理论力学资料
理论力学复习资料

力学复习选择:力系简化最后结果(平面,空间)牵连运动概念(运动参考系运动,牵连点运动) 平面运动刚体上的点的运动平面运动的动能计算(对瞬心,及柯里西算法) 质心运动定理(投影法x ,y ,z ,轨迹)惯性力系想一点简化计算:刚体系统平衡计算(多次取分能力体,一般为2次) 平面运动 速度的综合计算 动能定理应用动静法(其他方法不得分),已知运动求力(先用动能(动量)定理求运动,在用动静法求力)注意:1.功的单位是m WN ------∙2.注意检验fs N F f F ≤∙,判断是否是静摩擦,当为临界状态时max f s s N F F f F ==∙,纯滚动为静摩擦S F ,且只能根据平衡方程解出,与正压力无关。
动摩擦f NF f F =∙。
3. 动静法中惯性力简化()=-IC i i CIC c IC c F m a c F ma c M J α⎧⎫=-⎨⎬⎩⎭⎧⎫⎪⎪⇒⎨⎬=------⎪⎪⎩⎭∑质心过点到底惯性力绕点的惯性力偶二维刚体4.e c i i F ma m a ==∑∑, 22d ,d i i cc c m r r r a m t==∑eF ∑=0,则x v =常数=0(初始静止)则c x =常数=坐标系中所在位置,且c S 为直线。
(一直运动求力)5.平面运动刚体动能*222121122c c c J T mv J ωω⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪+⎪⎪⎩⎭瞬心法:柯里希法: 6.平面运动速度分析方法:a,基点法:,BA BA BA v v v v AB ω=+=,以Bv为对角线的平行四边形b,速度投影法:cos cos B B A A v v θθ=,,B A θθ是以AB 为基准。
c,速度瞬心法:***,*,0,0AB c c v v BC v a ACωω==∙=≠ 7.平面运动加速度分析:A.基点法:nB A BA BA a a a a τ=++,其中,多数情况下n A A A a a a τ=+,n B B B a a a τ=+注:当牵连运动为转动时,有科氏加速度k a ,2kr av ω=⨯大小:2kr a v ω=,方向:r v 向ω方向转90即可。
大学哈工大第八版理论力学-资料

2 思考题P168 6-5 a) 平行四连杆机构。假设标 有转动角速度刚体的长度为L 计算点M 的速度和加速度的大小并在图中画出它们 的方向
❖ 3 思考题 6-5b) OA OB OC 设为已知,计算点 A B C 的速度和加速度的大小;并在图中画出它们的方向。
注意: 这是个平面图
应用的场合以及如何应用?
运动方程 轨迹 速度 加速度?? z
一 运动方程
M
rxiyjzk
kr j
z
x f1(t)
iO
y
x
y f2(t)
y
x
z f3(t)
运动轨迹??
22
§ 5-2 直角坐标法
二 速度
z
v r & x & i y & j z & k v x i v yj v z k
v x2y2z2
!联想到了什么?
35
§7–3转动刚体内各点的速度和加速度
一 转动刚体内各点的速度和加速度的计算
1 速度计算
s R
vds RdR
dt dt
d & dt
vA 各点速度的大小与该点
Δr M'
v*
r(t+Δt) O
B
lim v
r dr
t0 t dt
动点的速度矢沿着
动点运动轨迹的切线,并与此点运动的方向一致。
20
三 加速度
§ 5-1 矢量法
alimv t0 t
dv dt
ddt2r2
av&& r&
此法常用于推导公式
lim v r dr t0 t dt
21
理论力学讲义

理论力学讲义铜仁学院物理与电子科学系冯云光绪论一、理论力学研究对象和任务:1、研究对象;研究物体机械运动普遍遵循的基本规律并将其用严密的数学表述,使其完全可以用严格的分析方法来加以处理。
机械运动物体在空间的相对位置随时间而改变的现象。
2、任务:归纳机械运动的规律。
(借助严密的数学规律进行归纳)3、表达方式;(理论力学分为矢量力学和分析力学两大部分。
)(1)、矢量力学(牛顿力学)从物体之间的相互作用出发,借助矢量分析这一数学工具,运用形象思维方法,通过牛顿定律揭示物体受力与其运动状态之间的因果关系来确定物体的运动规律。
特点:形象直观,易于处理简单的力学问题,范围:仅能解决经典力学问题。
(在矢量力学中,涉及量多数是矢量,如力、动量、动量矩、力矩、冲量等。
力是矢量力学中最关键的量。
)(2)、分析力学:从牛顿力学的基础上发展起来的,它借助数学分析这一工具,运用抽象思维方法,研究力学体系整体位形变化。
特点“从各种运动形态通用的物理量—能量出发,它的运用远远超出经典力学范围,也适用非力学体系。
(分析力学中涉及的量多数是标量,如动能、势能、拉格朗日函数、哈密顿函数等。
动能和势能是最关键的量。
)(分析力学是由拉格朗日、哈密顿等人建立并完善起来的经典力学理论,它的理论体系和处理问题方法,完全不同于牛顿力学,它代表经典力学的进一步发展,它揭示出支配宏观机械运动的更普遍的规律,以致能用比较统一的方法处理力学体系的运动问题,它揭示出力学规律与其他物理的过渡起了重要作用,分析力学已经成为学习后继课程的必要基础。
)二、理论力学的研究内容1、运动学:从几何的观点来研究物体位置随时间的变化规律,而未研究引起这种变化的物理原因。
2、动力学:研究物体运动和物体间相互作用的联系,阐明物体运动的原因。
3、静力学:研究物体相互作用下的平衡问题。
(它可以看作动力学的一部分,质点、质点系,刚体)三、理论力学的研究方法1、理论力学的研究方法观察、实验,总结实验规律,建立物理模型,提出合理假设,数学演绎、逻辑推理,探讨规律,实验验证。
理论力学考研专业课资料

理论力学考研专业课资料理论力学是工程力学学科的基础课程之一,是为力学相关专业培养学生的核心学科。
考研是理论力学学科的重要考试内容之一,对学生来说,准备充足的考研专业课资料至关重要。
在本文中,将为大家提供一些理论力学考研专业课资料,以供参考。
第一部分:基础理论1. 力学基本概念和基本法则- 定义力、质点、刚体等基本概念;- 探讨力、力矩、力的合成与分解等基本法则。
2. 力学基本原理- 牛顿三定律及其应用;- 动量与动量守恒定律;- 力学能量守恒定律;- 力学功与功率。
3. 力学基本方程- 牛顿第二定律及其应用;- 刚体平衡条件和平衡方程;- 动力学基本方程。
第二部分:静力学1. 质点和刚体的平衡- 质点的平衡条件;- 杆的平衡条件;- 平面刚体平衡条件;- 空间刚体平衡条件。
2. 受力分析- 力的合成与分解;- 导线受力分析;- 框架结构受力分析。
第三部分:动力学1. 质点运动学- 位置、位移、速度、加速度等基本概念;- 直线运动和曲线运动的描述方法;- 速度和加速度的关系。
2. 质点动力学- 牛顿第二定律的应用;- 矩形坐标系和极坐标系下质点运动方程的推导;- 受阻运动和无阻运动。
3. 刚体运动学- 刚体的平面运动和空间运动描述方法;- 刚体的平动和转动。
第四部分:能量方法1. 动能和势能- 动能与动能定理;- 弹性势能、引力势能和位能;- 机械能守恒定律。
2. 功能原理- 功能描述及其应用;- 功能守恒定律。
第五部分:振动和波动1. 振动- 单自由度系统的振动;- 多自由度系统的振动。
2. 波动- 机械波的传播;- 声波的特性。
总结:以上是对理论力学考研专业课资料的简要介绍,其中包括了基础理论、静力学、动力学、能量方法以及振动和波动的内容。
在备考过程中,建议学生注重对基础理论和基本概念的理解,加强解题思维能力和实际应用能力的培养。
此外,多做习题、参加模拟考试和自主学习也是非常重要的。
希望以上资料能对考生备考理论力学这门课程有所帮助。
理论力学教案

理论力学教案完整版第一章:引言1.1 课程介绍理解理论力学的基本概念和重要性。
了解理论力学与其他相关学科的联系和区别。
1.2 理论力学的应用领域讨论理论力学在工程、物理等领域的应用。
举例说明理论力学在其他学科中的重要性。
1.3 力学的基本量度和单位介绍力学中常用的基本量度,如长度、质量和时间。
解释国际单位制(SI)及其在力学中的应用。
第二章:牛顿运动定律2.1 第一定律:惯性定律解释牛顿第一定律的定义和含义。
讨论惯性参考系的概念。
2.2 第二定律:加速度定律推导牛顿第二定律的数学表达式。
讨论力、质量和加速度之间的关系。
2.3 第三定律:作用与反作用定律解释牛顿第三定律的定义和含义。
讨论作用力和反作用力的概念。
第三章:运动的描述3.1 位置、位移和速度定义位置、位移和速度的概念。
解释这些物理量的关系和应用。
3.2 角速度和转速引入角速度和转速的概念。
讨论这些物理量在旋转物体中的应用。
3.3 加速度和角加速度定义加速度和角加速度的概念。
解释这些物理量与速度和角速度之间的关系。
第四章:牛顿力学的基本方程4.1 牛顿第二定律的积分形式推导牛顿第二定律的积分形式。
解释力和加速度之间的关系。
4.2 牛顿力学中的能量守恒解释能量守恒定律在牛顿力学中的应用。
讨论动能和势能的概念及其转化。
4.3 牛顿力学中的动量守恒解释动量守恒定律在牛顿力学中的应用。
讨论封闭系统和不受外力的条件。
第五章:静力学5.1 力的合成和分解解释力的合成和分解的概念。
推导力的合成和分解的数学表达式。
5.2 平衡条件解释平衡条件的定义和含义。
推导物体在平衡状态下的受力分析。
5.3 静力学的应用讨论静力学在工程和物理中的应用。
举例说明静力学在实际问题中的解决方法。
第六章:动力学方程6.1 牛顿第二定律的微分形式推导牛顿第二定律的微分形式。
解释力和加速度之间的关系。
6.2 动力学方程的建立讨论动力学方程的建立过程。
推导动力学方程的一般形式。
6.3 动力学方程的应用讨论动力学方程在实际问题中的应用。
理论力学练习资料

一、选择题1、正立方体的顶角上作用着六个大小相等的力,此力系向任一点简化的结果是 。
①主矢等于零,主矩不等于零; ②主矢不等于零,主矩也不等于零; ③主矢不等于零,主矩等于零; ④主矢等于零,主矩也等于零。
2、重P 的均质圆柱放在V 型槽里,考虑摩擦柱上作用一力偶,其矩为M 时(如图),圆柱处于极限平衡状态。
此时按触点处的法向约束力N A 与N B 的关系为 。
①N A = N B ; ②N A > N B ; ③N A < N B 。
3、在图示机构中,杆O 1 A //O 2 B ,杆O 2 C //O 3 D ,且O 1 A = 200mm ,O 2 C = 400mm ,CM = MD = 300mm ,若杆AO 1 以角速度 ω= 3 rad / s 匀速转动,则D 点的速度的大小为 cm/s ,M 点的加速度的大小为 cm/s 2。
① 60; ②120; ③150; ④360。
4、曲柄OA 以匀角速度转动,当系统运动到图示位置(OA //O 1 B ,AB OA )时,有A vB v ,A a B a ,AB ω 0,αAB 0。
①等于; ②不等于。
5.图示,已知1F 、2F 、α,则1F 和2F 在x 轴上的投影为 ( ) 。
(A )αcos 11F F x =,02=x F ; (B )αcos 11F F x -=,02=x F ; (C )αcos 11F F x =,22F F x =; (D )αcos 11F F x -=,22F F x -=6.曲柄连杆机构以等角速度ω转动,已知OA=OB=R ,OA 垂直于OB 。
均质杆OA 及AB 的质量分别为2m 和3m ,则4所图示系统的动量为( )。
A.mRωB.2mRωC. 4mRωD. 6mRω7、若作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。
则其合力可以表示为 。
①12F F -; ②21F F -; ③12F F +。
理论力学复习资料

第一章静力学公理和物体的受力分析本章的主要内容:*静力学的基本概念和公理;*物体的受力分析。
具体内容:*刚体和力的概念*静力学公理*约束和约束反力*物体的受力分析和受力图重点:熟练掌握约束分析、物体的受力分析、受力图§1-1 刚体和力的概念1 刚体的概念受力时不变形的物体-----刚体内任意两点之间的距离保持不变。
刚体是理想模型。
能否作为刚体取决于所研究问题的性质。
理论力学研究刚体;材料力学研究变形体。
2 质点、质点系质点:具有质量,其大小和形状可忽略不计的物体。
质点也是理想模型。
能否作为质点取决于所研究问题的性质质点系:具有一定联系的一群质点。
不变质点系:各质点间的距离保持不变的质点系(刚体)。
可变质点系:质点间的距离可变的质点系。
3 平衡是指物体相对于惯性参考系保持静止或作匀速直线运动的状态4 力力是物体间相互的机械作用。
这种作用有两种效应:使物体的运动状态或/和形状发生变化。
力的三要素:大小,方向,作用点。
力是定位矢量,用有向线段表示5 力系有一定联系的一群力。
平衡力系:如果物体在一力系作用下保持平衡,则称这个力系为平衡力系。
等效力系:如果两个力系的作用效果完全相同,则称这两个力系为等效力系。
合力:如果一个力与一个力系等效,则这个力称为这个力系的合力;而力系中的力称为此合力的分力。
§1-2 静力学公理公理 1: 力的平行四边形法则:作用于物体上同一点的两个力可合成一个合力,此合力也作用于该点,合力的大小和方向由以这两个力为边所构成的平行四边形的对角线来表示。
是力系简化的基础,适于刚体、变形体。
公理 2 :二力平衡公理:作用于刚体上的两个力,使刚体平衡的充分必要条件是:这两个力的大小相等、方向相反、作用在同一直线上。
对刚体,上面的条件是充分必要条件。
对变形体是必要条件,而非充分条件 表明了作用于刚体上最简单力系平衡时必须满足的条件;对刚体有些平衡问题可归结为二力平衡的问题。
理论力学教程周衍柏第三版课件_图文

9
§0.4 力学单位制
• 物理理论组成:概念、概念的数学表示假定、方程组(物理 量的关系) 单位制通过以
[P]
X X a1 a2 12
X
am m
上式取对数
ln[P] a1lnX1 a 2lnX2 amlnXm
把lnX1, lnX2, …,lnXm看做m维空间的“正交基矢”,则 (a1,a2,…,am)相当于“矢量”ln[P]在基矢上的投影.
22
定理
设某物理问题内涉及n个物理量(包括物理常量) P1, P2 ,, Pn, 而我们所选的单位制中有m个基本量(n>m),则由此可以组成n-m
• 在力学中CGS和MKS单位制的基本量是长度、质量和 来自间, 它们的量纲分别为L、M和T.
• 任何力学量Q的量纲为[Q]=LαMβTγ,式中, ,
为量纲指数.
21
量纲分析—— 定理
设我们在选定单位制中的基本量数目为m,它们的量纲 为X1,X2,…,Xm. 用[P]代表导出量P的量纲,则
由A=A1+A2得
c2Φ() a2Φ() b2Φ()
消去(),即得 c2 a2 b2
a
c
b
这样我们就利用量纲分析定量的得到了勾股定理.
27
§0.6 微积分预备知识
1 常见函数的导数
y xn
y' dy dxn nx n1 dx dx
y sin x
知识资料理论力学(十四)(新版)(1)

五、达朗伯原理达朗伯原理是一种解决非自由质点系动力知识题的普遍主意。
这种主意将质点系的惯性力虚加在质点系上,使动力知识题可以应用静力学写平衡方程的主意来求解,故称为动静法,动静法在工程技术中得到广泛的应用。
(一)惯性力当质点受到其他物体的作用而改变其本来运动状态时,因为质点的惯性产生对施力物体的反作使劲,称为质点的惯性力。
惯性力的大小等于质点的质量与其加速度的乘积,方向与加速度的方向相反,并作用在施力物体上。
惯性力的表达式为(二)达朗伯原理在非自由质点M运动中的每一瞬时,作用于质点的主动力F、约束反力N和该质点的惯性力FI构成一假想的平衡力系。
这就是质点达朗伯原理,其表达式为在非自由质点系运动中的每一瞬时,作用于质点系内每一质点的主动力Fi、约束反力N,和该质点的惯性力FiI构成一假想的平衡力系。
这就是质点系达朗伯原理。
即(三)刚体运动时惯性力系的简化对刚体动力知识题,可以将刚体上每个质点惯性力组成惯性力系,使劲系简化的主意,得出简化结果。
这些简化结果与刚体的运动形式有关。
详细结果见表4-3-9。
(四)动静法按照达朗伯原理,在质点或质点系所受的主动力、约束反力以外,假想地加上惯性力或惯第1 页/共7 页性力系的简化结果,则可用静力学建立平衡方程的主意求解动力知识题,这种求解动力知识题的主意称为动静法。
必须指出,动静法只是解决动力知识题的一种主意,它并不改变动力知识题的性质,因为惯性力并不作用在质点或质点系上,质点或质点系也不处于平衡状态。
动静法中“平衡”只是形式上的平衡,并没有实际意义。
应用动静法列出的平衡方程,实质上就是运动微分方程。
(五)例题[例4—3—13] 长方形匀质薄板重W,以两根等长的软绳支持如图4—3—37所示。
设薄板在图示位无初速地开始运动,图中α=30°。
求此时绳子中的拉力。
[解](1)对象以平板的为研究对象。
(2)受力分析运动开始时板受重力w、软绳约束反力T1、T2。
理论力学复习资料

复习资料一、判断题 1.在自然坐标系中,如果速度的大小v =常数,则加速度a =0。
(错) 2.不论牵连运动的何种运动,点的速度合成定理v a=v e+v r 皆成立。
(对)3.某一力偶系,若其力偶矩矢构成的多边形是封闭的,则该力偶系向一点简化 4.刚体处于瞬时平动时,刚体上各点的加速度相同。
(错) 5.某力系在任意轴上的投影都等于零,则该力系一定是平衡力系。
(错) 6.已知质点的质量和作用于质点的力,其运动规律就完全确定。
(错) 7.两个半径相同,均质等厚的铁圆盘和木圆盘,它们对通过质心且垂直于圆面的回转半径相同。
(错) 8.质心的加速度只与质点系所受外力的大小和方向有关,而与这些外力的作用位置无关。
(对) 9.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
(错) 10.在任意初始条件下,刚体不受力的作用、则应保持静止或作等速直线平移。
(错)11.在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。
(错)时,主矢一定等于零,主矩也一定等于零。
(对)12.某空间力系由两个力构成,此二力既不平行,又不相交,则该力系简化的最后结果必为力螺旋。
(对)13.已知直角坐标描述的点的运动方程为X=f1(t ),y=f2(t ),z=f3(t ),则任一瞬时点的速度、加速度即可确定。
(对)14.一动点如果在某瞬时的法向加速度等于零,而其切向加速度不等于零,尚不能决定该点是作直线运动还是作曲线运动。
(对)15.刚体作平面运动时,平面图形内两点的速度在任意轴上的投影相等。
(错) 16某刚体作平面运动时,若A 和B 是其平面图形上的任意两点,则速度投影定理[][]A AB B ABv v =永远成立。
(对)二、填空题1. 杆AB 绕A 轴以ϕ=5t (ϕ以rad 计,t 以s 计) 的规律转动,其上一小环M 将杆AB 和半径为R (以m 计)的固定大圆环连在一起,若以O 1为原点,逆时针为正向,则用自然法表示的点M 的运动方程为_Rt Rs 102π+=。
知识资料理论力学(九)(新版)

Word-可编辑四、刚体的平面运动应用合成运动的概念,将刚体的平面运动分解为平动和转动,并据此来研究平面运动刚体的角速度、角加速度及其刚体上任一点的速度和加速度。
(一)刚体的平面运动方程1.平面运动的特点在运动过程中,刚体上任一点离某固定平面的距离一直保持不变,称这种运动为刚体的平面运动。
刚体的平面运动可以简化为一平面图形在其自身平面内的运动。
2.运动方程设平面图形S在固定平面Oxy内运动(图4-2—15),显然,图形S的位置彻低由其上任一线段O’M的位置所决定。
这就是说,图形S在任一瞬时的位置可用任一点O’的坐标xo’、yo’及O’M与x轴正向间的夹角φ来表示。
即刚体的平面运动方程可写为通常,将O’点称为基点。
(二)平面运动分解为平动和转动若取Oxy为静系,平面图形上任一点O’为基点,并在O’点上固结一随其作平动的动系O’x’y’(图4—2—15)。
则图形S的相对运动为绕基点O’的转动;图形的绝对运动就是平面运动;而牵连运动为动系随问基点O’的平动。
由此可见,平面图形S的运动可以分解为随基点的平动和绕基点的转动。
为了方便,在下面讲述中,普通将不再图示动系和静系。
千里之行,始于足下应该注重,平面运动随同基点的平动逻辑与基点的挑选有关,而绕基点的转动逻辑与基点的挑选无关。
因此,在论及角速度和角加速度时,无需指明它们是对哪个基点而言的,并可统称为图形的角速度和角加速度。
又因动系作平动,故在动系中看见到图形的角速度与角加速度就是图形相对静系的绝对角速度和绝对角加速度。
(三)平面图形内各点的速度平面图形内各点的速度有三种求解主意,如表4—2—7所示。
通常,瞬心法和投影法应用较多。
表中,关系式M O O M O M v v '')'()( 称为速度投影定理,该定理对任何运动形式的刚体都是适用的。
因为它是一个代数方程,故按照此定理可求出式中一个未知量。
由瞬心法所表述的关系式可知,当以速度瞬心C 为基点时,平面图形上各点的速度分布逻辑与刚体绕定轴转动时一样。
知识资料理论力学(八)(新版)

(三)点的速度合成定理可以证实,动点的三种速度v a,v e,v r之间有如下关系式:v a=v e+v r即动点的绝对速度等于它的牵连速度和相对速度的矢量和,这就是点的速度合成定理。
按照此定理可知v a,v e,v r构成一速度平行四边形,其对角线为绝对速度va。
因为每个速度矢量包含大小和方向二个量,因此上式总共含有六个量,当已知其中随意四个量时,便可求出其余两个未知量。
应该指出,因为存在相对运动,所以不同瞬时,动系上与动点相重合的那一点即牵连点,在动系上的位置也随之而变化的。
(四)点的加速度合成定理动点的加速度合成与牵连运动的性质有关,当牵连运动为平动或转动时,动点的加速度合成定理如下:牵连运动为平动:a a=a e+a r牵连运动为转动:a a=a e+a r+a k式中a k称为科氏加速度。
它是因为牵连运动与相对运动互相影响而产生的。
a k的矢量表达式为a k=2ω×vr其中ω为动系的角速度矢。
设ω与vr间的夹角为θ (图4—2—9),则a k的大小为ak=2ωvrsinθa k的指向由ω与vr的矢积决定。
对于平面机构,因a a、a e、a r和a k等各加速度矢都位于同一平面中,所以运用加速度合成定理只能求解大小或方向共两个未知量。
因为aa或ae或ar都可能存在切向与法向两个加速度分量,因此在求解中,常应用合矢量投影定理举行详细计算。
(五)应用速度或加速度合成定理解题的普通步骤和主意1.分析机构的运动情况,按照题意适当地选取动点、动系和静系。
它们的选取主意,普通可从两个方面来考虑:其一,动系相对静系有运动,动点相对动系也有运动;其二,除题意异第1 页/共5 页常指明动系或动点外,尽可能使选取的动点对动系有显然而容易的相对运动轨迹。
在普通机构中,通常可选取传递运动的接触点为动点,与其邻接的刚体为动系。
2.分析绝对运动、相对运动和牵连运动。
绝对运动和相对运动都是指动点的运动。
在相对运动的分析中,可设想看见者站在动系上,看见到的动点运动即为它的相对运动。
理论力学复习资料

一、 选择题1、 三力平衡定理是( )。
A: 共面不平行的三个力互相平衡必汇交于一点;B: 共面三力若平衡,必汇交于一点;C: 三力汇交于一点,则这三个力必互相平衡。
2、已知点沿x 轴作直线运动,某瞬时速度为2x ==xv (m/s),瞬时加速度为2-==xa x (m/s 2),则一秒种以后的点的速度的大小 。
是( )。
A: 等于零; B: 等于-2(m/s );C: 等于-4(m/s); D: 无法确定。
3、某瞬时,刚体上任意两点A 、B 的速度分别为B A νν,,则下述结论正确的是( )。
A: 当B A v v =时,刚体必作平动 B: 当刚体必作平动时,必有B A v v = C: 当刚体作平动时,必有B A v v =,但A v 与B v 的方向可能不同 D: 当刚体作平动时, A v 与B v 的方向必然相同,但可能B A v v ≠ 4、当作用在质点系上的外力系的主矢恒为零时,则( )。
A: 只有质点系的动量守恒 B: 只有质点系的动量矩守恒C: 只有质点系的动能守恒 D: 质点系的动量和动能均守恒二、 填空题1、图1所示,质量为m ,长度为l 的均质杆OA ,在铅直平面内绕边缘上的点O 的水平轴转动,在图示瞬时,杆的角速度为ω,角加速度为α,其转向如图所示,则杆的动量大小为 ,杆对O 轴的动量矩大小为 。
(图2)1)2、图2所示匀质圆盘质量为m,半径为R,可绕轮缘上垂直于盘面的轴转动,转动角速度为ω,则圆盘的动能是,圆盘的动量矩是。
3、图3所示,直杆OA在图示平面内绕O轴转动,某瞬时A点的加速度值2m/s=a,且5知它与OA杆的夹角mθ,则该瞬时杆的角加速度等于。
=OA1,600=三、判断题1、内力既不能改变质点系的动量和动量矩,也不能改变质点系的动能。
()2、在点的合成运动问题中,当牵连运动为定轴转动时不一定会有科氏加速度。
()3、力对于一点的矩不因力沿其作用线移动而改变。
理论力学题库参考资料

2014级理论力学期末考试试题题库理论力学试题第一章物系受力分析画图题1、2、3、4、5、第二章平面汇交力系计算题1、2、3、4、5、6、7、第三章平面任意力系计算题1、2、4、5、6、7、8、第四章空间力系计算题1、2、3、4、5、6、第五章静力学综合填空题1、作用在刚体上某点的力,可以沿着其作用线移动到刚体上任意一点,并不改变它对刚体的作用效果。
2、光滑面约束反力方向沿接触面公法线指向被约束物体。
3、光滑铰链、中间铰链有1个方向无法确定的约束反力,通常简化为方向确定的 2 个反力。
4、只受两个力作用而处于平衡的刚体,叫二力构件,反力方向沿二力作用点连线。
5、约束力的方向与该约束所能阻碍的位移方向相反 .6、柔软绳索约束反力方向沿绳索 ,指向背离被约束物体.7、在平面内只要保持力偶矩和转动方向不变,可以同时改变力偶中力的大小和力臂的长短,则力偶对刚体的作用效果不变。
8、力偶的两个力在任一坐标轴上投影的代数和等于零,它对平面内的任一点的矩等于力偶矩,力偶矩与矩心的位置无关。
9、同一平面内的两个力偶,只要力偶矩相等,则两力偶彼此等效.10、平面汇交力系可简化为一合力 ,其大小和方向等于各个力的矢量和,作用线通过汇交点.11、平面汇交力系是指力作用线在同一平面内 ,且汇交与一点的力系.12、空间平行力系共有 3 个独立的平衡方程.13、空间力偶对刚体的作用效果决定于力偶矩大小、力偶作用面方位、力偶的转向三个因素。
14、空间任意力系有 6 个独立的平衡方程.15、空间汇交力系的合力等于各分力的矢量和,合力的作用线通过汇交点 .第五章静力学综合摩擦填空题1、当作用在物体上的全部主动力的合力作用线与接触面法线间的夹角小于摩擦角时,不论该合力大小如何,物体总是处于平衡状态,这种现象称为自锁现象.2、答案:50N3、答案:φm/24、静摩擦力Fs的方向与接触面间相对滑动趋势的方向相反,其值满足__0<=F S<=F MAX摩擦现象分为滑动摩擦和__滚动摩阻__两类。
《理论力学》复习资料

1.图示ACD杆与BC杆在C点处用光滑铰链连接,A、B 均为固定铰支座。
若以整体为研究对象,以下四个受力图中哪一个是正确的。
()C2.图示无重直杆ACD在C处以光滑铰链与直角刚杆BC连接。
若以整体为研究对象,以下四图中哪一个是正确的受力图。
()B3.下图所示的四种结构中,梁、直角刚架和T型刚杆的自重均忽略不计,其中哪一种结构是静不定的()B4.下图所示的四种结构中,各杆重忽略不计,其中哪一种结构是静定的( ) C5.已知点沿其轨迹的运动方程为s = b + ct,式中b、c均为常量,则()B(A)点的轨迹必为直线;(B)点必作匀速运动;(C)点的轨迹必为曲线;(D)点的加速度必为零。
6.点沿其轨迹运动时()D(A)若a tº 0,a n¹ 0,则点作变速曲线运动;(B)若a t¹ 0,a nº 0,则点作匀速直线运动;(C)若a t¹ 0,a nº 0,则点作变速曲线运动;(D)若a t =常量,a n¹ 0,则点作匀变速曲线运动.7.某瞬时定轴转动刚体的角速度w和角加速度e都是一代数量()D(A) 当e> 0时,刚体作加速转动;(B) 只要e< 0,则刚体必作减速运动;(C) 当w <0, e< 0时,则刚体作减速运动;(D) 当w < 0, e > 0时,则刚体作减速运动。
8.刚体绕定轴转动时,以下四种说法,哪一个是正确的?()C(A) 当转角j> 0时,角速度w为正;(B) 当角速度w> 0时,角加速度e为正;(C) 当w与e同号时为加速转动,当w与e反号时为减速转动;(D) 当e > 0时为加速转动,当e< 0时为减速转动。
9.点的速度合成定理()D(A) 只适用于牵连运动为平移的情况下才成立;(B) 不适用于牵连运动为转动的情况;(C) 只适用于牵连运动为转动的情况下才成立;(D) 适用于牵连运动为任意运动的情况。
理论力学复习资料1---判断选择

一、 判断题。
1.只受两个力作用而平衡的构件称为二力杆,其约束反力的作用线一定在这两个力作用点的连线上。
( 对 )2.作用于刚体上的三个力,若其作用线共面且相交于一点,则刚体一定平衡。
( 错 )3.平衡指物体相对于惯性参考系静止或做匀速直线运动的状态。
(对 )4.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。
( 对 ) 5.力系简化的最后结果为一力偶时,主矩与简化中心无关。
( 对 )6.平面任意力系向任一点简化后,若主矢R 'F =0,而主矩0OM ,则原力系简化的结果为一个合力偶,合力偶矩等于主矩,此时主矩与简化中心位置无关。
(对 )7.用截面法解桁架问题时,只需截断所求部分杆件。
( 对 )8.物体重力的合力所通过的点称为重心,物体几何形状的中心称为形心,重心与形心一定重合。
( 错 ) 9.计算一物体的重心,选择不同的坐标系,计算结果不同,因而说明物体的重心位置是变化的。
( 错 )10.最大静摩擦力的方向总是与相对滑动趋势的方向相反。
( 对 ) 11.斜面自锁的条件是:斜面的倾角小于斜面间的摩擦角。
( 对 )12.两个刚体做平动,某瞬时它们具有相同的加速度,则它们的运动轨迹和速度也一定相同。
( 错 ) 13.两个半径不等的摩擦轮外接触传动,如果不出现打滑现象,两接触点此瞬时的速度相等,切向加速度也相等。
( 对 )14.定轴转动刚体的角加速度为正值时,刚体一定越转越快。
( 错 ) 15.根据速度合成定理,动点的绝对速度一定大于其相对速度。
( 错 )16.应用速度合成定理,在选取动点和动系时,若动点是某刚体上的一点,则动系不可以固结在这个刚体上。
( 对 )17.刚体平面运动可视为随同基点的平动和绕基点转动的合成运动。
( 对 )18. 质点的运动不仅与其所受的力有关,而且还和运动的初始条件有关。
( 对 ) 19.科氏加速度是由于牵连运动改变了相对速度的方向而产生的加速度。
理论力学期末考试复习资料

理论力学期末考试复习资料题型及比例填空题(20%选择题(20%证明题(10%简答题(10%计算题(40% 第一章:质点力学(20~25%一•质点的运动学 I :(重点考查)非相对运动学 1、描述质点的运动需要确定参照系和坐标系。
参照系:没特别声明,一般以地球为参照系, 且认为地球是不动的, 即以静止坐标系为运动 的参考。
坐标系:根据问题的方便,通常选择直角坐标系(适用于三维,二维,一维的运动),极坐标系(适用于二维运动,题中明显有极径,极角等字眼或者有心力作用下质点的运动时采用极坐 标系),自然坐标系(适用于二维运动, 题中明显有曲率半径, 切向等字眼时,或者圆周曲线运动, 抛物线运动等通常采用自然坐标系)。
2、描述质点运动的基本物理量是位移(坐标)、速度、加速度,明确速度、加速度,轨道方程在三种坐标系下的求解,直角坐标系下步骤:(1) ,建立好坐标系(2) ,表示出质点的坐标(可能借助于中间变量,如直角坐标系中借助于角度)(3)对坐标求一阶导得速度,二阶导得加速度,涉及的未知量要利用题中所给的已知信 息求得。
若求轨道方程,先求得 x 、y 、z 随时间或其他共同变量(参数)的函数关系,消去共同 变量即可,其它坐标系下是一个道理。
若是采用处理二维运动的极坐标系和自然坐标系: 明确怎么建立这两种坐标系及速度、加速度表的达式和各项的意义(a ) 极坐标系:极轴(不变的),极角与极径(质点对质点的位矢大小)则随质点不断发生变化,特别需要明确的径向、横向的单位矢量i,j 的确定,径向即沿径矢延长方向,横向是垂直径向,指向极角增加的一侧,它们的方向随质点的运动不断发生变化,称为是活动坐标系; 我们只需应用相应的公式计算,并理解每一项的意义即可:速度: 径向,v r r 横向,v r加速度:径向a r r r 2 ,明确第一项是由于径向速度得大小改变而引起,第二项则是横向速度得方向发生改变而引起; 横向a , 2 r 第一项是混合项,其中之一表由横向速度得大小改变而引起,其中之二表由径向速度得方向改变而引起,而第二项则表示由横向速 度得大小变化而引起(b )自然坐标系:明确是把矢量分为切向和法向,活动坐标系的单位矢量i 沿切向,法向,并指向轨道弯曲的一侧:2法向a n v 描述速度方向随时间的变化率,只有运动轨迹为曲线就一定不为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
111、 (C)。
一平面任意力系向O 点简化后得到一个力R F 和一个矩为M 0的力偶,则该力系最后合成的结果是( )A 、作用于O 点的一个力B 、作用在O 点右边某点的一个合力C 、作用在O 点左边某点的一个合力D 、合力偶R112、 (A)。
圆盘以匀角速度ω0绕O 轴转动,其上一动点M 相对于圆盘以匀速u 在直槽内运动。
若以圆盘为动系,则当M 运动到A 、B 、C 各点时,科氏加速度的大小 。
A 、相等;B 、不相等;C 、处于A ,B 位置时相等。
D 、以上答案不对113、 (B)。
曲杆重不计,其上作用一力偶矩为M 的力偶,则图(a)中B 点的反力比图(b )中的反力 。
A 、大;B 、小 ;C 、相同。
D 、以上答案不对114、 (B)。
已知杆AB 长2m ,C 是其中点。
分别受图示四个力系作用,则以下说法正确的( )。
A 、图(a )所示的力系和图(b )所示的力系是等效力系;B 、图(c )所示的力系和图(d )所示的力系是等效力系;C 、图(a )所示的力系和图(c )所示的力系是等效力系;D 、图(b )所示的力系和图(d )所示的力系是等效力系。
115、 (A)。
正方体仅受两个力偶作用,该两力偶矩矢等值、反向,即21M M ,但不共线,则正方体( )。
A 、平衡;B 、不平衡;C 、 因条件不足,难以判断是否平衡。
D 、以上答案不对116、 (A)。
作用在刚体上的力是滑移矢量,则力偶矩是( )矢量A 、自由B 、定位C 、滑移D 、固定117、 (B)。
作用在刚体上的力是滑移矢量,则力对点的矩是( )矢量A 、自由B 、定位C 、滑移D 、固定118、 (A)。
一平面任意力系先后向平面内A、B两点简化,分别得到力系的主矢Fa 、Fb 和主矩Ma 、Mb ,它们之间的关系在一般情况下(A 、B 两点连线不在Fa 或Fb 的作用连线上)应是( )。
A 、Fa=Fb, Ma ≠MbB 、Fa=Fb 、Ma=MbC 、Fa ≠Fb Ma=MbD 、Fa ≠Fb, Ma ≠Mb119、 (B)。
若一个空间力F 与x 轴相交,但不与y 轴、z 轴平行和相交,则它对三个坐标轴之矩应是( )。
A 、Mx(F)≠0、My(F)≠0、Mz(F)≠0B 、Mx(F)=0、My(F)≠0、Mz(F)≠0C 、Mx(F)=0、My(F)=0、Mz(F)≠0D 、Mx(F)=0、My(F)≠0、Mz(F)=0120、 (A)。
某空间力系若各力作用线均通过某一固定点,则其独立的平衡方程式的最大数目分别为( )A 、3个B 、4个C 、5个D 、6个121、 (C)。
某空间力系若各力作用线分别通过两固定点,则其独立的平衡方程式的最大数目分别为( )A 、3个B 、4个C 、5个D 、6个122、 (A)。
某空间力系若各力作用线分别平行两固定点的连线:则其独立的平衡方程式的最大数目分别为( )A 、3个B 、4个C 、5个D 、6个123、 (D)。
空间力偶矩是( )。
A 、 代数量B 、 滑动矢量C 、 定位矢量D 、 自由矢量。
124、 (C)。
一空间力系向某点O 简化后的主矢和主矩分别088,0024R o F i j k M i j k '=++=++,则该力系进一步简化的最简结果为( )A 、合力B 、合力偶C 、力螺旋D 、平衡力系125、 (A)。
作用在刚体上的空间力偶矩矢量沿其作用线移动到该刚体的指定点,是否改变对刚体的作用效果。
( )A 、改变B 、不改变C 、沿力偶矩矢量指向向前移动不改变D 、沿力偶矩矢量指向向后移动不改变126、 (B)。
空间力偶的等效条件是( )A、力偶矩的大小相等B、力偶矩矢量相同C、力偶矩矢量的大小、方向、作用点都必须相同D、力偶矩矢量的方向相同127、 (A)。
已知一正方体,各边长a,沿对角线BH作用一个力,则该力在X1轴上的投影为()。
A、0;B、F/2;C、F/6;D、-F/3。
128、 (C)。
根据空间任意力系的平衡方程至多可以解出( )未知量。
A、三个B、四个C、六个D、九个129、 (B)。
空间力系作用下的止推轴承共有( )约束力。
A、二个B、三个C、四个D、六个130、 (A)。
工程机械中使用的万向接头在空间力系的作用下有( )限制移动的力。
A、一个B、二个C、三个D、四个131、 (A)。
一水平梁由AB和BC两部分组成,A端固定在墙上,B处铰接,C端为固定铰支座,己知梁上作用有均布载荷q和力偶(P,P/)(如图所示),欲求梁的约束反力,经分析可知约束反力的数目()A 、共7个,独立平衡方程6个,是静超定问题B 、共9个,,独立平衡方程9个,是静定问题C 、共5个,,独立平衡方程6个,是静定问题D 、共6个,独立平衡方程6个,是静定问题132、 (C)。
质量为m 的小球在绳索和光滑斜面的约束下处于静止(如图所示),分析图示三种情况下斜面对小球的支持力的大小,经对比,它们之间的关系应是( )。
A 、N1=N2=N3B 、N1>N2>N3C 、N2>N1>N3D 、N3=N1>N2 133、 (C)。
当物体处于临界平衡状态时,静摩擦力s F 的大小( )A 、与物体的质量成正比B 、与物体的重力在支承面的法线方向的大小成正比C 、与相互接触物体之间的正压力大小成正比D 、由力系的平衡方程来确定 134、 (B)。
一质量为P 的鼓轮,其外圆直径200D mm =,内圆直径180d mm =,放在倾角30θ=︒的斜面上,在内圆上绕一绳以大小等于5P 的力F 平行于斜面向上拉。
已知斜面与鼓轮间的静滑动摩擦因数0.5s f =,滚动摩阻系数0.25mm δ=,则此时鼓轮的运动状态为( )(b) (c)图2-3A、静止于斜面B、沿斜面又滚又滑C、沿斜面做纯滑动D、沿斜面做纯滚动135、 (A)。
最大静摩擦力的大小与()的大小成正比。
A、正压力B、重力C、重力的一个分力D、以上都不是136、 (B)。
增大摩擦力的方法是()A、减少摩擦系数B、增大摩擦系数C、增大接触面积D、减少正压力137、 (A)。
动滑动摩擦力的方向与物体滑动方向()A、相反B、相同C、垂直D、平行138、 (A)。
最大静摩擦力的大小与两个物体间的正压力的大小成()比A、正B、反C、无关D、指数139、 (A)。
动滑动摩擦力的大小与两物体间的正压力的大小成()比A、正B、反C、无关D、指数140、 (B)。
最大静摩擦力比动滑动摩擦力()A、小B、大C、一样D、大一倍141、 (C)。
若斜面倾角为α,物体与斜面间的摩擦系数为f,欲使物体能静止在斜面上,则必须满足的条件是( )A、tan f≤α;B、tan f>α;C、tan α≤f;D、tan α>f。
142、 (C)。
物A重100KN,物B重25KN,A物与地面的摩擦系数为0.2,滑轮处摩擦不计。
则物体A与地面间的摩擦力为()。
A、20KN;B、16KN;C、15KN;D、12KN。
143、 (B)。
图示系统仅在直杆OA 与小车接触的A 点处存在摩擦,在保持系统平衡的前提下,逐步增加拉力T,则在此过程中,A 处的法向反力()。
A、越来越大;B、越来越小;C、保持不变;D、不能确定。
144、 (A)。
图示物块重5KN,与地面的摩擦角为350,今欲用力F推动物块,KN,则物块将()。
F5A、不动B、滑动C、处于临界平衡状态D、滑动与否不能确定145、 (A)。
静摩擦系数等于摩擦角之 ( )A、正切B、余切C、余弦D、正弦。
146、 (C)。
重量为G 的物块置于水平面上,物块与水平面的摩擦系数为f ,物块在受到大小为P 的水平推力后处于静止状态,由此得出全约束反力的大小为R 为( )。
A 、R=GB 、R=()22fP G + C 、22P G R += D 、R=P147、 (D)。
重量为G 的物块在力P 的作用下处于平衡状态(如图所示),己知物块与铅垂面之间的静摩擦滑动摩擦系数为f , 经分析可知物体这时所受的摩擦力大小F 为( )A 、F=fPB 、F=PC 、F=fGD 、F=G148、 (B)。
重为 10=P N 的物块置于倾角 30=θ的斜面上。
物块与斜面之间的摩擦角 25m=ϕ,则物块所处的状态为( )。
A 、静止;B 、向下滑;C 、临界平衡状态;D 、不能确定。
149、 (D)。
已知某点的运动方程为 S=a+bt2(S 以米计,t 以秒计,a 、b 为常数), 则点的轨迹( )。
A 、 是直线B 、 是曲线C 、圆周D 、 不能确定。
150、 (D)。
已知点沿x 轴作直线运动,某瞬时速度为2x ==x v (m/s),瞬时加速度为2-==x a x (m/s2),则一秒种以后的点的速度的大小()。
A 、 等于零; B 、 等于-2(m/s ); C 、等于-4(m/s); D 、无法确定。
151、 (A)。
动点M 沿其轨迹运动时,下列几种情况,正确的是( )A 、若始终有速度v 垂直于加速度a ,则必有v 的大小等于常量B 、若始终有v a ⊥,则点M 必作匀速圆周运动C 、若某瞬时有//v a ,则点M 的轨迹必为直线D 、若某瞬时有a 的大小等于零,且点M 作曲线运动,则此时速度必等于零 152、 (D)。
点作直线运动,已知某瞬时加速度22/a m s =-,1t s =时速度12/v m s =,则2t s =时,该点的速度的大小为( )A 、0B 、-2m/sC 、4m/sD 、无法确定153、 (B)。
用自然法研究点的运动时,点的加速度在副法线上的投影( )A 、可能为零B 、一定为零C 、一定不为零D 、无法确定154、 (A)。
当点运动时,若位置矢( ),则其运动轨迹为直线。
A 、方向保持不变,大小可变B 、大小保持不变,方向可变C 、大小、方向均保持变化D 、大小和方向可任意变化155、 (B)。
当点运动时,若位置矢( ),则其运动轨迹为圆。
A 、方向保持不变,大小可变B 、大小保持不变,方向可变C 、大小、方向均保持变化D 、大小和方向可任意变化156、 (A)。
已知点沿半径为40cm 的圆周运动,其速度规律为:(a )20s t =;(b )220s t =(s 以cm 计,t 以s 计)。
若1t s =,则上述两种情况下,点的速度大小a v 和b v 分别为( )A 、20和40B 、20和10C 、0和40D 、10和40157、 (A)。
已知点沿半径为40cm 的圆周运动,其速度规律为:(a )20s t =;(b )220s t =(s 以cm 计,t 以s 计)。
若1t s =,则上述两种情况下,点的速度大小a a 和b a 分别为( )A 、10和B 、20和、10和0 D 、0和40158、 (B)。