九年级数学二次函数与一元二次方程
人教版九年级上数学第22章二次函数22.2二次函数与一元二次方程(教案)
3.掌握一元二次方程的多种解法,培养问题解决和数学运算的能力。
4.将二次函数和一元二次方程应用于实际问题,增强数学建模和数学应用的意识。
5.在小组讨论和问题解决过程中,培养合作交流、批判性思维和创新意识。
三、教学难点与重点
1.教学重点
-二次函数与一元二次方程的关系:理解二次函数图像与一元二次方程解的关系,掌握二次函数标准形式及其图像特征。
-举例:求解x²-5x+6=0,展示不同解法并比较各自优劣。
-实际问题中的应用:学会将实际问题抽象为二次函数与一元二次方程模型,解决最值、交点等问题。
-举例:抛物线与直线的交点问题在实际情境中的应用,如物体抛掷的最高点问题。
2.教学难点
-图像与方程关系的理解:学生往往难以将二次函数图像与一元二次方程的解直观地联系起来。
在实践活动中,学生们的分组讨论进行得相当积极。他们能够将所学的理论知识应用到解决实际问题中去,这让我感到很欣慰。然而,我也观察到,在将实际问题抽象为数学模型的过程中,一些学生仍然感到困难。这告诉我,需要在后续的教学中加强对数学建模能力的培养。
在小组讨论环节,我尝试扮演了一个引导者和启发者的角色,鼓励学生们提出自己的观点和问题。我注意到,当他们被鼓励去探索和发现时,他们的思考变得更加深入。不过,我也发现时间管理上存在一些问题,有时候讨论可能会拖沓,影响到了课堂的整体进度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二次函数与一元二次方程_课件
=0
没有交点
没有实根
<0
有交点
有实根
≥0
归纳
△<0 △=0
△>0
求抛物线与坐标轴的交点 如何求抛物线与坐标轴的交点? 如何确定抛物线与x轴的交点个数?
例题 答案:
例题
答案:有(2.5,0),(-1,0) 归纳:一元二次方程
,则抛物线
例题 不与x轴相交的抛物线是( D )
练习——求交点 (0,-5)
例题
可以通过不断缩小根所在的范围,来估计一元二次方程的根 第二步:取平均数 取2和3的平均数2.5, 当x=2.5,y=-0.75<0. 那根是在2与2.5之间, 还是2.5与3之间呢?
例题
可以通过不断缩小根所在的范围,来估计一元二次方程的根 第三步:取异号缩小范围 一定得让相应的y值异号, 这样才能保证抛物线穿过x轴, 即根在该范围之间. 当x=2.5时,y<0, 当x=2时,y<0, 当x=3时,y>0, 所以根是在2.5与3之间
解:(3)当h = 20.5时,
因为
,所以方程无实根.
球的飞行高度达不到 20.5m .
思考 (4)球从飞出到落地要用多少时间? 解:(4)落地即h = 0,
当球飞行 0s 和 4s 时,它的高度为 0m , 即0s时,球从地面飞出,4s 时球落回地面.
讨论
通过刚才的例子可以发现,
二次函数
何时为一元二次方程?
例题
可以通过不断缩小根所在的范围,来估计一元二次方程的根 第四步:再取平均数 取2.5和3的平均数2.75, 当x=2.75,y=0.0625 > 0. 第五步:再取异号 所以根是在2.5与2.75之间
所以该抛物线与 x 轴有两个交点.
九年级二次函数与一元二次方程的联系和区别
二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。
当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。
⑤常数项c 决定抛物线与y 轴交点。
抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。
对称轴为直线 x =2ab-,。
对称轴与抛物线唯一的交点为抛物线的顶点P 。
特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。
当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。
2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。
Δ= b2-4ac=0时,抛物线与x 轴有1个交点。
Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。
④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。
二次函数与一元二次方程(知识点考点)-九年级数学上册知识点考点(解析版)
二次函数与一元二次方程(知识点考点一站到底)知识点☀笔记知识点一 利用判别式判断抛物线与x 轴的交点个数判别式 Δ=b 2- 4ac二次函数y =ax 2+bx +c 一元二次方程ax 2+bx +c =0(a ≠0)图象图象与x 轴 的交点个数根的情况Δ>0a >0与x 轴有 2个交点有两个不相等的实数根a <0Δ=0a >0与x 轴有 1个交点有两个相等的 实数根a <0Δ<0a >00个交点没有实数根a <0二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.考点☀梳理解题指导:①确定一元二次方程ax 2+bx +c +k =0的根的情况,可以利用二次函数y =ax 2+bx +c 的图象与y =-k 的图象的交点情况进行判断.②用图象法求一元二次方程的近似根的步骤:(1)画出函数的图象,并由图象确定方程根的个数; (2)由图象交点的位置确定交点横坐标的范围; (3)估计方程的近似根.考点1:二次函数与一元二次方程的关系必备知识点:①二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标,就是对应方程ax 2+bx +c =0(a ≠0)的根.题型1 图形法确定一元二次方程的近似根例1.(2022·全国·九年级专题练习)下表是若干组二次函数25y x x c =-+的自变量x 与函数值y 的对应值: x …1.31.41.51.61.7…y … 0.36 0.13 ﹣0.08 ﹣0.27 ﹣0.44 … 那么方程x 2﹣5x +c =0的一个近似根(精确到0.1)是( )A .3.4 B .3.5 C .3.6 D .3.7【答案】B【分析】观察表格可得-0.08更接近于0,得到方程的一个近似根(精确到0.1)是1.5,再由25y x x c =-+的对称轴为x =52得到方程250x x c -+=的另一个近似根(精确到0.1)是3.5【详解】解:∵二次函数25y x x c =-+, ∵对称轴为直线x =52,观察表格得:方程250x x c -+=的一个近似根(精确到0.1)是1.5, ∵另一个近似根m 满足 1.52m +=52, ∵m =3.5, 故选:B.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.=ax 2+bx +c 的图象,并求得一个近似根为x =﹣4.3,则方程的另一个近似根为( )(精确到0.1)A .x =4.3B .x =3.3C .x =2.3D .x =1.3【答案】C【分析】根据抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1,即可求解. 【详解】解:∵抛物线与x 轴的一个交点为(﹣4.3,0),又抛物线的对称轴为:x =﹣1, ∵另一个交点坐标为:(2.3,0), 则方程的另一个近似根为x =2.3,故选:C .【点睛】本题考查了根据二次函数图象求方程的近似根,掌握抛物线的对称性是解题的关键.练习1.(2022·全国·九年级专题练习)根据表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,可以判断方程 ax 2+bx +c =0的一个解x 的范围是( )x 00.5 1 1.5 2 y =ax 2+bx +c 1-0.5-13.57A .0<x <0.5B .0.5<x <1C .1<x <1.5D .1.5<x <2【答案】B【分析】利用二次函数和一元二次方程的性质.【详解】解:观察表格可知:当x =0.5时,y =-0.5;当x =1时,y =1, ∵方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是0.5<x <1. 故选:B .【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.练习2.(2022.浙江湖州.九年级期末)在二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表,则方程ax 2+bx +c =0的一个解x 的范围是( ) x (1)1.11.2 1.3 1.4 … y …-1-0.490.040.591.16…A .1<x <1.1B .1.1<x <1.2C .1.2<x <1.3D .1.3<x <1.4【答案】B【分析】根据表格中自变量与函数的值的变化情况得出当y =0时相应的自变量的取值范围即可. 【详解】由表格中数据可知,当x =1.1时,y =-0.49. 当x =1.2时,y =0.04于是可得,当y =0时,相应的自变量x 的取值范围为1.1<x <1.2 故选B【点睛】本题考查了用图像法求一元二次方程的近似根,解题的关键是找到y 由正变为负时自变量的取值即可.练习2.(2022·全国·九年级课时练习)如表,是二次函数()y f x =的自变量x 与函数值y 的几组对应值.那么方程()0f x =的一个近似解是( )x 0.9 1 1.1 1.2 1.3 1.4 y -1.49-1-0.490.040.591.16A .1B .1.1C .1.2D .1.3【答案】C【分析】由表格可得抛物线与x 轴的一个交点在(1.1,0)和(1.2,0)之间且距离(1.2,0)较近,进而求解. 【详解】解:由表格可得 1.1x =时,0y <, 1.2x =时,0y >,()0f x ∴=的一个解在1.1与1.2之间, |0.49|0.04>,()0f x ∴=的一个近似解是1.2,故选:C .【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数与方程的关系.练习4.(2022·江苏·九年级专题练习)观察下列表格,估计一元二次方程2350x x +-=的正数解在( )x-1 0 1 2 3 425x x +- -7 -5 -1 5 13 23A .-1和0之间B .0和1之间C .1和2之间D .2和3之间【答案】C【分析】令y =x 2+3x -5根据x =﹣1和x =5时的函数值,即可得到答案. 【详解】解:令y =x 2+3x -5, 当1x =时,10y =-<, 当2x =时,50y =>,∴x 2+3x -5=0的一个正数x 的取值范围为1<x <2,故选C .【点睛】本题考查二次函数的与坐标轴的交点问题,掌握二次函数的性质是解题关键. 例1.(2022·吉林省实验中学九年级阶段练习)抛物线253y x x =-+-与y 轴的交点坐标是( ) A .()0,3 B .()0,3-C .()0,5-D .()0,5【答案】B【分析】把x =0代入253y x x =-+-求得y 的值,即可得到答案. 【详解】解:∵当x =0时,253y x x =-+-=﹣3, ∵抛物线253y x x =-+-与y 轴的交点坐标是(0,﹣3).故选:B例2.(2022·全国·九年级专题练习)已知二次函数y =x 2﹣6x +5.函数图象与x 轴交点坐标为_____,与y 轴的交点坐标为__________;【答案】 (5,0),(1,0) (0,5)【分析】利用y =0解方程得到图象与轴的交点,利用x =0求图象与y 轴的交点即可. 【详解】把y =0代入y =x 2﹣6x +5得0=x 2﹣6x +5, 解得x 1=5,x 2=1,∵抛物线与x 轴交点坐标为(5,0),(1,0), 把x =0代入y =x 2﹣6x +5得y =5, ∵抛物线与y 轴交点坐标为(0,5), 故答案为:(5,0),(1,0);(0,5).【点睛】此题考查了二次函数图象与坐标轴的交点坐标,解一元二次方程,正确掌握计算方法是解题的关键.练习1.(2021·江苏·南通市八一中学九年级阶段练习)抛物线y =23x +4x +2与x 轴的交点个数是_____. 【答案】0【分析】先计算判别式的值,然后根据判别式的意义进行判断. 【详解】解:∵Δ=24-4×3×2=-8<0, ∵抛物线与x 轴没有交点. 故答案为:0.【点睛】本题考查了抛物线与x 轴的交点,解题关键是把求二次函数y =2ax +bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程的根的判别式的应用进行解决. 练习2.(2022·浙江温州·九年级期中)已知二次函数1y x k =--+的图象过点0,3.(1)求该二次函数的表达式.(2)求该二次函数图象与x 轴的交点坐标. 【答案】(1)()214y x =--+ (2)()1,0-,()3,0【分析】(1)把点()0,3代入函数解析式,求出k 的值即可得到函数表达式; (2)取y =0,得到()2140x --+=,求出x 的值,即可得到答案. (1)解:把()0,3代入()21y x k =--+得:()2013k --+=,解得:4k =,∵该二次函数的表达式是()214y x =--+; (2)当0y =时,()2140x --+=, 解得:11x =-或23x =,∵该二次函数图象与x 轴的交点坐标是()1,0-,()3,0.【点睛】此题考查了待定系数法求二次函数的表达式、二次函数图象与x 轴的交点等知识,熟练掌握方法是解题的关键.练习3.(2022·全国·九年级专题练习)如图,已知二次函数223y ax x ++=的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C .(1)求二次函数的解析式和点B 的坐标; (2)直接写出y 的最大值为 .【答案】(1)2y x 2x 3=-++;B (3,0); (2)4【分析】(1)运用待定系数法即可求得二次函数的解析式,令y =0,解一元二次方程即可求得点B 的坐标; (2)运用配方法将二次函数解析式化为顶点式,即可得出答案. (1)∵抛物线223y ax x ++=经过点A (﹣1,0), ∵a ﹣2+3=0, 解得:a =﹣1,∵二次函数的解析式为2y x 2x 3=-++, 令y =0,得2230x x -++=, 解得:13x =,21x =- ∵B (3,0); (2)∵()222314y x x x =-++=--+, ∵当x =1时,4y =最大值. 故答案为:4.【点睛】本题考查了待定系数法求函数解析式,抛物线与x 轴交点坐标,二次函数最值等,难度较小,是常见的基础题.练习4.(2021·江西上饶·九年级阶段练习)如图,抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式; (2)求∵BOC 的面积. 【答案】(1)223y x x --+= (2)92【分析】(1)根据抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),即可得到关于a 、b 的方程,从而可以求得a 、b 的值,然后即可写出抛物线的解析式;(2)根据(1)中抛物线的解析式,可以写出点C 的坐标,然后再根据点B 的坐标,即可得到OC 和OB 的长,再根据三角形面积公式,即可求得∵BOC 的面积. (1)解:∵抛物线23y ax bx ++=(a ≠0)与x 轴交于点A (1,0)和点B (﹣3,0),∵309330a b a b ++=⎧⎨-+=⎩, 解得12a b =-⎧⎨=-⎩,∵抛物线的解析式为223y x x --+=. (2)解:由(1)知,223y x x --+=,∵点C 的坐标为(0,3), ∵OC =3,∵点B 的坐标为(﹣3,0), ∵OB =3, ∵∵BOC =90°, ∵∵BOC 的面积是2OB OC ⋅=33922⨯=. 【点睛】本题主要考查抛物线与x 轴的交点、待定系数法求二次函数解析式、二次函数的性质、三角形的面积,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答. 例1.(2022·福建省长汀县第二中学九年级阶段练习)定义:min{a ,b }=(),().a a b b a b ⎧≤⎨>⎩若函数y =min{x +1,223x x -++ },则该函数的最大值为___________.【答案】3【分析】根据定义画出函数图象,设直线y =x +1,抛物线2y x 2x 3=-++,联立直线与抛物线方程得抛物线与直线交点坐标,结合图象求解.【详解】解:依题意,设直线y =x +1,抛物线2y x 2x 3=-++, 联立直线与抛物线方程得2123y x y x x =+⎧⎨=-++⎩, 解得23x y =⎧⎨=⎩或10x y =-⎧⎨=⎩,∵直线与抛物线交点坐标为(-1,0),(2,3), 如图,∵x ≤-1时,y =223x x -++,函数最大值为y =0,-1<x ≤2时,y =x +1,函数最大值为y =3, 当x >2时,y =223x x -++,y <3, ∵x =2时,函数取最大值为3, 故答案为:3.【点睛】本题考查二次函数的性质,解题关键是掌握函数与方程及不等式的关系.通过数形结合求解. 例2.(2022·全国·九年级课时练习)抛物线223y x x =-,当1y =-时,自变量的值为_________. 【答案】1或12【分析】把y =1代入解析式中得到关于x 的方程,解方程即可 【详解】解:223y x x =-, 当1y =-时,2231x x -=-, 解得11x =,212x =, 故答案为:1或12.【点睛】本题考查函数值以及自变量,解题的关键是掌握函数值的计算方法.练习.(全国八年级课时练习)已知,当时,的值为;当时,y 的值等于9. 【答案】 3 0或6【分析】令y =0即可得到关于x 的一元二次方程,求出x 的值即可;令y =9即可得到关于x 的一元二次方程,求出x 的值即可.【详解】解:∵y =x 2-6x +9中的值为0, ∵令x 2-6x +9=0,解得x =3; ∵y =x 2-6x +9中的值为9, ∵令x 2-6x +9=9,即x 2-6x =0, 解得1206x x ==,. 故答案为:3;0或6.【点睛】本题考查了二次函数与一元二次方程,根据函数值得到关于x 的元二次方程,求出x 的值是解答此题的关键.练习.(全国九年级课时练习)如图,抛物线与轴交于、两点,且点、B 都在原点右侧,抛物线的顶点为点P ,当ABP △为直角三角形时,m 的值为________.【答案】2【分析】设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|,求出点P (m ,-(m -1)2),由抛物线的对称性知∵ABP 为等腰直角三角形,建立方程|x 2-x 1|=2(m -1)2,根据根与系数关系可求得m 值. 【详解】解:设点A (x 1,y 1),B (x 2,y 2),则AB =|x 2-x 1|, 令y =0得22210x mx m -+-=,∵x 1+x 2=2m ,x 1·x 2=2m -1,则|x 2-x 1|2=4m 2-8m +4=4(m -1)2,由抛物线2221y x mx m =-+-=(x -m )2-(m -1)2得顶点坐标为P (m ,-(m -1)2), 抛物线的对称性知∵ABP 为等腰直角三角形, ∵|x 2-x 1|=2(m -1)2, 即4(m -1)2=4(m -1)4, 解得:m =2或m =0或m =1,∵抛物线2221y x mx m =-+-与x 轴交于A 、B 两点,且点A 、B 都在原点右侧, ∵2m >0且m ≠1且2m -1>0,即m >12且m ≠1, ∵m =2, 故答案为:2.【点睛】本题考查二次函数的图象与性质、等腰直角三角形的判定与性质、根与系数的关系、解高次方程等知识,熟练掌握二次函数的性质是解答的关键.意创造非凡、探索未来.某商店准备用2400元购进一批冰墩墩钥匙扣出售.假如每个钥匙扣的进价降低20%,则可以多买50个.(1)求每个冰墩墩钥匙扣的进价;(2)市场调查发现:当每个冰墩墩钥匙扣的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.设每个冰墩墩钥匙扣的售价是x 元(x 是大于20的正整数),每周总利润是w 元. ①求w 与x 的函数关系,并求每周总利润的最大值;②当每周总利润大于1870元时,直接写出每个冰墩墩钥匙扣的售价. 【答案】(1)每个冰墩墩钥匙扣的进价为12元(2)①2105204800w x x =-+-,最大值为1960元;②每个冰墩墩钥匙扣的售价为24元或25元或26元或27元或28元【分析】(1)设每个冰墩墩钥匙扣的进价为x 元,根据题意列出分式方程,进而计算求解即可;(2)①根据题意列出二次函数关系,根据二次函数的性质求得最大利润即可;②根据题意列出方程,根据二次函数的性质求得x 的范围,根据题意取整数解即可.(1)设每个冰墩墩钥匙扣的进价为x 元,由题意得:()2400240050120%x x +=-,解得12x =,经检验,12x =是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)①()()122001020w x x =---⎡⎤⎣⎦2105204800x x =-+-()210261960x =--+ ∵0a <且x 是大于20的正整数∵当26x =时,w 有最大值,最大值为1960元②由题意得,21052048001870x x -+-=,解得23x =或29∵抛物线开口向下,x 是大于20的正整数∵当2329x <<时,每周总利润大于1870元,∵售价为24元或25元或26元或27元或28元.【点睛】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键.练习.(全国九年级课时练习)如图,已知二次函数的图象经过点.(1)求a 的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上;①当11n =时,求m 的值,②当m <x <m -3时,该二次函数有最小值2,请直接写出m 的取值范围. 【答案】(1)2a =;()1,2-(2)①4m =-或2;②41m -<-【分析】(1)将点P 的坐标代入二次函数解析式可得关于a 的方程,再解方程即可得出a 的值.将二次函数的解析式进行配方,即可得到图象的顶点坐标;(2)①将点Q 的坐标代入二次函数解析式,求解方程即可得到m 的值;②根据当1x =-时,二次函数取最小值为2,得出13m m -≤+<,解关于m 的不等式组即可.(1)解:∵二次函数21y x ax a =+++的图象经过点()2,3P -,∵()()23221a a =-+⨯-++.解得:a =2;∵二次函数的解析式为()222312y x x x =++=++.∵图象的顶点坐标是()1,2-.(2)①∵点(),Q m n 在该二次函数图象上,且n =11,∵21123m m =++.解得14m =-,22m =,∵m 的值为-4或2;②∵二次函数()222312y x x x =++=++的最小值为2,∵13m m -≤+<,解得:41m -≤-<,∵m 的取值范围是41m -≤-<.【点睛】本题考查了二次函数的图象和性质,解一元二次方程,二次函数的最值,能够正确应用数形结合思想是解题关键.题型4 根据二次函数系数求对应方程根的情况或与x 轴交点情况例1.(2022·全国·九年级专题练习)如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为(2,4)A -,(1,1)B ,则方程2ax bx c =+的解是________________.【答案】12x =-,21x =【分析】二次函数图象与一次函数图象交点的横坐标即为2ax bx c =+的解:12x =-,21x =.【详解】解:抛物线 2y ax =与直线y bx c =+的两个交点坐标分别为 ()2,4A - , ()1,1B ,∴方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩ ,2211x y =⎧⎨=⎩ , 即关于x 的方程 20ax bx c --=的解为12x =-,21x =,所以方程2ax bx c =+ 的解是 12x =-,21x =,故答案为: 12x =-,21x =.【点睛】本题考查了函数图象与方程的解的关系,函数与方程是密不可分的,方程的根的个数问题,往往可以转化为两个函数图象的交点问题.例2.(2022·福建南平·九年级期末)如图,抛物线2y ax bx c =++的对称轴为1x =,点P 是抛物线与x 轴的一个交点,若点P 的坐标为()4,0,则关于x 的一元二次方程20ax bx c ++=的解为__________.【答案】124,2x x ==-【分析】根据函数的对称轴和点P 的坐标可以得出与x 轴的另一交点坐标,从而得出结论.【详解】解:∵抛物线2y ax bx c =++的对称轴为x =1,点P 是抛物线与x 轴的一个交点,坐标为(4,0),∵抛物线与x 轴的另一个交点坐标为(−2,0),∵关于x 的一元二次方程20ax bx c ++=的解为:124,2x x ==-.故答案为:124,2x x ==-.【点睛】本题考查抛物线与x 轴的交点问题,关键是对二次函数性质的掌握和运用.练习1.(2022·全国·九年级课时练习)已知抛物线2y x bx c =++的部分图像如图所示,则方程20x bx c ++=的解是___________【答案】11x =-或23x =【分析】根据抛物线的轴对称性即可求得抛物线与x 轴的另一个交点的坐标,这两个交点的横坐标就是方程20x bx c ++=的解.【详解】解:由图像可知抛物线与x 轴的一个交点坐标为(1,0)-,对称轴为直线1x =,设抛物线与x 轴的另一个交点为2(,0)x ,则2112x -+=, 解得:23x =.∵方程20x bx c ++=的解为11x =-或23x =.故答案为:11x =-或23x =【点睛】本题考查的是利用二次函数的图像求解一元二次方程,以及抛物线的对称性问题,正确理解抛物线与x 轴的交点的横坐标与相应的一元二次方程的根之间的关系是解题的关键.练习2.(2021·湖北·武汉二中广雅中学九年级阶段练习)如图,已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,直线25y kx k =-+与它有三个公共点时,则k 值为______.【答案】222-+或53【分析】先确定A 、B 、C 三点坐标,y =kx -2k +5=k (x -2)+5,可得直线经过定点(2,5)画出图形,分别找到两个极限位置,求出k 的值.【详解】解:∵223y x x =--∵当y =0时,解得x =-1或x =3;当x =0时,解得y =3∵A (-1,0),B (3,0),C (0,3)∵y =kx -2k +5=k (x -2)+5∵直线25y kx k =-+必过定点(2,5)要使直线y =kx -2k +5与图像有三个公共点,则可得到如图所示的两个极限位置,①直线经过A 、N ,此时将点A (-1,0)代入可得:0=-k -2k +5,解得:k =53②直线经过点N 与抛物线相切时,由题意可得:22325x x kx k -++=-+整理得:2(2)220x k x k +--+=2(2)4(22)0k k ∆=---+=,解得222k =-±由图像可知,k >0,则222k =-+综上可知,25y kx k =-+与223y x x =--有三个公共点时,则k 值为222-+或53. 故答案为222-+或53.【点睛】本题主要考查了一次函数与抛物线的交点问题,根据题意找到恰好有3个公共点的位置以及数形结合思想的运用是解答本题的关键.练习3.(2020·北京房山·九年级期中)若二次函数23y kx x =--的图象与轴有交点,则k 的取值范围是_______.【答案】13k ≥-且0k ≠##k ≠0且k ≥13- 【分析】根据二次函数的定义可知0k ≠,由题意令0y =,得出一元二次方程,根据一元二次方程根的判别式大于或等于0,解不等式即可求解.【详解】解:∵二次函数223y kx x =--的图象与x 轴有交点,令0y =,则2230kx x --=,∵4120k =+≥且0k ≠,解得13k ≥-且0k ≠. 故答案为:13k ≥-且0k ≠. 【点睛】本题考查了二次函数的定义以及二次函数与x 轴交点问题,转为一元二次方程根的判别式是解题的关键,注意不要漏掉0k ≠.练习.(全国九年级专题练习)已知抛物线与轴的一个交点为,则代数式2225m m -+=_____________. 【答案】15【分析】把点(,0)m 代入二次函数解析式可得25m m -=,然后问题可求解.【详解】解:把点(,0)m 代入二次函数解析式得:250m m --=,则有25m m -=,∵()222252515m m m m -+=-+=; 故答案为15.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.。
专题10 二次函数与一元二次方程-九年级数学上册(解析版)
专题10二次函数与一元二次方程考点1:分析方程的根;考点2:分析坐标轴交点。
1.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m =0的两实数根是()A.x1=1,x2=﹣1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=3解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=32.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.答案:B.2.已知m>n>0,若关于x的方程x2+2x﹣3﹣m=0的解为x1,x2(x1<x2),关于x的方程x2+2x﹣3﹣n=0的解为x3,x4(x3<x4).则下列结论正确的是()A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x2解:关于x的方程x2+2x﹣3﹣m=0的解为抛物线y=x2+2x﹣3与直线y=m的交点的横坐标,关于x的方程x2+2x﹣3﹣n=0的解为抛物线y=x2+2x﹣3与直线y=n的交点的横坐标,如图:由图可知,x1<x3<x4<x2,答案:B.题型01方程的根3.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23x的图象如图所示,则方程ax2+(b−23)x+c=0(a≠0)的两根之和()A.大于0B.等于0C.小于0D.不能确定解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴−>0.设方程ax2+(b−23)x+c=0(a≠0)的两根为m,n,则m+n=−K23=−+23,∵a>0,∴23>0,∴m+n>0.答案:A.4.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看作y=x2﹣2x+3与函数y=t的图象有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11.答案:A.5.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.﹣2和0B.﹣4和2C.﹣5和3D.﹣6和4解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,答案:B.6.抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是x1=﹣2,x2=5.解:关于x的一元二次方程a(x﹣1)2+c=b﹣bx变形为a(x﹣1)2+b(x﹣1)+c=0,因为抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0),所以方程ax2+bx+c的解为x1=﹣3,x2=4,对于方程a(x﹣1)2+b(x﹣1)+c=0,则x﹣1=﹣3或x﹣1=4,解得x=﹣2或x=5,所以一元二方程a(x﹣1)2+b(x﹣1)+c=0的解为x1=﹣2,x2=5.答案:x1=﹣2,x2=5.7.已知函数y=|x2﹣4|的大致图象如图所示,如果方程|x2﹣4|=m(m为实数)有4个不相等的实数根,则m的取值范围是0<m<4.解:方程|x2﹣4|=m(m为实数)有4个不相等的实数根,可以转化为函数y=|x2﹣4|的图象与直线y=m的图象有四个交点,因为函数y=|x2﹣4|与y轴交点(0,4),观察图象可知,两个函数图象有四交点时,0<m<4.答案:0<m<4.8.关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根都在﹣1和0之间(不包括﹣1和0),则a的取值范围是−94<a<﹣2.解:∵关于x的一元二次方程ax2﹣3x﹣1=0的两个不相等的实数根∴△=(﹣3)2﹣4×a×(﹣1)>0,解得:a>−94设f(x)=ax2﹣3x﹣1,如图,∵实数根都在﹣1和0之间,∴﹣1<−−32<0,∴a<−32,且有f(﹣1)<0,f(0)<0,即f(﹣1)=a×(﹣1)2﹣3×(﹣1)﹣1<0,f(0)=﹣1<0,解得:a<﹣2,∴−94<a<﹣2,答案:−94<a<﹣2.9.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=−2=32.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=52.10.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n 的值.(1)证明:由题意可得:Δ=(1﹣5m)2﹣4m×(﹣5)=1+25m 2﹣10m +20m=25m 2+10m +1=(5m +1)2≥0,故无论m 为任何非零实数,此方程总有两个实数根;(2)解:mx 2+(1﹣5m )x ﹣5=0,(x ﹣5)(mx +1)=0,解得:x 1=−1,x 2=5,由|x 1﹣x 2|=6,得|−1−5|=6,解得:m =1或m =−111;(3)解:由(2)得,当m >0时,m =1,此时抛物线为y =x 2﹣4x ﹣5,其对称轴为:x =2,由题已知,P ,Q 关于x =2对称,∴rr 2=2,即2a =4﹣n ,∴4a 2﹣n 2+8n =(4﹣n )2﹣n 2+8n =16.11.已知抛物线y =a (x ﹣h )2+k 与x 轴有两个交点A (﹣1,0),B (3,0),抛物线y =a (x ﹣h ﹣m )2+k 与x 轴的一个交点是(4,0),则m 的值是()A .5B .﹣1C .5或1D .﹣5或﹣1解:∵抛物线y =a (x ﹣h )2+k 的对称轴为直线x =h ,抛物线y =a (x ﹣h ﹣m )2+k 的对称轴为直线x =h +m ,∴当点A (﹣1,0)平移后的对应点为(4,0),则m =4﹣(﹣1)=5;当点B (3,0)平移后的对应点为(4,0),则m =4﹣3=1,即m 的值为5或1.答案:C .题型02坐标轴交点12.已知抛物线y=−16x2+32x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.154B.92C.132D.152解:令y=0,则−16x2+32x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∵C(0,6)∴OD=4.5,OC=6,当x=0时,y=6,∴OC=6,∴CD==152.答案:D.13.经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=−12x2+bx﹣b2+2c(x为自变量)与x轴有交点,则线段AB长为()A.10B.12C.13D.15解:∵经过A(2﹣3b,m),B(4b+c﹣1,m)两点的抛物线y=−12x2+bx﹣b2+2c(x为自变量)与x轴有交点,∴2−3r4rK12=−2×(−12),Δ=b2﹣4×(−12)×(﹣b2+2c)≥0,∴b=c+1,b2≤4c,∴(c+1)2≤4c,∴(c﹣1)2≤0,∴c﹣1=0,解得c=1,∴b=c+1=2,∴AB=|(4b+c﹣1)﹣(2﹣3b)|=|4b+c﹣1﹣2+3b|=|7b+c﹣3|=|7×2+1﹣3||14+1﹣3|=12,答案:B.14.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足△A1=△A2=△A3=m,则m的值是()A.1B.32C.2D.4解:∵二次函数y=2x2﹣8x+6的图象上有且只有P1,P2,P3三点满足△A1=△A2=△A3=m,∴三点中必有一点在二次函数y=2x2﹣8x+6的顶点上,∵y=2x2﹣8x+6=2(x﹣2)2﹣2=2(x﹣1)(x﹣3),∴二次函数y=2x2﹣8x+6的图象的顶点坐标为(2,﹣2),令y=0,则2(x﹣1)(x﹣3)=0,解得x=1或x=3,∴与x轴的交点为(1,0),(3,0),∴AB=3﹣1=2,∴m=12×2×2=2.答案:C.15.若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是()A.a(x0﹣x1)(x0﹣x2)<0B.a>0C.b2﹣4ac≥0D.x1<x0<x2解:A、当a>0时,∵点M(x0,y0),在x轴下方,∴x1<x0<x2,∴x0﹣x1>0,x0﹣x2<0,∴a(x0﹣x1)(x0﹣x2)<0;当a<0时,若点M在对称轴的左侧,则x0<x1<x2,∴x0﹣x1<0,x0﹣x2<0,∴a(x0﹣x1)(x0﹣x2)<0;若点M在对称轴的右侧,则x1<x2<x0,∴x0﹣x1>0,x0﹣x2>0,∴a(x0﹣x1)(x0﹣x2)<0;综上所述,a(x0﹣x1)(x0﹣x2)<0,故本选项正确;B、a的符号不能确定,故本选项错误;C、∵函数图象与x轴有两个交点,∴Δ>0,故本选项错误;D、x1、x0、x2的大小无法确定,故本选项错误.答案:A.16.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是(3,0).解:把点(1,0)代入抛物线y=x2﹣4x+m中,得m=3,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).答案:(3,0).17.已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为1或−45.解:当m=0时,y=﹣1,与坐标轴只有一个交点,不符合题意.当m≠0时,∵函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,①过坐标原点,m﹣1=0,m=1,②与x、y轴各一个交点,∴Δ=0,m≠0,(3m)2﹣4m(m﹣1)=0,解得m=0(舍去)或m=−45,综上所述:m的值为1或−45.18.抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值是﹣3.解:∵△ABC中AB边上的高正好为C点的纵坐标的绝对值,=12×1×|c|=1,∴S△ABC解得|c|=2.设方程x2+bx+c=0的两根分别为x1,x2,则有x1+x2=﹣b,x1x2=c,∵AB=|x1﹣x2|=(1+2)2−412=(−p2−4=1,∴b2﹣4c=1,∵c=﹣2无意义,∴b2=9,∵抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,∴b的值是﹣3.19.已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根;当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.∴不论m为何值,该函数的图象与x轴总有公共点;(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,∴该函数的图象与y轴交点的纵坐标为2m+6,∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.20.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴0=3+3=,解得:=−1=3,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).。
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件
新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
九年级数学上册教学课件《二次函数与一元二次方程》
t2 - 4t+4=0.
t1 =t2 =2.
当小球飞行2s时,它的飞行高度为20m.
你能结合图指出为什么只在一个时间小球的高度为20m吗?
2s
20m
(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?
h=20t-5t2.
20.5=20t-5t2.
解:
t2 - 4t+4.1=0.
因为(-4)2 – 4×4.1<0,
有两个不同实根有两个相同实根没有根
有两个交点有一个交点没有交点
△ > 0
△ = 0
△ < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系(2)
ax2+bx+c = 0 的根
抛物线 y=ax2+bx+c与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
无公共点
先画出函数图象:
公共点的函数值为 。
0
对应一元二次方程的根是多少?
x1 =-2,
x2 =1.
x1 =x2 =3.
方程无解
有两个不等的实根
有两个相等的实根
没有实数根
由上述问题,你可以得到什么结论呢?
方程ax2+bx+c=0的解就是抛物线y=ax2+bx+c与x轴公共点的横坐标。当抛物线与x轴没有公共点时,对应的方程无实数根.
综合应用
解:(1)如图所示.(2)由图象可知,铅球推出的距离为10.
拓展延伸
7.把下列各题中解析式的编号①②③④与图象的编号A、B、C、D对应起来.①y=x2+bx+2; ②y=ax(x-3); ③y=a(x+2)(x-3); ④y=-x2+bx-3.
九年级上册数学课件二次函数与一元二次方程
方程的根; ●(2)二次函数的图象与x轴的交点个数,对应一元二次方
程根的情况 ●(3)抛物线 y =ax2 + bx + c与直线 y = kx+ m 的交点横坐
标是方程 ax2 + bx + c= kx+ m 的根.
题型一:二次函数与方程(不等式)
二次函数与一元二次方程
●知识导航 ●1.利用二次函数 y = ax2 + bx + c 的图象,观察 一元二次方程 ax2 + bx + c =0的根的情况, ●2.直线与抛物线的交点的坐标与方程组的解的对 应关系。 ●3.二次函数与根与系数的关系. ●4.图象法解一元二次不等式.
【板块一】二次函数与一元二次方程的关系
●A.①②③ B.①②④ ●C.①③④ D.②③④
● 【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象 与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b< 0,则abc<0,故①正确;
● 把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x= ﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;
●5.关于x的方程x2 -(2m十3)x-4m=0有一个负根,一个 正根,且负根大于一1,求 m 的取值范围。
【板块三】二次函数与一元二次方程的根系关系
题型一:抛物线截水平线段
题型二:抛物线截斜线段
●【解答】解:(1)∵y=kx﹣3k+4, ●∴k(x﹣3)=y﹣4, ●∵k为任意不为0的实数, ●∴x﹣3=0,y﹣4=0,解得x=3,y=4, ●∴直线l 过定点(3,4); ●故答案为(3,4);
部编数学九年级上册专题22.4二次函数与一元二次方程【六大题型】(人教版)(解析版)含答案
专题22.4 二次函数与一元二次方程【六大题型】【人教版】【题型1 抛物线与x 轴的交点情况】....................................................................................................................1【题型2 抛物线与x 轴交点上的四点问题】........................................................................................................3【题型3 由二次函数解一元二次方程】................................................................................................................6【题型4 由二次函数的图象求一元二次方程的近似解】....................................................................................9【题型5 由二次函数的图象解不等式】..............................................................................................................11【题型6 由二次函数与一次函数交点个数求范围】 (13)【题型1 抛物线与x 轴的交点情况】【例1】(2022春•西湖区校级期末)抛物线y =(x ﹣x 1)(x ﹣x 2)+mx +n 与x 轴只有一个交点(x 1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【分析】由抛物线与x轴只有一个交点(x1,0)可得抛物线顶点式,从而可得x1,x2与m的关系.【解答】解:∵抛物线经过(x1,0),且抛物线与x轴只有一个交点,∴抛物线顶点坐标为(x1,0),y=(x﹣x1)2,∴x2﹣2x1x+x21=(x﹣x1)(x﹣x2)+mx+n=x2﹣(x1+x2﹣m)x+x1x2+n,∴x1+x2﹣m=2x1,即x2﹣x1=m,故选:B.【变式1-1】(2022春•澧县校级月考)抛物线y=x2+2x﹣3与坐标轴的交点个数有( )A.0个B.1个C.2个D.3个【分析】由b2﹣4ac的大小可判断抛物线与x轴交点个数,由c的大小可判断抛物线与y轴的交点,进而求解.【解答】解:∵y=x2+2x﹣3,∴a=1,b=2,c=﹣3,∴b2﹣4ac=22+12=16>0,∴抛物线与x轴有2个交点,∵c=﹣3,∴抛物线与y轴交点为(0.﹣3),∴抛物线与坐标轴有3个交点,故选:D.【变式1-2】(2022•广阳区一模)已知抛物线y=﹣3x2+bx+c与x轴只有一个交点,且过点A(m﹣2,n),B(m+4,n),则n的值为( )A.﹣9B.﹣16C.﹣18D.﹣27【分析】根据点A、B的坐标易求该抛物线的对称轴是直线x=m+1.故设抛物线解析式为y=﹣3(x﹣m ﹣1)2,直接将A(m﹣2,n)代入,通过解方程来求n的值.【解答】解:∵抛物线y=﹣3x2+bx+c过点A(m﹣2,n)、B(m+4,n),∴对称轴是直线x=m+1,又∵抛物线y=x2+bx+c与x轴只有一个交点,∴顶点为(m+1,0),∴设抛物线解析式为y=﹣3(x﹣m﹣1)2,把A(m﹣2,n)代入,得:n=﹣3(m﹣2﹣m﹣1)2=﹣27,即n=﹣27.故选:D.【变式1-3】(2022春•汉滨区期中)已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x =3,则抛物线的顶点P关于x轴对称的点P'的坐标是( )A.(3,9)B.(3,﹣9)C.(﹣3,9)D.(﹣3,﹣9)【分析】根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x 轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.【解答】解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.【题型2 抛物线与x轴交点上的四点问题】【例2】(2022•武汉模拟)二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是( )A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【分析】由y=(x﹣m)(x﹣n)可得抛物线与x轴交点坐标为(m,0),(n,0),开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点坐标为(s,﹣1),(t,﹣1),从而可得m,n,s,t 的大小关系.【解答】解:由1+(x﹣m)(x﹣n)=0可得(x﹣m)(x﹣n)=﹣1,由y=(x﹣m)(x﹣n)可得抛物线y=(x﹣m)(x﹣n)与x轴交点坐标为(m,0),(n,0),抛物线开口向上,则抛物线y=(x﹣m)(x﹣n)与直线y=﹣1的交点在x轴下方,坐标为(s,﹣1),(t,﹣1),∴m<s<t<n.故选:C.【变式2-1】(2022•定远县模拟)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则下列结论正确的是( )A.x1<﹣1<5<x2B.x1<﹣1<x2<5C.﹣1<x1<5<x2D.﹣1<x1<x2<5【分析】方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,据此可判断选项.【解答】解:令y=a(x+1)(x﹣5),则抛物线y=a(x+1)(x﹣5)与y=ax2+bx+c形状相同、开口方向相同,且与x轴的交点为(﹣1,0)、(5,0),函数图象如图所示,由函数图象可知方程a(x+1)(x﹣5)=﹣3的两根即为抛物线y=a(x+1)(x﹣5)与直线y=﹣3交点的横坐标,∴x1<﹣1<5<x2,故选:A.【变式2-2】(2022•张店区期末)已知二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0),方程(x﹣1)2﹣t2﹣1=0的两根分别为m,n(m<n),方程(x﹣1)2﹣t2﹣3=0的两根分别为p,q(p<q),判断m,n,p,q的大小关系是( )A.p<q<m<n B.p<m<n<q C.m<p<q<n D.m<n<p<q【分析】在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象,再作出直线y =1,y=3,它们与抛物线交于A,B和C,D,分别过交点作x轴的垂线,则垂足对应的数值为题干中方程的根,利用数形结合的方法即可得出结论.【解答】解:在平面直角坐标系中画出二次函数y=(x﹣1)2﹣t2(t是常数,且t≠0)的图象如下图:作直线y=1与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于A,B,分别经过A,B作x轴的垂线,垂足对应的数值分别为m,n,∴m,n是方程(x﹣1)2﹣t2﹣1=0的两根;作直线y=3与抛物线y=(x﹣1)2﹣t2(t是常数,且t≠0)交于C,D,分别经过AC,D作x轴的垂线,垂足对应的数值分别为p,q,∴p,q是方程(x﹣1)2﹣t2﹣3=0的两根.由图象可知m,n,p,q的大小关系是:p<m<n<q.故选:B.【变式2-3】(2022•河东区期末)已知抛物线y=x2+bx+c的图象与x轴的两交点的横坐标分别α,β(α<β),而x2+bx+c﹣2=0的两根为M、N(M<N),则α、β、M、N的大小顺序为( )A.α<β<M<N B.M<α<β<N C.α<M<β<N D.M<α<N<β【分析】依题意画出函数y=(x﹣α)(x﹣β)和y=2的图象草图,根据二次函数的图象可直接求解.【解答】解:依题意,画出函y=(x﹣α)(x﹣β)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为α,β(α<β),方程x2+bx+c﹣2=0的两根是抛物线y=(x﹣α)(x﹣β)与直线y=2的两个交点.由M<N,可知对称轴左侧交点横坐标为M,右侧为N.由图象可知,M<α<β<N,故选:B.【题型3 由二次函数解一元二次方程】【例3】(2022•娄底一模)已知二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A.﹣2或4B.﹣2或0C.0或4D.﹣2或5【分析】根据二次函数y=ax2+bx+c的图象经过(﹣1,0)与(3,0)两点求对称轴,后面两个方程二次项、一次项系数没变,所以两根的和也不变还是2.【解答】解:∵二次函数y=ax2+bx+c的图象经过(3,0)与(﹣1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为3和﹣1,函数y=ax2+bx+c的对称轴是直线x=1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣3,函数y=ax2+bx+c的图象开口向下,如图,∵0<n<m,∴﹣m>﹣m,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴直线y=﹣n与y=ax2+bx+c的交点的横坐标为﹣2,4,∴这关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,是﹣2或4,故选:A.【变式3-1】(2022•潮南区模拟)已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x的一元二次方程ax2﹣2ax+c=0的根是 x1=﹣1,x2=3 .【分析】利用二次函数y=ax2﹣2ax+c的解析式求得抛物线的顶点坐标,利用抛物线的对称性求得抛物线与x轴的另一个交点,再利用抛物线与x轴的交点的横坐标与一元二次方程的根的关系得出结论.【解答】解:∵y=ax2﹣2ax+c,=1.∴抛物线的对称轴为直线x=−−2a2a∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该抛物线与x轴的另一个交点为(3,0).∴关于x的一元二次方程ax2﹣2ax+c=0的根是:x1=﹣1,x2=3.故答案为:x1=﹣1,x2=3.【变式3-2】(2022•咸宁一模)已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的y与x的部分对应值如下表:x﹣5﹣4﹣202y60﹣6﹣46则关于x的一元二次方程ax2+bx+c=0的根是 x1=﹣4,x2=1 .【分析】由抛物线经过点(﹣5,6),(2,6)可得抛物线对称轴,根据抛物线对称性及抛物线经过(﹣4,0)求解.【解答】解:由抛物线经过点(﹣5,6),(2,6)可得抛物线抛物线对称轴为直线x=−522=−32,∵抛物线经过(﹣4,0),对称轴为直线x=−32,∴抛物线经过(1,0),∴一元二次方程ax2+bx+c=0的根是x1=﹣4,x2=1.故答案为:x1=﹣4,x2=1.【变式3-3】(2022•永嘉县校级模拟)已知二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,且关于x的方程﹣x2+bx+c+d=0有两个根,其中一个根是6,则d的值为( )A.5B.7C.12D.﹣7【分析】先由二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,求出b、c,再把b、c代入方程﹣x2+bx+c+d=0后,由方程的根是6求出d.【解答】解:∵二次函数y=﹣x2+bx+c的图象经过(﹣1,0)与(5,0)两点,∴−1−b+c=0−25+5b+c=0,解得:b=4 c=5,将b=4,c=5代入方程﹣x2+bx+c+d=0,可得:﹣x2+4x+5+d=0,又∵关于x的方程﹣x2+4x+5+d=0有两个根,其中一个根是6,∴把x=6代入方程﹣x2+4x+5+d=0,得:﹣36+4×6+5+d=0,解得:d=7,经验证d=7时,Δ>0,符合题意,∴d=7.故选:B.【题型4 由二次函数的图象求一元二次方程的近似解】【例4】(2022•平度市期末)如表给出了二次函数y=x2+2x﹣10中x,y的一些对应值,则可以估计一元二次方程x2+2x﹣10=0的一个近似解为( )x… 2.1 2.2 2.3 2.4 2.5…y…﹣1.39﹣0.76﹣0.110.56 1.25…A.2.2B.2.3C.2.4D.2.5【分析】根据函数值,可得一元二次方程的近似根.【解答】解:如图:x=2.3,y=﹣0.11,x=2.4,y=0.56,x2+2x﹣10=0的一个近似根是2.3.故选:B.【变式4-1】(2022•灌云县期末)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是 6.18<x<6.19 .x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【解答】解:由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,于是可得,当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【变式4-2】(2022•渠县一模)如图,是二次函数y=ax2+bx﹣c的部分图象,由图象可知关于x的一元二次方程ax2+bx=c的两个根可能是 x1=0.8,x2=3.2合理即可 .(精确到0.1)【分析】直接利用抛物线与x 轴交点的位置估算出两根的大小.【解答】解:由图象可知关于x 的一元二次方程ax 2+bx =c 的两个根可能是:x 1=0.8,x 2=3.2合理即可.故答案为:x 1=0.8,x 2=3.2合理即可.【变式4-3】(2022秋•萍乡期末)代数式ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,x 与ax 2+bx +c 的对应值如下表: x ﹣1−12 0121 322 523ax 2+bx +c﹣2−141742741−14 ﹣2请判断一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的( )A .−12<x 1<0,32<x 2<2B .﹣1<x 1<−12,2<x 2<52C .−12<x 1<0,2<x 2<52D .﹣1<x 1<−12,32<x 2<2【分析】观察表格可知,在x <1时,随x 值的增大,代数式ax 2+bx +c 的值逐渐增大,x 的值在−12~0之间,代数式ax 2+bx +c 的值由负到正,故可判断ax 2+bx +c =0时,对应的x 的值在−12~0之间,在x >1时,随x 的值增大,代数式ax 2+bx +c 逐渐减小,x 的值在2~52之间,代数式ax 2+bx +c 的值由正到负,故可判断ax 2+bx +c =0时,对应的x 的值在2~52之间,【解答】解:根据表格可知,代数式ax 2+bx +c =0时,对应的x 的值在−12~0和2~52之间,即:一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1,x2的取值范围是−12<x1<0,2<x2<52故选:C.【题型5 由二次函数的图象解不等式】【例5】(2022秋•垦利区期末)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2﹣mx+c<n的解集为( )A.x>﹣1B.x<3C.﹣1<x<3D.x<﹣3或x>1【分析】由抛物线与直线交点横坐标确定直线在抛物线上方时x的取值范围.【解答】解:∵A(﹣1,p),B(3,q),∴﹣1<x<3时,直线在抛物线上方,即﹣1<x<3时,ax2+c<mx+n,∴不等式ax2﹣mx+c<n的解集为﹣1<x<3.故选:C.【变式5-1】(2022•定远县二模)抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…请求出当y<0时x的取值范围 x<﹣2或x>3 .【分析】把点(0,6)代入求出c,把点(﹣1,4)和(1,6)代入抛物线的解析式列方程组,解出可得a、b,即可得抛物线的解析式,进而可列不等式求出y<0时x的取值范围.【解答】解:由表得,抛物线y=ax2+bx+c(a≠0)过点(0,6),∴c=6,∵抛物线y=ax2+bx+6过点(﹣1,4)和(1,6),∴a−b+6=4a+b+6=6,解得:a=−1 b=1,∴二次函数的表达式为:y=﹣x2+x+6,所以令﹣x2+x+6<0,解得:x<﹣2或x>3.故答案为:x<﹣2或x>3.【变式5-2】(2022•工业园区校级模拟)若二次函数y=ax2+bx+c(a、b、c为常数)的图象如图所示,则关于x的不等式a(x+2)2+b(x+2)+c<0的解集为 x<﹣1或x>1 .【分析】根据图象可得x<1或x>3时ax2+bx+c<0,则a(x+2)2+b(x+2)+c<0时x+2<1或x+2>3,进而求解.【解答】解:由图象可得x<1或x>3时ax2+bx+c<0,∴当a(x+2)2+b(x+2)+c<0时,x+2<1或x+2>3,解得x<﹣1或x>1,故答案为:x<﹣1或x>1.【变式5-3】(2022•驿城区校级期末)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.则满足kx+b≥x2﹣4x+m的x的取值范围是( )A.x≤1或x≥4B.1≤x≤4C.x≤1或x≥5D.1≤x≤5【分析】由二次函数解析式可得抛物线对称轴为直线x=2,从而可得点B横坐标,进而求解.【解答】解:∵y=x2﹣4x+m,∴抛物线对称轴为直线x=2,∵点B和点C关于直线x=2对称,∴点B横坐标为4,∵点A横坐标为1,∴1≤x≤4时,kx+b≥x2﹣4x+m,故选:B.【题型6 由二次函数与一次函数交点个数求范围】【例6】(2022•虞城县三模)已知抛物线y=a(x﹣2)2+c(a>0).(1)若抛物线与直线y=mx+n交于(1,0),(5,8)两点.①求抛物线和直线的函数解析式;②直接写出当a(x﹣2)2+c>mx+n时自变量x的取值范围.(2)若a=c,线段AB的两个端点坐标分别为A(0,3),B(3,3),当抛物线与线段AB有唯一公共点时,直接写出a的取值范围.【分析】(1)①利用待定系数法求解析式即可,②抛物线开口向上,数形结合直接写出答案;(2)结合抛物线和线段AB,分情况讨论求a的取值范围.【解答】解:(1)①∵抛物线y=a(x﹣2)2+c与直线y=mx+n交于(1,0),(5,8)两点,∴a+c=09a+c=8,m+n=05m+n=8,解得a=1c=−1,m=2n=−2,∴抛物线和直线的函数解析式分别为y=(x﹣2)2﹣1,y=2x﹣2.②∵a>0,抛物线开口向上,抛物线与直线y=mx+n交于(1,0),(5,8)两点,∴当a(x﹣2)2+c>mx+n时自变量x的取值范围为x<1或x>5.(2)若a=c,则抛物线y=a(x﹣2)2+a(a>0),∴开口向上,对称轴为x=2,顶点坐标为(2,a),当抛物线顶点在线段AB上时有唯一公共点,此时a=3,当抛物线顶点在线段AB下方时,当经过B(3,3)时,a+a=3,解得a=32,当经过A(0,3)时,4a+a=3,解得a=35,∴当抛物线与线段AB有唯一公共点时,a的取值范围为35≤a<32或a=3.【变式6-1】(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.【分析】(1)将(3,m),(n,﹣6)代入直线解析式求出点坐标,然后通过待定系数法求解,根据图象可得y1<y2时x的取值范围.(2)﹣x2+bx+c=2x﹣2,由Δ=0求解.【解答】解:(1)将(3,m)代入y1=2x﹣2得m=6﹣2=4,将(n,﹣6)代入y1=2x﹣2得﹣6=2n﹣2,解得n=﹣2,∴抛物线经过点(3,4),(﹣2,﹣6),将(3,4),(﹣2,﹣6)代入y2=﹣x2+bx+c得4=−9+3b+c−6=−4−2b+c,解得b=3 c=4,∴y=﹣x2+3x+4,由图象可得﹣2<x<3时,抛物线在直线上方,∴y1<y2时x的取值范围是﹣2<x<3.(2)令﹣x2+bx+c=2x﹣2,整理得x2+(2﹣b)x﹣(2+c)=0,当Δ=(2﹣b)2+4(2+c)=0时,两函数图象只有一个公共点,∴b=2,c=﹣2,满足题意.【变式6-2】(2022•河南模拟)小新对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.已知当自变量x的值为0或4时,函数值都为﹣3;当自变量x的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为 y=|x2﹣4x|﹣3 ;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: 函数关于直线x=2对称 ;(3)进一步探究函数图象并解决问题:①直线y=k与函数y=a|x2+bx|+c有三个交点,则k= 1 ;②已知函数y=x﹣3的图象如图所示,结合你所画的函数图象,写出不等式a|x2+bx|+c≤x﹣3的解集: x=0或3≤x≤5 .【分析】(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,即可求解析式为y=|x2﹣4x|﹣3;(2)描点法画出函数图象,函数关于x=2对称;(3)①从图象可知:当x=2时,y=1,k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点;②y=x﹣3与y=x2﹣4x﹣3的交点为x=0或x=5,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为3≤x≤5.【解答】解:(1)将x=0,y=﹣3;x=4,y=﹣3;x=1,y=0代入y=a|x2+bx|+c(a≠0),得到:c=﹣3,b=﹣4,a=1,∴y=|x2﹣4x|﹣3,故答案为:y=|x2﹣4x|﹣3;(2)如图:函数关于直线x=2对称,故答案为:函数关于直线x=2对称;(3)①当x=2时,y=1,∴k=1时直线y=k与函数y=|x2﹣4x|﹣3有三个交点,故答案为1;②y=x﹣3与y=|x2﹣4x|﹣3的交点为x=0或x=3,结合图象,y=|x2﹣4x|﹣3≤x﹣3的解集为x=0或3≤x≤5,故答案为:x=0或3≤x≤5.x+t与函数y=【变式6-3】(2022•海珠区一模)令a、b、c三个数中最大数记作max{a,b,c},直线y=12 max{﹣x2+4,x﹣2,﹣x﹣2}的图象有且只有3个公共点,则t的值为 1或65 .16【分析】只需画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,然后结合图象并运用分类讨论的思想,就可解决问题.【解答】解:在直角坐标系中画出函数y=max{﹣x2+4,x﹣2,﹣x﹣2}的图象,如图所示.当直线y =12x +t 经过(﹣2,0)或与抛物线y =﹣x 2+4相切时,直线y =12x +t 与函数y =max {﹣x 2+4,x ﹣2,﹣x ﹣2}的图象有且只有3个公共点.①若直线y =12x +t 经过(﹣2,0),则有0=12×(﹣2)+t ,解得t =1;②若直线y =12x +t 与抛物线y =﹣x 2+4相切,则关于x 的方程12x +t =﹣x 2+4即x 2+12x +t ﹣4=0有两个相等的实数根,则△=(12)2﹣4×1×(t ﹣4)=0,解得t =6516.综上所述:t =1或6516.故答案为1或6516.。
沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
人教版九年级上册数学二次函数与一元二次方程、不等式
(2)左、右平移:当抛物线y=a(x-h)2+k向左 平移n(n>0)个单位后,所得的抛物线的关系式为y =a(x-h+n)2+k;当抛物线y=a(x-h)2+k向右 平移n(n>0)个单位后,所得的抛物线的关系式为y =a(x-h-n)2+k.
将(-6,0)代入,得
1 0=2(
-6+3)2+h,解得h=-29,
人教版九年级上册数学 22.2 二次函数与一元二次方程、不等式
x1<x<x2
无解
无解
人教版九年级上册数学 22.2 二次函数与一元二次方程、不等式
考点3
二次函数图象的平移
将抛物线y=ax2+bx+c(a≠0)用配方法化成y =a(x-h)2+k(a≠0)的形式,而任意抛物线y= a(x-h)2+k均可由抛物线y=ax2平移得到,具体 平移方法如图15-1:
抛物线y=ax2 +bx+c与x轴
的交点个数
判别式Δ=b2- 4ac
的符号
方程ax2+bx+c =0有实根 的个数
2个 1个 没有
Δ>0 Δ=0 Δ<0
两个_不__相__等___实根 两个_相__等_____实根
__没__有____实根
考点2 二次函数y=ax2+bx+c(a≠0)的图 象特征与a、b、c及判别式b2-4ac的符号之间 的关系
项目 字母
a
b
字母的符号
a>0 a<0 b=0
ab>0(b与a同号)
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
数学人教版九年级上册一元二次方程与二次函数
复习预习1.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x 轴交点的横坐标即为一元一次方程kx+b=0的解.2.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?二、知识讲解易错点1 探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系易错点2 二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.考点3 一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.三、例题精析【例题1】【题干】二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>3【答案】D.【解析】∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方,∴此时y=|ax2+bx+c|=ax2+bx+c,∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象,∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方,∴此时y=|ax2+bx+c|=﹣(ax2+bx+c)∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象,∵y=ax2+bx+c(a≠0)的顶点纵坐标是﹣3,∴函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象的顶点纵坐标是3,∴y=|ax2+bx+c|的图象如图,∵观察图象可得当k≠0时,函数图象在直线y=3的上方时,纵坐标相同的点有两个,函数图象在直线y=3上时,纵坐标相同的点有三个,函数图象在直线y=3的下方时,纵坐标相同的点有四个,∴若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则函数图象应该在y=3的上边,故k>3.【例题2】【题干】已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是( )A .a x <B .b x >C .b x a <<D .a x <或b x >【答案】C【解析】∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),∴二次函数y=x2+mx+n与x轴的交点坐标分别是(a,0)、(b,0)(a<b),且抛物线的开口方向向上,∴该二次函数的图象如图所示:根据图示知,符合条件的x的取值范围是:a<x<b四、课堂运用【基础】1、已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为。
九年级数学二次函数与一元二次方程的关系
y=ax2+bx+c的图象 方程ax2+bx+c=0的
和x轴交点
根
b2-4ac
函数的图象
有两个交点
方程有两个不相等 的实数根
b2-4ac > 0
y .o . x
y
只有一个交点
方程有两个相等 的实数根
b2-4ac = 0
o
x
没有交点
y
方程没有实数根 b2-4ac < 0 o
x
中考链接: (2009肇庆市)已知一元二次方程x²+px+q+1=0=的一根为 2.
一元二次方程ax2+bx+c=0的根的判别式△ =b2-4ac.
(1)当△=b2-4ac>0时
抛物线y=ax2+bx+c与x轴有两个交点;
(2)当△=b2-4ac=0时
抛物线y=ax2+bx+c与x轴只有一个交点;
(3)当△=b2-4ac<0时
抛物线y=ax2+bx+c与x轴没有公共点.
探究点三:二次函数图像与系数之间的关系
方程可以看成是对于二次函数y= ax2+bx+c(a≠0), 当y=0时,函数即可化为一元二次方程ax2+bx+c=0,这 时方程的根就是抛物线与x轴交点的横坐标
y=ax2+bx+c的 方程ax2+bx+c=0
图象和x轴交点
的根
b2-4ac
有两个交点
只有一个
交点
方程有两个 不相等的实 数根 方程有两个 相等的实数 根
图象与x轴有两个交点;
(2)△=b2-4ac=62-4×(-1) ×(-9)=0,函 数的图象与x轴有一个交点; (3)△=b2-4ac=62-4×3×11=-96<0,函 数的图象与x 轴没有交点。
人教版九年级数学上册第22章 二次函数2 二次函数与一元二次方程
路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h
(单位:m)与飞行时间t(单位:s)之间具有函数关系: =
− .考虑以下问题:
球的飞行高度能否达到15 m?如果能,需要多少飞行时间?
说一说为什么会有两个时间点,球的飞行高度是15m?
D. x₁=-1, x₂=
例5:如图,抛物线y=ax²+bx+c 经过点A(0,3),B(2,3),C(-1,0), 直线 y=mx+n
经过点 B,C.
(1)该抛物线的对称轴为直线 ___________.
x=1
x₁=-1,x2=3
(2)关于x的一元二次方程αx²+bx+c=0 的解为 ___________.
22.2 二次函数与一元二次方程
1.通过类比的方法理解一元二次方程 2 + + = ( ≠ 0)
根的情况与抛物线 = 2 + + 和直线 = 交点的情
况之间的关系,提高学生分析问题、解决问题的能力.
2.通过对“小球飞行”问题的探究,使学生理解二次函数与一
(3)观察图象求得方程的解(由于作图或观察存在误差,故由
图象求得的解一般是近似的)
教师讲评
知识点3.二次函数与不等式(难点)
1.函数值y与某个数值m之间的不等关系,一般要转化成关于x的不
等式,解不等式求得自变量x的取值范围。
2.利用两个函数图象在直角坐标系中的上下位置关系求自变量的取
值范围,可作图利用交点直观求解,也可以利用两个函数解析式
自主探究
2.画出函数ℎ = 20 − 52的图象,思考:
九年级数学上册《二次函数与一元二次方程的关系》教案、教学设计
-设计一些简单的一元二次方程求解题目,让学生独立完成。
2.提高练习:运用二次函数与一元二次方程的关系,解决实际问题。
-设计一些与实际生活相关的问题,让学生运用所学知识解决问题。
3.课堂反馈:针对学生的解答,给予及时评价和指导,帮助学生查漏补缺。
九年级数学上册《二次函数与一元二次方程的关系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解二次函数的一般形式,能够识别并写出二次函数的顶点式和交点式。
2.熟练掌握一元二次方程的求解方法,包括直接开平方法、配方法、公式法等,并能够根据具体问题选择合适的方法进行解答。
3.掌握二次函数与一元二次方程的关系,能够通过二次函数图像求解相应的一元二次方程,并解释其几何意义。
-作业评价要及时,对学生的作业进行认真批改,并及时给予反馈,帮助学生发现和改正错误。
4.创设丰富的教学情境,激发学生的兴趣,引导他们主动参与课堂讨论,培养合作意识和团队精神。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握二次函数的一般形式及其图像特征。
2.掌握一元二次方程的求解方法,并能够运用这些方法解决实际问题。
3.理解二次函数与一元二次方程之间的内在联系,能够通过二次函数图像分析一元二次方程的解。
1.基础巩固题:请学生完成教材课后练习题中与二次函数与一元二次方程相关的基础题目,以加强对核心知识点的掌握。
-重点在于让学生通过练习,熟练运用直接开平方法、配方法、公式法求解一元二次方程。
2.实践应用题:要求学生从生活中找一个应用二次函数的例子,建立数学模型,并求解相应的一元二次方程。
-通过此题,学生可以将数学知识应用于现实情境,提高数学素养和解决问题的能力。
九年级数学-二次函数与一元二次方程
第7讲 二次函数与一元二次方程【板块一】二次函数与一元二次方程的关系方法技巧(1)二次函数的图象与x 轴的交点横坐标,对应一元二次方程的根; (2)二次函数的图象与x 轴的交点个数,对应一元二次方程根的情况.题型一:二次函数的图象与a ,b ,c 之间的联系例1:如图是y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a (c -n );①一元ニ次方程ax 2+bx +c =n -1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【解析】∵抛物线与x 轴的一个交点在(3,0)和(4,0)之间,由对称性知另一交点在(-2,0)和(-1,0)之间,当x =-1时,y >0,a -b +c >0,故①正确;由对称轴12=-ab,b =-2a ,3a +b =3a -2a =a <0故②不正确:顶点(1,n ),∴n =ab ac 442-,∴b 2=4ac -4an =4a (-m )故③正确;∵抛物线与直线y =n只有一个公共点,∴抛物线与直线y =n =1有两个交点,∴一元二次方程a 2+bx +c =n -1有两个不相等的实数根,故④正确,选C .题型二:方程的解与交点横坐标的对应【例2】如图,抛物线y =ax 2+bx +c 与直线y =kx +m 交于A ,B 两点.(1)方程ax 2+bx +c =kx +m 的解为 ;(2)不等式ax 2+bx +c ≤kx +m 的解集为 .【解析】(1)方程的解就是两图象交点的横坐标,即x 1=-1,x 2=2; 结合图象,根据增减性可知,解集为≤-1或x ≥2.题型三:二次三项式的值恒为正(或负)的条件【例3】无论x 为何值,二次三项式a 2+2(a +1)x +a +21的値恒为负数,则a 的取值范固是( ) A .32<<0a B .0<<32a - C . 32<-a D .32-≤a【解析】设y =a 2+2(a +1)x +a +21,值恒为负,则⎩⎨⎧0<0<△a ,即()⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+-+0<214140<2a a a a ,解得32<-a ,选C .针对练习11.二次函数y =a 2+2(a +1)x +a +21(a ≠0)的图象如图所示,下列结论:①abc <0;②b <a +c ;③4a +2b +c >0;④b 2-4ac >0.其中正确结论有( B )A .①②③B .①②①C .①③①D .②③④ 答案:B第2题图2.抛物线y =ax 2+bx +c 与直线y =mx +n 的图象如图所示:(1)方程ax 2+bx +c =mx +n 的解为: .(2)不等式ax 2+(b -m )x +c -n <0的解集为: . 答案:(1)x 1=-2,x 2=1 (2) -2<x <13.二次函数y =(m -1)x 2+2mx -1的图象都在x 轴的下方,求m 的取值范围. 答案:解:⎩⎨⎧0<0<1-△m ,()⎩⎨⎧-+0<1440<1-2m m m 解得251<<251+-+-m 4.无论x 为何值,二次根式()3212++-+m mx x m 恒有意义,求m 的取值范围.答案:解:设y =(m +1)x 2-2mx +m +3,则y 恒为非负数,∴⎩⎨⎧≤+00>1△m ,即()()()⎪⎩⎪⎨⎧≤++---031421>2m m m m 解得m ≥43-板块二:函数图象的交点与解方程 方法技巧联立两函数的解析式,求图象交点的坐标;交点的个数与方程的判别式有关. 少题型一二次函数的图象与x 轴的交点【例1】已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4 C .k <4且k ≠3 D .k ≤4且k ≠3【解析】当k -3=0时,该函数为一次函数y =2x +1,其图象与x 轴有交点,当k -3≠0时,该函数为二次函数,△≥0.22-4(k -3)=0,即k ≤4且k ≠3,综上,当k ≤4时,函数图象与x 轴有交点,故选B .题型二:二次函数的图象与直线y =k (k ≠0)的交点 例2:已知一元二次方程1-(x -3)(x +2)=0有两个实数根x 1,x 2,(x 1<x 2),则下列判断正确的是( ) A .-2<x 1<x 2<3 D .x 1<-2<3<x 2 C .-2<x 1<3<x 2 D .x 1<-2<x 2<3【解析】画出直线y =1与ニ次函教y =(x -3)(x +2)的图象,由图象可知:x 1<-2<3<x 2,故选B .【注】方程ax 2+bx +c -k =0的解,即函数y =ax 2+bx +c 的图象与函数y =k 的图象的交点的横坐标.题型三:二次函数的图象与直线y =kx +b (k ≠0)的交点【例3】直线AB :y =x +4与抛物线y =x 2-2mx +m 2+m +4交于A ,B 两点,试判断AB 的长是否发生变化?若不变,求出其值;若变化,求出其取值范围.【解析】联立⎩⎨⎧+++-=+=42422m m mx x y x y ,∴x 2-(2m +1)x +m 2+m =0. ∴(x -m )(x -m -1)=0,∴x A =m ,x B =m +1∴BH =x A -x B =1,AH =y B - y A =(x B +4)-(x A +4)=1在R △AHB 中,AB =22BH AH +=2,即AB 的长不发生支化,其长为2.题型四:分段函数与交点【例4】若函数y =b 的图象与函数y =x 2-31-x -4x -3的图象恰有三个交点,则b 的值是6或425. 【解析】当x ≥1时,y =x 2-7x ,当x <1时,y =x 2-x -6,结合图象知b =一6或425-.题型五:抛物线与直线在定区间有唯一公共点【例5】已知抛物线y =x 2-mx -3与直线y =2x +3m 在一2<x <2之间有且只有一个公共点,则m 的取值范围是 .【解析】∵x 2-mx -3=2x +3m ,,x 2-2x -3=m (x +3),即直线y =m (x +3)与抛物线y =x 2-2x -3,在一2<x <2有唯一公共点,把(一2,5)代入y =m (x +3),得m =5,把(2,-3)代入y =m (x +3),得m =53-,∴53-≤m <5,x 2-(m +2)x -3-3m =0,△=(m +2)2+12+12m =0,解得m =-8-34(舍去),m =-8+34,综上,53-≤m <5或m =-8+34.针对练习21.已知抛物线y =(m -1)x 2-2mx +m +1(m >1). (1)求抛物线与x 轴的交点坐标;(2)若一次函数y =kx -k 的图象与抛物线始终只有一个公共点,求一次函数的解析式. 答案:(1)y =0时,(m -1)x 2-2mx +m +1=0,∴(x -1)[(m -1)x -(m +1)]=0,∴x 1=1,x 2=11-+m m ,∴抛物线与x 轴的交点空为(1,0),(11-+m m ,0). (2) 联立()⎩⎨⎧++--=-=1212m mx x m y k kx y ,∴(m -1)x 2-(2m +k )x +m +1+k =0, △=(2m +k )2-4(m -1)(m +1+k )=k 2+4k +4=(k +2)2=0,∴ k =-2,∴一次函数的解析式为y =-2x +2.2.将二次函邮y =2x 2+4x -6的图象在x 轴下方的部分沿x 轴翻折,图象其余部分保持不变,得到一个新的图象,当直线y =21x +b 与此图象有两个公共点时,求b 的取值范围. 答案:解:A (3,0),B (1,0),当直线过A 点时,b =23,1322b -<<当直线经过B 点时,b =21-. ∴1322b -<<,联立224612y x x y x b ⎧=--+⎪⎨=+⎪⎩得292602x x b ++-= 29=()8(3)02b ∆--=,273=32b ,综上,1322b -<<或27332b >,有两个公共点.3.若直线y =2x -5m 与抛物线y =x 2-mx -3在0≤x ≤4之间有且只有一个公共点,求m 的取值范围. 答案:联立2253y x m y x mx =-⎧⎨=--⎩得2235x x mx m --=-,即223y x x =--与直线(5)y m x =-在0≤x ≤4有唯一公共点.①把(0,-3)代入(5)y m x =-得35m =,把(4,5)代入(5)y m x =-得m =-5, ∴-5≤m <35.②当直线与抛物线“相切”时,2(2)530x m x m -++-=,0∆=,∴2(2)4(53)0m m +--=,得8m =-8m =+(舍),综上,-5≤m <35或8m =-4.已知关于x 的二次函数22(1)y ax a x a =+--的图象与x 轴的一个交点坐标为(m ,0),若2<m <3,则a 的取值范围是____ ___. 答案:当y =0时,22(1)=0ax a x a +--,∴(ax -1)(x +a )=0,∴11x a =,2x a =-,当123a <<时,1132a <<,当2<-a <3时,-3<a <-2,即1132a <<或-3<a <-2.【板块三】二次函数与根与系数的关系方法技巧(1)若二次函数y =ax 2+bx +c 交x 轴于(x 1,0),(x 2,0),则1212,b c x x x x a a+=-=.(2)12||x x -=. 题型一 抛物线截水平线段的长【例1】若点P (1x ,c ),点Q (2x ,c )在函数243y x x =-+的图象上,且x 1<x 2,PQ =2a ,则21261x ax a -++的值为( C )A .-2B .3C .5D .6【解析】∵对称轴为x =2,P (1x ,c ),Q (2x ,c )关于直线x =2对称,PQ =2a ,∴12x a =-,22x a =+,∴221261(2)(2)615x ax a a a a a -++=--+++=,故选C .yx【例2】抛物线1121()()4y x x x x =--交x 轴于两点A (1x ,0)B (2x ,0)两点(x 1<x 2),直线22y x t=+经过点A ,若函数y =y 1+y 2的图象与x 轴有且只有一个公共点,则线段AB 的长为( B ) A .4 B .8 C .12 D .16【解析】22y x t =+经过点A (1x ,0),∴012x t =+,12t x =-,121211211()()22()(8)44y y y x x x x x x x x x x =+=--+-=--+.∵与x 轴有且只有一个公共点,∴有等根,∴128x x =-,∴218x x -=,∴AB =8,选B . 题型二 抛物线斜线段【例3】抛物线21344y x x =-+与x 轴交于A ,B 两点,直线34y kx k =-+与抛物线交于C ,D 两点,求△BCD 面积的最小值.【解析】直线34(3)4y kx k k x =-+=-+,经过定点E (3,4),又B (3,0),∴E B x x =,∴BE ∥y 轴,∴1||2||2BCD BCE BDED C D C S S S BE x x x x =+=-=-△△△,联立2341344y kx k y x x =-+⎧⎪⎨=-+⎪⎩得2(44)12130x k x k -++-=,∴44C D x x k +=+,1213C D x x k =-,∴22221()()416166816()642D C D C C D x x x x x x k k k -=+-=-+=-+≥64,∴||D C x x -的最小值为8,∴BCD S △的最小值为16.。