c) ; 1(14)a>b&ischar(d) ; 1(15)isempty(c); 02. Write a Matlab program to solve the function1()ln1y xx=-, where x is a number <1. Use an if structure toverify that the value passed to the program is legal. If the value of x is legal, caculate y(x). If not ,write a suitable error message and quit.Solution:x=input('Enter the coefficient x='); if x<1y=log(1/(1-x));fprintf('y=%f\n',y)elsedisp('The value of x is illegal');endEnter the coefficient x=0.1 y=0.105361Enter the coefficient x=1 The value of x is illegal!3. Write out m. file and plot the figures with grids1Assume that the complex function f(t) is defined by the equationf(t)=(0.5-0.25i)t-1.0Plot the amplitude and phase of function for 0 4.t ≤≤ Solution: t=0:0.1:4;x=sqrt((0.5.*t-1).^2+(0.25.*t).^2); y=atan((0.25.*t)./(1-0.5.*t)); plot(t,x); hold on;plot(t,y);4. Write the Matlab statements required to calculate y(t) from the equation22350()350t t y t t t -+≥⎧=⎨+<⎩for value of t between –9 and 9 in steps of 0.5. Use loops and branches to perform this calculation. Solution:for t=-9:0.5:9; if t>=0y=-3*t^2+5; elsey=3*t^2+5; endfprintf('y=%f\n',y); endy=248.000000 y=221.750000 y=197.000000 y=173.750000 y=152.000000 y=131.750000 y=113.000000 y=95.750000 y=80.000000 y=65.750000y=53.000000 y=41.750000 y=32.000000 y=23.750000 y=17.000000 y=11.750000 y=8.000000 y=5.750000 y=5.000000 y=4.250000y=2.000000 y=-1.750000 y=-7.000000 y=-13.750000 y=-22.000000 y=-31.750000 y=-43.000000 y=-55.750000 y=-70.000000 y=-85.750000y=-103.000000 y=-121.750000 y=-142.000000 y=-163.750000 y=-187.000000 y=-211.750000 y=-238.0000005. Write an m.file to evalue the equation 2()32y x x x =-+for all values of x between 0.1 and 3, insteps of 0.1. Do this twice, once with a for loop and once with vectors. Plot the resulting function using a 4.0 thick dashed blue line.Solution:for x=0.1:0.1:3; y=x.^2-3*x+2; plot(x,y,’bo ’); hold on; endx=0.1:0.1:3; y=x.^2-3*x+2;plot(x,y,'b--','LineWidth',4.0);。
MATLAB第二章实验报告
MATLAB数据及基本操作班级:11电信一班姓名:何得中学号:20111060108实验目的:1.熟悉MATLAB的组体成体系及工作环境;2.了解MATLAB的帮助系统;3.掌握MATLAB的数据类型及变量的基本操作;4.掌握矩阵建立的基本方法及其运算;5.掌握矩阵索引与分析方法;6.熟悉字符串单元及结构数据的建立及基本操作。
实验仪器:MA TLAB软件,电脑实验数据:>> A=[1 2 3;4 5 6;7 8 9]A = 1 2 34 5 67 8 9>> A=[1 2 34 5 67 8 9]A = 1 2 34 5 67 8 9>> x=0:pi/8:2*pi;>> y=cos(x)y = Columns 1 through 101.0000 0.9239 0.7071 0.3827 0.0000 -0.3827 -0.7071 -0.9239 -1.0000 -0.9239Columns 11 through 17-0.7071 -0.3827 -0.0000 0.3827 0.7071 0.9239 1.0000>> B=ones(3,5)B = 1 1 1 1 11 1 1 1 11 1 1 1 1>> zeros(3)ans = 0 0 00 0 00 0 0>> C=rand(3,4)C = 0.9501 0.4860 0.4565 0.44470.2311 0.8913 0.0185 0.61540.6068 0.7621 0.8214 0.7919>> D=randn(2,3)D = -0.4326 0.1253 -1.1465-1.6656 0.2877 1.1909>> eye(3)ans = 1 0 00 1 00 0 1>> M=magic(4)M = 16 2 3 135 11 10 89 7 6 124 14 15 1>> T=toeplitz(1:5,1:6)T = 1 2 3 4 5 62 1 234 53 2 1 2 3 44 3 2 1 2 35 4 3 2 1 2>> H=hilb(5)H = 1.0000 0.5000 0.33330.2500 0.20000.5000 0.3333 0.2500 0.2000 0.16670.3333 0.2500 0.2000 0.1667 0.14290.2500 0.2000 0.1667 0.1429 0.12500.2000 0.1667 0.1429 0.1250 0.1111>> a=3:18a =3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18>> b=1:0.2:6b =Columns 1 through 91.0000 1.2000 1.4000 1.600 1.80002.0000 2.2000 2.4000 2.6000 Columns 10 through 182.80003.0000 3.2000 3.40003.6000 3.80004.0000 4.2000 4.4000 Columns 19 through 264.6000 4.80005.0000 5.20005.4000 5.6000 5.80006.0000>> linspace(1,15,10)ans =Columns 1 through 91.00002.5556 4.1111 5.6667 7.2222 8.7778 10.3333 11.8889 13.4444Column 1015.0000>> y=[0.9 0.3 0.4 0.1 0.5 0.6 0.2 ]; >> [sorted,index]=sort(y)sorted =0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.9000 index =4 7 2 3 5 6 1>> A=rand(4,5)A = 0.9218 0.9355 0.0579 0.13890.27220.7382 0.9169 0.3529 0.2028 0.19880.1763 0.4103 0.8132 0.1987 0.01530.4057 0.8936 0.0099 0.6038 0.7468>> [a,b]=min(A)a =0.1763 0.4103 0.0099 0.13890.0153b = 3 3 4 1 3>> min(A(:))ans = 0.0099>> V=[1 2 3 4]V = 1 2 3 4>> norm(V,2)ans =5.4772>> norm(V,1)ans = 10>> norm(V,inf)ans = 4>> V=[2 5 6 8 4 9]V = 2 5 6 8 4 9>> min(V)ans = 2>> V=[4 9 6;7 8 9;4 5 6]V = 4 9 67 8 94 5 6>> min(V)ans = 4 5 6>> max(V)ans = 7 9 9>> mean(V)ans = 5.0000 7.3333 7.0000>> median(V)ans = 4 8 6>> std(V)ans = 1.7321 2.0817 1.7321>> diff(V)ans =3 -1 3-3 -3 -3>> sort(V)ans =4 5 64 8 67 9 9>> length(V)ans = 3>> norm(V)ans =19.9125>> sum(V)ans = 15 22 21>> prod(V)ans =112 360 324>> cumsum(V)ans = 4 9 611 17 1515 22 21 >> cumprod(V)ans = 4 9 628 72 54112 360 324>> V=[1 2 8]V = 1 2 8>> U=[3; 4;7]U = 347>> dot(V,U)ans =67>> cross(V,U)ans =-18 17 -2>> A=[5 6 4;7 8 9;4 5 6]A = 5 6 47 8 94 5 6>> B=[6 2 7 ;7 5 8;4 6 8]B = 6 2 77 5 84 6 8>> C=A-BC = -1 4 -30 3 10 -1 -2>> C=A*BC = 88 64 115134 108 18583 69 116>> C1=A\BC1 =0.6667 -6.4444 -7.66670.6667 4.8889 7.3333-0.3333 1.2222 0.3333>> C2=B/AC2 = -3.0000 8.3333 -9.3333-1.6667 5.5556 -5.88890.0000 -1.3333 3.3333>> A=[1 2 3;4 5 6;7 8 9]A = 1 2 34 5 67 8 9>> D=A^2D = 30 36 4266 81 96102 126 150>> E=A^0.1E = 0.8466 + 0.2270i 0.3599 + 0.0579i -0.0967 - 0.1015i0.4015 + 0.0216i 0.4525 + 0.0133i 0.4432 - 0.0146i-0.0134 - 0.1740i 0.4848 - 0.0509i 1.0132 + 0.0820i>> A=[1+2*i 3;4 2+i]A =1.0000 + 2.0000i 3.00004.0000 2.0000 + 1.0000i>> A'ans = 1.0000 - 2.0000i 4.00003.0000 2.0000 - 1.0000i>> A=[1 2 3;4 5 6;7 8 9]A = 1 2 34 5 67 8 9>> B=[3 4 6;7 9 8;5 2 01]B = 3 4 67 9 85 2 1>> C=A.*BC = 3 8 1828 45 4835 16 9>> D=A./BD = 0.3333 0.5000 0.50000.5714 0.5556 0.75001.4000 4.0000 9.0000>> E=A.\BE = 3.0000 2.0000 2.00001.7500 1.8000 1.33330.7143 0.2500 0.1111>> A=[1+2*i 3;4 2+i]A = 1.0000 + 2.0000i 3.00004.0000 2.0000 + 1.0000i>> A.^2ans = -3.0000 + 4.0000i 9.000016.0000 3.0000 + 4.0000i>> A.'ans = 1.0000 + 2.0000i 4.00003.0000 2.0000 + 1.0000i>> x=0.1:0.1:0.8x =0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000>> y=sin(2*x).*cos(2*x)y =0.1947 0.3587 0.4660 0.4998 0.4546 0.3377 0.1675 -0.0292>> y=sin(x)y =0.0998 0.1987 0.2955 0.3894 0.4794 0.5646 0.6442 0.7174>> y=cos(x)y =0.9950 0.9801 0.9553 0.9211 0.8776 0.8253 0.7648 0.6967>> y=tan(x)y =0.1003 0.2027 0.3093 0.4228 0.5463 0.6841 0.8423 1.0296>> y=cot(x)y =9.9666 4.9332 3.2327 2.3652 1.8305 1.4617 1.1872 0.9712>> y=sec(x)y = 1.0050 1.0203 1.0468 1.0857 1.1395 1.2116 1.3075 1.4353>> y=csc(x)y = 10.0167 5.0335 3.3839 2.5679 2.0858 1.7710 1.5523 1.3940>> y=asin(x)y = 0.1002 0.2014 0.3047 0.4115 0.5236 0.6435 0.7754 0.9273>> y=acos(x)y = 1.4706 1.3694 1.2661 1.1593 1.0472 0.9273 0.7954 0.6435>> y=atan(x)y =0.0997 0.1974 0.2915 0.3805 0.4636 0.5404 0.6107 0.6747>> y=acot(x)y = 1.4711 1.3734 1.2793 1.1903 1.1071 1.0304 0.9601 0.8961>> y=asec(x)y =Columns 1 through 60 + 2.9932i 0 + 2.2924i0 + 1.8738i 0 + 1.5668i 0 +1.3170i 0 + 1.0986iColumns 7 through 80 + 0.8956i 0 + 0.6931i>> y=sinh(x)y =0.1002 0.2013 0.3045 0.4108 0.5211 0.6367 0.7586 0.8881>> y=cosh(x)y =1.0050 1.0201 1.0453 1.0811 1.1276 1.1855 1.2552 1.3374>> y=tanh(x)y = 0.0997 0.1974 0.2913 0.3799 0.4621 0.5370 0.6044 0.6640>> y=coth(x)y = 10.0333 5.0665 3.4327 2.6319 2.1640 1.8620 1.6546 1.5059>> y=sech(x)y = 0.9950 0.9803 0.9566 0.9250 0.8868 0.8436 0.7967 0.7477>> y=csch(x)y = 9.9834 4.9668 3.2839 2.4346 1.9190 1.5707 1.3182 1.1260>> y=asinh(x)y = 0.0998 0.1987 0.2957 0.3900 0.4812 0.5688 0.6527 0.7327>> y=acosh(x)y =Columns 1 through 60 + 1.4706i 0 + 1.3694i0 + 1.2661i 0 + 1.1593i 0 +1.0472i 0 + 0.9273iColumns 7 through 80 + 0.7954i 0 + 0.6435i>> y=atanh(x)y = 0.1003 0.2027 0.3095 0.4236 0.5493 0.6931 0.8673 1.0986>> y=acoth(x)y = Columns 1 through 60.1003 + 1.5708i 0.2027 + 1.5708i 0.3095 + 1.5708i 0.4236 + 1.5708i 0.5493 + 1.5708i 0.6931 + 1.5708i Columns 7 through 80.8673 + 1.5708i 1.0986 + 1.5708i >> y=asech(x)y = 2.9932 2.2924 1.8738 1.5668 1.3170 1.0986 0.8956 0.6931>> y=acsch(x)y = 2.9982 2.3124 1.9189 1.6472 1.4436 1.2838 1.1545 1.0476>> y=log(x)y =-2.3026 -1.6094 -1.2040 -0.9163 -0.6931 -0.5108 -0.3567 -0.2231>> y=log10(x)y = -1.0000 -0.6990 -0.5229 -0.3979 -0.3010 -0.2218 -0.1549 -0.0969>> y=log2(x)y =-3.3219 -2.3219 -1.7370 -1.3219 -1.0000 -0.7370 -0.5146 -0.3219>> c=complex(a,b)c = 0.1763 + 3.0000i 0.4103 + 3.0000i0.0099 + 4.0000i 0.1389 + 1.0000i 0.0153 + 3.0000i>> zc=conj(x)zc =0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000>> b=imag(x)b = 0 0 0 0 0 00 0>> a=real(x)a = 0.1000 0.2000 0.3000 0.40000.5000 0.6000 0.7000 0.8000>> y=fix(x)y = 0 0 0 0 0 0 0 0>> y=floor(x)y =0 0 0 0 0 0 0 0 >> y=ceil(x)y = 1 1 1 1 1 1 1 1>> y=round(x)y = 0 0 0 0 1 1 1 1>> y=sign(x)y = 1 1 1 1 1 1 1 1>> S=rats(x)S =1/10 1/5 3/10 2/5 1/2 3/5 7/10 4/5>> [N,D]=rat(x)N = 1 1 3 2 1 37 4D = 10 5 10 5 2 510 5>> A=[2 4 6;3 5 7;8 10 9]A = 2 4 63 5 78 10 9>> B=[4 1 5;7 5 0;9 3 6]B = 4 1 57 5 09 3 6>> A>Bans = 0 1 10 0 10 1 1>> A<Bans = 1 0 01 0 01 0 0>> A>=Bans = 0 1 10 1 10 1 1>> A<=Bans = 1 0 01 1 01 0 0>> A==Bans = 0 0 00 1 00 0 0>> A~=Bans =1 1 11 0 11 1 1>> A&Bans = 1 1 11 1 01 1 1>> A|Bans = 1 1 11 1 11 1 1>> ~Aans = 0 0 00 0 00 0 0>> ~Bans = 0 0 00 0 10 0 0>> x=0:pi/100:3*pi;>> y=sin(x);>> plot(x,y);>> y1=(x<pi|x>2*pi).*y;>> figure,plot(x,y1);>> r=(x>pi/3&x<2*pi/3)|(x>7*pi/3&8*pi/3);>> rn=~r;>> y2=r*sin(pi/3)+rn.*y1;>> figure,plot(x,y2)>> x=[0 4 5 9 8 6 74 85 7 4 85 8 4 5 8]x =0 4 5 9 8 6 74 85 7 4 85 8 4 5 8>> all(x)ans =0>> any(x)ans = 1>> find(x)ans =2 3 4 5 6 7 8 9 10 11 12 13 14 15>> isempty(x)ans =>> isglobal(x)Warning: isglobal is obsolete and will be discontinued. Type "help isglobal" for more details.ans =0>> isinf(x)ans =0 0 0 0 0 0 0 0 0 0 0 0 0 0 0>> isnan(x)ans =0 0 0 0 0 0 0 0 0 0 0 0 0 0 0>> isfinite(x)ans =1 1 1 1 1 1 1 1 1 1 1 1 1 1 1>> issparse(x)ans = 0>> isstr(x)ans =0>> not(x)ans =1 0 0 0 0 0 0 0 0 0 0 0 0 0 0>> y=[59 46 78 2 3 98 1 2 3 57 9 5 66 8 900 5]y =59 46 78 2 3 98 1 2 3 57 9 5 66 8 900 5>> y=[59 46 78 2 3 98 1 2 3 57 9 5 66 8 900 5]y = 59 46 78 2 3 98 1 2 3 57 9 5 66 8 900 5>> x=[0 4 5 9 8 6 74 85 7 4 85 8 4 5 8]x = 0 4 5 9 8 6 74 85 7 4 85 8 4 5 8>> A=[4 -40 2; 23 50 17;18 29 14]A = 4 -40 223 50 1718 29 14>> [r,c]=find(A>=20&A<=30)r = 23c = 12>> bitand(12,6)ans = 4>> bitshift(12,1)ans = 24>> bitxor(12,1)ans =13>> bitset(12,1)ans = 13 >> bitget(12,1)ans =0>> A =[ 87 59 56 85 66 21 12 35 62 64 69 88 99 81]A =87 59 56 85 66 21 1235 62 64 69 88 99 81>> A(2)ans =59>> A([1,2,8])ans =87 59 35>> A([9,6,2])ans =62 21 59>> A([end-4:end])ans =64 69 88 99 81>> A([1:5,5:-1:1])ans = 87 59 56 85 66 66 85 56 59 87>> A(3)=-1A = 87 59 -1 85 66 2112 35 62 64 69 88 99 81>> A(15)=-8A =87 59 -1 85 66 2112 35 62 64 69 88 99 81 -8>> A(20)=-1A = Columns 1 through 1687 59 -1 85 66 21 12 35 62 64 69 88 99 81 -8 0Columns 17 through 200 0 0 -1>> A=rand(8)A = 0.9501 0.8214 0.9355 0.13890.4451 0.8381 0.3046 0.37840.2311 0.4447 0.9169 0.2028 0.9318 0.0196 0.1897 0.86000.6068 0.6154 0.4103 0.1987 0.4660 0.6813 0.1934 0.85370.4860 0.7919 0.8936 0.6038 0.4186 0.3795 0.6822 0.59360.8913 0.9218 0.0579 0.2722 0.8462 0.8318 0.3028 0.49660.7621 0.7382 0.3529 0.1988 0.5252 0.5028 0.5417 0.89980.4565 0.1763 0.8132 0.0153 0.2026 0.7095 0.1509 0.82160.0185 0.4057 0.0099 0.7468 0.6721 0.4289 0.6979 0.6449>> A(3,3)ans =0.4103>> A(8)ans =0.0185>> sub2ind(size(A),3,3)ans =19>> [i,j]=ind2sub(size(A),19)i =3j =3>> A(:,4)ans =0.13890.20280.19870.60380.27220.19880.01530.7468>> A(3,:)ans =0.6068 0.6154 0.4103 0.1987 0.4660 0.6813 0.1934 0.8537>> A(end,:)ans =0.0185 0.4057 0.0099 0.7468 0.6721 0.4289 0.6979 0.6449>> A(3:4,5:6)ans =0.4660 0.68130.4186 0.3795>> A(2:2:4,1:2:5)ans =0.2311 0.9169 0.93180.4860 0.8936 0.4186>> A=reshape(A,5,5)A = 1 6 11 16 212 7 12 17 223 8 13 18 234 9 14 19 245 10 15 20 25>> A(:)'ans =Columns 1 through 161 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Columns 17 through 2517 18 19 20 21 22 23 24 25>> A(:,1:2:5)=[]A = 6 167 178 189 1910 20>> A=[9 8 7;6 5 4;3 2 1];>> D=diag(A)D =951>> D1=diag(A,1)D1 =84>> D2=diag(A,-1)D2 =62>> V=[1 2 3 4];>> diag(V)ans = 1 0 0 00 2 0 00 0 3 00 0 0 4>> diag(1:3,-1)ans = 0 0 0 01 0 0 00 2 0 00 0 3 0>>A=[17,1,0,15;5,7,14,16;4,0,13,0;10,12,19,21]; >> D=diag(4:-1:1);>> D*Aans = 68 4 0 6015 21 42 488 0 26 010 12 19 21>> triu(A)ans =17 1 0 150 7 14 160 0 13 00 0 0 21>> triu(A,1)ans = 0 1 0 150 0 14 160 0 0 00 0 0 0>> B=A'B =17 5 4 101 7 0 120 14 13 1915 16 0 21>> rot90(A)ans =15 16 0 210 14 13 191 7 0 1217 5 4 10>> rot90(A,3)ans =10 4 5 1712 0 7 119 13 14 021 0 16 15>> B=fliplr(A)B = 15 0 1 1716 14 7 50 13 0 421 19 12 10>> B=flipud(A)B = 10 12 19 214 0 13 05 7 14 1617 1 0 15>> A=[4 5 6 9;7 8 9 5;4 5 6 9;7 8 9 5]; >> det(A)ans =0>> rank(A)ans =2>> cond(A)ans =1.0968e+017>> inv(A)Warning: Matrix is singular to working precision.ans = Inf Inf Inf InfInf Inf Inf InfInf Inf Inf InfInf Inf Inf Inf>> A=[4 8 9;8 2 7;6 3 8];>> inv(A)ans = 0.0568 0.4205 -0.43180.2500 0.2500 -0.5000-0.1364 -0.4091 0.6364>> [V,D]=eig(A)V = -0.6438 -0.7444 -0.5061-0.5467 0.6392 -0.5515-0.5354 0.1931 0.6631D = 18.2776 0 00 -5.2030 00 0 0.9254>> [U,S,D]=svd(A)U = -0.6378 0.7375 -0.2220-0.5426 -0.6348 -0.5500-0.5465 -0.2304 0.8051S = 18.9278 0 00 5.2884 00 0 0.8791D = -0.5374 -0.6639 -0.5200-0.4135 0.7449 -0.5236-0.7350 0.0663 0.6749>> [L,U]=lu(A)L = 0.5000 1.0000 01.0000 0 00.7500 0.2143 1.0000U = 8.0000 2.0000 7.00000 7.0000 5.50000 0 1.5714>> [Q,R]=qr(A)Q = -0.3714 0.9114 -0.1774-0.7428 -0.4063 -0.5322-0.5571 -0.0659 0.8278 R =-10.7703 -6.1279 -12.99870 6.2808 4.83140 0 1.3009>> a=1234a = 1234>> class(a)ans =double>> size(a)ans = 1 1>> b='1234'b =1234>> class(b)ans =char>> size(b)ans = 1 4>> 'I am astudent'ans =I am astudent>> a='This is No.2.23 Example!'a =This is No.2.23 Example!>> b=a(1:7)b =This is>> c=a(12:end)c =2.23 Example!>> a='Good';>> b='Noon';>> length(a)==length(b)ans = 1>> c=[a,'',b]c =GoodNoon>> d=[a;b]d =GoodNoon>> size(c)ans = 1 8>> size(d)ans = 2 4>> a='Good Noon';>> b=double(a)b = 71 111 111 100 32 78 111 111 110>> c='再见!'c =再见!>> c='再见!'>> d=double(c)d = 20877 35265 65281>> char(d)ans =再见!>> a='The first string';>> b='The second string';>> c=strcmp(a,b)c =0>> d=strncmp(a,b,4)d =1>> X='A friend in need is a friend indeed'; >> Y='friend';>> a=findstr(Y,X)a = 3 23>> b=strfind(Y,X)b = []>> S=['1 2 3';'2 3 4'];>> A=str2num(S)A = 1 2 32 3 4>> B=str2num('6-8i')B = 6.0000 - 8.0000i>> D=num2str(rand(2,3),6)D =0.950129 0.606843 0.8912990.231139 0.485982 0.762097>> d=189;>> h=dec2hex(d)h =BD>> c=dec2base(d,7)c =360>> b=dec2bin(d)b =10111101>> bin2dec(b)ans = 189>> A={ones(3,3,3),'Welcome';30.34,1:200} A = [3x3x3 double] 'Welcome'[ 30.3400] [1x200 double]>>B=[{ones(3,3,3)},{'Welcome'};{30.34},{1:20 0}]B = [3x3x3 double] 'Welcome'[ 30.3400] [1x200 double]>> C={5}C = [5]>> C(2,3)={7}C = [5] [] [][] [] [7]>> isequal(A,B)ans =1>> A={ones(3,3,3),'Welcome';30.34,1:200}; >> b=A(1,2)b = 'Welcome'>> class(B)ans =cell>> C=A{1,2}C =Welcome>> class Cans =char>> D=A{1,2}(6)D =m>> E=A{2,2}([end:-1:190])E =200 199 198 197 196 195 194 193 192 191 190>> class(E)ans =double>> N=A{3}([1 3 5 7])N =Wloe>> A={ones(3,3,3),'Welcome';30.34,1:200}; >> B=cell(2);>> B(:,1)={char('Good','Morning');1:10}B = [2x7 char ] [][1x10 double] []>> C=[A,B]C = [3x3x3 double] 'Welcome' [2x7 char ] [][ 30.3400] [1x200 double] [1x10 double] []>> D=[A,B;C]D = [3x3x3 double] 'Welcome' [2x7 char ] [][ 30.3400] [1x200 double] [1x10 double] [][3x3x3 double] 'Welcome' [2x7 char ] [][ 30.3400] [1x200 double] [1x10 double] []>> D(4,:)=[]D = [3x3x3 double] 'Welcome' [2x7 char ] [][ 30.3400] [1x200 double] [1x10 double] [][3x3x3 double] 'Welcome' [2x7 char ] []>> E=reshape(D,2,3,2)E(:,:,1) = [3x3x3 double] [3x3x3 double] [1x200 double][ 30.3400] 'Welcome' 'Welcome'E(:,:,2) = [2x7 char ] [2x7 char] [][1x10 double] [] []>>A={randn(3,3,2),'Good',pi;29,4+7*i,zeros(4)} A = [3x3x2 double] 'Good' [ 3.1416][ 29] [4.0000+ 7.0000i] [4x4 double]>> B=cellfun('isreal',A)B = 1 1 11 0 1>> C=cellfun('length',A)C = 3 4 11 1 4>> Member.code='09021';>> ='Liu';>> Member.age=22;>> Member.grade=uint16(3);>> MemberMember =code: '09021'name: 'Liu'age: 22grade: 3>> Member(4).name='Wang';>> Member(4).grade=2;>> Member(2)ans = code: []name: []age: []grade: []>>Memebr=struct('code','09021','name','Liu','a ge',22,'grade',uint16(3))Memebr = code: '09021'name: 'Liu'age: 22grade: 3>>Member=struct('code',{'09021','09034'},'name' ,{'Liu','Wamg'},'age',{22,24},'grade',{2,3}) Member = 1x2 struct array with fields:codenameagegrade>>Member=struct('code',{},'name',{},'age',{},'gr ade',{})Member = 0x0 struct array with fields:codenameagegrade>>Member=struct('code',{'09021','09034'},'na me',{'Liu','Wang'},'age',{22,24},'grade',{2,3},' score',{[78 89;90 68],[91 76;89 97]}) Member = 1x2 struct array with fields:codenameagegradescore>> Member(1).scoreans =78 8990 68>> Member(2).score(2,:)ans =89 97>> Member.codeans =09021ans =09034>> Member.('name')ans =Liuans =Wang>> ='Liu';M.ID=1;>> M(2,2).name='Wang';M(2,2).ID=2; >> M2=setfield(M,{2,1},'name','Zhang'); >> ans =Liuans =[]ans = []ans =Wang>> ans =Liuans =Zhangans = []ans =Wang>> fieldnames(M)ans = 'name''ID'>> M3=orderfields(M)M3 = 2x2 struct array with fields:IDname。
matlab第二次实验报告
《数学建模实验》上机实验报告班级:计算机35班学号:2130505099姓名:田博文【实验一】一上底面半径2米、下底面半径4米、高4米的圆台形水池内盛满了水,由池底一横截面积为0.001平方米的小孔放水。
求在任意时刻的水面高度和将水放空所需的时间。
一、问题分析:在dt很小一段时间内,水的流速v可以看成是不变的与水面高度h有关的函数,即v=gh2;在dt时间内流出的水量,可以近似的为一圆柱,对应的圆柱高为dh;由于容器下降的水量与流出的水量相等,令小孔面积为b,即dV=π2r dh=bvdt;可得dh与dt的关系为:dh=bvdt/(π2r);根据相似三角形原理可得,r=4-h/2;初始条件有;h(0)=4;为表示方便,引入变量L=4-h故r=2+L/2二、代码:T=0;for L=0:0.001:4-0.001 %选取积分微元为0.001,即dhV=0.001*pi*(2+(1/2*L))^2; %水面处的dV,b=0.001t=V/(sqrt(2*(4-L)*9.8)*0.001) %dV与dt关系T=T+t;plot(T,(4-L),'red'); hold onend三、运行结果:四、结论:在任意时刻的水面高度和将水放空所需的时间如上图红线所示,横轴为时间,纵轴为水面高度。
【实验二】有A、B、C三个场地,每一个场地都出产一定数量的原料,同时也消耗一定数量的产品,具体数据如下表所示。
已知制成每吨产品需要消耗3吨原料,A、B两地,A、C两地和B、C两地之间的距离分别为150千米、100千米和200千米,假设每万吨原料运输1千米的运费为5000元,每万吨产品运输1千米的运费为6000元。
由于地区条件的差异,在不同地区设厂的费用不同,由于条件的限制,在B处建厂的规模不能超过5万吨,问:在这三地如何建厂、规模建多大才能使得总费用最小?地点年产原料(万吨)年销产品(万吨)生产费用(万元/万吨)A 20 7 150B 16 13 120C 24 0 100一、问题分析:设nij为i地运往j地的原料量,mij为i地运往j地的产品量,设A地为1地,B 为2地,C地为3地。
MATLAB第二章实验报告
深 圳 大 学 实 验 报 告课程名称: MATLAB实验名称: MATLAB 的数值计算学 院:指导教师:报告人: 组号:学号 实验地点实验时间: 年 月 日提交时间:二、内容和步骤1.创建矩阵(1)直接输入(2)用from:step:to方式(3)用linspace函数:(4)使用特殊矩阵函数,并修改元素(5)获取子矩阵块:.练习:b=logspace(0,4*3.14,20)b =1.0e+12 *1 至17 列0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0018 0.0082 0.037718 至20 列0.1729 0.7924 3.63082.矩阵运算:(1)利用矩阵除法解线性方程组(2)利用矩阵的基本运算求解矩阵方程练习:(3)计算矩阵的特征值和特征向量。
验证特征值和特征向量与该矩阵的关系练习:将矩阵的乘除运算改为数组的点乘和点除运算:(4)利用数学函数进行矩阵运算w=logspace(-2,1,10)w =0.0100 0.0215 0.0464 0.1000 0.2154 0.4642 1.0000 2.1544 4.6416 10.0000LW=-20*log10(sqrt((2*w).^2 + 1))LW =-0.0017 -0.0081 -0.0373 -0.1703 -0.7396 -2.6993 -6.9897 -12.9151 -19.4040 -26.0314FW=-atan(2*w)*180/piFW =-1.1458 -2.4673 -5.3037 -11.3099 -23.3106 -42.8711 -63.4349 -76.9341 -83.8517 -87.13763.生成多维数组:c(18)=[]c =1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8练习:使用数组c编辑窗口查看变量a,b和c。
MATLAB实验报告二
实验二 Matlab语言程序设计一、实验内容:1、编写命令文件:计算 1+2+…+n<2000 时的最大 n 值;>> n=1; %将变量初值设为1sum=0;while((sum+n)<2000) %若s<2000成立,则执行下一条语句,否则结束本循环sum=sum+n; %求和运算n=n+1;endsum,n-1 %显示最终s和nsum =1953ans =622、编写函数文件:分别用 for 和 while 循环结构编写程序,求 2 的 0 到 15 次幂的和。
function xunhuan(x)sum=0;for(i=0:x)sum=sum+2^i;endy=sum>> xunhuan(15)y =65535function whilexun(x)sum=0;i=0;while(i<x)sum=sum+2^i;i=i+1;endy=sum>> whilexun(16)y =655353、如果想对一个变量 x 自动赋值。
当从键盘输入 y 或 Y 时(表示是),x 自动赋为 1;当从键盘输入 n 或 N 时(表示否),x 自动赋为 0;输入其他字符时终止程序。
a=input('输入一个字符:');switch acase 'y'x=1case 'Y'x=1case 'n'x=0case 'N'x=0otherwiseend输入一个字符:'Y'x =1二、实验思考题1.用FOR和WHILE语句有何要求?答:for语句的基本命令格式为for 循环变量=表达式1表达式3表达式2循环语句组End表达式1、表达式3、表达式2的定义和C语言相似即首先执行循环变量的初始值赋成表达式1的值然后判断循环变量的值介于表达式1和表达式2的值之间则执行循环体中的语句否则结束循环语句的执行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 MATLAB 程序设计
一、 实验目的
1.掌握利用if 语句实现选择结构的方法。
2.掌握利用switch 语句实现多分支选择结构的方法。
3.掌握利用for 语句实现循环结构的方法。
4.掌握利用while 语句实现循环结构的方法。
5.掌握MATLAB 函数的编写及调试方法。
二、 实验的设备及条件
计算机一台(带有以上的软件环境)。
M 文件的编写:
启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器(Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。
点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正
三、 实验内容
1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因c b a 、、的不同取值而定),这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。
并输入几组典型值加以检验。
(提示:提示输入使用input 函数)
2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。
其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。
要求:(1)用switch 语句实现。
(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。
(提示:注意单元矩阵的用法)
3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。
重复此过程,最终得到的结果为1。
如:
21
21
421
运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。
请为关键的Matlab 语句填写上相关注释,说明其含义或功能。
4.
y 的值。
5. (Root Mean Square)的计算公式为:
(1)x=sin(0::6*pi)
(2)x=rand(1,200),得到的x 为200个(0,1)之间均匀分布的随机数。
6.根据22222
1......3121116n
++++=π,求π的近似值。
当n 分别取100、1000、10000时,结果是多少
思考题:
有一分数序列:
编写一段程序,求前16项的和。
四、实验报告要求(包含预习报告要求和最终报告要求)
1.实验名称
2.实验目的
3.实验设备及条件
4.实验内容及要求
5.实验程序设计 指程序代码。
6.实验结果及结果分析
实验结果要求必须客观,对实验结果的理论评判。
7.实验中出现的问题及解决方法
8. 思考题的回答 四、 实验报告的提交方式
Word 文档,命名方式:实验号_你的学号_姓名!!!
例如本次实验:实验一_000000001_张三.doc
(信息101提交报告邮箱):E_mail:
(网络工程101提交作业邮箱):E_mail: M (注意网络班的M 是大写的)
下一次课前提交,过期不收!
五、 参考文献
参考教材和Matlab 帮助文件。
1.实验名称
MATLAB
程序设计
2.实验目的
1.掌握利用if 语句实现选择结构的方法。
2.掌握利用switch 语句实现多分支选择结构的方法。
3.掌握利用for 语句实现循环结构的方法。
4.掌握利用while语句实现循环结构的方法。
5.掌握MATLAB函数的编写及调试方法。
3.实验设备及条件
计算机一台(带有以上的软件环境)。
4.实验内容及要求
把实验内容的应用题,用MATLAB的语法编写出来,并运行成功,注意题与题之间用相应注释分割。
6.实验结果及结果分析
7.实验中出现的问题及解决方法
对函数的嵌套关系理解混乱
解决:反复尝试,得出正确的嵌套关系。
'^'没有运行成功。
解决:需要加符号'.',不然无法得出预期结果
8. 思考题的回答。