小学奥数几何相关问题的解析
小学奥数必学几何五大模型及例题解析
小学奥数必学几何五大模型及例题解析一、等积变换模型一一很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图S i : = a :b⑶夹在一组平行线之间的等积变形,如下图S^ ACD = S^ BCD 反之,如果S A ACD =S A BCD,则可知直线AB平行于CD⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:(第四届”迎春杯欄试题)如图‘三角形A眈的面积为1 ,其中AE = 3AB ,,三角形册肉的面积是多少?解析:连接CE,如图。
AE=3AB,所以S A AEC =3S △ABC=3所以S A BCE =2又因为:BD=2BC,所以S A BDE=2S A BCE=4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在△ ABC中,D,E分别是AB,AC上的点(如图1)或D在BA的延长线上,E 在AC 上( 女口图2) ,则S A ABC:ADE二(AB AC): (AD AE)此模型的结论可以用将来初中学到的正弦定理进行证明!因为S^ABC=AB >ACsinA,S^ADE=AD >AEsinA所以:S A ABC: S A ADE= (AB/CsSA): (AD >AEsinA) = (AB 0C):(AD >AE)经典例题:已知MEF的面积为7平方厘米,BE = CE、AD = 2BD*CF=3AF,求心眈的面积・三、蝴蝶定理模型任意四边形中的比例关系(蝴蝶定理”:① S i: S 2 = S 4 : S3 或者S S^ = S2 S 4②AO:OC 二 $ S 2 : S 4 S 3蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径•通过构造模型,一方面可以使不规则四边形的面积关系 与四边形内的三角形相联系;另一方面,也可以得到与面积对应 的对角线的比例关系。
小学奥数几何知识点讲解
小学奥数几何知识点讲解几何是数学的一个重要分支,主要研究空间形状、大小、相对位置等概念及其性质和关系。
在小学奥数竞赛中,几何是一个常见的考察内容。
下面我将为大家讲解一些小学奥数几何知识点,希望能够帮助大家更好地应对几何题目。
1.点、线、面的概念在几何中,点是没有大小和形状的,只有位置的概念。
线是由无数个点组成的,没有宽度、长度、厚度等,可以用箭头表示方向。
面是由无数个点和线组成的,是平面上的一个二维图形。
2.正方形、长方形、三角形正方形是一种四条边都相等且角都是直角的四边形,它拥有四条对称轴。
长方形是一种拥有两组相等的对边和四个直角的四边形,它有两条对称轴。
三角形是一种由三条边和三个角组成的图形。
3.圆和半圆圆是由等距离圆心的所有点组成的集合,圆心到圆上任意一点的距离都相等。
半圆是圆的一半,由圆周上的一个弧和两条半径组成。
4.平行线和垂直线平行线是在同一个平面内永远不会相交的两条直线。
垂直线是与另一条线段相交时,两条线段之间的角度为90度的线。
5.直角、锐角和钝角直角是一个角度为90度的角,锐角是小于90度的角,钝角是大于90度小于180度的角。
6.对称和中心对称对称是指两个物体在一些轴线上镜像重合的关系,中心对称是指一个图形可以通过一些点进行旋转180度后重合。
7.面积和周长面积是指一个二维图形所占的空间大小,通常用平方单位表示,如平方厘米、平方米等。
周长是指一个图形的边缘长度。
8.直角三角形和勾股定理直角三角形是一种其中一个角为90度的三角形。
勾股定理是指在直角三角形中,直角边的平方之和等于斜边的平方,即a²+b²=c²。
9.分数、比例和相似分数是表示一个整体被分成几等份的表达方式。
比例是指两个或多个数之间的等比关系。
相似是指两个图形有相同的形状,但是可能有不同的大小。
10.正多边形和不规则图形正多边形是指所有边和角都相等的多边形。
不规则图形是指边和角都不相等的图形。
五年级奥数典型练习100例(详细解析)
五年级奥数典型练习100例(详细解析)1 五年级奥数(几何问题)及答案:直角三角形【答案解析】2 五年级奥数(几何问题)及答案:三角形面积右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.三角形面积答案:这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD(见右上图),可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD是三角形ABD与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG与三角形GCD面积仍然相等.根据等量代换,求三角形ABC的面积等于求三角形BCD 的面积,等于4×4÷2=83 五年级奥数(几何问题)及答案:阴影面积计算如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点.阴影部分的面积是多少平方厘米?【答案解析】如下图,连接FC,△DBF、△BFG的面积相等,设为x平方厘米;△FGC、△DFC的面积相等,设为y平方厘米,那么△DEF的面积为y平方厘米比较②、①式,②式左边比①式左边多2x,②式右边比①式右边大0.5,有2x=0.5,即x=0.25,y=0.25.而阴影部分面积为y+ y= ×0.25= 平方厘米.4 五年级奥数(几何面积)及答案:梯形阴影面积图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?【答案解析】设△ADF的面积为上,△BCF的面积为下,△ABF的面积为左,△DCF的面积为右.左=右=9;上×下=左×右=9×9=81,而下=27,所以上=81÷27=3.△ADE的面积为1.8,那么△AEF的面积为1.2,则EF:DF= :=1.2:3=0.4.△CEF与△CDF的面积比也为EF与DF的比,所以有=0.4× =0.4×(3+9)=4.8.即阴影部分面积为4.8.5 五年级奥数(行程问题)及答案:外出时间某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【答案解析】如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.6 五年级奥数(行程问题)及答案:发车间隔某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【答案解析】设电车的速度为a,行人的速度为b,因为每辆电车之间的距离为定值,设为l.7 五年级奥数(约数与倍数)及答案:最大公约数A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B两数的和等于多少?【答案解析】由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以 .对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以 .对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=25508 五年级奥数(包含与排除)及答案:读故事书甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了7.5个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?【答案解析】只考虑甲乙两人情况,有甲、乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.9 五年级奥数(包含与排除)及答案:剪绳子有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?【答案解析】只需先计算剪了多少刀,再加上1即为剪成的段数.从一端开始,将绳上距离这个端点整数厘米数的点编号,并将距离长度作为编号.10 五年级奥数(整除问题)及答案:除数各数位数字是0、1或2,且能被除数25整除的最小自然数是多少?【答案解析】225=25×9,所以要求分别能被25和9整除,要能被25整除,所以最后两位就是00。
小学奥数 几何计数(三).解析版
1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
小学奥数几何题100道及答案(完整版)
小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。
小学六年级奥数系列讲座几何综合(含答案解析)
几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S SSSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然,△DBC 的面积11010502⨯⨯=(平方厘米).阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12). 1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=, AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2.有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=(平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-= (平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷= ⎪⎝⎭, 原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。
6年级奥数几何综合问题(中)例题解析
【内容概述】本讲将涉及到图形的对称、平移、旋转、割补及其他等积变换,下面我们就这些变换的预备知识及变换本身进行学习和探讨.反之,如果知道上面某种情况的成立,则那两条直线平行.3.两个相似三角形的面积比值为相似系数的平方.【例题】题1.如下图,六边形ABCDEF中,AB=ED,AF=CD,BC=EF,且有AB平行ED,AF平行CD,BC平行EF,对角线FD垂直与BD.已知FD=24厘米,BD=18厘米,试求六边形ABCDEF的面积是多少平方厘米?「分析与解」如图,我们将BCD平移使得CD与AF重合,DEF平移使得ED与AB 重合.这样就组成一个长方形,显然有面积为24×18=432平方厘米,即ABCDEF 的面积为432平方厘米.题2.四边形ABCD中,AB=30,AD=48,BC=14,CD=40.又已知∠ABD+∠BDC =90°,求四边形ABCD的面积.「分析与解」如下图,以BD的垂直平分线为对称轴,做△ABD关于l的对称图形△A′BD.连接A′C.因为∠ABD+∠BDC=90°,而∠ABD=∠A′DB=90°,所以有∠A′DB+∠BDC=90°.那么△A′CD为直角三角形,由勾股定理知A′C2=AB2+CD2=2500,所以A′C=50.而在△A′BC中,有A′B=AD=48,有482+142=2500,即A′B2+BC2=A′C2,即△A′BC为直角三角形.有S △A ′CD +S △A ′BC =30×40×+14×48×=936.而S 四边形ABCD =S △A ′CD +S △A ′BC =936.评注:Ⅰ.本题以∠ABD+∠BDC =90°为突破口,通过对称变换构造出与原图形相关的直角三角形.这样面积就很好解决.Ⅱ.对于这道题我们还可以将△BCD 作l 的对称图形,如下:题3.如下图所示,梯形ABCD 中,AB 平行与CD ,又BD =3,AC =4,AB+CD =5,试求梯形ABCD 的面积.「分析与解」如下图,将AB 沿AC 平移至CE ,连接BE .在三角形BDE 中,有BD =3,BE =4,DE =5,有BD 2+BE 2=DE 2,所以三角形BDE 为直角三角形.有S梯形ABCD =S△BDE=×3×4=6.题4.如图,在三角形ABD中,当AB和CD的长度相等时,请求出“?”所示的角是多少度,给出过程.「分析与解」因为AB=CD,于是可以将三角形ABC的边BA边与CD对齐,如右图.在右图中有∠BCA=110°,所以∠ACD=70°于是∠ACC′=∠ACD+∠DCC′=∠ACD+∠ACB=70°+40°=110°;于是∠ACC′=110°=∠CC′D;又因为C′A′只是CA移动的变化,所以C′A′=CA;则AB′C′A′是一等腰梯形.于是,∠ADC′=180°-110°=70°;又∠CDC′=30°,所以∠ADC=70°-30°=40°.题5.如下图所示,有六边ABCDEF,已知∠A=∠B=∠C=∠D=∠E=∠F=120°,AB=BC=CD;AF=DE;∠ECF=60°;已知FEC的面积为6,求六边形ABCDEF的面积为多少?「分析与解」如下图,因为BC=CE,所以我们可以将△CDE绕C点转到E′点,使E′B平行CD.连接E′、F;E′、B,设E′F、AB交于Q点.有△E′BC≌△EDC.而在△E′BQ、△FAQ中,∠E′BQ=∠FAQ=120°,∠E′QB=∠AQF(对顶角相等),E′B=AF=ED,所以有△E′BQ≌△FAQ.所以△E′FC即为六边形ABCDEF除△CEF所剩下的部分的等积图形;而在△E′FC、△EFC中,E′C=EC,FC=FC,∠E′CF=∠ECF,所以△E′FC≌△EFC.所以S六边形ABCDEF =2×S△CEF;于是,S六边形ABCDEF=6×2=12.题6.如下图,△ABC为边长为1的等边三角形,△BCD是等腰三角形,BD=CD,顶角∠BDC=120°,∠MDN=60°,求△AMN的周长.「分析与解」如下图,延长AC至P,使CP=MB,连接DP.则有∠MBD=60°+=∠PCD;CP=BM;BD=CD,所以有△MBD≌△PCD.于是∠MDB=∠PDC;又因为∠MDB+∠NDC=60°,所以∠PDC+∠NDC=∠NDP=60°;MD=PD.在△MND、△PND中,∠NDM=∠NDP,ND=ND,MD=PD,于是△MND≌△PND.有MN=PN.因为MN=NP=NC+CP,而AM=AB-MB=AB-CP,所以AM+AN+MN=(AB-CP)+AN+(NC+CP)=AB+AN+NC=2.即△AMN的周长为2.题7.如下图,三角形ADC,是AC边与AD边长度相等的等腰三角形.求出下图中?的角度.「分析与解」作△ADB关于AB的对称图形,为△AD′B,在BC上选择E点使EA=CA;△BD′A≌△BCA,∠BD′A=∠BDA,注意到∠BED′似直角,D′EA似为等边三角形.如果解决,则,显然就有∠BDA=∠BD′A=?,答案显然为105°.注意到∠AEC=30°,则∠EAC=120°,于是∠D′AE=60°,又因为D′A=DA=AC=AE,所以三角形D′AE为等边三角形.∠D′EC=∠D′EA+∠AEC=60°+30°=90°;于是∠D′EB=180°-90°=90°.又知道∠BEA=90°+60°=150°;所以∠BAE=180°-150°-15°=15°;所以BEA为等腰三角形;于是BE=EA=ED′;BED′为等腰直角三角形.综合以上分析知∠BDA=105°.题8.下图为半径20厘米、圆心角为144°的扇形图.点C、D、E、F、G、H、J 是将扇形的B、K弧线分为8等份的点.求阴影部分面积之和.「分析与解」如下图,做出辅助线△KMA与△ANG形状相同(对应角相等),大小相等(对应边相等),有△KMA≌△ANG,S△KMA =S△ANG,而△KMA是两个三角形的公共部分,所以上图中的阴影部分面积相等.所以,GNMK与扇形KGA的面积相等,那么KGEB的面积为2倍扇形KGA的面积.扇形KGA的圆心角为×3=54°,所以扇形面积为×202×π=60π平方厘米.那么KGEB的面积为60π×2=120π平方厘米.如右图,做出另一组辅助线.△JQA与△ARH形状相同(对应角相等),大小相等(对应边相等),有△JQA≌△ARH,S△JQA =S△ARH,而△PQA是两个三角形的公共部分,所以上图中的阴影部分面积相等.所以,JHPQ与扇形JHA的面积相等,那么JHDC的面积为2倍扇形JHA的面积.扇形JHA的圆心角为=18°,所以扇形面积为×202×π=20π平方厘米.那么JHDC的面积为10π×2=40π平方厘米.所以,原题图中阴影部分面积为SKGEB -SJHDC=120π-40π=80π≈80×3.14=251.2平方厘米.题9.如下图,三角形ABC中AB=AC,∠BAC=120°,三角形ADE为正三角形,点D在BC边上.并且有BD:DC=2:3.三角形ABC的面积为50平方厘米,试求三角形ADE的面积?「分析与解」以点A为中心,使三角形ABC旋转120°,240°使其与原图形形成一个正三角形,并使QC:PQ=RP:BR=2:3.在正三角形PBC的内部连接成一个正六边形图,再连接正六角形的顶点得到正三角形DQR.有S△PBC =S△ABC×3=150,S△DCQ=S△PBC××=36,S△DQR=S△PBC-3S△DCQ=42,S△ADE =S正六边形DQR=S△DQR=14平方厘米.。
小学奥数几何篇五大模型蝴蝶定理(附答案)
小学奥数几何篇五大模型蝴蝶定理(附答案)在小学奥数的几何部分,蝴蝶定理是一个非常有用的工具,它可以帮助我们解决一些复杂的几何问题。
蝴蝶定理主要描述了在四边形中,当两条对角线互相垂直时,四边形被分成四个小三角形,而这四个小三角形的面积之间存在一定的关系。
蝴蝶定理的内容如下:设四边形ABCD中,AC和BD是互相垂直的对角线,交于点O。
设四个小三角形的面积分别为S1、S2、S3、S4。
那么,蝴蝶定理可以表述为:S1 + S2 = S3 + S4。
这个定理听起来可能有些抽象,但实际上它的应用非常广泛。
我们可以通过蝴蝶定理来解决一些看似复杂的问题。
下面,我将通过一些例子来展示蝴蝶定理的应用。
例1:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC =8cm,BD = 6cm。
如果三角形ABC的面积是24cm²,那么三角形ADC的面积是多少?解答:根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是24cm²,所以S1 = 24cm²。
又因为AC = 8cm,BD = 6cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 8cm6cm = 24cm²。
因此,三角形ADC的面积也是24cm²。
例2:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC = 10cm,BD = 5cm。
如果三角形ABC的面积是20cm²,那么三角形ADC的面积是多少?解答:同样地,根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是20cm²,所以S1 = 20cm²。
又因为AC = 10cm,BD = 5cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 10cm 5cm = 25cm²。
因此,三角形ADC的面积是25cm²。
6年级奥数几何综合问题(上)例题解析
【内容概述】勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题. 【例题】1.如图16-1,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形ABCD 的面积等于多少?[分析与解] 因为∠ADB =90°,所以在△ABD 中有AB 2=AD 2+BD 2,即BD 2=AB 2-AD 2=132-122=25,所以BD =5.△ABD 的面积为12×BD ×AD =30.而在△BCD 中有32+42=52,即BC 2+CD 2=BD 2,所以有△BCD 为直角三角形.△BCD 的面积为12×BC ×CD =6.而四边形ABCD 的面积为△ABD 、△BCD 的面积和,即为30+6=36.2.如图16-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?[分析与解] 因为CEFG 的边长题中未给出,那么显然阴影部分的面积与其无关. 设正方形CEFG 的边长为x ,有:S 正方形ABCD =10×10=100,S 正方形CEFG =x 2,S △BGF =12DG ×GF =12(10-x)x =.又S △ABD =12×10×10=50,S △BEF =12(10+x)x =.阴影部分的面积为:S 正方形ABCD +S 正方形CEFG +S △BGF -S △ABD -S △BEF =100+x 2+-50-=50(平方厘米).解法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然△DBC 的面积为12×10×10=50(平方厘米).阴影部分△DFB 的面积为50平方厘米.3.如图16-3,在平行四边形ABCD 中,AB=16,AD=10,BE=4,那么FC 的长度是多少?[分析与解]因为有CB平行与DA,有=,有FB=×DA=×10=2,所以CF=CB-FB=10-2=8.解法二:如下图所示,连接DB,CE,有DC:BE=4:1,所以△DFC与△FBE的面积比为16:1,有S△DCF ×S△FBE=S△DBF×S△CEF ,又S△DFB=S△CFE.所以△DCF,△FBE,△DBF,△CEF的面积比为16:1:4:1,即S△DCF :S△DFB=16:4=4:1.有△DCF,△DFB同高,面积比为底的比,即CF:BF=4:1,而CF,BF的长度和为10,有FC=×BC=8.4.如图16-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?[分析与解]为了方便所述,如下图所示,标上数字,有∠I=180°-(∠1+∠2),而∠1=180°-∠3,∠2=180°-∠4,有∠I=∠3+∠4-180°.同理有∠H=∠4+∠5-180°,∠G=∠5+∠6-180°,∠F=∠6+∠7-180°,∠E=∠7+∠8-180°,∠D=∠8+∠9-180°,∠C=∠9+∠10-180°,∠B=∠10+∠11-180°,∠A=∠11+∠3-180°.则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×180°.而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×180°=1260°.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×1260°-9×180°=900°.5.如图16-5,设正方形ABCD的面积为l,E,F分别为边AB,AD的中点,FC=3GC,则阴影部分的面积是多少?[分析与解]过G作线段PQ垂直于AB,分别交AB、DC于P、Q两点:有G为FC三等分点,且GQ平行与FD,所以GQ=FD=.=×EB×PG=××=.则PG=PQ-GQ=,有S△EBG6.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体方案如图16-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(al,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5),(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25),(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12),(1,,2,,),(1,2,2.4,4.8,5),(1,,,,),(1,,,,).7.如图16-7,ABCG是4×7的长方形,DEFG是2×10的长方形.那么,三角形BCM的面积与三角形DEM的面积之差是多少?[分析与解]如下图所示,连接BD,CE.四边形BCED的面积为△BCD与△CDE的面积和,S△BCD=×BC×CD=×4×(10-7)=6,S△CDE=×CD×DE=×(10-7)×2=3.所以S四边形BCED =S△BCD+S△CDE=6+3=9.有BC平行与DE,所以四边形BCED为梯形,有BC=4,DE=2,则BC:DE=4:2=2:1.则S△BCM :S△EDM=BC2:DE2=4:1,S△BCM×S△EDM=S△BMD×S△EMC,又有S△BMD=S△EMC,所以S△BMD =2S△EDM.即△BCM,△EDM,△BMD,△EMC的面积比为4:1:2:2,且这四个三角形组成梯形BCED.8.如图16-8,ABCD是平行四边形,面积为72平方厘米,E,F分别为边AB,BC的中点.则图形中阴影部分的面积为多少平方厘米?[分析与解]如下图所示,连接EC,并在某些点处标上字母,因为AE平行与DC,所以四边形AECD为梯形,有AE:DC=1:2,所以S△AEG :S△DCG =1:4,S△AGD×S△ECG=S△AEG×S△DCG,且有S△AGD=S△ECG,所以S△AEG:S△ADG=1:2,而这两个三角形高相同,面积比为底的比,即EG:GD=1:2,同理FH:HD=1:2.有S△AED =S△AEG+S△AGD,而S△AED=×S平行四边形ABCD=18(平方厘米).有EG:GD=S△AEG :S△AGB,所以S△AEG=×S△AED=6(平方厘米),S△AGD=×S△AED=12(平方厘米).同理可得S△HFC =6(平方厘米),S△DCH=12(平方厘米).而S△DCG =4S△AEG=4×6=24(平方厘米),又S△GHD=S△DCG-S△DCH=24-12=12(平方厘米),所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).9.在图16-9中,AE:EC=l:2,CD:DB=l:4,BF:FA=1:3,三角形ABC的面积等于1.那么四边形AFHG的面积是多少?[分析与解]如下图所示,我们分别求出BFH、CDI的面积问题也就解决.①如上左图,我们设S△BFH =x,则S△AFH=3x;设S△AHE=y,则S△CEH=2y.10.图16-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?[分析与解]如下图所示,为了方便所叙,将某些点标上字母,并连接BG.设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,S △ABF =12×20×10=100,即x =1003,那么正方形内空白部分的面积为4x=4003.所以原题中阴影部分面积为20×20-4003=8003(平方厘米).11.如图16-11,ABCD 是一个长方形,AC 是对角线.试比较两块阴影区域的面积与是的大小.[分析与解] 在长方形AEOH 中,被对角线AO 平分的两块三角形面积相等,有S △AHO =S △AEO .同理在长方形OGCF 中,S △OGC =S △OFC ;在长方形ABCD 中,S △ADC =S △ABC . 所以有S △ADC -S △AHO -S △OGC =S △ABC -S △AEO -S △OFC ,即S HDGO =S EOFB . 将PJCI 视为ABCD ,同理有S KJGO =S LOFI .有S HDGO -S KJGO =S LOFI -S EOFB ,即S 1=S 2.12.如图16-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.[分析与解]如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把下左图中的阴影称为A,下右图中的阴影称为B.13.如图16-13所示,一块半径为2厘米的圆板,从平面上标有1号位置起始,沿线段AB,BC,CD滚到2号位置.如果AB,BC,CD的长都是20厘米,那么圆板经过区域的面积是多少平方厘米?(π取3.14,答案保留两位小数.)[分析与解]如下图所示,我们将小圆板经过的区域分成4个部分,其中第1部分是半径为2厘米的半圆;其中第2部分是长为(20-2=)18厘米,宽4厘米的长方形;其中第3部分是半径为2×2=4厘米,圆心角为(360°-90°-90°-120°)=60°的扇形;其中第4部分是半径为(20-2=)18厘米,宽4厘米的长方形;其中第5部分是半径为(20-2-2=)16厘米,宽4厘米的长方形;注意第4、5部分有重叠,为边长是2的正方形;其中第6部分是半径为2厘米的14圆;其中第7部分是半径为2厘米的半圆.这4部分的面积和为+18×4++18×4+16×4-2×2+ +=204+≈208.07(平方厘米).14.如图16-14,将长方形ABCD绕顶点C顺时针旋转90度,若AB=4,BC=3,AC=5,求AD边扫过部分的面积.(π取3.14.)[分析与解]如下图所示,如上中图所示,端点A扫过的轨迹为AA″A′,端点D扫过轨迹为DD″D′,而AD之间的点,扫过的轨迹在以A、D轨迹,AD,A′D′所形成的封闭图形内,且这个封闭图形的每一点都有线段AD上某点扫过,所以AD边扫过的图形为阴影部分.显然有阴影部分面积为S直角△A′D′C +S扇形ACA′-S直角△ACD-S扇形CD′D,而直角三角形A′D′C、ACD面积相等.所以S直角△A′D′C +S扇形ACA′-S直角△ACD-S扇形CD′D=S扇形ACA′-S扇形CD′D=-=(52-42)==7.065(平方厘米).即AD边扫过部分的面积为7.065平方厘米.15.在图16-15中有分别标记为①,②,③,④的4个平面图形.(1)数一数每个图中有多少个顶点、多少条边,这些边围出了多少块区域,将结果填入图16-16的表中.这里①号图形的有关数据已经填好.(2)观察上表,推断一个平面图的顶点数、边数、区域数之间存在的关系.(3)已知某一平面图有999个顶点,且围成了999块区域.试根据上一小题中推断出的关系,确定出这个图有多少条边?[分析与解](1)如下表,将题中各个图形中的顶点数、边数、区域数一一标在下表.(2)由上表不难得知顶点数+区域数=边数+1.(3)当顶点数=999,区域数=999时,有边数=999+999-1=1997.。
小学奥数中解几何问题
小学奥数中解几何问题引言本文旨在介绍在小学奥数中解决几何问题的一些方法和技巧。
几何是小学数学中的重要部分,解决几何问题有助于培养学生的逻辑思维和空间想象能力。
本文将讨论一些常见的几何问题类型以及解决这些问题的一些建议。
几何问题类型在小学奥数中,常见的几何问题类型包括求周长、求面积、判断图形特征等。
下面将分别讨论这些问题类型的解决方法。
求周长求周长就是求一条封闭图形的边长之和。
对于简单的图形,直接将所有的边长相加即可得到周长。
对于复杂的图形,可以将图形分解为多个简单的部分,然后计算每个部分的周长,并将它们相加得到最终的周长。
例如,如果给定一个矩形,可以将它分解为两个相等的长方形,然后计算每个长方形的周长,并将它们相加得到矩形的周长。
求面积求面积就是求一块封闭图形所包围的空间的大小。
对于简单的图形,可以使用相应的公式来计算面积。
例如,对于矩形,可以使用长度和宽度相乘的方法来计算面积。
对于复杂的图形,可以将图形分解为多个简单的部分,然后计算每个部分的面积,并将它们相加得到最终的面积。
判断图形特征判断图形特征是指通过观察给定的图形,判断它是否符合某种条件。
例如,判断一个图形是否为正方形,可以通过观察它的四条边是否相等,并且四个角是否为直角来进行判断。
判断图形特征需要学生对各种图形的特征有一定的了解,可以通过大量的练来培养学生的观察和判断能力。
解决方法和技巧解决几何问题的方法和技巧有很多,下面介绍一些常用的方法。
- 充分理解问题:在解决几何问题之前,充分理解问题的要求和条件非常重要。
仔细阅读问题并提取关键信息,确保清楚问题要求解决的是什么。
- 绘制图形:在解决几何问题时,可以先根据问题中提供的信息和要求,绘制出相关的图形。
通过观察和分析图形,可以更好地理解问题并找到解决方法。
- 利用几何性质和定理:几何问题中存在许多几何性质和定理,学生可以利用这些性质和定理来解决问题。
例如,对于等边三角形,可以利用其边长相等的性质来解决相关问题。
小学奥数:几何图形的认识.专项练习及答案解析
本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交: 两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大.(9)三角形:三角形有三条边,三个角,三个顶点.边边顶点直角锐角钝角知识点拨(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边.(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.顶角顶角边边角角角顶角边直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱. 腰腰下底上底半径直径半圆直径弧半径半径高宽长底面底面(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.底面(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例 1】请看下图,共有个圆圈。
有关小学奥数竞赛几何题的特殊解法
有关小学奥数竞赛几何题的特殊解法引言小学奥数竞赛是培养学生数学思维能力和解决问题能力的一项重要活动。
在几何题中,常常存在一些特殊解法,这些方法能够帮助学生更加快速、准确地解决问题。
本文将介绍一些在小学奥数竞赛几何题中常用的特殊解法,并提供相应的例题进行说明。
1. 同变性解法同变性是指在几何图形中可以找到一些特定的性质,当这些性质在几何变换时保持不变,我们可以利用这些性质来解决几何问题。
常见的同变性解法有: - 旋转同变性:在某些题目中,可以通过将图形以一个点为中心进行旋转使得题目中的某些性质保持不变,从而简化问题的解决。
- 对称同变性:在某些题目中,通过将图形以某一点为对称中心,使得图形在对称后保持不变,从而得到问题的特殊解法。
- 缩放同变性:在某些题目中,可以利用图形的线段长度成比例来简化问题的解决。
例题1:已知平行四边形ABCD,点E为AB的中点,点F为BC的中点。
连接AE和CF相交于点G,请证明DG平分BC。
解析:首先,我们利用平行四边形ABCD的特点,将平行四边形绕点D逆时针旋转180度,得到平行四边形AB’C’D’。
因为旋转是一种同变化,所以旋转后的图形和原图形具有相同的性质。
接下来,我们观察点E、F和C’的位置关系。
由于E为AB的中点,F为BC的中点,所以点E在线段AB上,点F在线段BC上。
将图形旋转后,点E’和F’仍然分别在线段AB’和B’C’上。
根据平行四边形的定义,平行四边形AB’C’D’的对角线BD’和CE’相交于点G’,且G’为BD’和CE’的交点。
根据旋转的性质,点G’在线段DG上。
由于旋转对角线BD’和CE’得到的图形与原图形具有相同的性质,所以点G’在线段DG上。
因此,DG平分线段BC。
2. 直角三角形特殊解法在小学奥数竞赛几何题中,经常会遇到一些直角三角形相关的问题。
利用特殊的直角三角形性质,可以简便地解决一些复杂的几何问题。
常见的直角三角形特殊解法有: - 30°-60°-90°三角形:在一个等边三角形中,通过连接等边三角形的顶点与底边中点,可以得到一个30°-60°-90°的直角三角形。
3 小学奥数——几何图形 试题及解析
3 小学奥数——几何图形试题及解析小学奥数——几何图形试题及解析一、选择题1. 下列各图形中,几何图形的个数最多的是:A. 正方形B. 矩形C. 三角形D. 长方形解析:该题考察学生对几何图形的辨识和计数能力。
正方形有4条边,矩形也有4条边,三角形有3条边,而长方形同样也有4条边。
因此,答案为D,长方形。
2. 以下哪个几何图形不是多边形?A. 正方形B. 圆形C. 五边形D. 六边形解析:多边形是一个有多个直线边的封闭图形。
正方形有4个边,五边形有5个边,六边形有6个边。
但圆形是一个由无限多个点组成的,边是由连续曲线组成的,因此圆形不是多边形。
答案为B,圆形。
二、填空题1. 三角形的内角和是____度。
解析:三角形的内角和是180度。
2. 矩形的对角线互相垂直且长度相等。
解析:矩形的对角线互相垂直且长度相等。
三、解答题1. 已知一个四边形的两个相邻内角分别是50度和100度,另外两个内角分别是多少度?解析:由四边形的内角和为360度可知两个未知角分别为360度 -50度 - 100度 = 210度。
因此,另外两个内角分别是210度。
2. 一个凸多边形的内角和是1620度,它有几个内角?解析:设凸多边形有n个内角。
由凸多边形的内角和为 (n-2) × 180度,可以得到 n × 180度 = 1620度。
解得 n = 9。
因此,该凸多边形有9个内角。
3. 如图所示,在正方形ABCD中,连接AC和BD两条对角线,交于点O。
若AD的长度为12cm,求AC的长度。
解析:由于正方形的对角线相等且互相垂直,可知AO和OC互相垂直,且AO = OC。
根据勾股定理,可以得到 AD^2 = AO^2 + OD^2,解得AO = OD = (12/√2)cm,而AC = AO + OC = 2AO = 2 × (12/√2)cm = 12√2 cm。
因此,AC的长度为12√2cm。
总结:通过以上的几何图形试题和解析,我们可以看到几何图形的基本概念和性质在小学奥数中起着重要的作用。
小学奥数7-7-3 几何中的重叠问题.专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:7-7-3.几何中的重叠问题知识要点教学目标1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3 【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .A B C ===30,A B =6,B C =8,A C =5,A B C =73, 而AB C =A B C +--A B B C A C A B C --+. 有73=30×3-6-8-5+A B C ,即A B C =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 阴次.所以三张纸重叠部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】 如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 设A 与C 公共部分的面积为x ,由包含与排除原理可得:⑴ 先“包含”:把图形A 、B 、C 的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵ 再“排除”:5687x ---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶ 再“包含”:56873x ---+,这就是三张纸片覆盖的面积.根据上面的分析得:5687338x ---+=,解得:6x =.【答案】6。
(典型)小学数学应用题《奥数立体几何》试题附答案解析
(典型)小学数学应用题《奥数立体几何》试题附答案解析1、一个正方体木块的表面积是8平方厘米,若将木块截成体积相等的8个小正方体.问每个小正方体的表面积是多少平方厘米?8÷6÷4×6=2平方厘米2、一个正方体木块的表面积是96平方厘米,如果把它锯成8个体积相等的小正方体要块(如图),每个小正方体的表面积是______平方厘米一个面96÷6=16(平方厘米)小正方体面积16÷4=4(平方厘米)4×6=24平方厘米3、一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米.求这个大长方体的体积.4、设长方体侧面积为1平方分米,它表面积为1×2+1×2×4=10平方分米切成12个小长方体后新增表面积(1×3+1×2×2)×2=14平方分米600÷(10+14)=25平方分米25=52大长方体的体积.25×(5×2)=250(立方分米)5、从一个长方体上截下一个体积是32立方厘米的小长方体,剩下部分正好是一个棱长为4厘米的正方体。
问:原来这个长方体的表面积是多少?截面积:4×4=16(平方厘米);截下来的长度:32÷16=2(厘米);4+2=6(厘米);原长宽高分别是4厘米,4厘米和6厘米;表面积为:2(4×4+4×6×2)=128(平方厘米)答:原长方体的表面积是128平方厘米.6、一个长方体形状的木块,长8分米,宽4分米,高2分米,把它锯成若干个小正方体,然后再拼成一个大正方体,求这个大正方体的表面积=______(单位是平方分米).题意,可以拼出边长为4分米的大正方体,其表面积为:4×4×6=96(平方分米),答:这个大正方体的表面积为96平方分米7、一个正方体被切成24个大小形状一模一样的小长方体(如图),这些小长方体的表面积之和为162平方厘米.请问:原正方体的体积是多少?一个正方体被切成24个大小形状一模一样的小长方体,则需要切6次,共增加12个大正方体的面,一个面的面积:162÷(12+6)=9(平方厘米),因为3×3=9,所以可知大正方体的棱长是3厘米,大正方体的体积:3×3×3=27(立方厘米),答:原正方体的体积是27立方厘米.8、一个边长为60厘米的正方形伯片,剪去四个角后,剩下部分可以拼成一个无盖长方体,问所得长方体容积最大多少当长=宽=高时;容积最大;此时;长=宽=高=60÷3=20;此时体积=20×20×20=8000立方厘米9、一块长方形铁皮长60厘米,宽40厘米,如图,从四个角上剪去边长是10厘米的正方形,然后做成盒子,这个盒子的容积是多少升?盒子的长是: 60-10×2=40(厘米),盒子的宽是: 40-10×2=20(厘米),盒子的高是: 10厘米,盒子的容积: 40×20×10=8000(立方厘米),8000立方厘米=8立方分米=8升;答:这个盒子的容积是8升.10、右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?三面红色的小立方体位于长方体的8个顶点,共8个;二面红色的立方体位于长方体的12条边,每边的个数是原边长-2,(因为要去掉2个顶点),一共有4×((6-2)+(5-2)+(4-2))=36个;一面被涂色的立方体是长方体表面剩余的立方体,每个表面的数量是原边长-2的矩形面积,一共有2×[(2×3)+(3×4)+(4×2)]=52个11、如图所示是一个由小立方体构成的塔,请你数一数共有______块.由图可得:(1)第二层小立方体有:1+3=4(块);第三层小立方体有:4+5=9(块);第四层小立方体有:9+7=16(块);(2)把各层小立方体的个数加起来求和得: 1+4+9+16=30(块)答:图中共有小立方体30块.12、在一个表面涂满了红色的正方体,在他的每个面上都等距离的切三刀.三个面图有红色的小正方体有几个?两个面涂有红色的小正方体有几个?一个面涂有红色的小正方体有几个?没有涂到红色的小正方体有几个?三个面红的,就是8个顶点,所以是8个两个面红的,就是12条棱上了,每条有2个,一共12×2=24个一个面红的,就是6个面上的,每个面有4个,一共6×4=24个没涂到红色的就是心里的,2×2×2=8个13、有 6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某画面染上红色,使得有的长方体只有1个面是红色,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体,最多有多少个?解答:一面涂红色有:4×5=20个两面涂红色有:20×2=40个(选择对面)三面涂红色有:40-4=36个(选择4×5两面和3×4一面)四面涂红色有:36-4=32个(选择4×5两面和3×4两面)五面涂红色有:32-5=27个六面涂红色有:27-5=22个一共有:20+40+36+32+27+22=177个13、用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?上下面:9×2=18cm²左右面:7×2=14cm²前后面:7×2=14cm²14、如图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?水平切两刀,增加4个面,竖直切三刀,增加6个面,另外一个维度方向切四刀,增加8个面。
小学奥数几何难题
小学奥数几何难题在小学奥数的准备过程中,难题是许多学生们所面临的困扰。
尤其是在几何学这个领域,难题的数量和难度常常使学生们望而生畏。
本文将介绍一些小学奥数中的几何难题,并给出一些解题思路和方法,帮助学生们在几何学领域中取得更好的成绩。
难题一:等边三角形的内切圆半径已知一个等边三角形的周长为12厘米,求其内切圆的半径。
解题思路:首先我们知道,等边三角形的内切圆与三角形的三边相切,且切点将三边等分。
设内切圆的半径为r,根据等边三角形的性质可知,每个切点到相邻两边的距离都等于r。
由于等边三角形的周长为12厘米,所以每条边的长度为4厘米。
通过画图,我们可以发现内切圆的半径r等于三条距离之和的二分之一。
因此,r = (4 + 4 + 4) / 2 = 6 厘米所以,该等边三角形的内切圆半径为6厘米。
难题二:平行四边形的角度比较已知平行四边形ABCD中,∠B = 70°,∠D = 110°,求∠A和∠C的大小关系。
解题思路:根据平行四边形的性质,对角线互相平分。
所以,∠A = ∠C。
又根据平行四边形的内角对应性质,对角线互相对应角度之和为180°。
即,∠A + ∠D = 180°。
将已知条件代入方程中,即可求解:∠A + 110° = 180°,解得∠A = 70°。
所以,平行四边形ABCD中,∠A = 70°,∠C = 70°,∠A = ∠C。
难题三:正方体的体积与表面积比较已知正方体的体积为64立方厘米,求其表面积。
解题思路:设正方体的边长为a。
由于正方体的体积为64立方厘米,所以a³ = 64。
解方程可得,a = 4。
因此,正方体的边长为4厘米。
正方体的表面积可通过计算每个面的面积然后相加得到。
由于正方体的六个面都相等,所以可以直接计算一个面的面积,然后乘以6即可。
每个面的面积为a²,所以正方体的表面积为6 × (4 × 4) = 96平方厘米。
6年级奥数几何综合问题(下)例题解析
【内容概述】1.勾股定理(毕达哥拉斯定理):直角三角形中的两直角边平方后的和等于斜边的平方.公元前500年古希腊的毕达哥拉斯发现了勾股定理后,曾宰牛百头,广设盛筵以示庆贺.汉朝张苍、狄昌寿整理的《九章算术》第九卷为《句股》,其中解释到:短面曰句,长面曰股,相与结角曰弦.句短其股,股短其弦.句股各自乘,并,而开方除之,即弦.如下,在弦图中有S四边形EFGH =(S矩形ABCD+S矩形MNPQ)3.伽菲尔德证法:美国第20任总统伽菲尔德对数学有浓厚的兴趣,在还是中学教师时曾给出一种勾股定理的证明方法:梯形面积=(上底+下底)×高=(a+b)×(a+b)=(a+b)2;三个直角三角形的面积和为ab+ab+c2;梯形面积=三个直角三角形面积和.(a+b)2=ab+ab+c2,所以a2+b2=c2.4.公元前3世纪的欧几里得在《几何原本》中给出一种证明,简叙如下:如图,作出三个正方形,它们的边长分别为直角三角形ABC的三边长.连接图中的虚线段对应的点;过C作CK平行于AF,交AB、FG分别于J、K点.易证△FAC≌△BAE,有S△FAC =AF·FK=S矩形AFKJ,S△BAE=EA·CA=S正方形ACDE ,所以S矩形AFKJ=S正方形ACDE;易证△CBG≌△HBA,有S△CBG =BG·KG=S矩形KGBJ,S△HBA=BH·IH=S正方形CBHI ,所以S矩形KGBJ=S正方形CBHI.而S正方形AFGB =S矩形AFKJ+S矩形KGBJ=S正方形ACDE+S正方形CBHI.即有AB2=AC2+CB2.5.勾股数组:a=u2-v2,b=2uv,c=u2+v2.如果a、b、c可以如此表达,那么a、b、c称之为勾股数组,有a2+b2=c2.如:u=2,v=1时a=3,b=4,c=5;u=7,v=6时a=13,b=84,c=85.当然将已知的勾股数组内每个数都同时扩大若干倍得到的新的一组数还是勾股数组.【例题】题1.如下图,将矩形ABCD分成18个大小相等的正方形,E、F、G、H分别在AD、AB、BC、CD的边上,且是某个小正方形的顶点,若四边形EFGH的面积为1,则矩形ABCD的面积为( )(A) (B)(C)(D)「分析与解」设每块小正方形的面积为x,则S△AEF =x,S△FBG=2.5x,S△GCH=x,S△EDH =2.5x.而S矩形ABCD=18x.所以S四边形EFGH=18x-x-2.5x-2.5x-x=11x,11x=1,即x=.所以矩形ABCD的面积为,选(A).方法二:设每块小正方形的面积为x,如下图,作出弦图.有S矩形MNPQ =4x,S矩形ABCD=18x,而S四边形EFGH=(S矩形MNPQ+S矩形ABCD)=11x=1,所以x=.以下同解法一.题2.智能机器猫从平面上的O点出发.按下列规律行走:由O向东走12厘米到A1,由A1向北走24厘米到A2,由A2向西走36厘米到A3,由A3向南走48厘米到A4,由A4向东走60厘米到A5,…,问:智能机器猫到达的A6点与O点的距离是多少厘米.「分析与解」如下图,当智能机器猫到达A6点时,相对O点,向东走了12-36+60=36厘米,向北走了24-48+72=48厘米.有=362+482,即OA2=60.所以,A6点到O点的距离为60厘米.例3.P是正方形ABCD外面一点,PB为12厘米.△APB的面积是90平方厘米,△CPB的面积是48厘米.请你回答:正方形ABCD的面积是多少平方厘米?「分析与解」如下图,在正方形ABCD内作出弦图.有S△APB =PB·AM=90,所以AM=15;S△PBC=PB·NC=48,所以NC=8.有AB2=AM2+BM2=AM2+NC2=289,所以正方形ABCD的面积为289平方厘米.题4.如图所示,直角三角形PQR得两个直角边分别为5厘米,9厘米.问下图中3个正方形面积之和比4个三角形面积之和大多少?「分析与解」如右图,延长AR,DQ,过E,F分别作AR,DQ的平行线,在正方形EFRQ内交成四个全等的直角三角形和一个小正方形GHMN,四个全等的直角三角形和四个白色的三角形面积之和相等.小正方形HGNM的边长为9-5=4厘米,所以面积为16平方厘米,而另外两个正方形ABPR、CDQR的面积分别为25,81.所以有原图中3个正方形面积之和比4个三角形面积之和大25+81+16=122平方厘米.题5.如下图,EFGH是正方形ABCD的内接四边形,四边形EFGH的面积是94.5.已知EG=15,FH=13,求正方形ABCD的面积.「分析与解」如下图,S四边形EFGH =(S矩形MNPQ+S正方形ABCD),求出矩形MNPQ的面积即可求出正方形ABCD的面积.如图,过E、G两点分别做两条平行于AD的线段,过F、H两点做两条平行于AB的线段.设AD=x,由勾股定理知:EG2=AD2+QM2;FH2=DC2+MN2.而矩形MNPQ的面积为QM·MN.QM2=225-x2,MN2=169-x2.所以S矩形MNPQ=·,题6.若把边长为1的正方形ABCD的四个角剪掉,得一四边形A1B1C1D1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的,请说明理由.(写出证明及计算过程)「分析与解」我们知道利用弦图,可是弦图怎么利用?设构造出的弦图中最小正方形的面积为x,最大正方形面积为1,那么有剪下的正方形面积为(x+1)=,所以x=.那么,最小正方形的边长为.由于是四角对称的剪去,所以有AD1=DC1=CB1=BA1=,AA1=BB1=CC1=DD1=.证明及计算过程略.题7.一张长14厘米,宽11厘米的长方形纸片最多能裁出多少个长4厘米、宽1厘米的纸片?怎样裁?请画图说明.「分析与解」长方形纸片的面积为14×11=154立方厘米,而每个小纸片的面积为4×1=4平方厘米.154÷4=38.5,所以不管怎么裁不会超过38个.常规的裁法如图①得不到38个小纸片,只是37个.我们想到利用弦图,得到图②,图②中就得到38个小纸片.①②评注:这道题的解法实际上在赵爽的弦图b部分中已给出了提示.题8.按要求分别求出下列问题的解:(1)如下左图,A在线段BG上,ABCD和DEFG都是正方形,面积分别为7和11.求三角形CDE的面积的平方值?(2)(第8届华罗庚金杯赛小学组第一试决赛试题第4题)如上右图,平面上CDEF是正方形,ABCD是等腰梯形,它的上底AD为23厘米,下底BC为35厘米.求三角形ADE的面积.「分析与解」(1)如下图,延长CD,过E做CD的延长线,交于H点,类似的在正方形DEFG内做出一个弦图.有Rt△DAG≌Rt△DHE,由勾股定理知AG2=DG2-DA2=11-7=4,所以HE=AG=2.=CD·EH,=CD2·EH2=×7×4=7.S△CDE即三角形ADE的面积平方值为7.(2)如下图,过A、D两点分别做BC的垂线AH、DI,延长AD,过E做AD延长线的垂线,交于G点.有Rt△DIC≌Rt△DGE,IC=(BC-AD)=6,有EG=6.S△ADE=AD·EG=69.题9.园林小路,曲径通幽.如图所示,小路由白色正方形石板和青、红两色的三角形石板铺成.问:内圈三角形石板的总面积大,还是外圈三角形的总面积大?请说明理由.「分析与解」如下图,我们任意抽出两块相邻的白色正方形石板,及它们所夹成的青、红两色的三角形石板,如图②所示.图中有∠CDE+∠ADG=180°.如图③,将△CDE逆时针旋转90°,得到△C′DG.有A、D、C′在同一条直线上,且△C′DG与△ADG等底同高,所以有S△C′DG =S△ADG=S△CDE.①②③也就是说,任意两块相邻的白色正方形石板,它们所夹成的青色三角形与红色三角形面积相等.注意到在原图中,除了外圈青色的两块三角形外,外圈三角形、内圈三角形一一对应.所以原图中,外圈三角形的面积大于内圈三角形的面积,如图①所示.题10.在(5,12,13)这个勾股数组中,12、13是连续的自然数,我们把这样存在连续自然数的勾股数组称为“连续勾股数组”.请再找出几个“连续勾股数组”,并讨论一般情况.「分析与解」因为勾股数组可以写成(u2-v2,2uv,u2+v2),当(u2+v2)-2uv =1时,就能构成“连续勾股数组”.有(u2+v2)-2uv=(u-v)2=1,所以u-v=1,也就是说只要u、v取相邻的两个自然数即可.令v=n,则u=n+1,勾股数组(u2-v2,2uv,u2+v2)可以写成(2n+1,2n2+2n,2n2+2n+1).如当n=1时有(3,4,5),n=2时有(5,12,13),n=3时有(7,24,25),n=4时有(9,40,41)……。
小学奥数必学几何五大应用及例题解析
小学奥数必学几何五大应用及例题解析1. 角的分类和性质- 角是几何中常见的概念,按大小可分为锐角、直角和钝角。
- 锐角:小于90度的角。
- 直角:恰好是90度的角。
- 钝角:大于90度但小于180度的角。
- 例题解析:求下列角是否为锐角、直角或钝角。
- a) 35度:锐角。
- b) 90度:直角。
- c) 120度:钝角。
2. 三角形的性质- 三角形是由三条线段组成的图形,有不同的分类和性质。
- 根据边长分类,可以有等边三角形、等腰三角形和普通三角形。
- 根据角度分类,可以有锐角三角形、直角三角形和钝角三角形。
- 例题解析:以下判断三角形的分类。
- a) 三边长均相等:等边三角形。
- b) 两边长相等但不与第三边长相等:等腰三角形。
- c) 一个角为直角且两边长不相等:直角三角形。
3. 平行关系- 在几何学中,平行是指两条直线或线段的方向始终保持相同且永不交叉。
- 例题解析:判断以下线段是否平行。
- a) AB和CD两条线段:平行。
- b) AB和EF两条线段:不平行。
4. 图形的对称性- 图形的对称性是指图形在某个轴线或某个点进行镜像后仍然保持不变。
- 例题解析:以下判断图形是否具有对称性。
- a) 正方形:具有对称性,可以以中心点为轴线进行水平和垂直镜像。
- b) 任意的凸多边形:不一定具有对称性,取决于具体图形。
5. 长方形的计算- 长方形是一种特殊的四边形,具有一些特殊的性质和计算方法。
- 例题解析:已知长方形的长为10cm,宽为5cm,求长方形的周长和面积。
- 周长:2 * (长 + 宽) = 2 * (10 + 5) = 30cm。
- 面积:长 * 宽 = 10 * 5 = 50cm²。
以上是小学奥数必学几何五大应用及例题解析的内容。
希望对您有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数几何相关问题的解析
【篇三】
有一个长方体木块,长125厘米,宽40厘米,高25厘米。
把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。
这个大正体的表面积是多少平方厘米?
分析与解一般说来,要求正方体的表面积,一定要知道正方体的棱长。
题中已知长方体的长、宽、高,同正方体的棱长又没有直接联系,这样就给解答带来了困难。
我们应该从整体出发去思考这个问题。
按题意,这个长方体木块锯成若干个体积相等的小正方体后,又拼成一个大正方体。
这个大正方体的体积和原来长方体的体积是相等的。
已知长方体的长、宽、高,就可以求出长方体的体积,这就是拼成的大正方体的体积。
进而可以求出正方体的棱长,从而可以求出正方体的表面积了。
长方体的体积是
125×40×25=125000(立方厘米)
将125000分解质因数:
125000=2×2×2×5×5×5×5×5×5
=(2×5×5)×(2×5×5)×(2×5×5)
可见大正方体的棱长是
2×5×5=50(厘米)
大正方体的表面积是
50×50×6=15000(平方厘米)
答:这个大正方体的表面积是15000平方厘米。