2019-2020学年高中数学学业水平习题课件:第13讲 平行关系

合集下载

2020版高考数学一轮总复习第八单元立体几何课时4空间中的平行关系课件文新人教A版201908024110

2020版高考数学一轮总复习第八单元立体几何课时4空间中的平行关系课件文新人教A版201908024110
错;C 中缺少 a 不在平面 α 内这一条件;D 满足线面平 行的三个条件,故选 D.
答案:D
2.直线 a∥平面 α,直线 b⊂α,则 a 与 b 的位置关系
是( )
A.a∥b
B.a⊥b
C.a,b 异面
D.a∥b 或 a 与 b 异面
解:直线 a∥平面 α,直线 b⊂α,所以 a 与 b 无公共点, 所以 a 与 b 平行或异面,选 D.
⇒β∥α平面平行的性质 (1)两个平面平行,其中一个平面内的直线 平行于 另
一个平面.
符号表示:α ∥β ,a⊂α,则 a∥β
.
(2)如果两个平行平面同时和第三个平面相交,那么它
们的交线 平行 . 符号表示:α∥β,α∩γ=a,β∩γ=b,则 a∥b .
考点二·平面与平面平行的判定
【例 2】(2015·四川卷节选)一个正方体的平面展开图 及该正方体的直观图的示意图如图所示.
(1)请将字母 F,G,H 标记在正方体相应的顶点处(不 需说明理由);
(2)判断平面 BEG 与平面 ACH 的位置关系,并证明你 的结论.
解:(1)点 F,G,H 的位置如图所示.
点评:证面面平行的基本方法是利用面面平行的判定 定理,即转化为证线面平行.
【变式探究】
2.如图,已知 ABC-A1B1C1 是正三棱柱,E,F 分别是 AC, A1C1 的中点.求证:平面 AB1F∥平面 BEC1.
证明:因为 E、F 分别是 AC、A1C1 的中点, 所以 AE=FC1.又因为 AE∥FC1, 所以四边形 AEC1F 是平行四边形,所以 AF∥EC1. 因为 EC1⊂平面 BEC1,AF⊄平面 BEC1, 所以 AF∥平面 BEC1. 连接 EF.因为 EF∥BB1,EF=BB1, 所以四边形 BB1FE 是平行四边形, 所以 B1F∥BE,B1F⊄平面 BEC1,BE⊂平面 BEC1, 所以 B1F∥平面 BEC1. 因为 AF,B1F 是平面 AB1F 内的相交直线, 所以平面 AB1F∥平面 BEC1.

高中数学总复习考点知识讲解课件13立体几何

高中数学总复习考点知识讲解课件13立体几何

【解析】 (1)证明:过点B1作平面AOB的垂线,垂足为C,如图,则C是OB 的中点,所以BC=1.
π 又∠OBB1= 3 ,所以BB1=2. 连接OB1,因为BB1=OB=2, 所以△OBB1为等边三角形. 因为点M为BB1的中点,所以BB1⊥OM. 因为平面AA1O1O⊥平面BB1O1O,平面AA1O1O∩平面BB1O1O=OO1,且 AO⊥OO1,AO⊂平面AA1O1O,
命题规律: (1)直线和平面平行、垂直的判定与性质. (2)空间角及空间向量的应用. (3)立体几何题通常分两问,第一问,线、面关系的证明,第二问,跟角有 关,考查线面角或二面角.在第二问中,一定要注意是求角的大小,还是求角 的某个三角函数值!
押题一 线面角
(2021·长沙市一中模拟(一))如图,七面体ABCDEF的底 面是凸四边形ABCD,其中AB=AD=2,∠BAD=120°,AC,BD 垂直相交于点O,OC=2OA,棱AE,CF均垂直于底面ABCD.
= 7
7 7.
所以直线GH与平面PBC所成角的正弦值为
7 7.
方法三:(1)同方法二. (2)设CD=2,在BD上取点I,使BI=3ID,连接HI,GI,CE,如图,则 GI∥CD,
根据题意CD⊥BD,CD⊥PD,BD∩PD=D, 所以CD⊥平面PBD,则GI⊥平面PBD,
所以GI⊥HI,
GH= HI2+GI2=
(2)由(1)知BF⊥EF,C1F⊥EF. ∴∠C1FB即为二面角C1-EF-B的平面角.
π ∴∠C1FB= 3 .过点F作平面AEFB的垂线,建立空间直角坐标系
如图所示.
由BF=EF=2AE=4,可得E(4,0,0),C1(0,2,2 B(0,4,0),A(4,2,0).

(江苏专版)19版高考数学一轮复习第十三章立体几何13.2平行的判定与性质讲义

(江苏专版)19版高考数学一轮复习第十三章立体几何13.2平行的判定与性质讲义

§13.2 平行的判定与性质考纲解读分析解读 空间平行问题是江苏高考的热点内容,主要考查线面平行,偶考面面平行及平行的性质,复习时要抓住解决平行问题常用的基本方法,识别一些基本图形如:锥体、柱体的特征.五年高考考点一 线面平行的判定与性质1.(2015安徽改编,5,5分)已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 . (1)若α,β垂直于同一平面,则α与β平行; (2)若m,n 平行于同一平面,则m 与n 平行;(3)若α,β,则在α内与β平行的直线;(4)若m,n ,则m 与n 垂直于同一平面.答案 (4)2.(2014辽宁改编,4,5分)已知m,n 表示两条不同直线,α表示平面.下列说法正确的是 .①若m∥α,n∥α,则m∥n; ②若m⊥α,n ⊂α,则m⊥n; ③若m⊥α,m⊥n,则n∥α; ④若m∥α,m⊥n,则n⊥α. 答案 ②3.(2016江苏,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,D,E 分别为AB,BC 的中点,点F 在侧棱B 1B 上,且B 1D⊥A 1F,A 1C 1⊥A 1B 1.求证:(1)直线DE∥平面A 1C 1F; (2)平面B 1DE⊥平面A 1C 1F.证明 (1)在直三棱柱ABC-A 1B 1C 1中,A 1C 1∥A C. 在△ABC 中,因为D,E 分别为AB,BC 的中点, 所以DE∥AC,于是DE∥A 1C 1.又因为DE ⊄平面A 1C 1F,A 1C 1⊂平面A 1C 1F, 所以直线DE∥平面A 1C 1F.(2)在直三棱柱ABC-A 1B 1C 1中,A 1A⊥平面A 1B 1C 1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F. 因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.4.(2016山东,18,12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.证明(1)因为EF∥DB,所以EF与DB确定平面BDEF.连结DE.因为AE=EC,D为AC的中点,所以D E⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF,因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I.连结GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.5.(2015山东,18,12分)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)证法一:连结DG,CD,设CD∩GF=M,连结MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以H M∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥E F,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)连结HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE,又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩G H=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.6.(2014江苏,16,14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.证明(1)证明:因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.7.(2014北京,17,14分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.解析(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB1⊥AB,又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连结EG,FG.因为G,E,F分别是AB,A1C1,BC的中点,所以EC1=A1C1,FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB==.所以三棱锥E-ABC的体积V=S△ABC·AA1=×××1×2=.教师用书专用(8—13)8.(2016四川,17,12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.解析(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:连结CM.因为AD∥BC,BC=AD,所以BC∥AM,且BC=AM.所以四边形AMCB是平行四边形,从而CM∥AB.又AB⊂平面PAB,CM⊄平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明:连结BM,由已知,PA⊥AB,PA⊥CD,因为AD∥BC,BC=AD,所以直线AB与CD相交,所以P A⊥平面ABCD.从而PA⊥BD.因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又B D⊂平面PBD,所以平面PAB⊥平面PBD.9.(2016课标全国Ⅲ,19,12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求四面体N-BCM的体积.解析(1)证明:由已知得AM=AD=2,取BP的中点T,连结AT,TN,由N为PC中点知TN∥BC,TN=BC=2.(3分)又AD∥BC,故TN AM,故四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(6分)(2)因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.(9分)取BC的中点E,连结AE.由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S△BCM=×4×=2.所以四面体N-BCM的体积V N-BCM=·S△BCM·=.(12分)10.(2015广东,18,14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.解析(1)证明:因为四边形ABCD是长方形,所以AD∥BC.又因为AD⊂平面PDA,BC⊄平面PDA,所以BC∥平面PDA.(2)证明:取CD的中点,记为E,连结PE,因为PD=PC,所以PE⊥DC.又因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,PE⊂平面PDC,所以PE⊥平面ABCD.又BC⊂平面ABCD,所以PE⊥BC.因为四边形ABCD为长方形,所以BC⊥DC.又因为PE∩DC=E,所以BC⊥平面PDC.而PD⊂平面PDC,所以BC⊥PD.(3)连结AC.由(2)知,BC⊥PD,又因为AD∥BC,所以AD⊥PD,所以S△PDA=AD·PD=×3×4=6.在Rt△PDE中,PE===.S△ADC=AD·DC=×3×6=9.由(2)知,PE⊥平面ABCD,则PE为三棱锥P-ADC的高.设点C到平面PDA的距离为d,由V C-PDA=V P-ADC,即d·S△PDA=PE·S△ADC,亦即×6d=××9,得d=.故点C到平面PDA的距离为.11.(2014安徽,19,13分)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.解析(1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)连结AC,BD交于点O,BD交EF于点K,连结OP,GK.因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD.又因为平面GEFH⊥平面ABCD,且PO⊄平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,所以GK⊥底面ABCD,从而GK⊥EF.所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=DB=OB,即K为OB的中点.再由PO∥GK得GK=PO,且G是PB的中点,所以GH=BC=4.由已知可得OB=4,PO===6,所以GK=3.易得EF=BC=8,故四边形GEFH的面积S=·GK=×3=18.12.(2014四川,18,12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.解析(1)证明:因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内两条相交直线 ,所以AA1⊥平面ABC.因为直线BC⊂平面ABC,所以AA1⊥B C.又AC⊥BC,AA1,AC为平面ACC1A1内两条相交直线,所以BC⊥平面ACC1A1.(2)取线段AB的中点M,连结A1M,MC,A1C,AC1,设O为A1C,AC1的交点.由已知可知O为AC1的中点.连结MD,OE,则MD,OE分别为△ABC,△ACC1的中位线,所以MD AC,OE AC,因此MD OE.连结OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线DE⊄平面A1MC,MO⊂平面A1MC,所以直线DE∥平面A1MC,即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.13.(2014山东,18,12分)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥B C,AB=BC=AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面PAC.证明(1)设AC∩BE=O,连结OF,EC.由于E为AD的中点,AB=BC=AD,AD∥BC,所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC,所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以BE⊥平面PAC.考点二面面平行的判定与性质1.(2013安徽理,15,5分)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为答案①②③⑤2.(2013江苏,16,14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.教师用书专用(3)3.(2013陕西,18,12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.解析(1)证明:由题设知,BB1DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊄平面CD1B1,∴BD∥平面CD1B1.∵A1D1B1C1BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊄平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1.(2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD-A1B1D1的高.又∵AO=AC=1,AA1=,∴A1O==1.又∵S△ABD=××=1,∴=S△ABD×A1O=1.三年模拟A组2016—2018年模拟·基础题组考点一线面平行的判定与性质1.(苏教必2,一,2,变式)下列命题中正确的是.①若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;②若直线a和平面α满足a∥α,那么a与α内的任何直线平行;③平行于同一条直线的两个平面平行;④若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α.答案④2.(2016江苏扬州中学综合练习,8)设α,β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,n⊂α,则m∥α;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,m⊂α,n⊂β,则m∥n;④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.其中正确命题的序号为.答案④3.(2016江苏镇江一模,7)设b,c表示两条直线,α,β表示两个平面,现给出下列命题:①若b⊂α,c∥α,则b∥c;②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;④若c∥α,c⊥β,则α⊥β.其中正确的命题是.(写出所有正确命题的序号)答案④4.(2018江苏徐州铜山中学期中)如图,在三棱锥S-ABC中,SA=SC,AB⊥AC,D为BC的中点,E为AC上一点,且DE∥平面SAB,求证:(1)直线AB∥平面SDE;(2)平面ABC⊥平面SDE.证明(1)因为DE∥平面SAB,DE⊂平面ABC,平面SAB∩平面ABC=AB,所以DE∥AB,因为DE⊂平面SDE,AB⊄平面SDE,所以AB∥平面S DE.(2)因为D为BC的中点,DE∥AB,所以E为AC的中点,又因为SA=SC,所以SE⊥AC,又AB⊥AC,DE∥AB,所以DE⊥AC.又DE,SE⊂平面SDE,DE∩SE=E,所以AC⊥平面SDE.因为AC⊂平面ABC,所以平面ABC⊥平面SDE.5.(2017江苏镇江一模,16)在长方体ABCD-A1B1C1D1中,AB=BC=EC=AA1.(1)求证:AC1∥平面BDE;(2)求证:A1E⊥平面BDE.证明(1)连结AC交BD于点O,连结OE.在长方体ABCD-A1B1C1D1中,四边形ABCD为正方形,∴点O为AC的中点,∵AA1=CC1,EC=AA1,∴EC=CC1,即点E为CC1的中点,∴在△CAC1中,AC1∥OE.又因为OE⊂平面BDE,AC1⊄平面BDE,所以AC1∥平面BDE.(2)连结B1E.设AB=a,则在△BB1E中,BE=B1E=a,BB1=2a,所以BE2+B1E2=B,所以B1E⊥BE.由ABCD-A1B1C1D1为长方体,得A1B1⊥平面BB1C1C,∵BE⊂平面BB1C1C,所以A1B1⊥BE.又B1E∩A1B1=B1,B1E⊂平面A1B1E,A1B1⊂平面A1B1E,∴BE⊥平面A1B1E.又因为A1E⊂平面A1B1E,所以A1E⊥BE.同理,A1E⊥DE.又因为BE⊂平面BDE,DE⊂平面BDE,BE∩DE=E,所以A1E⊥平面BDE.6.(2017江苏南京高淳质检,16)如图,四棱锥P-ABCD中,O为菱形ABCD对角线的交点,M为棱PD的中点,MA=MC.(1)求证:PB∥平面AMC;(2)求证:平面PBD⊥平面AMC.证明(1)连结OM,因为O为菱形ABCD对角线的交点,所以O为BD的中点,又M为棱PD的中点,所以OM∥PB,又OM⊂平面AMC,PB⊄平面AMC,所以PB∥平面AMC.(2)在菱形ABCD中,AC⊥BD,且O为AC的中点,又MA=MC,故AC⊥OM,而OM∩BD=O,OM,BD⊂平面PBD,所以AC⊥平面PBD,又AC⊂平面AMC,所以平面PBD⊥平面AMC.7.(2017南京、盐城二模,16)如图,四棱锥P-ABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.又因为AP⊥AB,且AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD.①因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.又因为AP⊥AB,且AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD.②由①②得C D∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.考点二面面平行的判定与性质8.(苏教必2,一,2,变式)如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连结SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连结SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.9.(苏教必2,一,2,变式)如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连结AE,与DF交于点O,连结MO,易知,O为AE的中点,因为M为AB的中点,所以MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,N为AD中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.B组2016—2018年模拟·提升题组(满分:40分时间:20分钟)一、填空题(每小题5分,共10分)1.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是.①AB∥CD;②AD∥CB;③AB与CD相交;④A,B,C,D四点共面.答案④2.给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m.γ∩α=n,l∥γ,则m∥n.其中真命题的个数为.答案 1二、解答题(共30分)3.(2017苏锡常镇四市教学情况调研(二),16)如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC=BC,∠ACD=90°.(1)求证:AB⊥平面EDC;(2)若P为FG上任意一点,证明:EP∥平面BCD.证明(1)因为平面ABC⊥平面ACD,∠ACD=90°,平面ABC∩平面ACD=AC,CD⊂平面ACD,所以CD⊥平面ABC,又AB⊂平面ABC,所以CD⊥AB,因为AC=BC,E为AB的中点,所以CE⊥AB,又CE∩CD=C,CD⊂平面EDC,CE⊂平面EDC,所以AB⊥平面EDC.(2)连结EF,EG,EP,因为E,F分别为AB,AD的中点,所以EF∥BD,又BD⊂平面BCD,EF⊄平面BCD,所以EF∥平面BCD,同理可证EG∥平面BCD,又EF∩EG=E,EF⊂平面EFG,EG⊂平面EFG,所以平面EFG∥平面BCD,又P为FG上任一点,所以EP⊂平面EFG,所以EP∥平面BCD.4.(2017江苏淮阴中学第一学期期末)如图,在几何体ABCDE中,四边形ABCD是正方形,正三角形BCE的边长为2,DE=2,F为线段CD的中点,G为线段AE的中点.(1)求证:GF∥平面BCE;(2)求证:平面ABCD⊥平面BCE.证明(1)取BE的中点H,连结GH,CH,所以GH为△A BE的中位线,所以GH∥AB,且GH=AB,易知CF∥AB,且CF=AB,所以HG CF,所以四边形GHCF为平行四边形,所以GF∥HC,因为HC⊂平面BCE,GF⊄平面BCE,所以GF∥平面BCE.(2)由题意知DC=EC=2,ED=2,所以DC2+EC2=ED2,所以DC⊥E C,又因为四边形ABCD是正方形,所以DC⊥BC,又EC,BC⊂平面BCE,EC∩BC=C,所以DC⊥平面BCE,又因为DC⊂平面ABCD,所以平面ABCD⊥平面BCE.C组2016—2018年模拟·方法题组方法1 证明直线与平面平行的常用方法1.如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,C是圆O上的点,得AC⊥BC.由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.(2)连结OG并延长交AC于M,连结QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC.由O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC,所以平面QMO∥平面PBC.因为QG⊂平面QMO,所以QG∥平面PBC.2.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A'EF 位置,使得A'C=2.(1)求五棱锥A'-BCDFE的体积;(2)在线段A'C上是否存在一点M,使得BM∥平面A'EF?若存在,求A'M的长;若不存在,请说明理由.解析(1)连结AC,与EF交于点H,连结A'H.∵四边形ABCD是正方形,AE=AF=4,∴H是EF的中点,且EF⊥AH,EF⊥CH,从而有A'H⊥EF,又A'H∩CH=H,∴EF⊥平面A'HC,∵EF⊂平面ABCD,∴平面A'HC⊥平面ABCD,过点A'作A'O垂直HC交HC于点O,∵平面A'HC∩平面ABCD=CH,∴A'O⊥平面ABCD,因为正方形ABCD的边长为6,AE=AF=4,故A'H=2,CH=4,所以cos ∠A'HC===.所以HO=A'H·cos ∠A'HC=,∴A'O=,所以五棱锥A'-BCDFE的体积V=××=.(2)线段A'C上存在点M,使得BM∥平面A'EF,此时A'M=.理由如下:连结OM,BD,BM,DM,易知BD过O点.因为A'M==A'C,HO=HC,所以OM∥A'H,又OM⊄平面A'EF,A'H⊂平面A'EF,所以OM∥平面A'EF,易知BD∥EF,因为BD⊄平面A'EF,EF⊂平面A'EF,所以BD∥平面A'EF,又BD∩OM=O,所以平面MBD∥平面A'EF,因为BM⊂平面MBD,所以BM∥平面A'EF.方法2 平行的性质及应用3.在三棱锥P-SBC中,A,D分别为边SB,SC的中点,AB=2,BC=4,CD=2.平面PSB⊥平面ABCD,平面PAD⊥平面ABCD.(1)求证:PA⊥CD;(2)若平面PAD∩平面PBC=l,求证:l∥BC.证明(1)因为A、D分别为SB,SC的中点,且AB=2,CD=2,所以AD∥BC,且SB=4,SC=4,又因为BC=4,且42+42=(4)2,所以SB⊥BC,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,所以AD⊥平面PAB,又PA⊂平面PAB,所以AD⊥PA.同理,可证明AB⊥PA,而AB,AD⊂平面ABCD,AB∩AD=A,所以PA⊥平面ABCD,因为CD⊂平面ABCD,所以PA⊥CD.(2)因为AD∥BC,BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD,又BC⊂平面PBC,平面PAD∩平面PBC=l,所以l∥BC.。

2019-2020年高中数学学业水平测试复习课件:专题三立体几何初步第13讲平行关系

2019-2020年高中数学学业水平测试复习课件:专题三立体几何初步第13讲平行关系

同的平面α,β,γ,现给出下列三个命题:
①若l与m为异面直线,l⊂α,m⊂β,则α∥β;
②若α∥β,l⊂α,m⊂β,则l∥m;
③若α∩β=l,γ∩β=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数为( )
A.3
B.2
C.1
D.0
解析:①中,两平面也可能相交,故①错误;② 中,l与m也可能异面,故②错误;
2.平面与平面平行的判定与性质 如图,在三棱柱 ABC-A1B1C1 中,D、P 分别是
棱 AB,A1B1 的中点,求证:
(1)AC1∥平面 B1CD; (2)平面 APC1∥平面 B1CD.
证明:(1)设BC1与B1C的交点为O,连接OD,BC1.
因为四边形BCC1B1为平行四边形,所以O为B1C中点, 又D是AB的中点,所以OD是三角形ABC1的中位线, 则OD∥AC1, 又因为AC1⊄平面B1CD,OD⊂平面B1CD, 所以AC1∥平面B1CD.
1.直线与平面平行的判定与性质 正方形ABCD与正方形ABEF所在平面相交于
AB,在AE、BD上各有一点P、Q,且AP=DQ.求证: PQ∥平面BCE.
证明:法一:如图所示,作PM∥AB交 BE于M,作QN∥AB交BC于N,
连接MN. 因为正方形ABCD和正方形ABEF有公共边AB,所 以AE=BD.
由线面平行的性质定理可得PQ∥AB1,点P是平面 AA1D1D的中心,则点P是直线AD1的中点,
故PQ为△AB1D1的中位线,
故PQ=12AB1=
2 2.
答案:
2 2
9.如图所示,在正方体ABCD-A1B1C1D1中,M、 N、P分别为所在边的中点.求证:平面MNP∥平面 A1C1B.

2020年北京空中课堂-高一数学(人教B版2019)-空间中的平行关系 课件

2020年北京空中课堂-高一数学(人教B版2019)-空间中的平行关系 课件

五、平面与平面平行的定义
平面与平面平行(简称面面平行) 定义:已知平面 和平面, 当 I = 时,称平面 和平面 平行,记作 // . 符号表示: // I =
图形表示:
面面平行的定义给出了面面平行的一个充要条件.
六、总结
空间中的平行关系
直线与直线平行 直线与平面平行 平面与平面平行
四、直线与平面平行的定义
前面我们研究了空间中两直线的平行关系,如果把其中一条直线拓 展成一个平面,使得直线和平面没有公共点呢?
比如教室内的日光灯管所在直线 l,和教室的地面所在平面 ,没 有公共点,我们也称直线和平面平行,记作 l // .
四、直线与平面平行的定义
直线与平面平行(简称线面平行) 定义:设l 是空间中的一条直
直线 m,教室的地面抽象成平面 ,教室
的天花板抽象成平面 ,观察上述直线与
直线,直线与平面,平面与平面之间有什 么共同的特征?
一个共同点是:都没有公共点.
一、情景与问题
分析:
没有公共点的几何图形之间的 关系,我们如何从数学的角度去认 识它们呢?
本主题的主要内容——空间中的平行关系.
一、情景与问题
符号表示: a//b, a//c,则b//c
图形表示:
三、直线与直线平行的性质
问题:由空间平行线的传递性可以得到哪些性质呢? 分析:结合之前几何体的学习,由空间平行线的传递性可以得到 一些线线平行关系.
例如,如图所示的棱柱中,因为侧面都是平 行四边形,所以有 AA1 //BB1 //CC1 //DD1 //EE1 .
直线与直线平行(简称线线平行) 定义:直线 l 和直线 m是空间中的两 条直线且在同一平面内,如果 m I l= ,即没有公共点,则称这两条直

人教版高中数学2019-2020 第二章 4平面与平面平行的性质(共13张PPT)教育课件

人教版高中数学2019-2020 第二章 4平面与平面平行的性质(共13张PPT)教育课件
推论:
如果一个平面内有两条相交直线分别平行于 另一个平面内的两条直线,那么这两个平面平行
面面平行性质定理: 面面平行 线线平行
如果两个平行平面同时与第三个平面相交, 那么它们的交线平行。
再见!
凡 事都 是多 棱镜 ,不同 的角 度会 看到 不同 的结 果。若 能把 一些 事看 淡了 ,就会 有个 好心 境, 若把 很多 事 看开了 ,就 会有 个好 心情。 让聚 散离 合犹 如月 缺月 圆那样 寻常 ,
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。

【2019版课标版】高考数学文科精品课件§8.4直线、平面平行的判定与性质(20200509085056).pdf

【2019版课标版】高考数学文科精品课件§8.4直线、平面平行的判定与性质(20200509085056).pdf
解析 (1)证法一 :连接 DG,CD, 设 CD∩GF=O, 连接 OH.
在三棱台 DEF-ABC 中,AB=2DE,G 为 AC 的中点 ,可得 DF ∥GC,DF=GC, 所以四边形 DFCG 为平行四边形 . 则 O 为 CD 的中点 ,又 H 为 BC 的中点 ,所以 OH ∥BD, 又 OH ? 平面 FGH,BD ?平面 FGH,所以 BD ∥ 平面 FGH. 证法二 :在三棱台 DEF-ABC 中 , 由 BC=2EF,H 为 BC 的中点 ,可得 BH ∥EF,BH=EF, 所以四边形 BHFE 为平行四边形 ,可得 BE∥ HF. 在 △ABC 中 ,G 为 AC 的中点 ,H 为 BC 的中点 , 所以 GH ∥AB. 又 GH ∩ HF=H, 所以平面 FGH∥ 平面 ABED. 因为 BD ? 平面 ABED, 所以 BD∥ 平面 FGH. (2)解法一 :设 AB=2, 则 CF=1.
★★☆
分析解读 1.理解空间直线和平面位置关系的定义 ; 了解直线和平面的位置关系 ;掌握直线与平面平行的判定定理和性质定理 .2.会运用直线与平面及平
面与平面的位置关系 ,以及它们平行的判定定理和性质定理解决简单的应用问题与证明问题
.3.推理和证明要严谨、合理、充分 .4.高考对本节内容的考
查 ,一般通过对图形或几何体的认识 ,考查线线平行、线面平行、面面平行之间的转化思想
1
4.(2016 四川 ,18,12 分 )如图 ,在四棱锥 P-ABCD 中,AD ∥ BC,∠ ADC= ∠PAB=90°,BC=CD= 2AD,E 为棱 AD 的中点 ,异面直线 PA 与 CD 所成的角为 90°.
(1)在平面 PAB 内找一点 M, 使得直线 CM ∥平面 PBE,并说明理由 ; (2)若二面角 P-CD-A 的大小为 45°, 求直线 PA 与平面 PCE 所成角的正弦值 .

第13讲 点直线平面之间位置关系

第13讲 点直线平面之间位置关系

第13讲 │ 要点热点探究
► 探究点三 垂直关系的证明
例 3 [2011· 课标全国卷] 如图 13-4,四棱锥 P- ABCD 中,底面 ABCD 为平行四边形,∠DAB=60° , AB=2AD,PD⊥底面 ABCD. (1)证明:PA⊥BD; (2)设 PD=AD=1,求棱锥 D-PBC 的高.
第13讲 │ 要点热点探究
(2)∵PD⊥平面 ABCD, GC⊂平面 ABCD, ∴GC⊥PD.∵ABCD 为正方形,∴GC⊥CD.∵PD∩CD=D,∴GC⊥平面 PCD. 1 1 1 1 ∵PF= PD=1,EF= CD=1,∴S△PEF= EF· PF= . 2 2 2 2 1 1 1 1 1 ∵GC= BC=1,∴VP-EFG=VG-PEF= S△PEF· GC= × ×1= . 2 3 3 2 6
D 【解析】 假设 l 与 a、b 均不相交,则 l∥a,l∥b, 从而 a∥b 与 a、b 是异面直线矛盾.故 l 至少与 a、b 中的一 条相交.选 D.
第13讲 │ 要点热点探究
如图 13-1,平面 α⊥平面 β,α∩β=直线 l,A,C 是 α 内不同的两点,B,D 是 β 内不同的两点,且 A,B,C,D∉直线 l, M,N 分别是线段 AB,CD 的中点.下列判断正确的是( )
第13讲 │ 规律技巧提炼
4.面面垂直的性质定理在立体几何中是一个极 为关键的定理, 这个定理的主要作用是作一个平面的 垂线,在一些垂直关系的证明中,在线面角、二面角 的求解中很多情况都要借助这个定理作出平面的垂 线.垂直问题的关键是线面垂直,通过线面垂直证明 线线垂直(线面垂直的定义),通过线线垂直证明线面 垂直(线面垂直的判定定理)、 面面垂直(面面垂直的判 定定理), 在解决垂直问题中要把这些垂直关系理清, 确定合理的推理论证顺序.

(江苏专版)2019版高考数学一轮复习第十三章立体几何13.2平行的判定与性质讲义

(江苏专版)2019版高考数学一轮复习第十三章立体几何13.2平行的判定与性质讲义

§13.2 平行的判定与性质考纲解读考点 内容解读 要求 五年高考统计 常考题型预测热度 2013 2014 2015 2016 2017 1.线面平行的判定与性质 1.线面平行的证明 2.线面平行的性质应用B16题 14分16题 14分解答题 ★★★2.面面平行的判定与性质1.面面平行的证明2.面面平行的性质应用B16题 14分解答题 ★★★分析解读 空间平行问题是江苏高考的热点内容,主要考查线面平行,偶考面面平行及平行的性质,复习时要抓住解决平行问题常用的基本方法,识别一些基本图形如:锥体、柱体的特征.五年高考考点一 线面平行的判定与性质1.(2015安徽改编,5,5分)已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 . (1)若α,β垂直于同一平面,则α与β平行; (2)若m,n 平行于同一平面,则m 与n 平行; (3)若α,β,则在α内与β平行的直线; (4)若m,n,则m 与n垂直于同一平面.答案 (4)2.(2014辽宁改编,4,5分)已知m,n 表示两条不同直线,α表示平面.下列说法正确的是 .①若m∥α,n∥α,则m∥n; ②若m⊥α,n ⊂α,则m⊥n; ③若m⊥α,m⊥n,则n∥α; ④若m∥α,m⊥n,则n⊥α. 答案 ②3.(2016江苏,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,D,E 分别为AB,BC 的中点,点F 在侧棱B 1B 上,且B 1D⊥A 1F,A 1C 1⊥A 1B 1.求证:(1)直线DE∥平面A 1C 1F; (2)平面B 1DE⊥平面A 1C 1F.证明 (1)在直三棱柱ABC-A 1B 1C 1中,A 1C 1∥A C. 在△ABC 中,因为D,E 分别为AB,BC 的中点, 所以DE∥AC,于是DE∥A 1C 1.又因为DE ⊄平面A 1C 1F,A 1C 1⊂平面A 1C 1F, 所以直线DE∥平面A 1C 1F.(2)在直三棱柱ABC-A 1B 1C 1中,A 1A⊥平面A 1B 1C 1. 因为A 1C 1⊂平面A 1B 1C 1,所以A 1A⊥A 1C 1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F. 因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.4.(2016山东,18,12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.证明(1)因为EF∥DB,所以EF与DB确定平面BDEF.连结DE.因为AE=EC,D为AC的中点,所以D E⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF,因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I.连结GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.5.(2015山东,18,12分)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)证法一:连结DG,CD,设CD∩GF=M,连结MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以H M∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥E F,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)连结HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE,又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩G H=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.6.(2014江苏,16,14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.证明(1)证明:因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=PA=3,EF=BC=4. 又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.7.(2014北京,17,14分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.解析(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.所以BB1⊥AB,又因为AB⊥BC,所以AB⊥平面B1BCC1.所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连结EG,FG.因为G,E,F分别是AB,A1C1,BC的中点,所以EC1=A1C1,FG∥AC,且FG=AC.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1.所以四边形FGEC1为平行四边形.所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB==.所以三棱锥E-ABC的体积V=S△ABC·AA1=×××1×2=.教师用书专用(8—13)8.(2016四川,17,12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.解析(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:连结CM.因为AD∥BC,BC=AD,所以BC∥AM,且BC=AM.所以四边形AMCB是平行四边形,从而CM∥AB.又AB⊂平面PAB,CM⊄平面PAB,所以CM∥平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明:连结BM,由已知,PA⊥AB,PA⊥CD,因为AD∥BC,BC=AD,所以直线AB与CD相交,所以P A⊥平面ABCD.从而PA⊥BD.因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形.所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面PAB.又B D⊂平面PBD,所以平面PAB⊥平面PBD.9.(2016课标全国Ⅲ,19,12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求四面体N-BCM的体积.解析(1)证明:由已知得AM=AD=2,取BP的中点T,连结AT,TN,由N为PC中点知TN∥BC,TN=BC=2.(3分)又AD∥BC,故TN AM,故四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(6分)(2)因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.(9分)取BC的中点E,连结AE.由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S△BCM=×4×=2.所以四面体N-BCM的体积V N-BCM=·S△BCM·=.(12分)10.(2015广东,18,14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.解析(1)证明:因为四边形ABCD是长方形,所以AD∥BC.又因为AD⊂平面PDA,BC⊄平面PDA,所以BC∥平面PDA.(2)证明:取CD的中点,记为E,连结PE,因为PD=PC,所以PE⊥DC.又因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,PE⊂平面PDC,所以PE⊥平面ABCD.又BC⊂平面ABCD,所以PE⊥BC.因为四边形ABCD为长方形,所以BC⊥DC.又因为PE∩DC=E,所以BC⊥平面PDC.而PD⊂平面PDC,所以BC⊥PD.(3)连结AC.由(2)知,BC⊥PD,又因为AD∥BC,所以AD⊥PD,所以S△PDA=AD·PD=×3×4=6.在Rt△PDE中,PE===.S△ADC=AD·DC=×3×6=9.由(2)知,PE⊥平面ABCD,则PE为三棱锥P-ADC的高.设点C到平面PDA的距离为d,由V C-PDA=V P-ADC,即d·S△PDA=PE·S△ADC,亦即×6d=××9,得d=.故点C到平面PDA的距离为.11.(2014安徽,19,13分)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2,点G,E,F,H 分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.解析(1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)连结AC,BD交于点O,BD交EF于点K,连结OP,GK.因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD.又因为平面GEFH⊥平面ABCD,且PO⊄平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,所以GK⊥底面ABCD,从而GK⊥EF.所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=DB=OB,即K为OB的中点.再由PO∥GK得GK=PO,且G是PB的中点,所以GH=BC=4.由已知可得OB=4,PO===6,所以GK=3.易得EF=BC=8,故四边形GEFH的面积S=·GK=×3=18.12.(2014四川,18,12分)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.解析(1)证明:因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.因为AB,AC为平面ABC内两条相交直线 ,所以AA1⊥平面ABC.因为直线BC⊂平面ABC,所以AA1⊥B C.又AC⊥BC,AA1,AC为平面ACC1A1内两条相交直线,所以BC⊥平面ACC1A1.(2)取线段AB的中点M,连结A1M,MC,A1C,AC1,设O为A1C,AC1的交点.由已知可知O为AC1的中点.连结MD,OE,则MD,OE分别为△ABC,△ACC1的中位线,所以MD AC,OE AC,因此MD OE.连结OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线DE⊄平面A1MC,MO⊂平面A1MC,所以直线DE∥平面A1MC,即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.13.(2014山东,18,12分)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥B C,AB=BC=AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面PAC.证明(1)设AC∩BE=O,连结OF,EC.由于E为AD的中点,AB=BC=AD,AD∥BC,所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC,所以四边形BCDE为平行四边形,因此BE∥CD.又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP,AC⊂平面PAC,所以BE⊥平面PAC.考点二面面平行的判定与性质1.(2013安徽理,15,5分)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为答案①②③⑤2.(2013江苏,16,14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.教师用书专用(3)3.(2013陕西,18,12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.解析(1)证明:由题设知,BB1 DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊄平面CD1B1,∴BD∥平面CD1B1.∵A1D1 B1C1 BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊄平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1.(2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD-A1B1D1的高.又∵AO=AC=1,AA1=,∴A1O==1.又∵S△ABD=××=1,∴=S△ABD×A1O=1.三年模拟A组2016—2018年模拟·基础题组考点一线面平行的判定与性质1.(苏教必2,一,2,变式)下列命题中正确的是.①若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;②若直线a和平面α满足a∥α,那么a与α内的任何直线平行;③平行于同一条直线的两个平面平行;④若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α.答案④2.(2016江苏扬州中学综合练习,8)设α,β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,n⊂α,则m∥α;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,m⊂α,n⊂β,则m∥n;④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.其中正确命题的序号为.答案④3.(2016江苏镇江一模,7)设b,c表示两条直线,α,β表示两个平面,现给出下列命题:①若b⊂α,c∥α,则b∥c;②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;④若c∥α,c⊥β,则α⊥β.其中正确的命题是.(写出所有正确命题的序号)答案④4.(2018江苏徐州铜山中学期中)如图,在三棱锥S-ABC中,SA=SC,AB⊥AC,D为BC的中点,E为AC上一点,且DE∥平面SAB,求证:(1)直线AB∥平面SDE;(2)平面ABC⊥平面SDE.证明(1)因为DE∥平面SAB,DE⊂平面ABC,平面SAB∩平面ABC=AB,所以DE∥AB,因为DE⊂平面SDE,AB⊄平面SDE,所以AB∥平面S DE.(2)因为D为BC的中点,DE∥AB,所以E为AC的中点,又因为SA=SC,所以SE⊥AC,又AB⊥AC,DE∥AB,所以DE⊥AC.又DE,SE⊂平面SDE,DE∩SE=E,所以AC⊥平面SDE.因为AC⊂平面ABC,所以平面ABC⊥平面SDE.5.(2017江苏镇江一模,16)在长方体ABCD-A1B1C1D1中,AB=BC=EC=AA1.(1)求证:AC1∥平面BDE;(2)求证:A1E⊥平面BDE.证明(1)连结AC交BD于点O,连结OE.在长方体ABCD-A1B1C1D1中,四边形ABCD为正方形,∴点O为AC的中点,∵AA1=CC1,EC=AA1,∴EC=CC1,即点E为CC1的中点,∴在△CAC1中,AC1∥OE.又因为OE⊂平面BDE,AC1⊄平面BDE,所以AC1∥平面BDE.(2)连结B1E.设AB=a,则在△BB1E中,BE=B1E=a,BB1=2a,所以BE2+B1E2=B,所以B1E⊥BE.由ABCD-A1B1C1D1为长方体,得A1B1⊥平面BB1C1C,∵BE⊂平面BB1C1C,所以A1B1⊥BE.又B1E∩A1B1=B1,B1E⊂平面A1B1E,A1B1⊂平面A1B1E,∴BE⊥平面A1B1E.又因为A1E⊂平面A1B1E,所以A1E⊥BE.同理,A1E⊥DE.又因为BE⊂平面BDE,DE⊂平面BDE,BE∩DE=E,所以A1E⊥平面BDE.6.(2017江苏南京高淳质检,16)如图,四棱锥P-ABCD中,O为菱形ABCD对角线的交点,M为棱PD的中点,MA=MC.(1)求证:PB∥平面AMC;(2)求证:平面PBD⊥平面AMC.证明(1)连结OM,因为O为菱形ABCD对角线的交点,所以O为BD的中点,又M为棱PD的中点,所以OM∥PB,又OM⊂平面AMC,PB⊄平面AMC,所以PB∥平面AMC.(2)在菱形ABCD中,AC⊥BD,且O为AC的中点,又MA=MC,故AC⊥OM,而OM∩BD=O,OM,BD⊂平面PBD,所以AC⊥平面PBD,又AC⊂平面AMC,所以平面PBD⊥平面AMC.7.(2017南京、盐城二模,16)如图,四棱锥P-ABCD中,AD⊥平面PAB,AP⊥AB.(1)求证:CD⊥AP;(2)若CD⊥PD,求证:CD∥平面PAB.证明(1)因为AD⊥平面PAB,AP⊂平面PAB,所以AD⊥AP.又因为AP⊥AB,且AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,所以AP⊥平面ABCD.因为CD⊂平面ABCD,所以CD⊥AP.(2)因为CD⊥AP,CD⊥PD,且PD∩AP=P,PD⊂平面PAD,AP⊂平面PAD,所以CD⊥平面PAD.①因为AD⊥平面PAB,AB⊂平面PAB,所以AB⊥AD.又因为AP⊥AB,且AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以AB⊥平面PAD.②由①②得C D∥AB,因为CD⊄平面PAB,AB⊂平面PAB,所以CD∥平面PAB.考点二面面平行的判定与性质8.(苏教必2,一,2,变式)如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连结SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连结SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.9.(苏教必2,一,2,变式)如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连结AE,与DF交于点O,连结MO,易知,O为AE的中点,因为M为AB的中点,所以MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,N为AD中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.B组2016—2018年模拟·提升题组(满分:40分时间:20分钟)一、填空题(每小题5分,共10分)1.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是.①AB∥CD;②AD∥CB;③AB与CD相交;④A,B,C,D四点共面.答案④2.给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m.γ∩α=n,l∥γ,则m∥n.其中真命题的个数为.答案 1二、解答题(共30分)3.(2017苏锡常镇四市教学情况调研(二),16)如图,在四面体ABCD中,平面ABC⊥平面ACD,E,F,G分别为AB,AD,AC的中点,AC=BC,∠ACD=90°.(1)求证:AB⊥平面EDC;(2)若P为FG上任意一点,证明:EP∥平面BCD.证明(1)因为平面ABC⊥平面ACD,∠ACD=90°,平面ABC∩平面ACD=AC,CD⊂平面ACD,所以CD⊥平面ABC,又AB⊂平面ABC,所以CD⊥AB,因为AC=BC,E为AB的中点,所以CE⊥AB,又CE∩CD=C,CD⊂平面EDC,CE⊂平面EDC,所以AB⊥平面EDC.(2)连结EF,EG,EP,因为E,F分别为AB,AD的中点,所以EF∥BD,又BD⊂平面BCD,EF⊄平面BCD,所以EF∥平面BCD,同理可证EG∥平面BCD,又EF∩EG=E,EF⊂平面EFG,EG⊂平面EFG,所以平面EFG∥平面BCD,又P为FG上任一点,所以EP⊂平面EFG,所以EP∥平面BCD.4.(2017江苏淮阴中学第一学期期末)如图,在几何体ABCDE中,四边形ABCD是正方形,正三角形BCE的边长为2,DE=2,F为线段CD的中点,G为线段AE的中点.(1)求证:GF∥平面BCE;(2)求证:平面ABCD⊥平面BCE.证明(1)取BE的中点H,连结GH,CH,所以GH为△A BE的中位线,所以GH∥AB,且GH=AB,易知CF∥AB,且CF=AB,所以HG CF,所以四边形GHCF为平行四边形,所以GF∥HC,因为HC⊂平面BCE,GF⊄平面BCE,所以GF∥平面BCE.(2)由题意知DC=EC=2,ED=2,所以DC2+EC2=ED2,所以DC⊥E C,又因为四边形ABCD是正方形,所以DC⊥BC,又EC,BC⊂平面BCE,EC∩BC=C,所以DC⊥平面BCE,又因为DC⊂平面ABCD,所以平面ABCD⊥平面BCE.C组2016—2018年模拟·方法题组方法1 证明直线与平面平行的常用方法1.如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.证明(1)由AB是圆O的直径,C是圆O上的点,得AC⊥BC.由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.(2)连结OG并延长交AC于M,连结QM,QO,由G为△AOC的重心,得M为AC中点.由Q为PA中点,得QM∥PC.由O为AB中点,得OM∥BC.因为QM∩MO=M,QM⊂平面QMO,MO⊂平面QMO,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC,所以平面QMO∥平面PBC.因为QG⊂平面QMO,所以QG∥平面PBC.2.如图,已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将△AEF沿线段EF折起到△A'EF 位置,使得A'C=2.(1)求五棱锥A'-BCDFE的体积;(2)在线段A'C上是否存在一点M,使得BM∥平面A'EF?若存在,求A'M的长;若不存在,请说明理由.解析(1)连结AC,与EF交于点H,连结A'H.∵四边形ABCD是正方形,AE=AF=4,∴H是EF的中点,且EF⊥AH,EF⊥CH,从而有A'H⊥EF,又A'H∩CH=H,∴EF⊥平面A'HC,∵EF⊂平面ABCD,∴平面A'HC⊥平面ABCD,过点A'作A'O垂直HC交HC于点O,∵平面A'HC∩平面ABCD=CH,∴A'O⊥平面ABCD,因为正方形ABCD的边长为6,AE=AF=4,故A'H=2,CH=4,所以cos ∠A'HC===.所以HO=A'H·cos ∠A'HC=,∴A'O=,所以五棱锥A'-BCDFE的体积V=××=.(2)线段A'C上存在点M,使得BM∥平面A'EF,此时A'M=.理由如下:连结OM,BD,BM,DM,易知BD过O点.因为A'M==A'C,HO=HC,所以OM∥A'H,又OM⊄平面A'EF,A'H⊂平面A'EF,所以OM∥平面A'EF,易知BD∥EF,因为BD⊄平面A'EF,EF⊂平面A'EF,所以BD∥平面A'EF,又BD∩OM=O,所以平面MBD∥平面A'EF,因为BM⊂平面MBD,所以BM∥平面A'EF.方法2 平行的性质及应用3.在三棱锥P-SBC中,A,D分别为边SB,SC的中点,AB=2,BC=4,CD=2.平面PSB⊥平面ABCD,平面PAD⊥平面ABCD.(1)求证:PA⊥CD;(2)若平面PAD∩平面PBC=l,求证:l∥BC.证明(1)因为A、D分别为SB,SC的中点,且AB=2,CD=2,所以AD∥BC,且SB=4,SC=4,又因为BC=4,且42+42=(4)2,所以SB⊥BC,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,所以AD⊥平面PAB,又PA⊂平面PAB,所以AD⊥PA.同理,可证明AB⊥PA,而AB,AD⊂平面ABCD,AB∩AD=A,所以PA⊥平面ABCD,因为CD⊂平面ABCD,所以PA⊥CD.(2)因为AD∥BC,BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD,又BC⊂平面PBC,平面PAD∩平面PBC=l,所以l∥BC.。

高中数学《平行关系的性质》课件

高中数学《平行关系的性质》课件

课前自主学习
课堂合作研究
随堂基础巩固
课后课时精练
例 1 ABCD 是平行四边形,点 P 是平面 ABCD 外一点,M 是 PC 的中 点,在 DM 上取一点 G,过 G 和 AP 作平面交平面 BDM 于 GH.求证:AP∥ GH.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
[证明] 连接 AC 交 BD 于 O,连接 MO.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
答案
BC⊆/ 平面 PAD,AD 平面 PAD,所以 BC∥平面 PAD.
又因为 BC 平面 PBC,平面 PBC∩平面 PAD=l, 所以 BC∥l. (2)平行.取 PD 的中点 E,连接 AE,NE, 可以证得 NE∥AM 且 NE=AM. 可知四边形 AMNE 为平行四边形.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
2.平面与平面平行的性质
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
【即时小测】 1.思考下列问题 (1)分别在两个平行平面的直线有什么位置关系?
提示:平行或异面,因为两平面平行无公共点,所以两直线无公共点, 即平行或异面.
课前自主学习
课堂互动探究
课后课时精练
答案
例 2 已知 α∥β,A,C∈α,B,D∈β,直线 AB 与 CD 交于点 S,且 SA=8,SB=9,CD=34,求当 S 在 α,β 之间时 SC 的长.
[解] 如图所示.
课前自主学习
课堂互动探究
随堂巩固训练
课后课时精练
答案
∵AB 与 CD 相交于 S, ∴AB,CD 可确定平面 γ,且 α∩γ=AC,β∩γ=BD. ∵α∥β,∴AC∥BD,∴SSAB=SSDC, ∴SAS+ASB=CSCD,即S3C4 =187,解得 SC=16.

高中数学必修二《平行关系的性质》教学课件(北师大版)

高中数学必修二《平行关系的性质》教学课件(北师大版)

思考9:若 // ,直线l与平面α相交,那么直线l与平面β
的位置关系如何?
l
α
α
β
β
思考10:若 // ,平面α与平面γ相交,则平面β与平
面γ的位置关系如何?

思考11:若 // ,平面α、β分别与平面γ相交于直线a、b,
那么直线a、b的位置关系如何?为什么?

,那么直线a与平面α内的直线
有哪些位置关系?
a
a
α
α
思考2:若直线a与平面α平行,那么在平面α内与直线a平行 的直线有多少条?这些直线的位置关系如何?

知识探究(二):直线与平面平行的性质定理
思考5:综上分析,在直线与平面平行的条件下可以得到什么 结论?并用文字语言表述之.
定理:如果一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.

思考6:上述定理通常称为直线与平面平行的性质定理,该定 理用符号语言可怎样表述?
平行关系的性质
问题提出
1.直线与平面平行和平面与平面平行的判定定理是什么?
定理 若平面外一条直线与此平面内的一条直线平行,则该直 线与此平面平行 定理 如果一个平面内的两条相交直线与另一个平面平行,则 这两个平面平行.
2.直线与平面平行的判定定理和平面与平面平行的判定定理 解决了直线与平面平行和平面与平面平行的条件问题,反之, 在直线与平面平行和平面与平面平行的条件下,可以得到什 么结论呢?
求证:AB DE
BC EF
A
证明:连结BM、EM、BE.
∵β∥γ,平面ACF分别交β、
γ于BM、CF,∴BM∥CF.∴
AB AM BC MF
B
同理,

广东省连州市高三数学 《5.空间的平行关系》课件 新人教A版

广东省连州市高三数学 《5.空间的平行关系》课件 新人教A版

a∥
a∥b
D
A
E
C
O
B
练习 1(06’天津)在五面体ABCDEF中,点O是
矩形ABCD的对角线的交点,面CDE是等边
三角形,棱
EF
//
1 2
BC
.
(1)证明FO//平面CDE;
F
E
A O
B
D M
C
2(08’安徽)如图,在四棱锥O-ABCD中,底面ABCD四 边长为1的菱形,∠ABC=45°, OA⊥底面ABCD, OA=2,M为OA的中点,N为BC的中点 (Ⅰ)证明:直线MN∥平面OCD;
O
M
G
A
E
D
B
N
C
3.例1的变式训练
例:如图,已知正方形ABCD的边长是13,平面 ABCD外一点P到正方形各顶点的距离都为13, M,N分别是PA,BD上的点,且 PM:MA=BN:ND=5:8,
(1)求证:MN//平面PBC; (2)求线段MN的长。
G
4.如图所示,四边形EFGH为空间四边形ABCD的一个截 面,若截面为平行四边形,求证:AB∥平面EFGH .
P
A
B
C
(07’全国Ⅰ)四棱锥S-ABCD中, 底面ABCD为平行 四边形,侧面SBC⊥底面ABCD.已知∠ABC=45°, AB=2,BC= 2 2 , SA=SB= 3. (Ⅰ)证明:SA⊥BC;
3 3
O
2
22
题型二 证明线面垂直
(05’广东16)在四面体P-ABC中,已知PA=BC=6, PC=AB=10,AC=8,PB 2 34, F是线段PB上一 点,CF 15 34. 点E在线段AB上,且EF⊥PB. (Ⅰ)证1明7 :PB⊥平面CEF;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又AP=DQ,所以PE=QB, 又PM∥AB∥QN, 所以PAMB =APEE=QBDB,QDNC=BBQD, 所以PAMB =QDNC, 所以PM QN,即四边形PMNQ为平行四边形, 所以PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, 所以PQ∥平面BCE.
法二:如图所示,作PH∥EB交AB于 H,连接HQ,则AHHB=APEP,
3.平行关系的综合应用
如图所示,四棱锥P-ABCD的底面是
边长为a的正方形,侧棱PA⊥底面ABCD,在
侧面PBC内,有BE⊥PC于点E,且BE=
6 3
a,试在AB上找一点F,使EF∥平面PAD.
解:如图所示,
在平面PCD内,过E作EG∥CD交PD于点
G,
连接AG,在AB上取点F,使AF=EG, 因为EG∥CD∥AF,EG=AF, 所以四边形FEGA为平行四边形, 所以FE∥AG. 又AG⊂平面PAD,FE⊄平面PAD, 所以EF∥平面PAD.所以F即为所求的点. 又PA⊥底面ABCD,所以PA⊥BC. 又BC⊥AB,PA∩AB=A,
A.若l∥α,m⊂α,则l∥m B.若l∥α,m∥α,则l∥m C.若l⊂α,m⊂β,α∥β,则l∥m D.若l∥α,l∥β,α∩β=m,则l∥m 答案:D
2.一条直线l上有相异三个点A、B、C到平面α的距
离相等,那么直线l与平面α的位置关系是( )
A.l∥α
B.l⊥α
C.l与α相交但不垂直 D.l∥α或l⊂α
1.直线与平面平行的判定与性质 正方形ABCD与正方形ABEF所在平面相交于
AB,在AE、BD上各有一点P、Q,且AP=DQ.求证: PQ∥平面BCE.
证明:法一:如图所示,作PM∥AB交 BE于M,作QN∥AB交BC于N,
连接MN. 因为正方形ABCD和正方形ABEF有公共边AB,所 以AE=BD.
所以MN∥D1C.因为D1C∥A1B,所以MN∥A1B.同理 可证,MP∥C1B.
而MN与MP相交,MN,MP在平面MNP内,A1B, C1B在平面A1C1B内,所以平面MNP∥平面A1C1B.
10.如图所示,在四棱锥C-ABED中,四边形ABED 是正方形,点G,F分别是线段EC,BD的中点.
C.当点F从A1运动到D1的过程中,二面角F-BC-A 的大小不变
D.当点F从A1运动到D1的过程中,点D到平面CBF 的距离逐渐变大
解析:因为AD在平面ADD1A1内,且平行平面 CBF,故A错误;
平面CBF即平面A1D1CB,又平面A1D1CB与平面 ABCD斜相交,
所以在平面ABCD内不存在与平面CBF垂直的直 线,故B错误;
所以BC⊥平面PAB.所以PB⊥BC. 所以PC2=BC2+PB2=BC2+AB2+PA2. 设PA=x则PC= 2a2+x2,由PB·BC=BE·PC,得
a2+x2·a= 2a2+x2·36a,所以x=a,即PA=a, 所以PC= 3a.又CE= a2- 36a2= 33a, 所以PPEC=23,所以GCDE=PPEC=23,
答案:D
Hale Waihona Puke 3.已知m,n是空间中的两条不同的直线,α,β是 空间中的两个不同的平面,则下列命题正确的是( )
A.若m∥n,m∥α,则n∥α. B.若α∥β,m∥α,则m∥β. C.若m⊥n,n⊂α,则m⊥α. D.若m⊥α,m⊂β,则α⊥β. 答案:D
4.已知三条互不相同的直线l,m,n和三个互不相
理由如下:由点G,H分别为CE,CB中点可得: GH∥EB∥AD.
因为GH⊄平面ACD,所以GH∥平面ACD,由(1)可 知,GF∥AC,所以GF∥平面ACD.
且GF∩GH=G,故平面GFH∥平面ACD.
③中,易知l⊂β,又l∥γ,β∩γ=m,所以由线面
平行的性质定理知l∥m, 同理l∥n,所以m∥n,故③正确. 答案:C
5.如图,在正方体ABCD-A1B1C1D1中,F是棱A1D1 上的动点.下列说法正确的是( )
A.对任意动点F,在平面ADD1A1内不存在与平面 CBF平行的直线
B.对任意动点F,在平面ABCD内存在与平面CBF 垂直的直线
8.已知正方体ABCD-A1B1C1D1的棱长为1,点P是 平面AA1D1D的中心,点Q是平面A1B1C1D1的对角线B1D1 上一点,且PQ∥平面AA1B1B,则线段PQ的长为____.
解析:如图所示,连接AD1,AB1,由于PQ∥平面 AA1B1B,PQ在平面AB1D1内,且平面AA1B1B∩平面 AB1D1=AB1,
即GE=23CD=23a,所以AF=23a.即AF=23AB. 故点F是AB上靠近B点的一个三等分点. 剖析:利用线面平行的性质,可以实现与线线平行 的转化,尤其在截面图的画法中,常用来确定交线的位 置,对于最值问题,常用函数思想来解决.
1.已知l,m为两条不同直线,α,β为两个不同平 面,则下列命题正确的是( )
同的平面α,β,γ,现给出下列三个命题:
①若l与m为异面直线,l⊂α,m⊂β,则α∥β;
②若α∥β,l⊂α,m⊂β,则l∥m;
③若α∩β=l,γ∩β=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数为( )
A.3
B.2
C.1
D.0
解析:①中,两平面也可能相交,故①错误;② 中,l与m也可能异面,故②错误;
(2)因为P为线段A1B1的中点,点D是AB的中点, 所以AD∥B1P且AD=B1P, 则四边形ADB1P为平面四边形,所以AP∥DB1, 又因为AP⊄平面B1CD,DB1⊂平面B1CD, 所以AP∥平面B1CD. 又AC1∥平面B1CD,AC1∩AP=A,且AC1⊂平面 APC1,AP⊂平面APC1, 所以平面APC1∥平面B1CD.
因为AE=BD,AP=DQ, 所以PE=BQ, 所以AHHB=APEP=DBQQ, 所以HQ∥AD,即HQ∥BC. 又PH∩HQ=H,BC∩EB=B,
所以平面PHQ∥平面BCE, 而PQ⊂平面PHQ, 所以PQ∥平面BCE. 剖析:判断或证明线面平行的常用方法: (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥ α). (3)利用面面平行的性质定理(α∥β, a⊂α⇒a∥β). (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
剖析:证明面面平行的方法: (1)面面平行的定义; (2)面面平行的判定定理:如果一个平面内有两条相 交直线都平行于另一个平面,那么这两个平面平行; (3)利用垂直于同一条直线的两个平面平行; (4)两个平面同时平行于第三个平面,那么这两个平 面平行; (5)利用“线线平行”“线面平行”“面面平行”的 相互转化.
平面CBF即平面A1D1CB,平面A1D1CB与平面ABCD 是确定平面,
所以二面角不改变,故C正确; 平面CBF即平面A1D1CB,点D到平面A1D1CB的距离 为定值,故D错误. 答案:C
6.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α 的位置关系是________.
解析:由题意知线与面垂直,且与线也垂直.则线 与面的位置关系为b∥α或b⊂α.
由线面平行的性质定理可得PQ∥AB1,点P是平面 AA1D1D的中心,则点P是直线AD1的中点,
故PQ为△AB1D1的中位线, 故PQ=12AB1= 22.
答案:
2 2
9.如图所示,在正方体ABCD-A1B1C1D1中,M、 N、P分别为所在边的中点.求证:平面MNP∥平面 A1C1B.
证明:如图所示,连接D1C,则MN为△DD1C的中 位线,
(1)求证:GF∥平面ABC; (2)线段BC上是否存在一点H,使得平面GFH∥平面 ACD,若存在,请找出点H并证明;若不存在,请说明 理由.
(1)证明:由四边形ABED为正方形可知,连接AE必 与BD相交于中点F,
故GF∥AC,因为GF⊄平面ABC,所以GF∥平面 ABC.
(2)解:线段BC上存在一点H满足题意,且点H是BC 中点.
a⊂β α∩β=b a∥b
2.面面平行的判定与性质
判定
项目
定义
定理
性质
图形
条件
____⊂____, ______ ⊂____,
________
________ α∥β,a⊂β
________
结论 α∥β
α∥β
a∥b
a∥α
答案:α∩β=∅ a β b β a∩b=P,a∥α,b ∥α α∥β α∩γ=a,β∩γ=b
2.平面与平面平行的判定与性质 如图,在三棱柱 ABC-A1B1C1 中,D、P 分别是
棱 AB,A1B1 的中点,求证:
(1)AC1∥平面 B1CD; (2)平面 APC1∥平面 B1CD.
证明:(1)设BC1与B1C的交点为O,连接OD,BC1.
因为四边形BCC1B1为平行四边形,所以O为B1C中点, 又D是AB的中点,所以OD是三角形ABC1的中位线, 则OD∥AC1, 又因为AC1⊄平面B1CD,OD⊂平面B1CD, 所以AC1∥平面B1CD.
答案:b∥α或b⊂α
7.(教材习题改编)已知平面α∥β,直线a⊂α,有下 列说法:
①a与β内的所有直线平行; ②a与β内无数条直线平行; ③α与β内的任意一条直线都不垂直. 其中真命题的序号是________. 解析:由面面平行的性质可知,过a与β相交的平面与β 的交线才与a平行,故①错误;②正确;平面β内的直线与 直线a平行,异面均可,其中包括异面垂直,故③错误. 答案:②
专题三 立体几何初步
第13讲 平行关系
1.直线与平面平行的判定与性质
判定
项目
性质
定义
定理
图形
________, ________,
条件 ______ ________, ________,
________
________
相关文档
最新文档