中考数学-不等式与不等式组(解析版)

合集下载

第九章 不等式与不等式组(提升评测)(解析版)

第九章 不等式与不等式组(提升评测)(解析版)

第九章 不等式与不等式组【提升评测】一、单选题1.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】B【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【详解】 111x x -<⎧⎨-⎩①②由不等式①组得,x<2①不等式组的解集为:21x x ⎧⎨≥-⎩< 其解集表示在数轴上为, 故选B .【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a①1B .a≤2C .1①a≤2D .1≤a≤2【答案】C【解析】①x=2是不等式(x−5)(ax−3a+2)①0的解,①(2−5)(2a−3a+2)①0,解得:a①2①①x=1不是这个不等式的解,①(1−5)(a−3a+2)>0,解得:a>1①①1<a①2①故选C.3.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤8 【答案】C【解析】①不等式组有解, ①m①5①故选C①①方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.4.已知关于不等式2<(1-a )x 的解集为x <21a -,则a 的取值范围是( ) A .1a >B .0a >C .0a <D .1a < 【答案】A【解析】由题意可得1−a<0①移项得−a<−1①化系数为1得a>1①故选A①5.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是( )A .1<x≤11B .7<x≤8C .8<x≤9D .7<x <8 【答案】B【详解】解:已知从甲地到乙地共需支付车费19元,从甲地到乙地经过的路程为x千米,从而根据题意列出不等式2.43)7192.4(3)719 2.4xx-+≤⎧⎨-+-⎩(>,从而得出7<x≤8.故选B.【点睛】此题主要考查了不等式组应用,解题关键是理解不足1千米按1千米计这句话的含义.6.对于不等式组1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1①2①3B.此不等式组的解集为7 16x-<≤C.此不等式组有5个整数解D.此不等式组无解【答案】A【解析】解:1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩①②,解①得x≤72,解①得x①①1,所以不等式组的解集为﹣1①x≤72,所以不等式组的整数解为1①2①3①故选A①点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.7.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.8【答案】C【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.8.若不等式2463x a x -≥+ 的解集是x≤-4,则a 的值是( ) A .34B .22C .-3D .0【答案】B【解析】 解不等式2463x a x -≥+得:x≤1810a -- ① 又不等式的解集为x≤-4,所以:1810a --= - 4,所以x=22;故选B. 9.已知关于x 的不等式(1)2a x ->的解集为21x a <-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a < 【答案】B【分析】化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a <0,所以可解得a 的取值范围.【详解】①不等式(1-a )x >2的解集为21x a<-, 又①不等号方向改变了,①1-a <0,①a >1;故选:B .【点睛】此题考查解一元一次不等式,解题关键在于掌握在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )A .2332a B .4332a C .4332a < D .4332a < 【答案】B【分析】 根据题意先求出不等式组的解集,因为不等式组有3个整数解,进而可以逆推出a 的取值范围.【详解】解:①230320a x a x +>⎧⎨-≥⎩, ①解得不等式组的解集为:2332a x a -<≤, ①不等式组恰有3个整数解,必定有整数解0,且3|||2|23a a ->, ①三个整数解不可能是-2,-1,0,若三个整数解为-1,0,1,则不等式组22133122⎧⎪⎪⎨⎪⎪-≤-≤⎩-a <a <无解,若三个整数解为0,1,2,则有不等式组22323310a a ⎧⎪⎪⎨⎪⎪≤-≤-⎩<<解得4332a ≤≤. ①a 的取值范围是4332a ≤≤. 故选:B.【点睛】本题考查不等式组的解法及整数解的确定.掌握求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.且解答本题要根据整数解的取值情况分情况进行讨论.11.关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<≤- B .11542a -≤<- C .11542a -≤≤- D .11542a -<<- 【答案】B【分析】解不等式组求出不等式组的解集,再根据解集求a 的取值范围【详解】解238x x <-得:8x >,解24x a ->得:24x a <-,①不等式组的解集是:824x a <<-,①不等式组有四个整数解,即:9、10、11、12,①24122413a a ->⎧⎨-≤⎩解2412a ->得:52a <-解2413a -≤得:114a ≥- ①解集为:11542a -≤<- 故选:B【点睛】本题考查的是一元一次不等式组的解法,正确解出不等式组的解集,确定a 的范围,是解决本题的关键. 12.关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4-【答案】A【解析】【分析】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值.【详解】解:解不等式22x a -+≥,得22a x- ,①由数轴得到解集为x≤-1, ①212a -=- ,解得:a=0. 故选:A.【点睛】 本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.13.不等式组3(2)423x x a x x --≤⎧⎪+⎨>⎪⎩无解,则a 的取值范围是( ) A .a<1B .a≤1C .a>1D .a≥1【答案】B【解析】【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x 的取值正好在不等式组的解集之外,从而求出a 的取值范围.【详解】 解:原不等式组可化为22023x a x x-+≤⎧⎨+⎩> 即1x x a ≥⎧⎨⎩,<故要使不等式组无解,则a≤1.故选B .【点睛】 本题考查解不等式组,解题关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.14.若不等式组x 24255x x a -⎧+>-⎪⎨⎪>⎩的解集为空集,则a 的取值范围是( )A .a >3B .a≥3C .a <3D .a≤3【答案】B【解析】【分析】根据不等式组的解集为空集时的条件列出不等式,即可求出a 的取值范围.【详解】24255x x x a -⎧-⎪⎨⎪⎩+>①>②, 由①得:x <3,①不等式组24255x x x a +>>-⎧-⎪⎨⎪⎩的解集为空集,①a 的取值范围是:a ≥3;①①B.【点睛】①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①.15.若方程组32223x y k y x +=⎧⎨-=⎩的解满足x <1,且y >1,则整数k 的个数是( ) A .4B .3C .2D .1【答案】A【解析】【分析】本题可运用加减消元法①将x ①y 用含k 的代数式表示①然后根据x ①1①y ①1得出k 的范围①再根据k 为整数可得出k 的值①【详解】 32223x y k y x +=⎧⎨-=⎩①②①①①①①得①4x =2k ①3①①x 234k -=① ①x ①1①①234k -<1①解得①k 72<① 将x 234k -=代入①①得①2y 234k --=3①①y 298k +=①①y①1①①298k+>1①解得①k12->①①1722k-<<①①k为整数①①k可取0①1①2①3①①k的个数为4个①故选A①【点睛】本题考查了二元一次方程和不等式的综合问题①通过把x①y的值用k的代数式表示①再根据x①y的取值判断k的值①16.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<【答案】A【解析】【分析】求出两个关于x的不等式的解集,再根据不等式组恰有3个整数解,即可得a的范围.【详解】解不等式x①2①x①a),得:x①2a,解不等式x①123≤x,得:x≤3①①不等式组恰有3个整数解,①0≤2a①1,解得:0≤a12<①故选A①【点睛】本题考查了不等式组的整数解,求出两个不等式的解集,根据不等式组的解集确定a的范围是关键.二、填空题17.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________①【答案】0【详解】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x ≥-, 解不等式①得:50x ≤,①不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为0.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.18.关于x 的不等式30x a -≤只有两个正整数解,则a 的取值范围是_______【答案】6≤a <9.【分析】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a 的取值范围,求出a 的取值范围. 【详解】原不等式解得x≤3a , ①解集中只有两个正整数解,则这两个正整数解是1,2, ①2≤3a <3, 解得6≤a <9.故答案为6≤a <9.【点睛】本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.19.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为________.【答案】41或42【分析】不足5本说明最后一个人分的本数应在0和5之间,但不包括5.【详解】由题意可得m=3n+80,0<m -5(n -1)<5,解得40<n<42.5,因为n为整数,所以n值为41或42,故答案为:41或42.【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组.20.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元.要使总收入不低于15.6万元,则最多只能安排_______人种茄子.【答案】4【分析】设安排x人种茄子,则由题意知:0.5×3x+0.8×2(10-x)≥15.6,解不等式即可.【详解】设安排x人种茄子,则种辣椒的人数为10−x.由每人可种茄子3亩或辣椒2亩可得:茄子有3x亩, 辣椒有2(10−x)亩.由茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元得:0.5×3x+0.8×2(10−x)①15.6,解得x①4.故最多只能安排4人种茄子故答案为:4.【点睛】此题考查一元一次不等式的应用,解题关键在于掌握运算法则列出方程三、解答题21.解不等式组20 {5121123xx x->+-+≥①②,并把解集在数轴上表示出来.【答案】﹣1≤x<2.求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x <2,解不等式①,得x≥﹣1,①不等式组的解集是﹣1≤x <2.不等式组的解集在数轴上表示如下:22.解不等式组2151232513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ 并将解集在数轴上表示出来. 【答案】不等式组的解集为:17211x -≤<,在数轴上表示见解析. 【解析】试题分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 试题解析:()21512325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①②① 由①得,x①−1711① 由①得,x<2① 故此不等式组的解集为:17 2.11x -≤< 23.已知:关于x ①y 的方程组52,25 4.x y a x y a +=-⎧⎨-=+⎩的解满足0x y >>. ①1)求a 的取值范围;①2)化简8232a a +--.【答案】①1①-14<a<23①①2①11a【分析】 ①1)将a 看作常数解方程组,根据x①y>0得关于a 的不等式组,解不等式组可得a 的取值范围;①2)根据(1)中a 的范围结合绝对值性质去绝对值符号化简即可.【详解】(1①52254x y a x y a +=-⎧⎨-=+⎩① 解方程组得323x a y a =+⎧⎨=-⎩① ①x y 0>>①①a+3>2-3a>0①①-1423① (2)①-1423① ①8a+2>0①3a -2<0① ①8a 23a 2+--=8a+2+3a -2=11a.【点睛】本题考查了二元一次方程组的解①解一元一次不等式组,绝对值的化简等,熟练掌握二元一次方程组的解法、一元一次不等式组的解法是关键.24.解不等式组()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③,请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是: .(2)解不等式①,得 .(3)把不等式①、①和①的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】(1)x≥﹣3、不等式的性质3;(2)x <2;(3)作图见解析;(4)﹣2<x <2.【解析】试题分析:分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集. 试题解析:(1)解不等式①,得x ≥﹣3,依据是:不等式的性质3,故答案为x≥﹣3、不等式的性质3;(2)解不等式①,得x<2,故答案为x<2;(3)把不等式①,①和①的解集在数轴上表示出来,如图所示:(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x<2,故答案为﹣2<x<2.【点睛】本题考查了解一元一次不等式组、在数轴上表示不等式的解集,关键是先求出每个不等式的解集,分别在数轴上表示每一个不等式的解集,然后再确定出不等式组的解集.25.如果点P(x,y)的坐标满足2325, 210. x y m nx y m n+=--⎧⎨-=+-⎩(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.【答案】(1)点P的坐标(m-5,m-n);(2)2≤n<3;(3)-2≤n<-1.【解析】【分析】(1)把m、n当作已知条件,求出x,y的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.【详解】(1)①解方程组2325,210,x y m nx y m n+=--⎧⎨-=+-⎩得5,,x my m n=-⎧⎨=-⎩①点P的坐标(m-5,m-n);(2)①点P在第二象限,且符合要求的整数只有两个,由50,0,mm n-<⎧⎨->⎩得n<m<5,①2≤n<3(3)①点P在第二象限,且符合要求的整数之和为9,由50,0,mm n-<⎧⎨->⎩得n<m<5,①m的整数值为-1,0,1,2,3,4,①-2≤n<-1.【点睛】考查解一元一次不等式组, 二元一次方程组的解, 点的坐标,综合性比较强,熟练掌握一元一次不等式组的解法是解题的关键.26.(1)已知不等式组3()4213x x ba xx--≤⎧⎪+⎨>-⎪⎩的解集为1≤x<2,求a、b的值.(2)已知关于x的不等式组3155x ax a≥-⎧⎨≤-⎩无解,试化简|a+1|﹣|3﹣a|.【答案】(1)a=﹣1,b=2;(2)4.【分析】(1)先解出含参数的不等式的解集,再根据已知的解集求出a、b的值;(2)根据不等式无解得a﹣3>15﹣5a,即可求出a的取值,再根据绝对值的运算法则进行化简.【详解】(1)由①,得x≥32b﹣2,由①,得x<3+a,所以不等式组的解集为32b﹣2≤x<3+a,因为已知不等式组的解集委1≤x<2,所以32b﹣2=1,3+a=2,所以a=﹣1,b=2.(2)①关于x 的不等式组3155x a x a≥-⎧⎨≤-⎩无解, ①a ﹣3>15﹣5a①a >3, 原式=a +1﹣(a ﹣3)=4.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式的解法.27.随着某市教育改革的不断深入,素质教育的全面推进,中学生利用假期参加社会实践的调查越来越多,一位同学在A 公司实习调查时,计划部给了他一份实习作业;在下述条件下,规划下个月的产量,若公司生产部有工人200名,每个工人的月劳动时间不超过196h ,每个工人生产一件产品需用2h ;本月将剩余原料60吨,下个月准备购进300吨,每件产品需原料20kg ;经市场调查,预计下个月市场对这种产品的需求量不少于16000件,公司准备充分保证市场要求,你能和这位同学一同规划出下个月的产量范围吗?(设下个月产量为x 件)【答案】下个月的产量不少于16000件,不高于18000件.【解析】【分析】此题关键在于分析包含题意的三个不等关系:(1)产品件数大于等于16000;(2)生产x 件产品所用时间不超过200个工人劳动时间;(3)生产x 件产品所用原料不超过360t ;从而建立不等式组.【详解】解:设下个月产量为x 件,依题意可得:()21962002060300100016000x x x ≤⨯⎧⎪≤+⨯⎨⎪≥⎩解得:16000≤x≤18000,即下个月的产量不少于16000件,不高于18000件.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解,解题关键是找出包含题意的三个不等关系.28.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.①1)求甲、乙两种内存卡每个各多少元?①2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?①3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【答案】(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【解析】【分析】(1)设甲内存卡每个x 元,乙内存卡每个y 元,依据“买2个甲内存卡和1个乙内存卡共用了90元,买了3个甲内存卡和2个乙内存卡用了160元”列出方程组并解答;(2)设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10-a )个,根据关系式列出一元一次不等式方程组.求解再比较两种方案.(3)设老板一上午卖了c 个甲内存卡,d 个乙内存卡,根据“甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元”列出方程组,并解答.【详解】①1)解:设甲内存卡每个x 元,乙内存卡每个y 元,则29032160x y x y +⎧⎨+⎩=,=① 解得2050x y ⎧⎨⎩== ① 答:甲内存卡每个20元,乙内存卡每个50元①2)解:设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10①a①个,则()()205010300205010350a a a a ⎧+-≥⎪⎨+-≤⎪⎩, 解得5≤a≤623① 根据题意,a 的值应为整数,所以a=5或a=6①方案一:当a=5时,购买费用为20×5+50×①10①5①=350元;方案二:当a=6时,购买费用为20×6+50×①10①6①=320元;①350①320①购买A 商品6件,B 商品4件的费用最低.答:有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低①3)解:设老板一上午卖了c 个甲内存卡,d 个乙内存卡,则10c+15d=100①整理,得2c+3d=20①①c①d 都是正整数,①当c=10时,d=0①当c=7时,d=2①当c=4时,d=4①当c=1时,d=6①综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【点睛】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.29.自学下面材料后,解答问题 分母中含有未知数的不等式叫做分式不等式,如:201x x ->+;2301x x -<-等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:()1若0a >,0b >,则0a b >;若0a <,0b <,则0a b> ()2若0a >,0b <,则0a b <;若0a <,0b >,则0a b < 反之:()1若0a b >,则{00a b >>或{00a b << ()2若0a b<,则______或______. 根据上述规律 ()1求不等式201x x -<+的解集. ()2直接写出一个解集为3x >或1x <的最简分式不等式.【答案】(2){00a b ><,{00a b <>;(1)12x -<<;(2)30(1x x -->不唯一). 【分析】根据有理数除法法则①两数相除①同号得正①异号得负①解决问题.【详解】(2①①两数相除①同号得正①异号得负①a b<0① ①00a b ⎧⎨⎩><或 00a b ⎧⎨⎩<>① 故答案为0000a ab b ⎧⎧⎨⎨⎩⎩><,<>① ①1)由题意得①2010x x -⎧⎨+⎩><或 2010x x -⎧⎨+⎩<>① 第一个不等式组无解①第二个的解集为﹣1<x <2①则原分式不等式的解集为﹣1<x <2① ①2①①解集为x >3或x <1①①31x x -->0(不唯一). 【点睛】本题主要考查了利用理数除法法则解决分母中含有未知数的不等式.30.已知方程组3,31x y a x y a +=+⎧⎨-=-⎩的解是一对正数.(1)求a 的取值范围;(2)化简:21a ++2a. 【答案】(1)-12<a <2(2)a +3 【分析】(1)解含有字母参数a 的方程组,然后根据解是一对正数得到不等式,解不等式即可; (2)根据(1)中a 的取值范围,判断出2a+1和a -2的符号,再根据绝对值的意义求解即可.【详解】 (1)解方程组,得21,2.x a y a =+⎧⎨=-+⎩由题意,得210,20.a a +>⎧⎨-+>⎩解得-12<a <2. (2)由(1),得2-a >0,所以21a ++2a=2a +1+2-a =a +3.。

2022年中考数学真题分类汇编:不等式与不等式组

2022年中考数学真题分类汇编:不等式与不等式组

2022年中考数学真题分类汇编:不等式与不等式组一、单选题(共14题;共42分)1.(3分)(2022·北部湾)不等式 2x −4<10 的解集是( )A .x <3B .x <7C .x >3D .x >7【答案】B【解析】【解答】解: ∵2x −4<10 ,∴2x <14 , ∴x <7 . 故答案为:B.【分析】根据移项、合并同类项、系数化为1的步骤进行求解. 2.(3分)(2022·山西)不等式组{2x +1≥34x −1<7的解集是( )A .x ≥1B .x <2C .1≤x <2D .x <12【答案】C【解析】【解答】解:2x +1≥3,解得:x ≥1;4x −1<7,解得:x <2; ∴不等式组的解集为:1≤x <2; 故答案为:C .【分析】利用不等式的性质及不等式组的解法求出解集即可。

3.(3分)(2022·娄底)不等式组{3−x ≥12x >−2的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【解答】解:∵ 不等式组{3−x ≥1①2x >−2②中,解①得,x≤2, 解②得,x >-1,∴不等式组的解集为-1<x≤2, 数轴表示如下:故答案为:C.【分析】分别求出两个不等式的解集,根据同大取大,同小取小,大小小大中间找,大大小小无解了,取其公共部分可得不等式组的解集,然后根据解集的在数轴上的表示方法:大向右,小向左,实心等于,空心不等,进行判断.4.(3分)(2022·株洲)不等式4x −1<0的解集是( ).A .x >4B .x <4C .x >14D .x <14【答案】D【解析】【解答】解:4x−1<0移项得:4x<1不等号两边同时除以4,得:x<14故答案为:D.【分析】根据移项、系数化为1的步骤可得不等式的解集.5.(3分)(2022·邵阳)关于x 的不等式组{−13x >23−x12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( ) A .3B .4C .5D .6【答案】C【解析】【解答】解:解不等式−13x >23−x ,−13x +x >23, ∴23x >23, ∴x >1,解不等式12x −1<12(a −2),得12x <12(a −2)+1,∴x <a ,∴不等于组的解集为1<x <a , ∵不等式组有且只有三个整数解, ∴不等式组的整数解应为:2,3,4, ∴4<a≤5, ∴a 的最大值应为5 故答案为:C.【分析】分别求出两个不等式的解集,结合不等式组有且只有三个整数解可得a 的范围,据此可得a 的最大值.6.(3分)(2022·嘉兴)不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .【答案】B【解析】【解答】解:∵3x +1<2x ,∴x <-1,∴不等式解集表示在数轴如下,.故答案为:B.【分析】先解一元一次不等式,求得解集,再根据“小于朝左拐,无等号画空心点”,将不等式的解集表示在数轴上即可.7.(3分)(2022·衡阳)不等式组{x+2≥12x<x+3的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【解答】解:{x+2≥1①2x<x+3②由①得x≥-1由②得x<3∴不等式组的解集为-1≤x<3,故答案为:A.【分析】分别求出不等式组中的每一个不等式的解集,再确定出不等式组的解集,再观察各选项,可得答案.8.(3分)(2022·武威)不等式3x−2>4的解集是()A.x>−2B.x<−2C.x>2D.x<2【答案】C【解析】【解答】解:3x-2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故答案为:C.【分析】根据移项、合并同类项、系数化为1的步骤进行求解.9.(3分)(2022·滨州)把不等式组{x−3<2xx+1 3≥x−12中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【答案】C【解析】【解答】解:{x−3<2x①x+13≥x−12②解①得x>−3,解②得x≤5,∴不等式组的解集为−3<x≤5,在数轴上表示为:,故答案为:C.【分析】利用不等式的性质及不等式组的解法求解并在数轴上画出解集即可。

2022年全国中考数学真题分类汇编专题20:不等式与不等式组(附答案解析)

2022年全国中考数学真题分类汇编专题20:不等式与不等式组(附答案解析)

B. m> n
C.n﹣m>0
D.1﹣2m<1﹣2n
【解答】解:A、m﹣2>n﹣2,∴不符合题意;
B、 m< n,∴不符合题意;
C、m﹣n>0,∴不符合题意; D、∵m>n, ∴﹣2m<﹣2n, ∴1﹣2m<1﹣2n,∴符合题意; 故选:D. 9.关于 x 的一元一次不等式 x﹣3≥0 的解集在数轴上表示为( )
故答案为:0.
21.满足不等式组
> 的整数解是 2 .
【解答】解:


解不等式①得:x≤2.5,
解不等式②得:x>1,
∴原不等式组的解集为:1<x≤2.5,
∴该不等式组的整数解为:2,
故答案为:2.
22.不等式组
< 的解集是 x> .
【解答】解:解不等式 3x+4≥0,得:x ,
解不等式 4﹣2x<﹣1,得:x> ,

A.
B.
C.
D.
> 【解答】解:

所以不等式组的解集为﹣1<x<2, 在数轴上表示为:
, 故选:C. 12.把不等式 x﹣1<2 的解集在数轴上表示出来,正确的是( )
A.
B.
第 11 页 共 24 页
C.
D. 【解答】解:移项得,x<1+2, 得,x<3. 在数轴上表示为:
故选:D.
13.不等式 2x﹣4<10 的解集是( )


27.不等式组
的解集为


28.某品牌护眼灯的进价为 240 元,商店以 320 元的价格出售.“五一节”期间,商店为让
利于顾客,计划以利润率不低于 20%的价格降价出售,则该护眼灯最多可降价
元.
第 4 页 共 24 页

中考数学复习专题三-不等式和不等式组(解析版)

中考数学复习专题三-不等式和不等式组(解析版)

中考专题复习知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。

知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。

知识点3、不等式的解集在数轴上的表示: (1)x >a :数轴上表示a 的点画成空心圆圈,表示a 的点的右边部分来表示;(2)x <a :数轴上表示a 的点画成空心圆圈,表示a 的点的左边部分来表示;(3)x ≥a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的右边部分来表示;(4)x ≤a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的左边部分来表示。

在数轴上表示大于3的数的点应该是数3所对应点的右边。

画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。

如图所示:同样,如果某个不等式的解集为x ≤-2, 那么它表示x 取-2左边的点 画实心圆点。

如图所示:总结:在数轴上表示不等式解集的要点: 小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。

知识点4、不等式的性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。

知识点6、解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1。

通过这些步骤可以把一元一次不等式转化为x >a (x ≥a )或x <a (x ≤a )的形式。

知识点7、一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。

知识点8、知识点9、解不等式组:求不等式组解集的过程叫做解不等式组。

知识点10、解一元一次不等式组的一般步骤:先分别解不等式组中的各个不等式,然后再求出这几个不等式解集的公共部分。

中考数学热点题型专练不等式与不等式组含解析

中考数学热点题型专练不等式与不等式组含解析

热点06 不等式与不等式组【命题趋势】1.解不等式(组)并在数轴上表示解集.试题难度一般不大,选择题、填空题和解答题中都会出现.2.联系生活实际,用不等式(组)解决实际问题,常与函数、方程结合考查.【满分技巧】一、不等式的性质不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.二、一元一次不等式及其解法(1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定.(2)根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.三、一元一次不等式组及其解法解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、一元一次不等式(组)的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”“最多”“不超过”“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【限时检测】(建议用时:30分钟)一、选择题1.如果0a b c ><,,那么下列不等式成立的是 A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选D .2.不等式2x ﹣1>3﹣x 的解集是A .x <43B .x >34C .x >43D .x <34【答案】C【解析】移项得2x +x >3+1,合并同类项得3x >4,系数化为1得x >43. 故选C .3.不等式3(x +1)>2x +1的解集在数轴上表示为A .B .C .D . 【答案】A【解析】去括号得,3x +3>2x +1,移项得,3x ﹣2x >1﹣3,合并同类项得,x >﹣2,在数轴上表示为:.故选A .4.不等式组2012x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是 A .B .C .D . 【答案】B【解析】2012x x +>⎧⎨-≤⎩①②, 由①得,x >﹣2,由②得,x ≤3,故此不等式组的解集为:﹣2<x ≤3.在数轴上表示为:故选B .5.关于x 的不等式组2150x x m ->⎧⎨-<⎩有三个整数解,则m 的取值范围是 A .67m <≤B .67m <<C .7m ≤D .7m <【答案】A 【解析】2150x x m ->⎧⎨-<⎩①② 由①得:x >3,由②得:x <m ,则不等式组的解集是:3<x <m .不等式组有三个整数解,则整数解是4,5,6.则6<m ≤7.故选A .6.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围 A .a >2B .a ≥2C .a <2D .a ≤2 【答案】C【解析】∵不等式(a ﹣2)x >1的解集为x <12a -,∴a ﹣2<0,∴a 的取值范围为:a <2.故选C . 7.若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是 A .1B .2C .3D .4 【答案】C【解析】解不等式2x -6+m <0,得:解不等式4x -m >0,得:∵不等式组有解,解得m <4,如果m =2,<2,整数解为x =1,有1个; 如果m =0,则不等式组的解集为0<m <3,整数解为x =1,2,有2个;如果m =-1,整数解为x =0,1,2,3,有4个, 故选C .8.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[–2.5]=–3;已知,x y 满足方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩则[]2x y +可能的值有 A .2个B .3个C .4个D .5个【答案】C 【解析】解方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩可得[][]1,3,x y ⎧=⎪⎨=⎪⎩又∵[a ]表示不大于a 的最大整数,∴1≤x <2,3≤y <4,∴4≤x 2+y <8,∴[x 2+y ]可能的值有4,5,6,7,故选C .9.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为A .20B .35C .30D .40【答案】C 【解析】∵990不能被13整除,∴两个部门人数之和:a +b ≥51,(1)若51≤a +b ≤100,则11(a +b )=990得:a +b =90,①由共需支付门票费为1290元可知,11a +13b =1290②解①②得:b =150,a =–60,不符合题意.(2)若a +b ≥100,则9(a +b )=990,得a +b =110③由共需支付门票费为1290元可知,1≤a ≤50,51≤b ≤100,得11a +13b =1290④,解③④得:a =70人,b =40人故两个部门的人数之差为70–40=30人,故选C .10.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种A .2B .3C .4D .5【答案】B【解析】设搭配A 种造型x 个,则B 种造型为(50﹣x )个.依题意,得: 7040(50)26603080(50)3000x x x x +-≤⎧⎨+-≤⎩,解得:20≤x≤22,∵x是整数,∴x可取20、21、22,∴可设计三种搭配方案:①A种园艺造型20个B种园艺造型30个.②A种园艺造型21个B种园艺造型29个.③A种园艺造型22个B种园艺造型28个.故选B.二、填空题11.不等式2x-3≤3的正整数解是___________.【答案】1、2、3【解析】解不等式2x-3≤3得x≤3,∴正整数解是1、2、3,故答案为:1、2、3.12.不等式组3121230xx+>-⎧⎨-≥⎩的解集为___________.【答案】﹣1<x≤4【解析】解不等式3x+1>﹣2,得:x>﹣1, 解不等式12﹣3x≥0,得:x≤4,则不等式组的解集为﹣1<x≤4,故答案为:﹣1<x≤4.13.解不等式组261,31513.22x xx x⎧+>-⎪⎪⎨⎪+≥-+⎪⎩①②,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________;(Ⅱ)解不等式②,得__________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________.【答案】3x >-;(Ⅱ)2x ≤;(Ⅲ)见解析;(Ⅳ)32x -<≤【解析】(Ⅰ)不等式①移项,得23x +x >1–6;合并同类项,得53x >–5;化系数为1,得x >–3故答案为x >–3.(Ⅱ)不等式②移项,得12x –52x ≥–3–1;合并同类项,得–2x 4≥-;化系数为1,得x 2≤故答案为x 2≤.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)根据数轴上的公共部分可得原不等式组的解集为–3<x 2≤.14.不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是__________.【答案】8≤k <12【解析】﹣4x ﹣k ≤0,﹣4x ≤k ,x ≥4k -, ∵不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2, ∴﹣3<4k -≤﹣2, 解得:8≤k <12,故答案为:8≤k <12.15.对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__________.【答案】13≤x <15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x <15.故答案为:13≤x <15.三、解答题16.解不等式5132x x -+>-. 【解析】将不等式5132x x -+>-, 两边同乘以2得,x -5+2>2x -6,解得x <3.17.解不等式组: 4(1)273x x x x -<+⎧⎪+⎨>⎪⎩. 【解析】4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②, 解①得:x <2,解②得x <72, 则不等式组的解集为2<x <72. 18.解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来. 【解析】31251422x x x x +>⎧⎪⎨+-≥⎪⎩①②,解不等式①,得x >﹣1, 解不等式②,得x ≤3,所以,原不等式组的解集为﹣1<x ≤3,在数轴上表示为:19.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵,由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵,根据题意可得,3020(10)230y y +-≤,1030y ≤,∴3y ≤,∵y 为自然数,∴y =3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵.20.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售额相同,3件甲种商品比2件乙种商品的销售额多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总额不低于5400万元,则至少销售甲种商品多少万件?【解析】(1)设甲种商品的销售单价是x 元,乙种商品的单价为y 元.根据题意得:23321500x y x y =⎧⎨-=⎩. 解得:900600x y =⎧⎨=⎩. 答:甲种商品的销售单价是900元,乙种商品的单价为600元.(2)设销售甲产品a 万件,则销售乙产品(8)a -万件.根据题意得:900600(8)5400a a +-≥.解得:2a ≥.答:至少销售甲产品2万件.21.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.【解析】(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,3600360010+=,0.9x x解得,x=40,经检验,x=40是原分式方程的解,∴0.9x=36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m件,则乙种商品购进(80﹣m)件,总利润为w元,w=(80﹣40)m+(70﹣36)(80﹣m)=6m+2720,∵80﹣m≥3m,∴m≤20,∴当m=20时,w取得最大值,此时w=2840,答:该商店获得的最大利润是2840元.。

中考数学 专题04 代数之不等式(组 )问题(含解析)

中考数学 专题04 代数之不等式(组 )问题(含解析)

专题04 代数之不等式(组 )问题中考数学压轴题中不等式(组)问题较少,主要有含参数的不等式(组)问题,新定义的应用形成的不等式(组)问题,它们出现在选择和填空题中。

一、含参数的不等式(组)问题:1. 若关于x 的不等式2x m <03-恰好只有5个正整数解,则m 的取值范围是 。

【答案】10<m 43≤。

【考点】一元一次不等式的整数解。

2. 如果关于x 的不等式组:⎩⎨⎧≤-≥-0203b x a x ,的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对[a ,b]共有 个。

【答案】6.【解析】∵整数解仅有1,2,∴0<3a ≤1,2≤2b <3, 解得:0<a ≤3,4≤b <6,∴a=1,2,3,b=4,5,∴整数a ,b 组成的有序数对(a ,b )共有3×2=6个. 考点:一元一次不等式组的整数解.二、新定义的应用形成的不等式(组)问题:3. 定义:对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a 的取值范围是 ___________.(2)如果321=⎥⎦⎤⎢⎣⎡+x ,满足条件的所有正整数x 有____________. 【答案】-3≤a ≤-2 5,6【解析】4. 阅读理解: 对非负实数x “四舍五入”到个位的值记为<x>,即:当n 为非负整数时,如果11n x <n 22-?,则<x>=n 。

如:<0>=<0.49>=0,<0.64>=<1.393>=1,<3>=3,<2.5>=<3.12>=3,…试解决下列问题:(1)填空:如果<3x -2>=4,则实数x 的取值范围为 ;(2)当x 0³,m 为非负整数时,求证:x m m x +=+;(3)求满足71x x 52=-的所有非负实数x 的值; 【答案】(1)1113x <66≤。

2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)

2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)

2023年中考数学----不等式与不等式组之解与解集知识回顾与专项练习题(含答案解析)知识回顾1. 不等式的解:使不等式左右两边不等关系成立的未知数的值叫做不等式的解。

不等式的解有无数个。

2. 不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集。

3. 不等式组的解集:不等式组中所有不等式的解集的公共部分构成不等式组的解集。

4. 在数轴上表示解集:步骤:①确定边界是实心圆还是空心圈。

若有等于(即≥或≤)则是实心圆,若无等于(即>或<)则是空心圈。

②确定解集的方向:大于向右,小于向左。

5. 不等式组解集公共部分的确定:若b a >①同大取大。

当⎩⎨⎧≥b x a x >时,则解集为a x ≥。

②同小取小。

当⎩⎨⎧≤bx a x <时,则解集为b x <。

③大小小大去中间。

当⎩⎨⎧≥a x b x <时,则解集为a x b <≤。

④大大小小无解答。

当⎩⎨⎧≥bx a x <时,则无解。

专项练习题(含答案解析)1.(2022•梧州)不等式组⎩⎨⎧−21<>x x 的解集在数轴上表示为( ) A .B .C .D .【分析】求出两个不等式的公共解,并将解集在数轴上表示出来即可.【解答】解:所以不等式组的解集为﹣1<x <2,在数轴上表示为:,故选:C .2.(2022•十堰)关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为 .【分析】读懂数轴上的信息,然后用不等号连接起来.界点处是实点,应该用大于等于或小于等于.【解答】解:该不等式组的解集为:0≤x <1.故答案为:0≤x <1.。

(中考数学真题复习)第10讲 不等式与不等式组 基础例题 附答案解析

(中考数学真题复习)第10讲 不等式与不等式组 基础例题 附答案解析

中考数学复习不等式与不等式组一、选择题1.(2013·广东)不等式5x -1>2x +5的解集在数轴上表示正确的是(D)图9-12.(2013·绵阳)设“▲”、“●”、“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C)图9-2A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■3.若a <b <0,则下列式子:①a +1<b +2;②a b>1;③a +b <ab ;④1a <1b中,正确的有(C)A .1个B .2个C .3个D .4个4.(2012·攀枝花)下列说法中,错误的是(C)A .不等式x <2的正整数解中有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个二、填空题5.(2013·烟台)≥0,的最小整数解是__x =3__.6.(2013·宁夏)点P (a ,a -3)在第四象限,则a 的取值范围是__0<a <3__.7.(2013·内江)一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组≥0,的整数,则这组数据的平均数是__5__.8的解集是-1<x <1,则(a +b )2012=__1__.三、解答题9.解不等式组:(1)(2013·北京解:由3x >x -2,得x >-1,由x+13>2x ,得x <15,∴-1<x <15.(2)(2013·毕节≤3(x+2),2x-1+3x 2<1,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.≤3(x+2),①2x-1+3x 2<1,②,由①得:x ≥-1,由②得:x <3,不等式组的解集为:-1≤x <3.在数轴上表示如图9-3所示:图9-3不等式组的非负整数解为2,1,0.10.(2013·河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2((2-5)+1=2(-3)+1=-6+1=-5(1)求(-2)⊕3的值;解:(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)若3⊕x的值小于13,求x的取值范围,并在图9-4所示的数轴上表示出来.图9-4解:∵3⊕x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1,在数轴上表示如图9-5所示.图9-5B组能力提升11.(2012·襄阳)≤0有解,则a的取值范围是(B)A.a≤3B.a<3C.a<2D.a≤212的解集为x>3,则m的取值范围是__m≤3__.13.(2013·乐山)对非负实数x“四舍五入”到个位的值记为<x>,即当n为非负整数时,若n-12≤x<n+12,则<x>=n,如<0.46>=0,<3.67>=4.给出下列关于<x>的结论:①<1.493>=1;②<2x>=2<x>;③若<12x-1>=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有<m+2013x>=m+<2013x>;⑤<x+y>=<x>+<y>.其中,正确的结论有__①③④__(填写所有正确的序号).14.(2013·乐山)已知关于x、y①②的解满足不等式组≤0,求满足条件的m的整数值.解:由②-①×2得7y=4,y=47,x=m+87,y=47满足不等式组≤0,3m+247+47≤0,m+87+207>0.解得-4<m≤-43.m为整数时,m=-3或m=-2,∴满足条件的m的整数值为-3或-2. 15.(2013·十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a]=-2,那么a的取值范围是__-2≤a<-1__.(2)如果x+12=3,求满足条件的所有正整数x.解:根据题意得3≤x+12<4,解得:5≤x<7,则满足条件的所有正整数为5,6.16.(2012·湛江)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2-4>0.解:∵x2-4=(x+2)(x-2),∴x2-4>0可化为(x+2)(x-2)>0.由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<-2,∴(x+2)(x-2)>0的解集为x>2或x<-2,即一元二次不等式x2-4>0的解集为x>2或x<-2.问题:(1)一元二次不等式x2-16>0的解集为__x>4或x<-4__;解析:∵x2-16=(x+4)(x-4)∴x2-16>0可化为(x+4)(x-4)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>4,解不等于组②,得x<-4,∴(x-4)(x-4)>0的解集为x>4或x<-4,即一元二次不等式x2-16>0的解集为x>4或x<-4.>0的解集为__x>3或x<1__;(2)分式不等式x-1x-3>0,解析:∵x-1x-3解得x>3或x<1.(3)解一元二次不等式2x2-3x<0.解析:∵2x2-3x=x(2x-3),∴2x2-3x<0可化为x(2x-3)<0由有理数的乘法法则“两数相乘,同号得正”,得,解不等式组①,得0<x<32解不等式组②,无解,.∴不等式2x2-3x<0的解集为0<x<32。

新初中数学方程与不等式之不等式与不等式组技巧及练习题附解析(2)

新初中数学方程与不等式之不等式与不等式组技巧及练习题附解析(2)

新初中数学方程与不等式之不等式与不等式组技巧及练习题附解析(2)一、选择题1.不等式组0321x a x -<⎧⎨-≤-⎩的整数解共有3个,则a 的取值范围是( ) A .45a <<B .45a <≤C .45a ≤<D .45a ≤≤【答案】B【解析】【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到a 的范围.【详解】 0321x a x -<⎧⎨-≤-⎩①②, 由①解得:x <a ,由②解得:x≥2,故不等式组的解集为2≤x <a ,由不等式组的整数解有3个,得到整数解为2,3,4,则a 的范围为4<a≤5.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.2.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72,解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72,因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.已知方程组31331x y m x y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1 【答案】C【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m+=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.5.不等式组360420x x +≥⎧⎨->⎩的所有整数解的和为( ) A .1B .1-C .2D .2-【答案】D【解析】【分析】求出不等式组的解集,再把所有整数解相加即可.【详解】360420x x +≥⎧⎨->⎩360x +≥解得2x ≥-420x ->解得2x >∴不等式组的解集为22x -≤<∴不等式组的所有整数解为2,1,0,1--∴不等式组的所有整数解之和为21012--++=-故答案为:D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.6.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .【答案】D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】 2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.7.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤< 【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.9.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】 根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限, ∴260{50x x ->-<, 解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.13.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.14.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.15.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.16.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.17.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.18.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A .a <﹣3B .﹣3<a <1C .a >﹣3D .a >1【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P (1﹣a ,2a+6)在第四象限, ∴10260a a ->⎧⎨+<⎩解得a <﹣3.故选A .【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A . B .C .D . 【答案】C【解析】【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.20.关于x 的不等式412x -≥-的正整数解有( ) A .0个 B .1个 C .3个D .4个 【答案】C【解析】【分析】先解不等式求出解集,根据解集即可确定答案.【详解】解不等式412x -≥-得3x ≤,∴该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.。

中考数学专卷2020届中考数学总复习(12)不等式与不等式组-精练精析(1)及答案解析

中考数学专卷2020届中考数学总复习(12)不等式与不等式组-精练精析(1)及答案解析

方程与不等式——不等式与不等式组1 一.选择题(共9小题)1.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>2.不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解3.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.不等式组的解集在数轴上可表示为()A.B.C.D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.9.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥3二.填空题(共7小题)10.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x _________ y(用“>”或“<”填空).11.写出一个解为x≥1的一元一次不等式_________ .12.不等式x+3<﹣1的解集是_________ .13.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是_________ .14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为_________ cm.15.不等式组的解集是_________ .16.不等式组的解集是_________ .三.解答题(共9小题)17.解不等式2x﹣3<,并把解集在数轴上表示出来.18.解不等式≥,并把它的解集在数轴上表示出来.19.解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.20.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售额将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?21.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B 种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?22.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A 品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?25.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?方程与不等式——不等式与不等式组1参考答案与试题解析一.选择题(共9小题)1.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>考点:不等式的性质.分析:根据不等式的性质1,可判断A,根据不等式的性质3、1可判断B,根据不等式的性质2,可判断C、D.解答:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.点评:本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.2.不等式组的解集是()A.x>2 B.x>1 C.1<x<2 D.无解考点:不等式的解集.分析:根据不等式组解集的四种情况,进行选择即可.解答:解:根据同大取较大的原则,不等式组的解集为x>2,故选:A.点评:本题考查了不等式的解集,是基础题比较简单.解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:解不等式组得到解集为﹣2<x≤3,将﹣2<x≤3表示成数轴形式即可.解答:解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选:D.点评:考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.不等式组的解集在数轴上可表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,解得,故选:D.点评:本题考查了在数轴表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,解得,故选:B.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:数形结合.分析:先求出不等式的解集,再在数轴上表示出来即可.解答:解:移项得,x≥1,故此不等式组的解集为:x≥1.在数轴上表示为:.故选:A.点评:本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得﹣3<x≤4,故选:D.点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.点评:本题考查的是在数轴上表示不等式的解集,熟知““小于向左,大于向右”是解答此题的关键.9.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3考点:在数轴上表示不等式的解集.分析:根据不等式组的解集是大于大的,可得答案.解答:解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C.点评:本题考查了不等式组的解集,不等式组的解集是大于大的.二.填空题(共7小题)10.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x <y(用“>”或“<”填空).考点:不等式的定义.分析:由图知1号同学比2号同学矮,据此可解答.解答:解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.点评:本题主要考查了不等式的定义,仔细看图是解题的关键.11.写出一个解为x≥1的一元一次不等式x+1≥2.考点:不等式的解集.专题:开放型.分析:根据不等式的解集,可得不等式.解答:解:解为x≥1的一元一次不等式有:x+1≥2,x﹣1≥0等.故答案为:x+1≥2.点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可.12.不等式x+3<﹣1的解集是x<﹣4 .考点:解一元一次不等式.分析:移项、合并同类项即可求解.解答:解:移项,得:x<﹣1﹣3,合并同类项,得:x<﹣4.故答案是:x<﹣4.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是1≤k<3 .考点:解一元一次不等式.专题:计算题.分析:先把2x﹣3y=4变形得到y=(2x﹣4),由y<2得到(2x﹣4)<2,解得x <5,所以x的取值范围为﹣1≤x<5,再用x变形k得到k=x+,然后利用一次函数的性质确定k的范围.解答:解:∵2x﹣3y=4,∴y=(2x﹣4),∵y<2,∴(2x﹣4)<2,解得x<5,又∵x≥﹣1,∴﹣1≤x<5,∵k=x﹣(2x﹣4)=x+,当x=﹣1时,k=×(﹣1)+=1;当x=5时,k=×5+=3,∴1≤k<3.故答案为:1≤k<3.点评:本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.也考查了代数式的变形和一次函数的性质.14.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为78 cm.考点:一元一次不等式的应用.专题:应用题.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解答:解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.15.不等式组的解集是1<x<2 .考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解不等式①得,x>1,解不等式②得,x<2,所以,不等式组的解集是1<x<2.故答案为:1<x<2.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.不等式组的解集是x>.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三.解答题(共9小题)17.解不等式2x﹣3<,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:先去分母,得3(2x﹣3)<x+1去括号,得6x﹣9<x+1移项,得5x<10系数化为1,得x<2∴原不等式的解集为:x<2,在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.18.解不等式≥,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母和去括号得到6﹣3x≥4﹣4x,然后移项后合并得到x≥﹣2,再利用数轴表示解集.解答:解:去分母得3(2﹣x)≥4(1﹣x),去括号得6﹣3x≥4﹣4x,移项得4x﹣3x≥4﹣6,合并得x≥﹣2,在数轴上表示为:.点评:本题考查了解一元一次不等式:解一元一次不等式的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.也考查了在数轴上表示不等式的解集.19.解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去括号,移项,合并同类项,系数化成1即可.解答:解:2(x﹣1)+5<3x,2x﹣2+5﹣3x<0,﹣x<﹣3,x>3,在数轴上表示为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.20.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售额将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?考点:一元一次不等式的应用;一元一次方程的应用.专题:几何图形问题.分析:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,根据等量关系:总销售额为16000元列出方程求解即可;(2)题目中的不等关系是:6月份该青椒的总销售额不低于18360元列出不等式求解即可.解答:解:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,则6x+4(3000﹣x)=16000,解得x=2000,3000﹣x=1000.故今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(2)依题意有6(1﹣a%)×2000(1+30%)+4(1﹣a%)×1000(1+20%)≥18360,20400(1﹣a%)≥18360,1﹣a%≥0.9,a≤10.故a的最大值是10.点评:考查了一元一次方程的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.21.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B 种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.解答:解:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30﹣z)≤30,解得:z≥15,答:至少购买A种设备15台.点评:此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.22.为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)利用一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典,得出等式求出即可;(2)利用总费用不超过900元的钱数,进而得出不等关系求出即可.解答:解:(1)设每个书包和每本词典的价格各是x元,y元,根据题意得出:,解得:.答:每个书包的价格是28元,每本词典的价格是20元;(2)设购买z个书包,则购买词典(40﹣z)本,根据题意得出:28z+20(40﹣z)≤900,解得:z≤12.5.故最多可以购买12个书包.点评:此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.23.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?考点:一元一次不等式的应用.专题:优选方案问题.分析:(1)根据甲乙两厂家的优惠方式,可表示出购买桌椅所需的金额;(2)令甲厂家的花费大于乙厂家的花费,解出不等式,求解即可确定答案.解答:解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.点评:本题考查了一元一次不等式的知识,注意将实际问题转化为数学模型,利用不等式的知识求解.24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A 品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?考点:一元一次不等式的应用;一元一次方程的应用.专题:销售问题.分析:(1)设A品牌文具盒的进价为x元/个,根据晨光文具店用进货款1620元,可得出方程,解出即可;(2)设B品牌文具盒的销售单价为y元,根据全部售完后利润不低于500元,可得出不等式,解出即可.解答:解:(1)设A品牌文具盒的进价为x元/个,依题意得:40x+60(x﹣3)=1620,解得:x=18,x﹣3=15.答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个.(2)设B品牌文具盒的销售单价为y元,依题意得:(23﹣18)×40+60(y﹣15)≥500,解得:y≥20.答:B品牌文具盒的销售单价最少为20元.点评:本题考查了一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.25.为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.解答:解:(1)设购买甲种树苗x棵,则购买乙种树苗(400﹣x)棵,由题意,得200x+300(400﹣x)=90000,解得:x=300,∴购买乙种树苗400﹣300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400﹣a)棵,由题意,得200a≥300(400﹣a),解得:a≥240.答:至少应购买甲种树苗240棵.点评:本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。

2020年中考数学考点提分专题三不等式(组)(解析版)

2020年中考数学考点提分专题三不等式(组)(解析版)

2020 年中考数学考点提分专题三不等式(组)(分析版)必考点 1不等式的基天性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若 a> b,那么 a±m> b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若 a> b,且 m> 0,那么 am> bm 或 am> bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若 a> b,且 m< 0,那么 am< bm 或 am< bm;【典例 1】m>n,以下不等式不必定成立的是()( 2019·四川中考真题)若A .m 3>n 3B.C.mn D.22﹣3m<﹣3n33m > n【贯通融会】1.( 2019 ·广西中考真题)假如 a b , c0 ,那么以下不等式成立的是()A .a c b B.a c b cC.ac 1 bc 1D.a c 1 b c 1必考点 2 一元一次不等式的解【典例 2】( 2019·四川中考真题)对于x 的不等式2x a 1 只有2个正整数解,则 a 的取值范围为()A .5 a3B.5 a3C.5 a3D.5 a3【贯通融会】2x5x 的每一个值,都能使对于x 的不等式11 2x 的解集中.( 2019 ·内蒙古中考真题)若不等式33( x﹣1) 5>5x 2(m x) 成立,则 m 的取值范围是()31C.m 3D.m1A .m B.m5555必考点 3一元一次不等式的应用(1)由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.(2)列不等式解应用题需要以“起码”、“最多”、“不超出”、“不低于”等词来表现问题中的不等关系.所以,成立不等式要擅长从“重点词”中发掘其内涵.(3)列一元一次不等式解决实质问题的方法和步骤:①弄清题中数目关系,用字母表示未知数.②依据题中的不等关系列出不等式.③解不等式,求出解集.④写出切合题意的解【典例 3】20 题,答对一题得10 分,答错或不答扣 5 分,小华( 2019·重庆中考真题)某次知识比赛共有得分要超出120 分,他起码要答对的题的个数为()A.13B. 14C. 15D. 16必考点 4一元一次不等式组的解x 30【典例 4】(2019·江西中考模拟)已知不等式组{其解集在数轴上表示正确的选项是()x 10A .B.C.D.【贯通融会】1.(2019 ·云南中考真题)若对于2x12的解集为 x> a,则 a 的取值范围是 () x 的不等式组x0aA . a<2B. a≤2C. a> 2D. a≥22x6<02. ( 2019 ·湖南中考真题)若对于mx 的不等式组>有解,则在其解集中,整数的个数不行能是4x m0()A . 1B. 2C. 3D. 4x 1 x ( 2019·山东中考真题)若不等式组31无解,则 m 的取值范围为(2)x4mA .m 2B.m 2C.m 2D.m 2必考点 5 不等式组的应用【典例 5】( 2019·贵州中考真题)某校计划组织240 名师生到红色教育基地展开革命传统教育活动.旅行公司有 A ,B 两种客车可供租用, A 型客车每辆载客量45 人, B 型客车每辆载客量30 人.若租用 4 辆 A 型客车和 3 辆 B 型客车共需花费10700 元;若租用 3 辆 A 型客车和 4 辆 B 型客车共需花费10300 元.( 1)求租用A, B 两型客车,每辆花费分别是多少元;( 2)为使 240 名师生有车坐,且租车总花费不超出 1 万元,你有哪几种租车方案?哪一种方案最省钱?1.已知xy ,则以下不等式不行立的是()A .x 6 y 6B.3x 3yC.2 x2y D.3x 63 y 6x 2a2. ( 2019 ·江苏中考真题)以下各数轴上表示的x 的取值范围能够是不等式组的解集的2a 1 x 6 0是()A .B.C.D.3.某次知识比赛共有20 道题,每一题答对得10 分,答错或不答都扣 5 分 .小明得分要超出90 分,他起码要答对多少道题?若设小明答对了x 道题,则由题意可列出的不等式为()A . 10x+5(20 ﹣ x)> 90B. 10x+5(20 ﹣ x)< 90C. 10x﹣ 5(20﹣ x)> 90D. 10x ﹣ 5(20﹣x)< 904.( 2019 ·江苏中考真题)不等式x 1 2 的非负整数解有()A.1 个B.2个C.3 个D.4 个5.( 2019 ·湖北中考真题)不等式组2x x4的解集在数轴上用暗影表示正确的选项是()3x3x9A .B.C.D.6.( 2019 ·四川中考真题)若对于x的代等式组x x123恰有三个整数解,则 a 的取值范3x5a44( x1)3a围是()A .1, a3B.1 a,33D.a, 1或a3C.1 a2222x 237. ( 2019 ·浙江中考真题)不等式组x142的解为 _____________________ .8. ( 2019 ·黑龙江中考真题)若对于x m0x 的一元一次不等式组1的解集为 x 1 ,则m的取值范围是2x3_____.9. ( 2019 ·甘肃中考真题)不等式组2 x⋯0的最小整数解是 _____.2x x 1x 2 x110. ( 2019 ·四川中考真题)若对于x 的不等式组43有且只有两个整数解,则m 的取值范围是2x m, 2x_____.3x5x611. ( 2019 ·四川中考真题)解不等式组:x 1x 1 ,把它的解集在数轴上表示出来,并写出其整数解.6212. ( 2019 ·四川中考真题)为了参加西部展览会,资阳市计划印制一批宣传册.该宣传册每本共10 页,由A、 B 两种彩页组成.已知 A 种彩页制版费300 元 / 张, B 种彩页制版费 200 元 /张,合计2400 元.(注:彩页制版费与印数没关)(1)每本宣传册 A 、 B 两种彩页各有多少张?(2)据认识, A 种彩页印刷费 2.5 元 /张, B 种彩页印刷费 1.5 元 /张,这批宣传册的制版费与印刷费的和不超出 30900 元.假如按到资阳展台处的观光者人手一册发放宣传册,估计最多能发给多少位观光者?2020 年中考数学考点提分专题三不等式(组)(分析版)必考点 1不等式的基天性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若 a> b,那么 a±m> b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若 a> b,且 m> 0,那么 am> bm 或 am> bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若 a> b,且 m< 0,那么 am< bm 或 am< bm;【典例 1】m>n,以下不等式不必定成立的是()( 2019·四川中考真题)若A .m 3>n 3B.C.mn D.22﹣3m<﹣3n33m > n【答案】 D【分析】解: A 、不等式的两边都加3,不等号的方向不变,故 A 错误;B、不等式的两边都乘以﹣3,不等号的方向改变,故 B 错误;C、不等式的两边都除以3,不等号的方向不变,故 C 错误;D、如m=2,n=﹣3,m>n,m2<n2;故 D 正确;应选:D.【点睛】主要考察了不等式的基天性质,“0”很特别的一个数,所以,解答不等式的问题时,应亲密关注是“0存”在与否,以防掉进“0”的圈套.【贯通融会】1.( 2019 ·广西中考真题)假如 a b , c0 ,那么以下不等式成立的是()A .a c b B.a c b cC.ac1bc1D.a c1 b c1【答案】D【分析】解:∵ c0 ,∴ c 1 1,∵ a b ,∴ a c 1 b c 1 ,应选: D .【点睛】本题考察不等式的性质,解题的重点是娴熟运用不等式的性质,本题属于中等题型.必考点 2一元一次不等式的解【典例 2】( 2019·四川中考真题)对于 x 的不等式 2x a 1 只有 2 个正整数解,则 a 的取值范围为()A . 5 a3B . 5 a3C . 5 a3D . 5 a3【答案】 C【分析】解不等式 2x+a ≤1得: , 1 a,x2不等式有两个正整数解,必定是 1和2,依据题意得: 2,1a 32解得: -5< a ≤-3.应选: C .【点睛】本题考察了不等式的整数解,正确解不等式,求出解集是解答本题的重点.解不等式应依据不等式的基本性质.【贯通融会】1.( 2019 ·内蒙古中考真题)若不等式2x 5 1 2 x 的解集中 x 的每一个值,都能使对于 x 的不等式33( x ﹣1) 5>5x2(m x) 成立,则 m 的取值范围是()3 1 C . m3 1A . mB . m5D . m555【答案】 C【分析】解:解不等式 2x 5 1 2 x 得: x 4 , Q 不等式2x5 351 2 x 的解集中 x 的每一个值,都能使对于x 的不等式 (3x ﹣1) 5>5x (2 m x )成3立,1 m,x <21 m > 4 ,2 53解得: m <,5应选: C .【点睛】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能依据已知获得对于m 的不等式是解本题的重点.必考点 3一元一次不等式的应用( 1)由实质问题中的不等关系列出不等式,成立解决问题的数学模型,经过解不等式能够获得实质问题的答案.(2)列不等式解应用题需要以“起码 ”、 “最多 ”、“不超出 ”、“不低于 ”等词来表现问题中的不等关系.所以,成立不等式要擅长从 “重点词 ”中发掘其内涵.( 3)列一元一次不等式解决实质问题的方法和步骤:①弄清题中数目关系,用字母表示未知数.②依据题中的不等关系列出不等式.③解不等式,求出解集.④写出切合题意的解【典例 3】20 题,答对一题得 10 分,答错或不答扣5 分,小华( 2019·重庆中考真题)某次知识比赛共有 得分要超出 120 分,他起码要答对的题的个数为( )A .13B . 14C . 15D . 16【答案】 C【分析】解:设要答对 x 道.10 x ( 5) (20 x) 120 ,10 x 100 5 x 120,15 x 220 ,解得: x 44,3依据 x 一定为整数,故 x 取最小整数 15,即小华参加本次比赛得分要超出120 分,他起码要答对15 道题.应选: C .【点睛】本题主要考察了一元一次不等式的应用,获得得分的关系式是解决本题的重点.必考点 4一元一次不等式组的解x 3 0 【典例 4】( 2019·江西中考模拟)已知不等式组{其解集在数轴上表示正确的选项是( )x 1 0A .B .C .D .【答案】 D【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).所以,x 3 0 x3 {1 0{x 3 .xx1不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥ ≤向右画;<, 向左画),数轴上的点把数轴分红若干段,假如数轴的某一段上边表示解集的线的条数与不等式的个数同样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“< ”, “> ”要用空心圆点表示.应选 D .【贯通融会】1.( 2019 ·云南中考真题)若对于 2 x 1 2x 的不等式组x的解集为 x > a ,则 a 的取值范围是 ()a 0a<2 aa> 2 a≥2A .B . ≤2C .D . 【答案】 D【分析】2 x 12①,a x0②由①得 x 2 ,由②得 x a ,又不等式组的解集是x> a,依据同大取大的求解集的原则,∴a 2 ,当 a2时,也知足不等式的解集为x 2 ,∴ a2,应选 D.【点睛】本题考察认识一元一次不等式组,不等式组的解集,娴熟掌握不等式组解集确实定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的重点 .2x6<02. ( 2019 ·湖南中考真题)若对于mx 的不等式组>有解,则在其解集中,整数的个数不行能是4x m0()A . 1B. 2C. 3D. 4【答案】 C【分析】解不等式2x﹣ 6+ m< 0,得: x<6m ,2解不等式4x﹣ m>0,得: x>m,4∵不等式组有解,∴m <6 m,42解得m<4,假如m=2,则不等式组的解集为1 <m<2,整数解为x= 1,有 1 个;2假如m=0,则不等式组的解集为0<m<3,整数解为x= 1,2,有 2 个;假如m=﹣ 1,则不等式组的解集为1 <m< 7 ,整数解为x= 0, 1,2, 3,有 4 个;42应选: C.【点睛】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.x1x1( 2019·山东中考真题)若不等式组32无解,则 m 的取值范围为()x4mA .m 2B.m 2C.m 2D.m 2【答案】 A【分析】解不等式x 1x1 ,得:x>8,32∵不等式组无解,∴4m≤8,解得 m≤2,应选 A.【点睛】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.必考点 5 不等式组的应用【典例 5】( 2019·贵州中考真题)某校计划组织240 名师生到红色教育基地展开革命传统教育活动.旅行公司有 A ,B 两种客车可供租用, A 型客车每辆载客量45 人, B 型客车每辆载客量30 人.若租用 4 辆 A 型客车和 3 辆 B 型客车共需花费10700 元;若租用 3 辆 A 型客车和 4 辆 B 型客车共需花费10300 元.( 1)求租用A, B 两型客车,每辆花费分别是多少元;( 2)为使 240 名师生有车坐,且租车总花费不超出 1 万元,你有哪几种租车方案?哪一种方案最省钱?【答案】( 1)租用 A, B 两型客车,每辆花费分别是1700 元、 1300 元;( 2)共有三种租车方案,方案一:租用 A 型客车 2 辆, B 型客车 5 辆,花费为9900 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆,花费为9400 元,方案三:租用 A 型客车 5 辆, B 型客车 1 辆,花费为9800 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆最省钱.【分析】(1)设租用 A ,B 两型客车,每辆花费分别是x 元、 y 元,4x 3y10700,3x 4y10300x 1700解得,,y 1300答:租用 A , B 两型客车,每辆花费分别是1700 元、 1300 元;(2)设租用 A 型客车 a 辆,租用 B 型客车 b 辆,45a 30b 240,1700a 1300b10000a 2 a 4 a 5 解得,b 5 , b2,,b1∴共有三种租车方案,方案一:租用 A 型客车 2 辆, B 型客车 5 辆,花费为 9900 元,方案二:租用 A 型客车 4 辆, B 型客车 2 辆,花费为 9400 元,方案三:租用 A 型客车 5 辆, B 型客车 1 辆,花费为 9800 元,由上可得,方案二:租用A 型客车 4 辆,B 型客车 2 辆最省钱.【点睛】本题考察二元一次方程组的应用、一元一次不等式的应用,解答本题的重点是明确题意,利用不等式的性质和方程的知识解答.1.已知 xy ,则以下不等式不行立的是( ) A . x 6y 6B .C .2 x 2yD . 【答案】 D【分析】3x 3y3x 63 y 6Q x y,-3x<-3 y ,∴ - 3x+6<-3 y+6,故D 错误;应选 D.点睛:不等式的性质 3:不等式两边同时乘以或除以同一个负数,不等号的方向改变 .x 2a2. ( 2019 ·江苏中考真题)以下各数轴上表示的x 的取值范围能够是不等式组的解集的2a 1 x 6 0是()A .B.C.D.【答案】 B【分析】由 x+2 > a 得 x> a-2,A .由数轴知x>-3,则 a=-1 ,∴ -3x-6 < 0,解得 x> -2,与数轴不符;B.由数轴知x> 0,则 a=2,∴ 3x-6 < 0,解得 x<2,与数轴相切合;C.由数轴知x> 2,则 a=4,∴ 7x-6 < 0,解得 x<6,与数轴不符;7D.由数轴知x>-2,则 a=0,∴ -x-6 < 0,解得 x> -6,与数轴不符;应选 B.【点睛】本题主要考察解一元一次不等式组,解题的重点是掌握不等式组的解集在数轴上的表示及解一元一次不等式的能力.3.某次知识比赛共有20 道题,每一题答对得10 分,答错或不答都扣 5 分 .小明得分要超出90 分,他起码要答对多少道题?若设小明答对了x 道题,则由题意可列出的不等式为()A . 10x+5(20 ﹣ x)> 90B. 10x+5(20 ﹣ x)< 90C. 10x﹣ 5(20﹣ x)> 90D. 10x ﹣ 5(20﹣x)< 90【答案】C【分析】解:由题意可列出的不等式为10x﹣ 5(20 ﹣x) >90,应选:C.【点睛】本题考察了由实质问题抽象出一元一次不等式,掌握:答错或不答都扣 5 分,起码即大于或等于是解题的重点 .4.( 2019 ·江苏中考真题)不等式 x 1 2 的非负整数解有()A .1 个B .2个C .3 个D .4 个【答案】 D【分析】解: x 1 2 ,解得: x3 ,则不等式 x 1 2 的非负整数解有: 0, 1, 2, 3 共 4 个.应选: D .【点睛】本题主要考察了一元一次不等式的整数解,正确掌握非负整数的定义是解题重点.2x x 4 的解集在数轴上用暗影表示正确的选项是()5.( 2019 ·湖北中考真题)不等式组x3x3 9A .B .C .D .【答案】 C【分析】解:不等式组整理得:x 4x ,3∴不等式组的解集为x3 ,应选: C .【点睛】本题考察认识一元一次方程组,娴熟掌握运算法例是解本题的重点.x x 1 0 6.( 2019 ·四川中考真题) 若对于 x的代等式组2 3恰有三个整数解, 则 a 的取值范3x5a 4 4( x 1) 3a围是( )A . 1, a3B . 1 a,3C . 1 a3 D . a, 1 或 a32222【答案】 B【分析】解不等式xx 10 ,得: x2,235解不等式 2x5a 4 4 x 13a ,得: x2a ,∵不等式组恰有三个整数解,∴这三个整数解为0、 1、 2,∴2 2a 3 ,解得 1 a 3 ,2应选: B.【点睛】本题考察一元一次不等式组的整数解,解题重点在于掌握运算法例x 237. ( 2019 ·浙江中考真题)不等式组x142【答案】 1 x, 9【分析】的解为 _____________________ .x23①解:x1,24②由①得, x> 1,由②得, x≤9.故不等式组的解集为:1x, 9 .【点睛】本题考察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.8. ( 2019 ·黑龙江中考真题)若对于x m01 ,则m的取值范围是x 的一元一次不等式组1的解集为 x2x3_____.【答案】 m £1【分析】解不等式 xm 0 ,得: x m ,解不等式 2x1 3 ,得: x 1,Q 不等式组的解集为 x 1 ,m £1,故答案为: m £1. 【点睛】本题考察解一元一次不等式组,掌握运算法例是解题重点2 x ⋯0 9. ( 2019 ·甘肃中考真题)不等式组的最小整数解是 _____.2x x 1【答案】 0【分析】x, 2 解:不等式组整理得:,x1∴不等式组的解集为﹣1< x ≤2,则最小的整数解为0,故答案为: 0【点睛】本题考察了一元一次不等式组的整数解,娴熟掌握运算法例是解本题的重点.x2 x110. ( 2019 ·四川中考真题)若对于 x 的不等式组43 有且只有两个整数解,则 m 的取值范围是2x , 2xm _____.【答案】 2 m 1 .【分析】x2 x1 ①解:4 32x m 2 x ②解不等式①得:x2 ,解不等式②得:xm2,3∴不等式组的解集为 2 x 2 ,3∵不等式组只有两个整数解,m21 ,∴ 03解得: 2m1,故答案为2m 1 .【点睛】本题考察认识一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解本题的重点是求出对于 m 的不等式组,难度适中.3x 5x611. ( 2019 ·四川中考真题)解不等式组:x 1 x 1 ,把它的解集在数轴上表示出来,并写出其整数解.62【答案】 3 x 2 ,x的整数解为﹣2,﹣1,0,1,2.【分析】3x5x ①6解:x1 x 1 ②62解不等式①,解不等式②,x 3 ,x 2 ,∴ 3 x 2 ,解集在数轴上表示以下:∴x的整数解为﹣ 2,﹣ 1, 0,1, 2.【点睛】本题考察不等式组和数轴,解题的重点是娴熟掌握不等式组的求解和有理数在数轴上的表示.12. ( 2019 ·四川中考真题)为了参加西部展览会,资阳市计划印制一批宣传册.该宣传册每本共10 页,由A、 B 两种彩页组成.已知 A 种彩页制版费300 元 / 张, B 种彩页制版费200 元 /张,合计2400 元.(注:彩页制版费与印数没关)( 1)每本宣传册 A 、 B 两种彩页各有多少张?( 2)据认识, A 种彩页印刷费 2.5 元 /张, B 种彩页印刷费 1.5 元 /张,这批宣传册的制版费与印刷费的和不超出 30900 元.假如按到资阳展台处的观光者人手一册发放宣传册,估计最多能发给多少位观光者?【答案】( 1)每本宣传册 A 、B 两种彩页各有 4 和 6 张;(2)最多能发给 1500 位观光者.【分析】解:( 1)设每本宣传册 A 、B 两种彩页各有x , y 张,x y 10 ,300x 200y2400解得:x 4y,6答:每本宣传册 A 、 B 两种彩页各有 4 和 6 张;(2)设最多能发给 a 位观光者,可得:2.5 4a 1.5 6a 2400 30900 ,解得: a1500,答:最多能发给 1500 位观光者.【点睛】本题考察一元一次不等式的应用,重点是依据题意列出方程组和不等式解答.。

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

湖南省2021年中考数学真题分项汇编—专题06 不等式与不等式组(含答案解析)

专题06 不等式与不等式组一、单选题1.(2021·湖南常德市·中考真题)若a b >,下列不等式不一定成立的是( )A .55a b ->-B .55a b -<-C .a b c c >D .a c b c +>+ 【答案】C【分析】根据不等式的性质逐项进行判断即可得到答案.【详解】解:A .在不等式a b >两边同时减去5,不等式仍然成立,即55a b ->-,故选项A 不符合题意;B . 在不等式a b >两边同时除以-5,不等号方向改变,即55a b -<-,故选项B 不符合题意;C .当c ≤0时,不等得到a b c c>,故选项C 符合题意; D . 在不等式a b >两边同时加上c ,不等式仍然成立,即a c b c +>+,故选项D 不符合题意; 故选:C .【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键.2.(2021·湖南株洲市·中考真题)不等式组2010x x -≤⎧⎨-+>⎩的解集为( ) A .1x <B .2x ≤C .12x <≤D .无解 【答案】A【分析】先解不等式组中的每一个不等式,再利用不等式组解集的口诀“同小取小”得出解集.【详解】解:2010x x -≤⎧⎨-+>⎩①②由①,得:x ≤2,由②,得:x <1,则不等式组的解集为:x <1,故选:A .【点睛】本题主要考查了一元一次不等式组解集的求法,关键在于根据解集的特点确定解集:同大取大、同小取小、大小小大中间找、大大小小无解得到.3.(2021·湖南岳阳市·中考真题)已知不等式组1024x x -<⎧⎨≥-⎩,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【分析】解不等式组要先求出两个不等式的解集,然后依据解集口诀:同大取大,同小取小,大小小大中间找,大大小小无处找,确定不等式组解集,在数轴上表示;注意带有等号的数在数轴上用实心表示,没有等号用空心圈表示,即可得出选项.【详解】解:1024x x -<⎧⎨≥-⎩①②, 解不等式①得:1x <,解不等式②得:2x ≥-,∴不等式组的解集为:21x -≤<,在数轴上表示为:故选:D .【点睛】题目主要考察求解不等式解集、不等式组解集以及解集在数轴上的表示,难点是对在数轴上表示实心点和空心圈的区分.4.(2021·湖南怀化市·中考真题)不等式组211112x x x +-⎧⎪⎨->-⎪⎩的解集表示在数轴上正确的是( ) A . B .C .D .【答案】C【分析】 分别解两个不等式,将它们的解集表示在同一数轴上即可求解;带等于号的用实心点,不带等于号的用空心点.【详解】解不等式211x x +-得:2x ≥-, 解不等式112x ->- 得:2x <,故不等式组的解集为:-2≤x <2,在数轴上表示为:故选C .【点睛】本题考查了一元一次不等式组的解法,一元一次不等式的解集在数轴上的表示方法;依次解不等式,注意空心点和实心点的区别是解题关键.5.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( ) A .B .C .D .【答案】A【分析】 根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1,解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示,故选:A .【点睛】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键.6.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-2【答案】A【分析】先求出不等式组的解集,再从中找出整数求和即可.【详解】51341233x x x x ->-⎧⎪⎨-≤-⎪⎩①②, 解①得32x >-, 解②得x≤1, ∴213x -<≤, ∴整数解有:0,1,∴0+1=1.故选A.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.7.(2021·湖南永州市·中考真题)一元一次不等式组21050x x +>⎧⎨-≤⎩的解集中,整数解的个数是( ) A .4B .5C .6D .7 【答案】C【详解】∵解不等式210x +>得:12x >-, 解不等式50x -≤,得:x≤5, ∴不等式组的解集是152x -<≤, 整数解为0,1,2,3,4,5,共6个,故选C .考点:一元一次不等式组的整数解.二、填空题8.(2021·湖南常德市·中考真题)求不等式23x x ->的解集_________.【答案】3x >【分析】直接移项合并同类项即可得出.【详解】解:23x x ->,移项解得:3x >,故答案是:3x >.【点睛】本题考查了解一元一次不等式,解题的关键是:熟练掌握移项合并同类项等步骤.9.(2021·湖南中考真题)已知x 满足不等式组120x x >-⎧⎨-≤⎩,写出一个符合条件的x 的值________. 【答案】1(答案不唯一)【分析】求出不等式组的解集即可得.【详解】解:120x x >-⎧⎨-≤⎩①②, 解不等式②得:2x ≤,则不等式组的解集为12x -<≤,因此,一个符合条件的x 值是1,故答案为:1(答案不唯一).【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.10.(2021·湖南张家界市·中考真题)不等式2217x x >⎧⎨+≤⎩的正整数解为______. 【答案】3【分析】直接解出各个不等式的解集,再取公共部分,再找正整数解即可.【详解】解:由217x +≤,解得:3x ≤,由2x >,∴原不等式的解集是:23x <≤.故不等式2217x x >⎧⎨+≤⎩的正整数解为:3, 故答案是:3.【点睛】本题考查了解一元一次不等式组的解集和求不等式组的正整数解,解题的关键是:掌握解不等式组的基本运算法则,求出解集后,找出满足条件的正整数解即可.11.(2021·湖南常德市·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个. 【答案】21【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x 个, 蓝珠有y 个,根据题意得,1186450x x y x x ⎧+++=⎪⎨⎪≤⎩①②, 由①得,96127y x +=, 结合②得,9612507y +≤ 解得,1216y ≤ 所以,刘凯的蓝珠最多有21个.故答案为:21.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.三、解答题12.(2021·湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的1330.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)0.85千米.【分析】(1)设开通后的长益高铁的平均速度为x 千米/分钟,从而可得某次长益城际列车的平均速度为1330x 千米/分钟,再根据“路程=速度⨯时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工y 千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得.【详解】解:(1)设开通后的长益高铁的平均速度为x 千米/分钟,则某次长益城际列车的平均速度为1330x 千米/分钟, 由题意得:1360164030x x ⨯-=, 解得4x =,则16464⨯=(千米),1313606041043030x ⨯=⨯⨯=(千米), 答:长益段高铁全长为64千米,长益城际铁路全长为104千米; (2)由题意得:甲工程队每天对其施工的长度为7647794010⨯=+(千米), 乙工程队每天对其施工的长度9649794010⨯=+(千米), 设甲工程队后期每天施工y 千米, 则979(4053)()64()5101010y --+≥-+⨯, 解得1720y ≥, 即0.85y ≥,答:甲工程队后期每天至少施工0.85千米.【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键. 13.(2021·湖南娄底市·中考真题)为了庆祝中国共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生.已知购买1个甲种纪念品和2个乙种纪念品共需20元,购买2个甲种纪念品和5个乙种纪念品共需45元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元;(2)若要购买这两种纪念品共100个,投入资金不少于766元又不多于800元,问有多少种购买方案?并求出所花资金的最小值.【答案】(1)购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)共有7种进货方案;所花资金的最小值为770元.【分析】(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据“购买1个甲种纪念品和2个乙种纪念品共需20元;购买2个甲种纪念品和5个乙种纪念品共需45元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,根据总价=单价×数量得到w 关于m 的函数解析式,结合进货资金不少于766元且不超过800元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再由m 为整数即可找出各进货方案,利用一次函数的性质从而得出答案.【详解】解:(1)设购进甲种纪念品每个需要x 元,乙种纪念品每个需要y 元,根据题意得:2202545x y x y +=⎧⎨+=⎩, 解得:105x y =⎧⎨=⎩; 答:购进甲种纪念品每个需要10元,乙种纪念品每个需要5元;(2)设购进甲种纪念品m 个,则购进乙种纪念品(100-m )个,所花资金为w 元,∴()1051005500w m m m =+-=+,根据题意得:55007665500800m m +≥⎧⎨+≤⎩, 解得:53.2≤m ≤60.∵m 为整数,∴m =54、55、56、57、58、59或60.∴共有7种进货方案;∵5>0,∴w 随m 的增大而增大,∴m =54时,w 有最小值,最小值为770元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数量间的关系,正确列出w 关于m 的函数解析式和一元一次不等式组. 14.(2021·湖南常德市·中考真题)某汽车贸易公司销售A 、B 两种型号的新能源汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)求销售一台A 型、一台B 型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A 、B 两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?【答案】(1)销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)最少需要采购A 型新能源汽车10台.【分析】(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意中的数量关系列出二元一次方程组,解方程组即可;(2)先求出每台A 型车和每台B 型车的采购价,根据“用不超过300万元资金,采购A 、B 两种新能源汽车共22台”列出不等式求解即可.【详解】解:(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意得,25 3.12 1.3x y x y +=⎧⎨+=⎩ 解得,0.30.5x y =⎧⎨=⎩答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m )台,根据题意得,1215(22)300m m +⨯-≤330,m ∴-≤-解得,10m ≥∵m 是整数,∴m 的最小整数值为10,即,最少需要采购A 型新能源汽车10台.【点睛】本题主要考查了一元一次不等式的应用和二元一次方程组的应用,解答此题的关键是找出题中的数量关系.15.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A ,B 两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A 奖品比B 奖品每件多25元预算资金为1700元,其中800元购买A 奖品,其余资金购买B 奖品,且购买B 奖品的数量是A 奖品的3倍.(1)求A ,B 奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...预算资金且购买A 奖品的资金不少于...720元,A ,B 两种奖品共100件.求购买A ,B 两种奖品的数量,有哪几种方案?【答案】(1)A ,B 奖品的单价分别是40元,15元;(2)购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【分析】(1)设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元,根据“购买B 奖品的数量是A 奖品的3倍”,列出分式方程,即可求解;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,列出一元一次不等式组,即可求解.【详解】(1)解:设B 奖品的单价为x 元,则A 奖品的单价为(x +25)元, 由题意得:8001700800325x x-⨯=+,解得:x =15, 经检验:x =15是方程的解,且符合题意,15+25=40,答:A ,B 奖品的单价分别是40元,15元;(2)设购买A 奖品a 件,则购买B 奖品(100-a )件,由题意得:400.8150.8(100)1700400.8720a a a ⨯+⨯-≤⎧⎨⨯≥⎩,解得:22.5≤a ≤25, ∵a 取正整数,∴a =23,24,25,答:购买A 奖品23件,B 奖品77件;购买A 奖品24件,B 奖品76件;购买A 奖品25件,B 奖品75件.【点睛】本题主要考查分式方程以及一元一次不等式组的实际应用,找准数量关系,列出方程和不等式组,是解题的关键.16.(2021·湖南长沙市·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题? (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了x 道题,从而可得该参赛同学一共答错了(251)x --道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,从而可得参赛者答错了(25)y -道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了x 道题,则该参赛同学一共答错了(251)x --道题,由题意得:4(251)86x x ---=,解得22x =,答:该参赛同学一共答对了22道题;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则参赛者答错了(25)y -道题,由题意得:4(25)90y y --≥,y ,解得23答:参赛者至少需答对23道题才能被评为“学党史小达人”.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,正确列出方程和不等式是解题关键.。

2020年中考数学专题复习卷:不等式与不等式组(含解析)

2020年中考数学专题复习卷:不等式与不等式组(含解析)

不等式与不等式组一、选择题1.下列式子一定成立的是( ) A.若ac 2=bc 2,则a=b B.若ac>bc,则a>bC.若a>b,则ac 2>bc 2D.若a<b,则a(c 2+1)<b(c 2+1)2.已知实数a ,b ,若a >b ,则下列结论错误的是( ) A. a-7>b-7 B. 6+a >b+6 C.D. -3a >-3b 3.不等式3x ﹣1≥x+3的解集是( )A. x≤4B. x≥4C. x≤2D. x≥2 4.不等式2x >3﹣x 的解集是( )A. x >3B. x <3C. x >1D. x <15.设a ,b 是常数,不等式>0的解集为x < ,则关于x 的不等式bx ﹣a <0的解集是( )A. x >B. x <﹣C. x >﹣D. x < 6.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. B.C.D.7.下列各数中,为不等式组解的是()A. -1 B. 0C. 2D. 48.不等式﹣x+2≥0的解集在数轴上表示正确的是()A. B.C. D.9.不等式组的最小整数解是()A. 1B. 2C. 3D. 410.不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A. B. a≤C. ≤a<﹣1 D. a≥11.不等式组有3个整数解,则的取值范围是()A. B.C. D.12.关于x的不等式组的解集为,那么m的取值范围为()A. B.C.D.二、填空题13.函数中自变量x的取值范围为________.14.不等式3x+1>2x﹣1的解集为________.15.不等式组的解集为________.16.把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________17.在实数范围内规定新运算“△”,其规则是:a△b=2a-b.已知不等式x△k≥1的解集表示在数轴上如图所示,则k的值是________18.当x________时,代数式1- 的值不大于代数式的值.19.若关于x,y的方程组的解满足x>y,则p的取值范围是________20.不等式组的所有整数解的和为________21.已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是________.22.对于满足0≤p≤4的一切实数,不等式x2+px>4x+p﹣3恒成立,则实数x的取值范围是________三、解答题23.解不等式组,并把它的解集在数轴上表示出来.24.解不等式组并写出它的所有非负整数解.25.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。

人教版初中七年级数学下册第九单元《不等式与不等式组》(含答案解析)

人教版初中七年级数学下册第九单元《不等式与不等式组》(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤3 2.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.不等式()31x -≤5x -的正整数解有( ) A .1个B .2个C .3个D .4个4.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解5.如果a 、b 表示两个负数,且a b >,则( ) A .1ab> B .1b a> C .11a b> D .1ab <6.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-7.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-8.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .269.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 10.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m11.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4x7天后,小圆背诵的诗词最多为( ) A .10首B .11首C .12首D .13首12.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <13.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤14.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .15.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( ) A .20人B .19人C .11人或13人D .19人或20人二、填空题16.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个).17.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).18.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 19.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.20.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.21.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.22.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.23.不等式组63024x x x -⎧⎨<+⎩的解集是__.24.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.25.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.26.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .三、解答题27.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 28.为了积极争创“天府旅游名县”,鼓励全民参与健身运动,2019年12月29日,广汉市在城北全民健身中心举行了“2019年广汉市三星堆迷你马拉松(10公里)”比赛.组委会为了奖励活动中取得了好成绩的参赛选手,计划购买一批纪念品发放.已知甲、乙两商场以同样价格出售同样的纪念品,并且又各自推出不同的优惠方案:在甲商场累计购买该纪念品超过1000元后,超出1000元的部分按90%收费;在乙商场累计购买该纪念品超过500元后,超出500元的部分按95%收费,组委会到哪家商场购买花费少? 29.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++.30.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?。

备战中考数学分点透练真题不等式(组)及不等式的应用(解析版)

备战中考数学分点透练真题不等式(组)及不等式的应用(解析版)

第七讲不等式(组)及不等式的应用命题点1 不等式的性质1.(2021•常德)若a>b,下列不等式不一定成立的是()A.a﹣5>b﹣5B.﹣5a<﹣5b C.>D.a+c>b+c【答案】C【解答】解:A.∵a>b,∴a﹣5>b﹣5,故本选项不符合题意;B.∵a>b,∴﹣5a<﹣5b,故本选项不符合题意;C.∵a>b,∴当c>0时,;当c<0时,,故本选项符合题意;D.∵a>b,∴a+c>b+c,故本选项不符合题意;故选:C.2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【答案】A【解答】解:a>b,∴当a>0时,a2>ab,当a=0时,a2=ab,当a<0时,a2<ab,故①结论错误∵a>b,∴当|a|>|b|时,a2>b2,当|a|=|b|时,a2=b2,当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.3.(2021•苏州)若2x+y=1,且0<y<1,则x的取值范围为.【答案】0<x<【解答】解:由2x+y=1得y=﹣2x+1,根据0<y<1可知0<﹣2x+1<1,∴﹣1<﹣2x<0,∴0<x<.故答案为:0<x<.命题点2 一元一次不等式(组)的解法类型一不等式(组)的解法及解集表示4.(2021•吉林)不等式2x﹣1>3的解集是()A.x>1B.x>2C.x<1D.x<2【答案】B【解答】解:2x﹣1>3,2x>3+1,2x>4,x>2.故选:B.5.(2021•临沂)不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【答案】B【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.6.(2021•湘潭)不等式组的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解答】解:解不等式x+1≥2,得:x≥1,解不等式4x﹣8<0,得:x<2,则不等式组的解集为1≤x<2,将不等式组的解集表示在数轴上如下:故选:D.7.(2021•凉山州)解不等式:﹣x<3﹣.【答案】x>﹣2【解答】解:去分母,得:4(1﹣x)﹣12x<36﹣3(x+2),去括号,得:4﹣4x﹣12x<36﹣3x﹣6,移项、合并,得:﹣13x<26,系数化为1,得:x>﹣2.8.(2021•宁夏)解不等式组:.【答案】x>2【解答】解:解不等式4(x﹣1)>3x﹣2,得:x>2,解不等式+≥1,得:x≥1,则不等式组的解集为x>2.9.(2021•天津)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】x≥﹣1;x≤3,﹣1≤x≤3【解答】解:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤3.故答案为:x≥﹣1,x≤3,﹣1≤x≤3.10.(2019•凉山州)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)【答案】(1)﹣1<x<3.(2)x>1或x<﹣4【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.类型二不等(组)的特殊解11.(2021•南充)满足x≤3的最大整数x是()A.1B.2C.3D.4【答案】C【解答】解:满足x≤3的最大整数x是3,故选:C.12.(2021•邵阳)下列数值不是不等式组的整数解的是()A.﹣2B.﹣1C.0D.1【答案】A【解答】解:,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴不等式组的解集为:﹣<x≤1,∴不等式组的整数解为﹣1,0,1,故选:A.命题点3 含参不等式(组)问题13.(2020•潍坊)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.0≤a≤2B.0≤a<2C.0<a≤2D.0<a<2【答案】C【解答】解:解不等式3x﹣5≥1得:x≥2,解不等式2x﹣a<8得:x<,∴不等式组的解集为:2≤x<,∵不等式组有三个整数解,∴三个整数解为:2,3,4,∴4<≤5,解得:0<a≤2,故选:C.14.(2021•日照)若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【答案】C【解答】解:解不等式x+6<4x﹣3,得:x>3,∵x>m且不等式组的解集为x>3,∴m≤3,故选:C.15.(2021•黑龙江)关于x的一元一次不等式组有解,则a的取值范围是.【答案】a<6【解答】解:解不等式2x﹣a>0,得:x>,解不等式3x﹣4<5,得:x<3,∵不等式组有解,∴<3,解得a<6,故答案为:a<6.16.(2021•丹东)不等式组无解,则m的取值范围.【答案】m≥2.【解答】解:,解不等式①得:x<2,解不等式②x>m,∵不等式组无解∴m≥2,故答案为:m≥2.命题点4 不等式的实际应用17.(2020•朝阳)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?()A.8B.6C.7D.9【答案】B【解答】解:设可以打x折出售此商品,由题意得:240×,解得x≥6,故选:B.命题点5 方程与不等式结合的实际应用18.(2020•资阳)新冠肺炎疫情发生以来,国家紧急调拨了大量物资驰援武汉,全国各地的民间组织也积极捐赠,我市的民间组织捐赠了一批医用物资即将运往武汉,现有A、B 两种车型,A种型的载重量比B种车型的载重量多5吨,2辆A种车型与4辆B种车型的总载重量为100吨.(1)求A、B两种车型的载重量分别是多少吨?(2)现有医用物资264吨,计划用A、B两种车型共15辆将这批医用物资一次性的运往武汉,那么至少安排A种车型多少辆?【答案】(1)A种车型的载重量是20吨,B种车型的载重量是15吨(2)a的最小值为8,【解答】解:(1)设1辆A型车的载重量是x吨,1辆B型车的载重量是y吨,依题意,,解得.答:A种车型的载重量是20吨,B种车型的载重量是15吨;(2)设安排A种车型a辆,则B种种车型(15﹣a)辆,由题意得,20a+15(15﹣a)≥264,解得a,∵a为整数,∴a的最小值为8,答:至少安排A种车型8辆,才能将这批医用物资一次性的运往武汉.19.(2020•大庆)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%,求至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.【答案】(1)甲种笔记本需要10元,购买一个乙种笔记本需要5元(2)m=21时,w取得最大值,最大值=4×21+140=224.【解答】解:(1)设购买一个甲种笔记本需要x元,购买一个乙种笔记本需要y元,依题意,得:,解得:.答:购买一个甲种笔记本需要10元,购买一个乙种笔记本需要5元.(2)设购买m个甲种笔记本,则购买(35﹣m)个乙种笔记本,依题意,得:(10﹣2)m+5×0.8(35﹣m)≤250×90%,解得:m≤21,又∵m为正整数,∴m可取的最大值为21.设购买两种笔记本总费用为w元,则w=(10﹣2)m+5×0.8(35﹣m)=4m+140,∵k=4>0,∴w随m的增大而增大,∴当m=21时,w取得最大值,最大值=4×21+140=224.答:至多需要购买21个甲种笔记本,购买两种笔记本总费用的最大值为224元.20.(2021•长沙)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)22 (2)23【解答】解:(1)设该参赛同学一共答对了x道题,则答错了(25﹣1﹣x)道题,依题意得:4x﹣(25﹣1﹣x)=86,解得:x=22.答:该参赛同学一共答对了22道题.(2)设参赛者需答对y道题才能被评为“学党史小达人”,则答错了(25﹣y)道题,依题意得:4y﹣(25﹣y)≥90,解得:y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.21.(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)1件甲种农机具需要1.5万元,1件乙种农机具需要0.5万元(2)m可以取5,6,7 (3)最少资金是10万元【解答】解:(1)设购进1件甲种农机具需要x万元,1件乙种农机具需要y万元,依题意得:,解得:.答:购进1件甲种农机具需要1.5万元,1件乙种农机具需要0.5万元.(2)设购进甲种农机具m件,则购进乙种农机具(10﹣m)件,依题意得:,解得:4.8≤m≤7,又∵m为整数,∴m可以取5,6,7,∴共有3种购买方案,方案1:购进甲种农机具5件,乙种农机具5件;方案2:购进甲种农机具6件,乙种农机具4件;方案3:购进甲种农机具7件,乙种农机具3件.(3)方案1所需资金为1.5×5+0.5×5=10(万元);方案2所需资金为1.5×6+0.5×4=11(万元);方案3所需资金为1.5×7+0.5×3=12(万元).∵10<11<12,∴购买方案1所需资金最少,最少资金是10万元.。

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解(解析版)

专题05 不等式与不等式组专题详解专题05 不等式与不等式组专题详解 (1)9.1 不等式 (3)知识框架 (3)一、基础知识点 (3)知识点1 不等式及其解集 (3)知识点2 不等式的基本性质 (4)二、典型题型 (5)题型1 不等式的概念 (5)题型2 根据数量关系列不等式 (5)题型3不等式的解(集) (6)题型4 不等式性质的运用 (6)题型5 实际问题与不等式 (7)三、难点题型 (8)题型1 不等式性质的综合应用 (8)题型2 用作差法比较大小 (9)9.2 一元一次不等式 (10)知识框架 (10)一、基础知识点 (10)知识点1 一元一次不等式的解法 (10)知识点2 列不等式解应用题 (11)二、典型题型 (13)题型1 一元一次不等式的判定 (13)题型2 解一元一次不等式 (13)题型3 列不等式,求取值范围 (14)题型4 一元一次不等式的应用 (14)三、难点题型 (16)题型1 含参数的不等式 (16)题型2 不等式的整数解 (16)题型3 方程与不等式 (17)题型4 含绝对值的不等式 (18)9.3 一元一次不等式组 (19)知识框架 (19)一、基础知识点 (19)知识点1 一元一次不等式组及解集的定义 (19)知识点2 一元一次不等式组解集的确定及解法 (19)知识点3 双向不等式及解法 (21)二、典型题型 (23)题型1 一元一次不等式组的判定 (23)题型2 一元一次不等式组的解集 (23)题型3 解一元一次不等式组 (24)题型4 一元一次不等式组的应用 (25)一、用不等式组解决实际问题 (25)二、方案设计 (26)三、最值问题 (27)三、难点题型 (29)题型1 由不等式组确定字母的取值 (29)题型2 不等式组中的数学思想 (30)一、整体思想 (30)二、数形结合 (31)三、分类讨论 (31)题型3 不等式的应用 (32)题型4 不等式的综合 (33)9.1 不等式知识框架{基础知识点{不等式及其解集不等式的基本性质典型题型{ 不等式的概念根据数量关系列不等式不等式的解(集)不等式性质的运用实际问题与不等式难点题型{不等式性质的综合应用作差法比较大小 一、基础知识点知识点1 不等式及其解集1)不等式:用不等符号表示不等关系的式子。

最新初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)

最新初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)

最新初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)一、选择题1.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8B .9C .10D .12 【答案】C【解析】【分析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可.【详解】 解:解分式方程11144ax x x -+=--, 得4x 1a=-. 又∵4x ≠,解得0a ≠.又∵方程有整数解,∴11a -=±,2±,4±,解得:2,3a =,1-,5,3-.解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩, 得,25a x -<…. 又不等式组有且只有3个整数解,可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10.故选:C .【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.2.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( )A .b a ≤B .100100a b a ≤+C .100a b a ≤+D .100100a b a≤- 【答案】B【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【详解】解:设成本为x 元,由题意可得:()()1%1%x a b x +-?,整理得:100100b ab a +?, ∴100100a b a≤+, 故选:B .【点睛】 此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.3.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m-=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.4.若不等式24x <的解都能使关于x 的一次不等式2(1)x x a ++<成立,则a 的取值范围是( )A .8a ≥B .8a ≤C .8a >D .8a <【解析】【分析】先求出不等式24x <的解集,再求出不等式2(1)x x a ++<的解集,即可得出关于a 的不等式并求解即可.【详解】解:由24x <可得:x <2;由2(1)x x a ++<可得:x <23a -; 由题意得:23a -≥2,解得:a≥8; 故答案为A .【点睛】本题主要对解一元一次不等式组、不等式的解集等知识,根据题意得到关于a 的不等式是解答本题的关键.5.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确; 故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.6.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;故选:A .【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.7.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -=∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.8.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<, ∴2542a a -=-, 解得32a =, ∴2a=3, ∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.若3x >﹣3y ,则下列不等式中一定成立的是 ( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<【答案】A【解析】两边都除以3,得x >﹣y ,两边都加y ,得:x +y >0,故选A .11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限, ∴260{50x x ->-<, 解得:3<x <5.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.把不等式组的解集表示在数轴上,下列选项正确的是( ) A .B .C .D .【答案】B【解析】由(1)得x >-1,由(2)得x≤1,所以-1<x≤1.故选B .13.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( ) A .B .C .D .【答案】C【解析】【分析】先解不等式组,然后根据不等式组的解集判断即可.【详解】 222x x ①②>⎧⎨-≥-⎩由①,得x >1,由②,得x ≤2,∴不等式组的解集为1<x ≤2,故选C .【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.14.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1 【答案】B【解析】根据不等式的性质,逐一判定即可得出答案.【详解】解:A、a>b,c=0时,ac2=bc2,故A错误;B、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C错误;D、不等式两边同时加或减同一个整式,不等号的方向不变,故D错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.15.不等式组3433122xx x-≥⎧⎪⎨-<+⎪⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).【详解】3433122xx x-≥⎧⎪⎨-<+⎪⎩①②解①,得1x≤-解②,得5x>-所以不等式组的解集是51x-<≤-在数轴表示为故选:A【点睛】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.16.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.17.不等式x﹣2>的解集是()A.x<﹣5 B.x>﹣5 C.x>5 D.x<5【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】去分母得:4x﹣8>6x+2,移项、合并同类项,得:﹣2x>10,系数化为1,得:x<﹣5.故选A.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.如图,不等式组315215xx--⎧⎨-<⎩„的解集在数轴上表示为()A .B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩„,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤【答案】A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】 3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。

25.中考数学专题不等式与不等式组数学母题题源系列(解析版)

25.中考数学专题不等式与不等式组数学母题题源系列(解析版)

【母题来源一】【2019•河北】语句“x 的18与x 的和不超过5”可以表示为 A .8x+x ≤5B .8x +x ≥5C .85x +≤5 D .8x +x =5【答案】A【解析】“x 的18与x 的和不超过5”用不等式表示为18x +x ≤5.故选A . 【母题来源二】【2019·广安】若m n >,下列不等式不一定成立的是A .33m n +>+B .33m n -<-C .33m n>D .22m n >【答案】D【解析】A 、不等式的两边都加3,不等号的方向不变,故A 错误; B 、不等式的两边都乘以-3,不等号的方向改变,故B 错误; C 、不等式的两边都除以3,不等号的方向不变,故C 错误; D 、如2223m n m n m n ==-><,,,,故D 正确,故选D . 【母题来源三】【2019•宁波】不等式32xx ->的解为 A .1x <B .1x <-C .1x >D .1x >-【答案】A 【解析】32xx ->,3-x >2x ,3>3x ,x <1,故选A . 【母题来源四】【2019·宿迁】不等式12x -≤的非负整数解有 A .1个B .2个C .3个D .4个【答案】D【解析】12x -≤,解得:3x ≤,则不等式12x -≤的非负整数解有:0,1,2,3共4个.故选D . 【母题来源五】【2019•株洲】若a 为有理数,且2-a 的值大于1,则a 的取值范围为__________.专题05 不等式与不等式组【答案】a <1且a 为有理数【解析】根据题意知2-a >1,解得a <1,故答案为:a <1且a 为有理数.【母题来源六】【2019•荆州】对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__________. 【答案】13≤x <15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x <15.故答案为:13≤x <15.【母题来源七】【2019·滨州】已知点3()2P a a --,关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是 A . B . C .D .【答案】C【解析】∵点3()2P a a --,关于原点对称的点在第四象限, ∴点3()2P a a --,在第二象限, ∴3020a a -<⎧⎨->⎩,解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选C .【母题来源八】【2019•淄博】解不等式5132x x -+>-. 【解析】将不等式5132x x -+>-, 两边同乘以2得,x -5+2>2x -6, 解得x <3.【命题意图】这类试题主要考查不等式的概念、不等式的基本性质、列不等式、求一元一次不等式的整数解、把一元一次不等式的解集在数轴上表示、与不等式有关的新定义等. 【方法总结】1.不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.2.解一元一次不等式的一般步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).3.一元一次不等式的整数解是指在不等式的解集中的整数.整数解通常是为了满足实际问题的需求提出的.【母题来源九】【2019•山西】不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-1【答案】A【解析】13224x x ->⎧⎨-<⎩①②,由①得:x >4,由②得:x >-1,不等式组的解集为:x >4,故选A .【母题来源十】【2019•云南】若关于x 的不等式组2(1)20x a x ->⎧⎨-<⎩的解集是x >a ,则a 的取值范围是A .a <2B .a ≤2C .a >2D .a ≥2【答案】D【解析】解关于x 的不等式组2(1)20x a x ->⎧⎨-<⎩,解得2x x a >⎧⎨>⎩,∴a ≥2,故选D .【母题来源十一】【2019·威海】解不等式组3422133x x x -≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是 A .B .C .D .【答案】D【解析】解不等式①得:1x ≤-,解不等式②得:5x <,将两不等式解集表示在数轴上如下:故选D .【母题来源十二】【2019·聊城】若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为A .2m ≤B .2m <C .2m ≥D .2m >【答案】A 【解析】解不等式1132x x+<--,得:x >8, ∵不等式组无解,∴4m ≤8,解得m ≤2,故选A .【母题来源十三】【2019·德州】不等式组523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩的所有非负整数解的和是A .10B .7C .6D .0【答案】A【解析】523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩①②,解不等式①得: 2.5x >-,解不等式②得:4x ≤, ∴不等式组的解集为: 2.54x -<≤,∴不等式组的所有非负整数解是:0,1,2,3,4, ∴不等式组的所有非负整数解的和是0123410++++=,故选A .【母题来源十四】【2019•鄂州】若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足x +y ≤0,则m 的取值范围是__________. 【答案】m ≤-2【解析】34355x y m x y -=+⎧⎨+=⎩①②,①+②得2x +2y =4m +8,则x +y =2m +4,根据题意得2m +4≤0,解得m ≤-2.故答案为:m ≤-2.【母题来源十五】【2019•北京】解不等式组: 4(1)273x x x x -<+⎧⎪+⎨>⎪⎩.【解析】4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②,解①得:x <2, 解②得x <72, 则不等式组的解集为2<x <72. 【母题来源十六】【2019•江西】解不等式组: 2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.【解析】2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩①②,解①得:x >-2, 解②得:x ≤-1,故不等式组的解为:-2<x ≤-1, 在数轴上表示出不等式组的解集为:.【命题意图】这类试题主要考查一元一次不等式的解法、一元一次不等式的解集在数轴上表示、一元一次不等式的整数解等. 【方法总结】1.一元一次不等式组的解法先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解.2.解一元一次不等式组的解集口诀:同大取大,同小取小,大小、小大中间找,大大、小小取不了.3.求一元一次不等式组的整数解,一般先求出不等式组的解集,再根据题目的要求,找出在不等式组的解集内的整数解.【母题来源十七】【2019•常德】小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x (元)所在的范围为 A .10<x <12B .12<x <15C .10<x <15D .11<x <14【答案】B【解析】根据题意可得:151210x x x ≤⎧⎪≥⎨⎪≥⎩,可得:12≤x ≤15,∴12<x <15,故选B .【母题来源十八】【2019•绥化】小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有 A .5种B .4种C .3种D .2种【答案】C【解析】设小明购买了A 种玩具x 件,则购买的B 种玩具为102x-件,根据题意得,11012102x xxx ≥⎧⎪-⎪≥⎪⎨⎪-⎪>⎪⎩,解得,1≤x <313,∵x 为整数,∴x =1或2或3,∴有3种购买方案.故选C . 【母题来源十九】【2019•重庆】某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为 A .13B .14C .15D .16【答案】C【解析】设要答对x道.10x+(-5)×(20-x)>120,10x-100+5x>120,15x>220,解得:x>443,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C.【母题来源二十】【2019·无锡】某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为A.10 B.9 C.8 D.7【答案】B【解析】设原计划m天完成,开工x天后3人外出培训,则有15am=2160,得到am=144,由题意得15ax+12(a+2)(m-x)<2160,即:ax+4am+8m-8x<720,∵am=144,∴将其代入得:ax+576+8m-8x<720,即:ax+8m-8x<144,∴ax+8m-8x<am,∴8(m-x)<a(m-x),∵m>x,∴m-x>0,∴a>8,∴a至少为9,故选B.【母题来源二十一】【2019•哈尔滨】寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【解析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:3598 83158 x yx y+=⎧⎨+=⎩,∴1610 xy=⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40-z)副,根据题意得:16z+10(40-z)≤550,∴z≤25,∴最多可以购买25副围棋.【命题意图】列不等式(组)解决实际问题常与一元一次方程、二元一次方程组、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接. 【方法总结】列不等式(组)解应用题的基本步骤如下: 1.审题; 2.设未知数; 3.列不等式(组); 4.解不等式(组); 5.检验并写出答案.1.【浙江省杭州市下城区2019届九年级二模数学试卷】若x >y ,a <1,则 A .x >y +1B .x +1>y +aC .ax >ayD .x -2>y -1【答案】B【解析】由x >y ,a <1得:x >y ,1>a ,∴x +1>y +a . 故选B .【名师点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解答本题的关键.2.【广西北部湾中等学校2019届九年级中考数学模拟试题】若a <b ,则下列结论不一定成立的是 A .a -2<b -2B .-a >-bC .33a b< D .a 2<b 2【答案】D【解析】A 、由a <b ,可得a -2<b -2,成立; B 、由a <b ,可得-a >-b ,成立; C 、由a <b ,可得33a b<,成立; D 、当a =-5,b =1时,不等式a 2<b 2不成立,故本选项正确; 故选D .【名师点睛】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.3.【吉林省长春市2019届九年级中考第五次模拟考试数学试题】不等式组3020x x -≤⎧⎨+>⎩的解集是A .23x -<≤B .23x -≤<C .3x ≥D .2x <-【答案】A【解析】3020x x ①②-≤⎧⎨+>⎩解不等式①得x ≤3, 解不等式②得x >-2,所以,不等式组的解集是23x -<≤, 故选A .【名师点睛】求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分.4.【辽宁省盘锦市双台子区2019届九年级下学期第二次联考数学试题】不等式组3213x x >-⎧⎨-≤⎩的解集在数轴上表示正确的是 A . B . C .D .【答案】C 【解析】3213x x >-⎧⎨-≤⎩①②,解不等式①得,x >-3, 解不等式②得,x ≤2, 故选C .【名师点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则. 5.【2019年黑龙江省哈尔滨市南岗区中考数学三模试卷】不等式组12314x x -<⎧⎨+≤⎩的整数解的个数是A.6 B.5 C.4 D.3 【答案】C【解析】12314xx-<⎧⎨+≤⎩①②,解①得x>-1,解②得x≤3,则不等式的解集是-1<x≤3.则整数解为0,1,2,3共有4个.故选C.【名师点睛】本题考查的是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【2019年福建省泉州市惠安县中考数学一模试卷】不等式2x-3>-5的解集在数轴上表示正确的是A.B.C.D.【答案】C【解析】2x-3>-5,2x>-5+3,2x>-2,x>-1,在数轴上表示为:,故选C.【名师点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.7.【2019年广东省汕头市澄海区中考数学一模试卷】不等式5x-2>3(x+1)的最小整数解为A.3 B.2 C.1 D.-2【答案】A【解析】5x-2>3(x+1),去括号得:5x-2>3x+3,移项、合并同类项得:2x >5系数化为1得:x>52,∴不等式5x-2>3(x+1)的最小整数解是3,故选A.【名师点睛】本题考查了一元一次不等式的整数解.解答此题要先求出不等式的解集,再确定最小整数解.解不等式要用到不等式的性质.8.【2019年广西桂林市中考数学二模试卷】已知点P(3-3a,1-2a)在第四象限,则a的取值范围在数轴上表示正确的是A.B.C.D.【答案】C【解析】∵点P(3-3a,1-2a)在第四象限,∴330 120aa->⎧⎨-<⎩①②,解不等式①得:a<1,解不等式②得:a>12.∴a的取值范围为12<a<1.故选C.【名师点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质.9.【2019年安徽省马鞍山市中考数学二模试卷】关于x的不等式(1-m)x<m-1的解集为x>-1,那么m的取值范围为A.m>1 B.m<1 C.m<-1 D.m>-1【答案】A【解析】∵关于x的不等式(1-m)x<m-1的解集为x>-1,∴1-m<0,解得:m>1,故选A.【名师点睛】本题考查不等式的基本性质,能得出关于m的不等式是解此题的关键.10.【2019年山东省潍坊市中考数学一模试卷】已知关于x的不等式组3()2(1)21232x a xx x-≥-⎧⎪-⎨≤-⎪⎩有5个整数解,则a的取值范围是A.-3<a≤-2 B.-13<a≤0C.-3<a≤0-2 D.-13≤a<0【答案】B【解析】由不等式①,得x≥3a-2,由不等式②,得x≤2,∴3a-2≤x≤2,∵5个整数解,∴x=2,1,0,-1,-2,∴-3<3a-2≤-2,∴-13<a≤0,故选B.【名师点睛】本题考查了不等式组的整数解,熟练掌握一元一次不等式组的解法是解题的关键.11.【山东省菏泽市定陶县2019年中考数学三模试卷】对于任意实数m、n,定义一种新运算m※n=mn-m-n+3,等式的右边是通常的加减和乘法运算,例如:2※6=2×6-2-6+3=7.请根据上述定义解决问题:若a<4※x<8,且解集中有2个整数解,则a的取值范围是A.-1<a≤2B.-1≤a<2 C.-4≤a<-1 D.-4<a≤-1【答案】B【解析】根据题意得4434438x x ax x--+>⎧⎨--+<⎩①②,解不等式①,得:13ax+ >,解不等式②,得:x<3,则不等式组的解集为13a+<x<3,∵不等式组的解集中有2个整数解,∴0≤13a+<1,解得-1≤a<2,故选B.【名师点睛】本题考查的是新定义和一元一次不等式的整数解,正确理解新定义、掌握一元一次不等式的解法是解题的关键.12.【2019年安徽省淮北市濉溪县中考数学二模试卷】不等式-13x+1≤-5的解集是__________.【答案】x≥18【解析】移项得:-13x≤-5-1,合并同类项得:-13x≤-6,系数化为1得:x≥18,即不等式-13x+1≤-5的解集为:x≥18,故答案为:x≥18.【名师点睛】本题考查了解一元一次不等式,正确掌握解一元一次不等式的步骤是解题的关键.13.【黑龙江省哈尔滨市平房区2019届中考第三次模拟考试数学试题】不等式组23112xx-<⎧⎨-≤⎩的正整数解为__________.【答案】1【解析】23112xx-<⎧⎨-≤⎩①②,解得:x<2,解得:x≥-1,故不等式解集为:-1≤x<2,正整数解为1,故答案为:1.【名师点睛】此题考查解不等式组和不等式的整数解,解题关键在于得出不等式的解.14.【2019年山西省百校联考中考数学模拟试卷(二)】为了美化环境,培养中学生爱国主义情操,团省委组织部分中学的团员去西山植树,某校团委领到一批树苗,若每人植4棵,还剩37棵,若每人植6棵,最后一人有树植,但不足3棵,这批树苗共有__________棵.【答案】121【解析】设共x人植树,则这批树苗共有(4x+37)棵,依题意,得:4376(1) 4376(1)3x xx x+>-⎧⎨+<-+⎩,解得:20<x <432. ∵x 为正整数, ∴x =21, ∴4x +37=121. 故答案为:121.【名师点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.15.【2019年广东省佛山市顺德区中考数学三模试卷】解不等式:2723x x--<. 【解析】去分母得:3(x -2)<2(7-x ), 去括号得:3x -6<14-2x , 移项合并得:5x <20, 系数化1,得:x <4.【名师点睛】此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系数化为1这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有分母的项.16.【2019年广东省深圳市罗湖区中考数学二模试卷】解不等式组:273(1)423133x x x x -<-⎧⎪⎨+<-⎪⎩,并将解集表示在数轴上.【解析】解不等式2x -7<3(x -1),得:x >-4, 解不等式43x +3<1-23x ,得:x <-1, 则不等式组的解集为-4<x <-1, 将解集表示在数轴上如下:【名师点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 17.【2019年江苏省盐城市建湖县中考数学二模试卷】解不等式221123xx +-+,并把它的解集在数轴上表示出来:【解析】去分母得3(2+x )≤2(2x -1)+6, 去括号得6+3x ≤4x -2+6, 移项得3x -4x ≤-2+6-6, 合并得-x ≤-2, 系数化为1得,x ≥2, 用数轴表示为:【名师点睛】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.也考查了在数轴上表示不等式的解集.18.【天津市滨海新区2019届中考一模数学试题】解不等式组533(1)134622x x x x +>-⎧⎪⎨+≤-⎪⎩①②,请结合题意填空,完成本题的解答,I .解不等式①,得__________; II .解不等式②,得__________;III .把不等式①和②的解集在数轴上表示出来:IV .原不等式组的解集为__________. 【解析】(Ⅰ)5x +3>3(x -1), 去括号得:5x +3>3x -3, 移项得:2x >-6, 解得:x >-3. 故答案为:x >-3. (Ⅱ)12x +4≤6-32x , 移项得:2x ≤2,解得x ≤1. 故答案为:x ≤1.(Ⅲ)不等式①和②的解集在数轴上表示如图所示:(IV )由数轴可得①和②的解集的公共解集为-3<x ≤1, ∴原不等式组的解集为-3<x ≤1, 故答案为:-3<x ≤1.【名师点睛】本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.19.【2019年黑龙江省哈尔滨市南岗区中考数学三模试卷】在运动会前夕,光明中学都会购买篮球、足球作为奖品.若购买6个篮球和8个足球共花费1700元,且购买一个篮球比购买一个足球多花50元. (1)求购买一个篮球,一个足球各需多少元;(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1150元,则最多可购买多少个?【解析】(1)设购买一个篮球需x 元,购买一个足球需y 元,根据题意可得:50681700x y x y -=⎧⎨+=⎩, 解得:150100x y =⎧⎨=⎩,答:购买一个篮球,一个足球各需150元,100元.(2)设购买a 个篮球,根据题意可得:0.9×150a +0.85×100(10-a )≤1150, 解得:a ≤6,答;最多可购买6个篮球.【名师点睛】本题考查二元一次方程组的应用、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据总费用作为不等关系列出不等式求解.20.【河南省南召县2019年九年级春期第二次模拟考试数学试题】某校九年级组织有奖知识竞赛,派小明去购买A 、B 两种品牌的钢笔作为奖品.已知一支A 品牌钢笔的价格比一支B 品牌钢笔的价格多5元,且买100元A 品牌钢笔与买50元B 品牌钢笔数目相同. (1)求A 、B 两种品牌钢笔的单价分别为多少元?(2)根据活动的设奖情况,决定购买A 、B 两种品牌的钢笔共100支,如果设购买A 品牌钢笔的数量为n 支,购买这两种品牌的钢笔共花费y 元. ①直接写出y (元)关于n (支)的函数关系式; ②如果所购买A 品牌钢笔的数量不少于B 品牌钢笔数量的13,请你帮助小明计算如何购买,才能使所花费的钱最少?此时花费是多少?【解析】(1)设一支B 品牌钢笔的价格为x 元,则一支A 品牌钢笔的价格为(5+x )元,100505x x=+, 解得,x =5,经检验,x =5是原方程的解, 当x =5时,x +5=10,答:一支A 、B 品牌的钢笔价格分别为10元和5元.(2)①∵购买A 、B 两种品牌的钢笔共100支,购买A 品牌钢笔的数量为n 支, ∴购买B 品牌钢笔的数量为(100-n )支, ∴y =10n +(100-n )×5=5n +500, 即y (元)关于n (支)的函数关系式y =5n +500. ②由题意可得, n 1(100)3n ≥-, 解得,n ≥25, ∵y =5n +500中,5>0, ∴y 随n 的增大而增大,∴当n =25时,y 取得最小值,此时,100-n =75,y =625.答:购买A 品牌钢笔25支,B 品牌钢笔75支,花钱最少.此时的花费为625元.【名师点睛】本题考查一元一次方程、一元一次不等式的应用及一次函数的应用,熟练掌握一次函数的性质是解题关键.。

专题05 不等式(组)及不等式的应用(5大考点)-2023年中考数学总复习真题探究与变式训练解析版)

专题05 不等式(组)及不等式的应用(5大考点)-2023年中考数学总复习真题探究与变式训练解析版)

第二部分方程(组)与不等式(组)专题05 不等式(组)及不等式的应用核心考点一不等式的基本性质核心考点二一元一次不等式(组)的解法核心考点核心考点三含参不等式(组)问题核心考点四不等式的实际应用核心考点五方程与不等式结合的实际应用新题速递核心考点一不等式的基本性质例1(2022·内蒙古包头·中考真题)若,则下列不等式中正确的是()A.B.C.D.∴,故本选项不合题意;∴,故本选项不合题意;∴,故本选项不合题意;∴,故本选项符合题意;数轴上的点分别表示实数、,则______.(填“>”、“=”或“<”)【答案】【分析】由图可得:,再根据不等式的性质即可判断.【详解】解:由图可得:,由不等式的性质得:,故答案为:.【点睛】本题考查了数轴,不等式的性质,解题的关键是掌握不等式的性质.江苏淮安·中考真题)解不等式.解:去分母,得.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”)A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.【答案】(1)余下步骤见解析;(2)A.【分析】(1)按照去括号、移项、合并同类项的步骤进行补充即可;(2)根据不等式的性质即可得.【详解】(1)去分母,得去括号,得移项,得合并同类项,得;(2)不等式的性质:不等式两边都乘(或除以)同一个正数,不等号的方向不变两边同乘以正数2,不等号的方向不变,即可得到故选:A.【点睛】本题考查了解一元一次不等式、不等式的性质,熟练掌握一元一次不等式的解法是解题关键.知识点:不等式及其基本性质1、定义:用不等号(>,≥,<,≤或≠)表示不等关系的式子叫做不等式。

2、基本性质性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,即如果,那么性质2不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果,,那么,性质3不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即如果,,那么,性质4如果,那么性质5如果,,那么【变式1】.(2022·安徽·合肥市五十中学西校三模)已知实数a,b,c满足,.则下列结论正确的是()A.若,则B.若,则C.a,b,c不可能同时相等D.若,则【答案】B【分析】A.根据,则,根据,得出;B.根据,得出,把代入得:,即可得出答案;C.当时,可以使,,即可判断出答案;D.根据解析B可知,,即可判断.【详解】A.∵,∴,∵,∴,∴,故A错误;B.∵,即,∴,把代入得:,,解得:,故B正确;C.当时,可以使,,∴a,b,c可能同时相等,故C错误;D.根据解析B可知,,把代入得:,故D错误.故选:B.【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.【变式2】(2022·江苏南通·一模)若关于x的不等式mx﹣n>0的解集为x<2,则关于x 的不等式(m+n)x>m﹣n的解集是( )A.x<13B.x>13C.x<-13D.x>-13【答案】C【分析】根据不等式的性质,利用不等式的解集是得到,,然后把代入不等式中求解即可.【详解】解:∵不等式的解集是,∴(),,∴,不等式变形为,即,∵,∴.故选C.【点睛】本题考查了解一元一次不等式.解题的关键在于熟练掌握不等式的性质.【变式3】(2022·江苏宿迁·三模)若不等式,两边同除以m,得,则m的取值范围为__________.【答案】【分析】由不等式的基本性质知,据此可得答案.【详解】解:若不等式,两边同除以,得,则.故答案为:.【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的基本性质.【变式4】(2022·安徽·模拟预测)已知关于x的不等式(1﹣a)x>2的解集为x<,化简:|1﹣a|﹣a=_____.【答案】【分析】根据不等式的基本性质得出1﹣a<0,再由绝对值的性质去绝对值符号、合并同类项即可.【详解】解:∵关于x的不等式(1﹣a)x>2的解集为,∴1﹣a<0,解得a>1,即,∴原式=a﹣1﹣a=﹣1,故答案为:﹣1.【点睛】本题主要考查了不等式的性质及绝对值的化简求值,解题的关键是掌握不等式的基本性质和绝对值的化简.【变式5】(2022·浙江杭州·一模)已知,,请比较M和N的大小.以下是小明的解答:∵,,∴.小明的解答过程是否有错误?如果有错误,请写出正确的解答.【答案】有错;时,;时,;时,;【分析】先求出M与N的差,根据不等式的性质对M与N的差进行分类讨论即可求解.【详解】解:有错,正确解答如下.∵,,∴.∴当x>0时,2x>0,即,此时M>N;当x=0时,2x=0,即,此时M=N;当x<0时,2x<0,即,此时M<N.∴时,;时,;时,.【点睛】本题考查作差法比较大小,不等式的性质,正确应用分类讨论思想是解题关键.核心考点二一元一次不等式(组)的解法例1(2022·辽宁大连·中考真题)不等式的解集是()A.B.C.D.【详解】解:,移项,合并同类项得:本题考查的是一元一次不等式的解法,掌握中考真题)若在实数范围内有意义,则实数___________.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式是解题的关键.中考真题)解不等式组并将其解集在数轴上表示出来.【答案】x≤1,图见解析【分析】先分别求出不等式组中每一个不等式解集,再求出其公共解集即可求解,然后把解集用数轴表示出来即可.【详解】解:解①得:x≤1,解②得:x<6,∴x≤1,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.也考查了用数轴表示不等式的解集.知识点:一元一次不等式及其解法定义含有一个未知数,未知数的次数是1、且不等号两边都是整式的不等式叫做一元一次不等式。

中考数学点对点-一元一次不等式(组)及其应用(解析版)

中考数学点对点-一元一次不等式(组)及其应用(解析版)

专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

一个含有未知数的不等式的所有解,组成这个不等式的解集。

3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。

性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。

不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。

类型二:一元一次不等式组无解的情况。

类型三:明确一元一次不等式组的解集求范围。

类型四:一元一次不等式组有解求未知数的范围。

类型五:一元一次不等式组有整数解求范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体 会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增 强创新精神和应用数学的意识。
【例题 1】(2020•新疆)不等式组
t

tㄴ ㄴ
, 的解集是( )
A.0<x≤2
B.0<x≤6
【解析】(1)设 1 辆大货车一次运输 x 箱物资,1 辆小货车一次运输 y 箱物资,
由题意可得:
tㄴ t
͵ ͵
ㄴ‫ݕݕ‬,
解得:
͵ ͵
‫ݕݕݕ‬,
答:1 辆大货车一次运输 150 箱物资,1 辆小货车一次运输 100 箱物资,
(2)设有 a 辆大货车,(12﹣a)辆小货车,
‫ݕ‬h t ‫ݕݕ‬
(1)求 1 辆大货车和 1 辆小货车一次可以分别运输多少箱物资;
(2)计划用两种货车共 12 辆运输这批物资,每辆大货车一次需费用 5000 元,每辆小货车一次需费用 3000 元.若运输物资不少于 1500 箱,且总费用小于 54000 元.请你列出所有运输方案,并指出哪种方案所需费 用最少.最少费用是多少?
A.﹣3
B.
【答案】A
C. ㄴ
D.2
【解析】首先求出不等式的解集,然后判断哪个数在其解集范围之内即可.
解不等式 2(x﹣1)+3<0,得 < ,
因为只有﹣3< ,所以只有﹣3 是不等式 2(x﹣1)+3<0 的一个解,
2.(2020•贵阳)已知 a<b,下列式子不一定成立的是( )
A.a﹣1<b﹣1
C.在不等式 a<b 的两边同时乘以 ,不等号的方向不变,即 a< b,不等式 a< b 的两边同时加上 1,不 等号的方向不变,即 a+1< b+1,原变形正确,故此选项不符合题意;
∵48000<50000<52000,
∴当有 6 辆大货车,6 辆小货车时,费用最小,最小费用为 48000 元.
《不等式与不等式组》单元精品检测试卷
本套试卷满分 120 分,答题时间 90 分钟 一、选择题(每小题 3 分,共 36 分) 1.(2020•株洲)下列哪个数是不等式 2(x﹣1)+3<0 的一个解?( )

【答案】
a< .
【解析】分别求出每一个不等式的解集,根据不等式组有 4 个整数解可得关于 a 的不等式组,解不等式组 可得 a 的范围.
解不等式 2x<3(x﹣3)+1,得:x>8,
ㄴt 解不等式
>x+a,得:x<2﹣4a,
∵不等式组有 4 个整数解, ∴12<2﹣4a≤13,
解得:
a<
ㄴ> , 【例题 4】(2020•北京)解不等式组:
B.﹣2a>﹣2b
C. a+1< b+1
D.ma>mb
【答案】D 【解析】根据不等式的基本性质进行判断. A.在不等式 a<b 的两边同时减去 1,不等号的方向不变,即 a﹣1<b﹣1,原变形正确,故此选项不符合题 意; B.在不等式 a<b 的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题 意;
h
‫ݕݕ‬
由题意可得:

‫ݕݕݕ‬h t ㄴ‫ݕݕݕ‬
h < ‫ݕݕݕ‬
∴6≤a<9,
∴整数 a=6,7,8;
当有 6 辆大货车,6 辆小货车时,费用=5000×6+3000×6=48000 元,
当有 7 辆大货车,5 辆小货车时,费用=5000×7+3000×5=50000 元,
当有 8 辆大货车,4 辆小货车时,费用=5000×8+3000×4=52000 元,
t>
A.
B.
C.
D.
【答案】C
【解析】先求出不等式组的解集,再在数轴上表示出来即可.
解不等式 2x﹣1≤3,得:x≤2,
解不等式 x+1>2,得:x>1,
∴不等式组的解集为 1<x≤2,
表示在数轴上如下:
<ㄴ ㄴ t
【例题 3】(2020•凉山州)若不等式组 ㄴ t > t h 恰有四个整数解,则 a 的取值范围是
【答案】见解析。
【分析】(1)设 1 辆大货车一次运输 x 箱物资,1 辆小货车一次运输 y 箱物资,由“2 辆大货车与 3 辆小货 车一次可以运输 600 箱;5 辆大货车与 6 辆小货车一次可以运输 1350 箱”,可列方程组,即可求解;
(2)设有 a 辆大货车,(12﹣a)辆小货车,由“运输物资不少于 1500 箱,且总费用小于 54000 元”可列 不等式组,可求整数 a 的值,即可求解.
专题 09 不等式与不等式组
知识点 1:不等式 1.用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。 2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 4.不等式的性质: 不等式的基本性质 1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。 不等式的基本性质 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 不等式的基本性质 3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 知识点 2:一元一次不等式 一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是 1,像这样的 不等式,叫做一元一次不等式。 知识点 3:一元一次不等式组 一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不 等式组。
ㄴ <. 【答案】见解析。
【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无 解了确定不等式组的解集.
解不等式 5x﹣3>2x,得:x>1,
解不等式 < ,得:x<2,

则不等式组的解集为 1<x<2.
【例题 5】(2020•济宁)为加快复工复产,某企业需运输一批物资.据调查得知,2 辆大货车与 3 辆小货车 一次可以运输 600 箱;5 辆大货车与 6 辆小货车一次可以运输 1350 箱.
C.x>0
D.x≤2
【答案】A
【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无 解了确定不等式组的解集.
t

tㄴ ㄴ
① ,
解不等式①,得:x≤2,
解不等式②,得:x>0,
则不等式组的解集为 0<x≤2。
【例题 2】(2020•连云港)不等式组
ㄴ,的解集在数轴上表示为( )
相关文档
最新文档