简单的旋转作图

合集下载

简单的旋转作图

简单的旋转作图

60° 正六边形至少旋转_____能够与自身重合。
正六边形可以被经过中心的射线平分成6个全等的部分,则旋转至少 360÷6=60度,能够与本身重合. 正六边形是旋转对称图形 72°
正五边形至少旋转_____能够与自身重合。
正八边形至少旋转_____能够与4自5°身重合。
A D
E
B
C
例1 将A点绕O点沿顺时针方向旋转60˚.
A
B
思考题7.
如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合。如果AP=3,求 PP′的长。
解:∵ △ABP绕点A逆时针旋转后, 能与△ACP′重合,
A P′
∴AP′=AP=3, ∠PAP′=∠BAC=900
P
B
C
∴ PP′2=AP2+AP′2=32+32=18
说一说 乙
B 乙
B
怎样将甲图案变成乙图案? 甲
可以先将甲还图可案以绕用图什上么的方A法点把旋甲转,使 得图案被“扶图直案”变,成然乙后图,案再?沿AB方向 将所得图案平移到B点位置,即可得到
乙图案 A

A
课堂小结
1、“旋转对应点”的作法 : (1) 将关键点A与旋转中心O连接; (2) 以OA为始边在旋转方向作一个角等于旋转角; (3) 在角的终边上截取点A`,使OA`=OA; (4) 点A`就是点A的旋转对应点。
点的旋转作法
分析:
原图形是什么? 旋转中心是什么?
点A 点O
旋转方向是什么? 旋转角是多少?
顺 时 针 60°
B
作法:
1.连接OA.
2.以点O为顶点,OA为一边,用量角器或三角板(限特殊角)顺时针方 向作∠AOB=60°.

沪科版九年级下册数学24.1旋转【课件】 (共33张PPT)

沪科版九年级下册数学24.1旋转【课件】 (共33张PPT)

简单的旋转作图
图形的旋转作法
例3 如图,△ABC绕C点旋转后,顶 点A得对应点为点D. 试确定顶点B对 应点的位置以及旋转后的三角形.
E
A
D
作法一:
B C
1. 连接CD; 2. 以CB为一边,作∠BCE,使得∠BCE=∠ACD ; 3. 在射线CB上截取CE,使得CE=CB; 4. 连接DE,则△DEC即为所求作.
旋转中心是O
(2)经过旋转,点A、B分别移动到什么位置? 点D和点E的位置 (3)旋转角是什么? ∠AOD、∠BOE和∠COF都是旋转角
(4)AO与DO的长有什么关系?BO与EO呢? AO=DO,BO=EO
(5)∠AOD与∠BOE有什么大小关系?
∠AOD=∠BOE
例:钟表的分针匀速旋转一周需要60分. (1)指出它的旋转中心; (2)经过15分,分针旋转了多少度?
例练5.
试确定图形的旋转中心,并指出这一图形 是由哪个基本图形旋转多少度、旋转几次生成 的?
· O
解:旋转中心是十字形的交点O,基本图形 如图所示,分别旋转了90°、180°、270° 三次生成的。
例练6.
请利用如图所示的图案,通过旋 转变换,设计出美丽的图案。
简单的旋转作图
将下图中大写字母N绕它右下侧的顶点按顺 时针方向旋转90˚,作出旋转后的图案.
正六边形是旋转对称 图形, 它的旋转中心 是两条对角线的交 点, 旋转角度是60° 它也是轴对称图形.
例练4.
观察下图,判断它是不是旋转对称图形?如 果是,请找出旋转中心在何处,旋转角度是多 少?另外该图形是轴对称图形吗?
解:这个图形是旋转对称图形,旋转中心是外框 正方形对角线的交点(如图中的点O),旋转角度 是90°,但它不是轴对称图形.

人教版九年级数学上册第23章 旋转 旋转作图

人教版九年级数学上册第23章 旋转 旋转作图
解:如答图 .
(题图)
本节课你收获了哪些? (如何作出旋转后的图形)
同学们,选择不同的旋转中心、旋转角,可以设计出不同的美 丽图案,多动动你们灵活的小手,设计独一 无二的图案吧!
教材习题: 完成课本62页练习和习题4题,63页7题. 作业本作业: 完成 对应练习. 实践性作业: 随意画一个基本图形,将它作一定的旋转变换,设 计一个美丽的图案.
自主探究
1.请同学们阅读课本60页例题 回答问题:
①旋转中心是哪个点? (点A) ②如何作出△ADE旋转后的图形? (在CB的延长线上取点E',使BE'=DE,连接AE',则△ABE'为旋转后的图形) ③还有其他方法可以作出△ADE旋转后的图形吗? (答案不唯一,如:在CB的延长线上取点E',使∠AE'B=∠AED,则△ABE'为旋转 后的图形)
请同学们在硬纸板上挖一个三角形洞,再令挖一个小洞O 作为旋
转中心,硬纸板下面放一张白纸,先在纸上描出挖掉的这个三角 形的图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖 掉的三角形(△A'B'C'),观察这两个三角形.
你能得到什么结论?
这些图形有什么特点? 它们是如何设计出来的呢?
如果把钟表的指针看成四边形AOBC,如图,它绕点O旋转得到 四边形DOEF.在这个过程中: (1)旋转中心是哪一点?(点O) (2)经过旋转,点A,B分别旋转到什么位置? (点A旋转到点D,点B旋转到点E) (3)图中有哪些相等的线段? (AO=DO,AC=DF,OB=OE,BC=EF) (4)∠AOD和∠BOE有什么数量关系? (∠AOD=∠BOE)
(答案不唯一,略)
小组讨论 1.如图,△AOB绕点O旋转后,点G是点B的对应点, 利用旋转的 性质,你能作出△AOB旋转后的三角形吗? (略)

人教版九年级数学上《第23章旋转》课件

人教版九年级数学上《第23章旋转》课件
正方形.
∴∠B=∠G=90°
由题意知AG=AB,又 AH=AH.
∴Rt△AGH≌Rt△ABH(HL)
∴HG=HB.
证法2:连结BG, ∵四边形ABCD,AEFG都
是正方形.
∴∠ABC=∠AGF=90°
由题意知AG=AB, ∴∠AGB=∠ABG, ∴∠HGB=∠HBG ∴HG=HB.
6。下列图形均可以由“基本图案”通过变换得到。 (1)通过平移变换但不能通过旋转变换得到的图案 是____①_⑤; (2)可以通过旋转变换但不能通过平移变换得到的 图案是____ ②⑥ (3)既可以由平移变换,也可以由旋转变换得到的 图案是_____ ③④
(3)将关键点沿指定的方向旋转指 定的角度; (4)连结各点,得到原图形旋转 后的图形.
例3.把△AOB绕点O逆时针方向旋 转90°,画出旋转后的图形.
错解:旋转时,
把∠AOB′看作
90°进行了旋 转.
正解:
按逆时针方向把 OA旋转到OA′,使 ∠AOA′=90°, 把OB旋转到OB′, 使∠BOB′=90°, 如图.
∵∠EDF=45°, ∴∠FDM=45°. ∴△DEF与△DMF关于DF 成轴对称, ∴EF=FM. △BEF的周长=BE+EF+BF
=BE+(FC+CM)+BF=BE+FC+AE+BF
=(BE+AE)+(FC+BF)=BA+BC=2,
所以△BEF的周长为2.
例11.如图,水渠旁有一大块L形耕 地,要画一条直线为分界线,把耕 地平均分成两块,分别承包给两个
人,BC边是灌溉用的水渠的一岸.每
块土地都要有水渠,怎么平分土地 才能满足每个人的需要?

简单的旋转作图

简单的旋转作图

简单的旋转作图一、教学目标:1.经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

2.能够按要求作出简单平面图形旋转后的图形。

二、教学重点:寻找旋转中心三、教学难点:按旋转角相等作图四、课型/课时:新课 1五、教学用具:三角尺、圆规六、教学方法:演讲法、探究法七、教学内容:1.引入课题如图,在方格纸上作出“小旗子”绕O点按顺时针旋转090后的图案,并简述理由。

//C/A所在位置为旋转后“小旗子”的位置B2.例题例1.如图,ABC绕C点旋转后顶点A的对应点为点D,试确定顶点B对应点的位置以及旋转后的三角形。

分析:假设顶点B 的对应点为点E ,则AC E BC E ∠∠,都是旋转角,且CE=CB,CD=CA 。

解: (1).连接CD(2).如图2,以BC 为边作A CD B CE ∠=∠∠使得BCE(3).在射线CF 上截取CE=CB(4).连接DE D C E ∆就是ABC ∆绕C 点旋转后的图形。

议一议 你还能用其他方法作出例1中的DEC ∆吗?解:先连接CD ,再分别以C 、D 为圆心,以CB 、AB 的长为半径画弧得到交点E ,连接CE 、DE 即可得到DEC , DEC ∆∆就是ABC ∆绕C 点旋转后的图形。

想一想在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件。

解:(1)旋转中心(图形上和图形外)(2)旋转角(3)旋转方向随堂练习在下图中,将大写字母N饶它右下侧的顶点按顺时针方向旋转90,做出旋转后的图案。

解:先确定字母N的四个顶点,绕它右下侧的顶点按顺时针方向旋转090后的位置,然后连线即可。

八.作业设计知识技能1、 2。

鲁教版(五四制)数学八年级上册4.旋转作图课件

鲁教版(五四制)数学八年级上册4.旋转作图课件

3. 如图,将线段AB绕点O顺时针旋转
知1-练
90°得到线段A′B′,那么点A(-2,5)的对应点 A′的坐标是__(_5_,__2_) _.
感悟新知
知识点 2 旋转的应用
问题
知2-讲
让我们一起来欣赏一下美丽的图案,体会一下旋 转的奥秘.你们猜猜旋转到底和什么有关呢?
感悟新知
(1)旋转中心不变,改变旋转角(如图).
感悟新知
2. 将如图所示的五边形绕点O按顺时针方向旋转 90°,画出旋转后的图形.
解:过点O分别作各个顶点与点O连线的 垂线,并在每条垂线上截取与相应线 段相等的线段,得到各个顶点绕O点 按顺时针方向旋转90°后的对应点, 然后按本来的方式连接相应的顶点即 可得到旋转后的图形(如图).
知1-练
感悟新知
第4章 图形的平移
4.2 图形的旋转 第2课时 旋转作图
课时导入
回顾与思考 旋转的基本性质: ◆对应点到旋转中心的距离 相等 . ◆对应点与旋转中心所连线段的夹角等于 旋转角 . ◆旋转前、后的图形 全等 . ◆图形的旋转是由 旋转中心 和旋转的决定.
感悟新知
知识点 1 旋转作图
回顾已经学过的尺规作图 作图工具:尺、规、笔. 基本作图技能:
A.甲、乙都可以 C.甲不可以,乙可以
B.甲、乙都不可以 D.甲可以,乙不可以
课堂小结
旋转作图
旋转作图的一般步骤: 一连:连接已知点与旋转中心; 二定:确定旋转方向; 三量:测量旋转角度; 四截:在旋转角的另一条边上以旋转中心为一端点截
取等于对应线段长度的线段; 五画:顺次连接所得的点,从而画出旋转得到的图形.
感悟新知
归纳
在旋转作图时,要紧扣以下三点: (1)对应点到旋转中心的距离相等; (2)旋转的角度相等; (3)旋转的方向相同.

23-1第2课时旋转作图22-23学年人教版九年级数学上册

23-1第2课时旋转作图22-23学年人教版九年级数学上册

O1
α
α O2
两个旋转中,旋转角不变,_旋__转__中___心__改变了,产生了_不___同___的旋 转效果.
新知讲解
我们可以利用旋转中心不变,改变旋转角; 旋转角不变,改变旋转中心设计许多美丽的图案.
课堂练习
1.下列运动属于旋转的是( C ) A.传送带运送医疗器械 B.电梯升降 C.荡秋千 D.雪地滑雪
4.把Rt△AOB绕点逆时针旋转得到Rt△A'OB',则旋转角是 90° .
B'
O
A' B
A
课堂练习
5.如图,四边形ABCD绕点O旋转后,顶点A的对应点为E,试确定B、C、D对 应的点的位置,以及旋转后的四边形.
解:(1)连结OA、OB、OC、OD、OE; (2)分别以OB、OC、OD为一边作∠BOF, ∠COG, ∠DOH,使 ∠BOF= ∠COG= ∠DOH= ∠AOE; (3)分别在射线OF、OG、OH上,截取OF=OB,OG=OC,OH=OD; (4)连结EF、FG、GH、HE,四边形EFGH就是四边形ABCD绕点O旋转后的图形.
A' D'
D B'
A
C异同
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同:
图形变换 平移 旋转
运动方向 直线
顺时针或逆时针
运动量的衡量 移动一定距离 转动一定的角度
方法归纳
旋转作图的基本步骤: (1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.
课堂练习
2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( C )

八年级数学下册第三章图形的平移与旋转知识总结北师大版

八年级数学下册第三章图形的平移与旋转知识总结北师大版

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

b. 图形平移三要素:原位置、平移方向、平移距离。

2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

3简单的平移作图:平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。

二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心;转动的角称为旋转角.关键:a。

旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。

b。

图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。

2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。

)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。

(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。

课件简单的旋转作图

课件简单的旋转作图

点A得对应点为点D. 试确定顶点B对
应点的位置以及旋转后的三角形.
E
A
D
作法一:
项目 源图形 源位置 旋转中心 旋转方向
旋转角度 目标图形 目标位置
已知 ● ● ●

未知
● ● ●
备注
△ABC △ABC 点C 根据A与D的对应 关系判断为顺时 针
∠ACD 三角形
△DEC (求作)
B
C 1. 连接CD;
2. 旋转中心、旋转方向与旋转角度有时需要根据旋转 的性质化未知为已知;
3. 点和线段的旋转根据旋转的定义与性质实现作图; 4. 一般图形的旋转首先通过选取若干个控制点化归为
点和线段的旋转;然后运用旋转的性质进行作图.
§4 简单的旋转作图
P.84 习题3.5
第1题
作图工具:尺、规、笔. 基本作图技能: ➢ 作一条直线平行于已知直线;
➢ 作一线段等于已知线段; ➢ 作一角等于已知角.
§4 简单的旋转作图
旋转中心,用点表示;旋转方向分为顺时针方 向和逆时针方向.
角度,用量角器度量,或通过画角度等于已知 角.
点的旋转作法:以旋转中心为圆心,旋 转 中心到待旋转点的距离为 半径画圆,连接旋转中心 到待旋转点的半径,过旋 转中心按指定方向作另一 半径,使与前一半径的夹 角等于已知角,该半径交 于圆上的点即为所求作.
2. 以CB为一边,作∠BCE,使得∠BCE=∠ACD ;
3. 在射线CB上截取CE,使得CE=CB;
4. 连接DE,则△DEC即为所求作.
§4 简单的旋转作图
练习1
将下图中大写字母N绕它右下侧的顶点按顺时针方向旋 转90˚,作出旋转后的图案.
§4 简单的旋转作图

《图形的旋转》旋转PPT(第2课时)

《图形的旋转》旋转PPT(第2课时)

练习
如图,将ΔABC 绕点P 顺时针旋转90°得到ΔA1B1C1,则点 P 的坐标是(__1_,__2_)_____.
旋转出等腰
如图,正方形A'B 'C 'D '是正方形
ABCD按顺时针方向旋转45°而成的
(1)若AB=4,
S 则 正方形A'B'C'D'=____1_6_____;
(2)∠BAB '= 45°
练习 图是由正方形ABCD 旋转而成. (1)旋转中心是____A______ (2)旋转的角度是___4__5_°___ (3)若正方形的边长是1,则C ’D =_________
练习
下列现象中属于旋转的有___4____个
①地下水位逐年下降;②传送带的移动; ③方向盘的转动;④水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动.
探究 (1)线段 OA 和 OA’ 有什么关系? (2)∠AOA’ 和 ∠BOB ’有什么关系?
相等 (3)图中还有哪些类似关系的线段和角?
OB =OB ’,OC =OC ’ ∠COC ’=∠BOB ’=∠AOA’ (4)Δ ABC 和 Δ A’B ’C ’ 有什么关系? 全等
归纳 旋转的性质 1.对应点到旋转中心的距离_相__等___.
总结
确定旋转中心的步骤
1.连接两组对应点.
2.作对应点连线的垂直平分线.
O
3.交点就是旋转中心.
答案:60°,5. 总结:旋转60°会产生等边三角形.
直角绕正方形中心旋转
已知,如图正方形 EFOG 绕与之边长相等的正方形 ABCD 的 中心 O 旋转任意角度.求证图中阴影部分的面积等于正方形 面积的四分之一.

3.4简单的旋转作图

3.4简单的旋转作图
作法一: 作法一:
原位置 旋转中心 旋转方向
根据A 根据A与D的对应 关系判断为顺时 针 ∠ACD 三角形 △DEC (求作) (求作 求作)
旋转角度 目标图形 目标位置



1. 连接 连接CD; 2. 以CB为一边,作∠BCE, 为一边, 为一边
B
C
使得∠ 使得∠BCE=∠ACD ; 3. 在射线 上截取 在射线CB上截取 上截取CE, 使得CE=CB; 使得 4. 连接 ,则△DEC即为所求作. 连接DE, DEC即为所求作. 即为所求作
练一练
1、将下图中大写字母N绕它右下侧的顶点按 、将下图中大写字母 绕它右下侧的顶点按 顺时针方向旋转90˚,作出旋பைடு நூலகம்后的图案 后的图案. 顺时针方向旋转 ,作出旋转后的图案
将一个等腰直角三角形ABC(如图1∠ 是直角 绕着它的一个顶点B逆 是直角) 3、 将一个等腰直角三角形 (如图 ∠A是直角)绕着它的一个顶点 逆 时针方向旋转,分别作出旋转下列角度后的图形 时针方向旋转,分别作出旋转下列角度后的图形. (1)45° (2)90° (3)135° (4)180° ° ° ° °
正本作业
课本P84 课本 知识技能1 知识技能 其余完成于课本
下一节预习提纲
1、回顾平移和旋转变换的概念 、 2、阅读 、阅读P85—P86
A
B
C
D
后 的 图 案
画 出 所 给 图 形 绕 点 顺 时 针 旋 转 90 度 作图的要点: 作图的要点:找关键点 o
O
分析: 分析:
项目
已知 ● ● ●
未知
备注
原图形
△ABC △ABC 点C

图形的旋转作法

简单的旋转作图(共10张PPT)

简单的旋转作图(共10张PPT)
同的方向转动了相同的角度;
(3)任意一对对应点与旋转中心的连线所成的角都
是旋转角,对应点到旋转中心的距离相等。
范例讲解
1.如图,△ABC绕点O旋转后,顶点 A的对应点为点D。试确定
顶点B的对应点的位置,以及 旋转后的三角形。
A
分析
D
1、“旋转”作图的步骤 :
如图,△ABC绕点O旋转后,顶点 A的对应点为点D。
转角. 在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件?
根据旋转的性质知道:旋转角相等,(即作∠BOE=∠COF=∠AOD)
对应点到旋转中心的距离相等,则,OE=OB,OF=OC,
通过以上两个限制条件点E、F被确定。
4
解:
E
(1)连接OA,OD,OB,OC.
(2)如下图,分别以OB、OC为一边
2、能根据旋转作图步骤进行简单地旋转作图
一般作图题,在分析如何求 (2)经过旋转,图形上的每一点都绕旋转中心沿相
弄清旋转中心、方向和角度;
沿(作3)一分时定别的在,方射向线都和O角M要、度O分先N别上假作截出取设已经把所
求作的图形作出来,然后再 (1)经过旋转,图形的形状和大小不变;
沿一定的方向和角度分别作出
(2)分析所作图形: 找出构成图形的关键点; (3)旋转关键点: 沿一定的方向和角度分别作出
各关键点; (4)作出新图形: 顺次连接各关键点; (5)写出结论: 说明所作出的图形。
2、“旋转”作图的条件 :
(1)三角形原来的位置 (2)旋转中心 (3)旋转方向
(4)旋转角度
根据性质,确定如何操作 个方向转动一个角度,这样的图形运动称为旋
弄清旋转中心、方向和角度;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档