姚启钧物理学光学第五章光的偏振

合集下载

光学教程第四版(姚启钧)期末总结

光学教程第四版(姚启钧)期末总结

光学教程第四版(姚启钧)期末总结第一章小结● 一、光的电磁理论● ①光是某一波段的电磁波,其速度就是电磁波的传播速度。

● ②光波中的振动矢量通常指的是电场强度。

● ③可见光在电磁波谱中只占很小的一部分,波长在 390 ~ 760 n m 的狭窄范围以内。

● ④光强(平均相对光强): I =A ^2 。

二、光的干涉:● ①干涉:满足一定条件的两列或两列以上的波在空间相遇时,相遇空间的光强从新分布:形成稳定的、非均匀的周期分布。

● ②相干条件:频率相同、振动方向相同、相位差恒定。

●③干涉光强:)cos(2122122212??-++=A A A A A 三、相位差和光程差真空中均匀介质中nr =?r n =?=1ctr cnr ===?υ光程:光程差: 12r r -=δ1122r n r n -=δ)t t (c r cr c121122=υυδ相位差:()()121222r r k r r-=-==λπδλπ()1,21==n o o ?空间角频率或角波数--=λπ2k四、干涉的分类:9.5311.17.1.b 1.109.18.1.a 25.14.11)分振动面干涉(、等倾干涉、、等厚干涉)分振幅干涉(、)分波面干涉(.五、干涉图样的形成:(1)干涉相长()()2,1,0,22:222:1212±±==-?=-?=?j j r r then j r r j if λπλππ?则:(2)干涉相消:2,1,0,212:12212:1212±±=+=-+=-+=?j j r r then j r r j if λπλππ?则六、干涉条纹的可见度:七、≥≈≈==+=条纹便可分辨一般情况模糊不清不可以分辨当清晰条纹反差最大时当,7.0V ,,0V ,I I ,1,V ,0I I I I -I V min max min minmax minmax212122121222121I I I I 2)A /A (1)A /A (2A A A 2A V +=+=+=七、半波损失的结论:当光从折射率小的光疏介质向折射率大的光密介质表面入射时,反射过程中反射光有半波损失。

光学教程(姚启钧) 第5章 光的偏振-2

光学教程(姚启钧) 第5章 光的偏振-2

讨论:椭圆的形状与Ax、Ay和Δφ有关,分析几种特殊情形
Ex 2 E y 2 2Ex E y ( ) ( ) cos sin 2 Ax Ay Ax Ay
(1) Δφ=0或±2π的整数倍:
Ex 2 E y 2 2Ex E y ( ) ( ) 0 Ax Ay Ax Ay
Ex E y 2 ( ) 0 Ax Ay
光强不变为自然光
自然光
圆偏振光
自然光
线偏振光 光强变化且消光 圆偏振光
¼ 波片
旋转偏振片
25
光学教程—第五章
三、部分偏振光和椭圆偏振光的检定
(3)区分部分偏振光和椭圆偏振光(仍用1/4波片和检偏器)
部分偏 振光
部分偏 振光
光强变化无消光 部分偏振光 椭圆偏振光 线偏振光 光强变化且消光 椭圆偏振光
椭圆的一般方程
结论:电矢量E的矢端轨迹为椭圆——椭圆偏振光 边长为2Ax、2Ay的矩形,椭圆与其内切 Ey Ex 在±Ax之间变化 Ay Ey在±Ay之间变化
E α -Ax O -Ay Ax Ex
椭圆主轴(长轴)与x夹角α 2 Ax Ay tg 2 2 cos 2 Ax Ay 15
光学教程—第五章
迎光传播方向观察 合矢量顺时针旋转,右旋偏振光 合矢量逆时针旋转,左旋偏振光
Ex Ax cos( t kz)

相隔1/4( Δφ=π/2 )周期 E y Ay cos( t kz ) 值的分析
sin 0
判据
左旋偏振光 右旋偏振光
20
sin 0
光学教程—第五章
14
光学教程—第五章
Ey Ex E cos 1 ( x ) 2 sin Ax Ax Ay 2Ex E y Ey 2 Ex 2 Ex 2 2 2 [1 ( ) ] sin ( ) cos cos ( ) Ax Ax Ax Ay Ay Ex 2 E y 2 2Ex E y ( ) ( ) cos sin 2 Ax Ay Ax Ay

光学教程第三版(姚启钧著)课后题答案下载

光学教程第三版(姚启钧著)课后题答案下载

光学教程第三版(姚启钧著)课后题答案下载《光学教程》以物理光学和应用光学为主体内容。

以下是为大家的光学教程第三版(姚启钧著),仅供大家参考!点击此处下载???光学教程第三版(姚启钧著)课后题答案???本教程以物理光学和应用光学为主体内容。

第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。

第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。

绪论0.1光学的研究内容和方法0.2光学发展简史第1章光的干涉1.1波动的独立性、叠加性和相干性1.2由单色波叠加所形成的干涉图样1.3分波面双光束干涉1.4干涉条纹的可见度光波的时间相干性和空间相干性1.5菲涅耳公式1.6分振幅薄膜干涉(一)——等倾干涉1.7分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8迈克耳孙干涉仪1.9法布里一珀罗干涉仪多光束干涉1.10光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1振动叠加的三种计算方法附录1.2简谐波的表达式复振幅附录1.3菲涅耳公式的推导附录1.4额外光程差附录1.5有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6有同一相位差的多光束叠加习题第2章光的衍射2.1惠更斯一菲涅耳原理2.2菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3夫琅禾费单缝衍射2.4夫琅禾费圆孔衍射2.5平面衍射光栅视窗与链接光碟是一种反射光栅2.6晶体对X射线的衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1夫琅禾费单缝衍射公式的推导附录2.2夫琅禾费圆孔衍射公式的推导附录2.3平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1几个基本概念和定律费马原理3.2光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3光在球面上的反射和折射3.4光连续在几个球面界面上的折射虚物的概念3.5薄透镜3.6近轴物近轴光线成像的条件3.7共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1图3-6中P1和JP1点坐标的计算附录3.2棱镜最小偏向角的计算附录3.3近轴物在球面反射时物像之间光程的计算附录3.4空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1人的眼睛4.2助视仪器的放大本领4.3目镜4.4显微镜的放大本领4.5望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜 4.6光阑光瞳4.7光度学概要——光能量的传播视窗与链接三原色原理4.8物镜的聚光本领视窗与链接数码相机4.9像差概述视窗与链接现代投影装置4.10助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11分光仪器的色分辨本领习题第5章光的偏振5.1自然光与偏振光5.2线偏振光与部分偏振光视窗与链接人造偏振片与立体电影5.3光通过单轴晶体时的双折射现象5.4光在晶体中的波面5.5光在晶体中的传播方向5.6偏振器件5.7椭圆偏振光和圆偏振光5.8偏振态的实验检验5.9偏振光的干涉5.10场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11旋光效应5.12偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1电偶极辐射对反射和折射现象的解释6.2光的吸收6.3光的散射视窗与链接光的散射与环境污染监测6.4光的色散6.5色散的经典理论习题第7章光的量子性7.1光速“米”的定义视窗与链接光频梳7.2经典辐射定律7.3普朗克辐射公式视窗与链接xx年诺贝尔物理学奖7.4光电效应7.5爱因斯坦的量子解释视窗与链接双激光束光捕获7.6康普顿效应7.7德布罗意波7.8波粒二象性附录7.1从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1光与物质相互作用8.2激光原理8.3激光的特性8.4激光器的种类视窗与链接激光产生106T强磁场8.5非线性光学8.6信息存储技术8.7激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表习题答案1.阳光大学生网课后答案下载合集2.《光学》赵凯华钟锡华课后习题答案高等教育出版社3.光学郭永康课后答案高等教育出版社4.阳光大学生网课后答案下载求助合集。

[光学(姚启钧)习题解答5-6

[光学(姚启钧)习题解答5-6

5-1解:(1)()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∧∧→2cos cos 01πωωkZ t y kZ t x A E ()()[]()(),为左旋。

是按逆时针方向旋转的,时,,时,时,当又此即偏振光旋圆偏振光。

该列光波的偏振态是左准形式。

符合左旋圆偏振光的标∴⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==========+∴-=⎪⎭⎫ ⎝⎛--=-=∴-+-=∧∧0210410,00sin 2cos cos :sin cos 0222yxyxyxyxyxE A E T t A E E T t E A E t Z A E E kZ t A kZ t A E kZ t A E or kZ t y kZ t x A ωπωωωω (2)()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∧∧→2sin sin 02πωωkZ t y kZ t x A E()()[]()()222cos ,sin cos sin AE E kZ t A E kZ t A E kZ t y kZ t x A yxyx=+-=-=---=∧∧ωωωω即:()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛--+⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+-=∴⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧======-====∧∧∧∧∧∧→2sin 2cos 2sin 2cos 2sin sin :021041,00002πωπωπωτωππωωkZ t y kZ t x A kZ t y k Z x A kZ t y kZ t x A E or A E E T t E A E T t A E E t Z yxyxyx光。

该列光波为左旋圆偏振,时,,时,时,当5-2. 解: ()21011'1II ⋅-=()()()8/81.060cos 1011.01.01.010125.0881.0819.041210160cos 101I I I I I 02'12010121''1211112122'1''1=⋅⋅-===∴==≈==⨯=⋅⋅-=⋅⋅-=I orI I I I I I I I I I I I 透过偏振片观察为:直接观察的光强为:自然光强为而:5-3. 解: 201I I =()()()()有最大值时,亦可得令注:此时透过的最大光强为,须使欲使I I d d d dI I I II I I II I II I 20cos cos 2329434323060cos 30cos 2302602cos cos 2cos cos 2cos 2222max222320213θααθαααθααθααθαα==⎥⎦⎤⎢⎣⎡-==⋅⋅=-=====∴-=-===5-4. 证: 201II =()()t II tI I II I I I I ωωθθθθθθπθθπθ4cos 1164cos 11612sin 81sin cos 22cos cos 2cos cos 0202222122212-=∴=-===⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-==而5-5. 解: ()折射定律21221sin sin nnni i ==∴30732.160sinsinsinsin12112===--nii()()()()()()()()()()()(),一部分折射,,垂直分量一部分反射直分量为而入射光的电矢量的垂入射面的光矢量分量。

光学第5章光的偏振4PPT课件

光学第5章光的偏振4PPT课件
光学第5章光的偏振4ppt 课件
• 光的偏振概述 • 偏振光的基本性质 • 偏振光实验与观察 • 偏振光在生活中的应用 • 偏振光的未来发展与展望
01
光的偏振概述
光的偏振定义
自然光
没有偏振,光波的电矢量和磁矢 量在各个方向上的振动都相同。
完全偏振光
光波的电矢量和磁矢量只在某一 特定方向上振动。
偏振光在显示技术中的应用
液晶显示(LCD)
LCD显示器利用偏振光原理,通过控 制光线偏振状态来控制像素的亮暗, 实现图像显示。
3D电影技术
3D电影通过交替显示左右眼视角的偏 振光,让观众佩戴偏振眼镜来获得立 体视觉效果。
偏振光在光学仪器中的应用
偏振干涉仪
利用偏振光的干涉现象,可以测量光学元件的折射率、光学厚度等参数,广泛应用于光学计量和测试领域。
偏振光的应用
01
02
03
光学成像
利用偏振光可以消除或减 少某些散射光的干扰,提 高成像质量。
光学通信
在光纤通信中,利用偏振 光可以实现更高的信息传 输速率和更低的误码率。
光学传感
偏振光可以用于检测物质 的结构和性质,例如生物01
偏振光在光学和物理学中具有重 要的理论和应用价值。
偏振分束器
偏振分束器可以将入射的非偏振光分成两束振动方向相互垂直的偏振光,是光学实验和光学系统中的重要元件。
05
偏振光的未来发展与展望
偏振光在新型光学器件中的应用
偏振光在新型光学器件中具有广泛的应用前景,如光学晶体、光学纤维、 光子晶体等。这些新型光学器件利用偏振光的特性,可以实现高效的光 束控制、光信息处理和光通信等功能。
提供生物组织的结构和功能信息,有助于疾病的早期发现和治疗。 • 在地球科学领域,偏振光可以用于大气和海洋环境的监测和研究,如气溶胶、云雾和海洋表面等。这些研究有

2023年大学_光学教程第三版(姚启钧著)课后题答案下载

2023年大学_光学教程第三版(姚启钧著)课后题答案下载

2023年光学教程第三版(姚启钧著)课后题答案下载2023年光学教程第三版(姚启钧著)课后题答案下载本教程以物理光学和应用光学为主体内容。

第1章到第3章为应用光学部分,介绍了几何光学基础知识和光在光学系统中的传播和成像特性,注意介绍了激光系统和红外系统;第4~8章为物理光学部分,讨论了光在各向同性介质、各向异性介质中的传播规律,光的干涉、衍射、偏振特性及光与物质的相互作用,并结合介绍了DWDM、双光子吸收、Raman放大、光学孤子等相关领域的应用和进展。

第9章则专门介绍航天光学遥感、自适应光学、红外与微光成像、瞬态光学、光学信息处理、微光学、单片光电集成等光学新技术。

光学教程第三版(姚启钧著):内容简介绪论0.1 光学的研究内容和方法0.2 光学发展简史第1章光的干涉1.1 波动的独立性、叠加性和相干性1.2 由单色波叠加所形成的干涉图样1.3 分波面双光束干涉1.4 干涉条纹的可见度光波的时间相干性和空间相干性 1.5 菲涅耳公式1.6 分振幅薄膜干涉(一)——等倾干涉1.7 分振幅薄膜干涉(二)——等厚干涉视窗与链接昆虫翅膀上的彩色1.8 迈克耳孙干涉仪1.9 法布里一珀罗干涉仪多光束干涉1.10 光的干涉应用举例牛顿环视窗与链接增透膜与高反射膜附录1.1 振动叠加的三种计算方法附录1.2 简谐波的表达式复振幅附录1.3 菲涅耳公式的推导附录1.4 额外光程差附录1.5 有关法布里一珀罗干涉仪的(1-38)式的推导附录1.6 有同一相位差的多光束叠加习题第2章光的衍射2.1 惠更斯一菲涅耳原理2.2 菲涅耳半波带菲涅耳衍射视窗与链接透镜与波带片的比较2.3 夫琅禾费单缝衍射2.4 夫琅禾费圆孔衍射2.5 平面衍射光栅视窗与链接光碟是一种反射光栅2.6 晶体对X射线的'衍射视窗与链接与X射线衍射有关的诺贝尔奖附录2.1 夫琅禾费单缝衍射公式的推导附录2.2 夫琅禾费圆孔衍射公式的推导附录2.3 平面光栅衍射公式的推导习题第3章几何光学的基本原理3.1 几个基本概念和定律费马原理3.2 光在平面界面上的反射和折射光导纤维视窗与链接光导纤维及其应用3.3 光在球面上的反射和折射3.4 光连续在几个球面界面上的折射虚物的概念 3.5 薄透镜3.6 近轴物近轴光线成像的条件3.7 共轴理想光具组的基点和基面视窗与链接集成光学简介附录3.1 图3-6中P1和JP1点坐标的计算附录3.2 棱镜最小偏向角的计算附录3.3 近轴物在球面反射时物像之间光程的计算附录3.4 空气中的厚透镜物像公式的推导习题第4章光学仪器的基本原理4.1 人的眼睛4.2 助视仪器的放大本领4.3 目镜4.4 显微镜的放大本领4.5 望远镜的放大本领视窗与链接太空实验室——哈勃太空望远镜4.6 光阑光瞳4.7 光度学概要——光能量的传播视窗与链接三原色原理4.8 物镜的聚光本领视窗与链接数码相机4.9 像差概述视窗与链接现代投影装置4.10 助视仪器的像分辨本领视窗与链接扫描隧显微镜4.11 分光仪器的色分辨本领习题第5章光的偏振5.1 自然光与偏振光5.2 线偏振光与部分偏振光视窗与链接人造偏振片与立体电影 5.3 光通过单轴晶体时的双折射现象 5.4 光在晶体中的波面5.5 光在晶体中的传播方向5.6 偏振器件5.7 椭圆偏振光和圆偏振光5.8 偏振态的实验检验5.9 偏振光的干涉5.10 场致双折射现象及其应用视窗与链接液晶的电光效应及其应用5.11 旋光效应5.12 偏振态的矩阵表述琼斯矢量和琼斯矩阵附录5.1 从沃拉斯顿棱镜出射的两束线偏振光夹角公式(5-15)的推导习题第6章光的吸收、散射和色散6.1 电偶极辐射对反射和折射现象的解释6.2 光的吸收6.3 光的散射视窗与链接光的散射与环境污染监测6.4 光的色散6.5 色散的经典理论习题第7章光的量子性7.1 光速“米”的定义视窗与链接光频梳7.2 经典辐射定律7.3 普朗克辐射公式视窗与链接诺贝尔物理学奖7.4 光电效应7.5 爱因斯坦的量子解释视窗与链接双激光束光捕获7.6 康普顿效应7.7 德布罗意波7.8 波粒二象性附录7.1 从普朗克公式推导斯忒藩一玻耳兹曼定律附录7.2 从普朗克公式推导维恩位移定律习题第8章现代光学基础8.1 光与物质相互作用8.2 激光原理8.3 激光的特性8.4 激光器的种类视窗与链接激光产生106T强磁场8.5 非线性光学8.6 信息存储技术8.7 激光在生物学中的应用视窗与链接王淦昌与惯性的束核聚变习题主要参考书目基本物理常量表光学教程第三版(姚启钧著):目录点击此处下载光学教程第三版(姚启钧著)课后题答案。

光学教程第四版姚启钧课后题答案

光学教程第四版姚启钧课后题答案

目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

《光学教程》第五版姚启钧第五章光的偏振

《光学教程》第五版姚启钧第五章光的偏振

我们将探索光的偏振在光学器件 中的实际应用,比如偏振滤光器 和偏振镜。
在通信和显示技术中的应用 对生物学的影响
我们将研究光的偏振在通信和显 示技术中的重要性,如液晶显示 器和光纤通信。
我们将了解光的偏振如何在生物 界中发挥作用,例如蝴蝶的翅膀 颜色和昆虫的视觉系统。
光的偏振实验
1
可视化光的偏振的实验方法
我们将介绍一些通用的实验方法,用于可视化光的偏振现象,如波片实验和波浪 板实验。
2
常用工具和设备
我们将了解一些常用的实验工具和设备,如偏振光源、偏振片和偏振计。
光的偏振现象
偏振光是如何产生的?
我们将探索偏振光是如何通 过选择性吸收和散射来产生 的。
偏振光的特性和传播方 式
我们将了解偏振光的特性, 包括振动方向、强度和光的 传播方式。
偏振片和偏振现象之间 的关系
我们将研究偏振片与偏振现 象之间的联系,以及如何利 用偏振片来改变光的偏振状 态。
光的偏振应用
《光学教程》第五版姚启 钧第五章光的偏振
光的偏振是一个有趣的现象,它使光变得有方向性和振动方向约束。在这一 章中,我们将深入探讨光的偏振的概念、性质和应用。
光的偏振概述
1 光的偏振是什么?
我们将学习什么是光的偏振,以及它是如何 与光的振动方向相关联的。
2 为什么光会发生偏振?
我们将讨论光的偏振产生的原因,包括光的 源头和与介质的相互作用。

光学教程姚启钧

光学教程姚启钧

一、光的偏振性 1、横波和纵波的区别——偏振
振动方向对于传播方向的不对称性,称为波的偏振。
N
r
N
r
ME
ME
纵波:包含传播方向的任何平 横波:包含传播方向的平面中,
面上,其振动均相同,没有谁 又包含振动矢量的那个平面具
更特殊。
有特殊性。
——振动对传播方向具有对称性 ——振动对传播方向没有对称性
光的偏振度
•自然光:
Imax=Imin,P=0,偏振度最小;
•线偏振光: Imin=0,P=1,偏振度最大;
•部分偏振光: 0<P<1。
例 通过偏振片观察一束部分偏振光,当偏振片由对 应透射光最大的位置转过600时,其光强减为一半。 试求这束部分偏振光中的自然光和线偏振光的强度 之比以及光束的偏振度。
量,此时的入射角用i10表示。
i10——起偏角或布儒斯特角。
i1
n1
i2
n2
线偏振光
n1
i 10
n2
i2
i10 i2 900 由折射定律:
n1 sin i10 n2 sin 900 i10 n2 cos i10
tg i10

n2 n1
当自然光从介质n1入射到n2的分界面时,若入射角 则其反射光为光矢垂直于入射面的线偏振光。
2 sin(900 i2 ) cosi2 cos(i2 900 i2 )

A(1) p2
2 cos2 i2 sin2i2
n1 n2

A(1) p2
cosi2 sini2

A(1) p2
ctgi2
n1
i1 i2,i2 i10

《光学教程》第五版 姚启钧 第五章 光的偏振

《光学教程》第五版 姚启钧 第五章 光的偏振




2
,I
2

0
——
消光
例5-2 假定在两个静止的、理想的、正交的起偏器之间有另 一个理想的起偏器以角速度w旋转,试证透射光的强度满足
下列关系式: I I1 1 cos 4t
8
★例5-3设一水晶棱镜的顶角A为60度,光轴与棱镜主截面垂 直,钠光以最小偏向角的方向在棱镜中折射,用焦距为0.5m 的透镜聚焦,no=1.54425,ne=1.5536,试求o光和e光两谱线的间 隔为多少?
第五章 光的偏振
物理科学与技术学院
•5.1 偏振光与自然光、偏振度 •5.2 由反射和折射获得偏振光 布儒斯特定律 •5.3 单轴晶体的双折射现象 •5.4 用波面的概念解释双折射现象 •5.5 偏振棱镜和偏振片 马吕斯定律 •5.6 椭圆偏振光与圆偏振光 波片 •5.7 偏振态的实验检验 •5.8 偏振光的干涉 •5.9 光弹性效应和电光效应 •5.10 线偏振光沿晶体光轴传播时振动面的旋转
有一块玻璃浸于水中,如光从玻璃面反射也为完全偏振光,试
求水面与玻璃面之间的夹角。
解:
i0 i1 90
tan i1

n空气 n水
1 1.33
tan i2

n玻 n水
1.5 1.33
i1 365620 i2 482616
i2 i1 112956
光轴B
n()为e光的折射率
{单轴晶体:方解石、石英 双轴晶体:云毋、硫磺、黄玉
5.3.3 主截面
主截面
晶体光轴与晶体表面法线构成的平面叫主截面
法线
102°A 78°
经过每一点有三个主截面 注意与课本定义的差别
B

教材:光学教程姚启钧著教学大纲《光学》

教材:光学教程姚启钧著教学大纲《光学》

《光学》教学大纲一、教学目的和要求:通过使用《光学教程》教材对学生的教学,使学生重点掌握光通过光具组后成象的条件及象位、象的放大或缩小、象的虚实的确定方法;光的干涉的分类、等倾干涉、等厚干涉的概念与应用;光的衍射分类、菲涅耳衍射和夫琅和费衍射的概念与应用;光的偏振与自然光、平面偏振光、部分偏振光、圆偏振光和椭圆偏振光的产生、检定与应用;放大镜、显微镜、望远镜、照相机的原理与使用,助视仪器的放大本领、分辨本领。

介绍全息照相和光的波粒二象性,使学生对光的传播规律,光与物质相互作用时出现的现象和光的本性有一个深刻的认识。

二、参考教材《光学教程》姚启钧著学时数:72三、适用专业:本科物理学四、制订人:金刚五、课时分配:第一章光的干涉(12课时)第二章光的衍射(12课时)第三章几何光学的基本原理(12课时)第四章光学仪器的基本原理(10课时)第五章光的偏振(12课时)第七章光的吸收、散射和色散(2课时)第八章光的量子性(6课时)第九章现代光学基础(2课时)六、各章教学要求:第一章光的干涉(12课时)1)着重阐明光的相干条件和掌握光程的概念,分析双光束干涉时,应着重分析光强分布的特征。

2)着重阐明等倾干涉和等厚干涉的基本概念及其应用,额外程差只讲授形成条件。

3)介绍迈克耳逊干涉仪和法布里---珀罗干涉仪的原理及其应用。

4)扼要介绍薄膜光学内容。

5)讨论时间相干性和空间相干性的概念。

6)介绍菲涅耳公式。

第二章光的衍射(12课时)1)用惠更斯---菲涅耳原理解释光的衍射现象,讲授菲涅耳积分式意义。

2)介绍菲涅耳衍射,着重介绍菲涅耳圆孔衍射,并介绍环状波带片,圆屏衍射。

3)着重阐明夫琅和费单缝衍射和衍射光栅,并推导夫琅和费单缝衍射光强公式,介绍反射光栅。

4)着重阐明光栅方程式导出及其意义。

5)介绍夫琅和费圆孔衍射,并说明第一最小值的角半径的重要性。

第三章几何光学的基本原理(12课时)1)介绍费马原理,并由费马原理导出光的折射定律。

《光学教程》(姚启钧)第五章 光的偏振

《光学教程》(姚启钧)第五章 光的偏振

自然光
线偏振光
. . . .
起偏器 检偏器
.
光强变化!
偏振光通过旋转的检偏器,光强发生变化
自然光
线偏振光
. . . .
起偏器 检偏器
.
光强变化!
偏振光通过旋转的检偏器,光强发生变化
自然光
线偏振光
. . . .
起偏器
两偏振片的偏振化方向相互垂 直时光强为零!
.
检偏器
光强变化!
例题
光强为 I0 的自然光相继通过偏振片P1、P2、P3后光强为I0 /8,已知P1 P3,问:P1、P2间夹角为何?
光的偏振
1 光的偏振性 绳波: 弹簧波:
v
声波:
v
按振动行为划分有横波和纵波两种方式
横波
纵波
横波----振动方向垂直于传播方向;如水波。有偏振性 纵波----振动方向平行于传播方向;如声波。无偏振性
Maxwell电磁波理论和实验表明,光波是横波。
电 磁 波 的 振 动 方 式 光除了有干涉和衍射现象外还有偏振现象 在干涉和衍射里,光波的振动是以标量形式来处理的,
1.0 ip tg 33.7 0. 1.5
1
.... ip ..
因此反射光中只有s分量.
透射光为部分偏振光.
.. .. i .. ..
p
反射起偏和透射起偏:
自然光以布儒斯特角入射到玻璃片堆(由二十多个玻璃 片组成)上,反射光是振动面垂直于入射面的线偏振光.透射 光偏振度非常高,也可视为线偏振光,振动面平行于入射面.
u
E
左图中线段表示光振动平行于图面的线偏振 光, 点表示光振动垂直于图面.画出相同的点和线 段表示自然光,用来表示各个方向光振动几率相同.

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答之吉白夕凡创作第一章光的干与1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干与条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离. 解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比. 解:⑴7050640100.080.04r y cm dλ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片拔出杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变成中央亮条纹,试求拔出的玻璃片的厚度.已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干与图样,求干与条纹间距和条纹的可见度. 解: 7050500100.1250.02r y cm dλ-∆==⨯⨯= 由干与条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干与条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ.解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干与条纹间距公式6、在题1.6 图所示的劳埃德镜实验中,光源S 到不雅察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm .劳埃德镜长40cm ,置于光源和屏之间的中央.⑴若光波波长500nm λ=,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干与的区域P1P2可由图中的几何关系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在不雅察屏上可以看见条纹的区域为P1P2间即21 3.45 1.16 2.29P P mm =-=,离屏中央1.16mm 上方的2.29mm 规模内可看见条纹.7、试求能产生红光(700nm λ=)的二级反射干与条纹的番笕膜厚度.已知番笕膜折射率为1.33,且平行光与法向成300角入射. 解:2700, 1.33nm n λ==由等倾干与的光程差公式:22λδ=8、透镜概略通常镀一层如MgF2( 1.38n =)一类的透明物质薄膜,目的是利用干与来降低玻璃概略的反射.为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚? 解: 1.38n =物质薄膜厚度使膜上下概略反射光产生干与相消,光在介质上下概略反射时均存在半波损失.P 2 P 1 P 0由光程差公式:9、在两块玻璃片之间一边放一条厚纸,另一边相互压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行不雅察,问在玻璃片单位长度内看到的干与条纹数目是多少?设单色光源波长为500nm 解:02cos602o n hδ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干与条纹数目为: 即每cm 内10条.10、在上题装置中,沿垂直于玻璃概略的标的目的看去,看到相邻两条暗纹间距为1.4mm .已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长. 解:当光垂直入射时,等厚干与的光程差公式: 可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何关系:h H l l∆=∆,即lh H l∆∆=11、波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强.解:61.210, 1.5h m n -=⨯=由光正入射的等倾干与光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=12、迈克耳逊干与仪的反射镜M2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长.解:光垂直入射情况下的等厚干与的光程差公式:22nh h δ== 移动一级厚度的改动量为:2h λ∆=13、迈克耳逊干与仪的平面镜的面积为244cm ⨯,不雅察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为多少?解:由光垂直入射情况下的等厚干与的光程差公式: 22nh h δ==相邻级亮条纹的高度差:2h λ∆=由1M 和2M '组成的空气尖劈的两边高度差为:M 1M 21M2M '14、调节一台迈克耳逊干与仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹.若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离?若中心是亮的,试计算第一暗环的角半径.(提示:圆环是等倾干与图样,计算第一暗环角半径时可利用21sin ,cos 12θθθθ≈≈-的关系.) 解:500nm λ=出现同心圆环条纹,即干与为等倾干与 对中心 2h δ=15、用单色光不雅察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长.解:由牛顿环的亮环的半径公式:r = 以上两式相减得:16、在反射光中不雅察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离. 解:牛顿环的反射光中所见亮环的半径为:即:2r =则:)2019320.160.40.4r r r r r mm ∆=-==-== 第2章光的衍射1、单色平面光照射到一小圆孔上,将其波面分红半波带.求第k 个带的半径.若极点到不雅察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径. 解:由公式对平面平行光照射时,波面为平面,即:R →∞2、平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改动大小.问:⑴小孔半径应满足什么条件时,才干使得此小孔右侧轴线上距小孔中心4m 的P 点的光强辨别得到极大值和极小值;⑵P 点最亮时,小孔直径应为多大?设此光的波长为500nm .解:⑴04400r m cm ==当k 为奇数时,P 点为极大值 当C 数时,P 点为极小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k =,即仅露出一个半波带时,P 点最亮.10.141,(1)H R cm k ==,0.282D cm =3、波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径辨别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I·S1R m =与没有光阑时的光强0I 之比. 解:即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ==== 没有光阑时光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4、波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中心的P 点是亮点还是暗点?⑵要使P 点酿成与⑴相反的情况,至少要把屏辨别向前或向后移动多少? 解:由公式对平面平行光照射时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点.则 0113k r R⎛⎫=⨯+ ⎪⎝⎭, 注:0,r R 取m 作单位向右移,使得2k =,03 1.5, 1.510.52r m r m '==∆=-=向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5、一波带片由五个半波带组成.第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无穷大的不透明区域.已知1234:::r r r r =,用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出现在哪些位置上. 解:由1234:::r r r r =带片具有透镜成像的作用,2HkR f k λ'=波⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度.⑶由于波带片还有11,35f f ''…等多个焦点存在,即光强极大值在轴上11,35m m …6、波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带(1,3,5,…,199).另外100个不透明偶数半波带.比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I . 解:由波带片成像时,像点的强度为:由透镜成像时,像点的强度为: 即014I I = 7、平面光的波长为480nm ,垂直照射到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm .辨别计算当缝的两边到P 点的相位差为/2π和/6π时,P 点离焦点的距离.解:对沿θ标的目的的衍射光,缝的两边光的光程差为:sin b δθ=相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点对使6πϕ∆=的P`点8、白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长. 解:对θ方位,600nm λ=的第二个次最大位 对 λ'的第三个次最大位 即:5722bbλλ'⨯=⨯9、波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离辨别为多少?解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅⑵第一最大值的方位角1θ'为: ⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅10、钠光通过宽0.2mm 的狭缝后,投射到与缝相距300cm 的照相底片上.所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为多少?若改用X 射线(0.1nm λ=)做此实验,问底片上这两个最小值之间的距离是多少? 解:单缝衍射花样最小值位置对应的方位θ满足: 则 11sin 1bλθθ≈=⋅11、以纵坐标暗示强度,横坐标暗示屏上的位置,粗略地画出三缝的夫琅禾费衍射(包含缝与缝之间的干与)图样.设缝宽为b ,相邻缝间的距离为d ,3d b =.注意缺级问题.12、一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少?(设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm ) 解:每毫米50条刻痕的光栅,即10.0250d mm mm == 第一级光谱的末端对应的衍射方位角1θ末为第二级光谱的始端对应的衍射方位角2θ始为13、用可见光(760400nm )照射光栅时,一级光谱和二级光谱是否重叠?二级和三级怎样?若重叠,则重叠规模是多少?解:光谱线对应的方位角θ:sin kdλθθ≈=即第一级光谱与第二级光谱无重叠 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末 即第三级光谱的400506.7nm 的光谱与第二级光谱重叠. 14、用波长为589nm 的单色光照射一衍射光栅,其光谱的中央最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是多少?解:第20级主最大值的衍射角由光栅方程决定 解得20.4510d cm -=⨯15、用每毫米内有400条刻痕的平面透射光栅不雅察波长为589nm 的钠光谱.试问:⑴光垂直入射时,最多功效能不雅察到几级光谱?⑵光以030角入射时,最多能不雅察到几级光谱?解:61,58910400d mm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ= 即能看到4级光谱⑵光以30o 角入射16、白光垂直照射到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会出现哪些波长的光?其颜色如何? 解:1250d mm =在30o 的衍射角标的目的出现的光,应满足光栅方程:sin 30o d j λ=17、用波长为624nm 的单色光照射一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条.求:⑴单缝衍射图样的中央角宽度;⑵单缝衍射图样中央宽度内能看到多少级光谱?⑶谱线的半宽度为多少? 解:0.012,0.029b mm a mm ==⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:即在单缝图样中央宽度内能看到()2317⨯+=条(级)光谱 ⑶由多缝干与最小值位置决定公式:sin j Ndλθ'=⋅第3章几何光学的基来源根底理1、证明反射定律合适费马原理 证明:设A 点坐标为()10,y ,B 点坐标为()22,x y 入射点C 的坐标为(),0x光程ACB为:∆=令2sin sin 0x x d i i dx -∆'=-=-=即:sin sin i i '=*2、按照费马原理可以导出近轴光线条件下,从物点收回并会聚到像点的所有光线的光程都相等.由此导出薄透镜的物像公式. 3、眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板(见题3.3图),平板的厚度d 为30cm .求物体PQ 的像P`Q`与物体PQ 之间的距离2d 为多少?解:由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=- ⎪⎝⎭4、玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,计算:⑴最小偏向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角. 解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时偏向角为最小,即有221302o i i A '=== ⑵15308o i '= 5、(略)6、高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,(并作光路图) 解:由球面成像公式: 代入数值 1121220s +='-- 得:60s cm '=- 由公式:0y y ss '+=' 7、一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像.求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜?解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 得:2s cm '=⑵由公式112s sr+=' 5r cm =(为凸面镜)8、某不雅察者通过一块薄玻璃板去看在凸面镜中他自己的像.他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起.若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距不雅察者眼睛的距离为多少?解:由题意,凸面镜焦距为10cm ,即2110r=玻璃板距不雅察者眼睛的距离为1242d PP cm '==9、物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两概略互相平行的玻璃板,其厚度为1d ,折射率为n .试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的效果相同.证明:设物点P 不动,由成像公式112s s r+=' 由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 收回的,即加入玻璃板后的物距为s d +反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=- 放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+-- 凹面镜向物移动d 之后,物距为s d + (0,0s d <>)2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-10、欲使由无穷远收回的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少? 解:由球面折射成像公式:n n n ns sr''--='解得: 2n '=11、有一折射率为1.5、半径为4cm 的玻璃球,物体在距球概略6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向缩小率. 解:⑴P 由球面1o 成像为P ',P '由2o 球面成像P ''211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ (利用P194:y s n y s n ''=⋅') 球面2o 成像12、一个折射率为1.53、直径为20cm 的玻璃球内有两个小气泡.看上去一个恰好在球心,另一个从最近的标的目的看去,好像在概略与球心连线的中点,求两气泡的实际位置. 解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n n ns s r''--=' 110s cm =-, 即气泡1P 就在球心处另一个气泡2P2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13、直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外不雅察者所看到的小鱼的表不雅位置和横向缩小率.解:由球面折射成像公式:n n n ns sr''--='解得 50s cm '=-,在原处14、玻璃棒一端成半球形,其曲率半径为2cm .将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向缩小率,并作光路图. 解:由球面折射成像公式:s s r-=' 15、有两块玻璃薄透镜的两概略均各为凸球面及凹球面,其曲率半径为10cm .一物点在主轴上距镜20cm 处,若物和镜均浸入水中,辨别用作图法和计算法求像点的位置.设玻璃的折射率为1.5,水的折射率为1.33.解:由薄透镜的物像公式:211212n n n n n n s s r r ---=+' 对两概略均为凸球面的薄透镜: 对两概略均为凹球面的薄透镜:16、一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少(水的折射率为1.33)?若将此透镜置于CS2中(CS2的折射率为1.62),其焦距又为多少?解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式相比:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n == 而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的基来源根底理1、眼睛的机关简单地可用一折射球面来暗示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于 1.试计算眼球的两个焦距.用肉眼不雅察月球时月球对眼的张角为01,问视网膜上月球的像有多大? 解:由球面折射成像公式:n n n ns sr''--='令43, 5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2、把人眼的晶状体看成距视网膜2cm 的一个简单透镜.有人能看清距离在100cm 到300cm 间的物体.试问:⑴此人看远点和近点时,眼y '睛透镜的焦距是多少?⑵为看清25cm 远的物体,需配戴怎样的眼镜?解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -=''对于近点:2211121001.961f f cm-='-'=⑵对于25cm由两光具组互相接触0d =组合整体:110.030cm f -=''(近视度:300o ) 3、一照相机对准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目的物在镜前的最近距离? 解:由题意:照相机对准远物时,底片距物镜18cm , 由透镜成像公式:111s sf -=''4、两星所成的视角为4',用望远镜物镜照相,所得两像点相距1mm ,问望远镜物镜的焦距是多少? 解: 3.14118060rad '=⨯5、一显微镜具有三个物镜和两个目镜.三个物镜的焦距辨别为16mm 、4mm 和1.9mm ,两个目镜的缩小本领辨别为5和10倍.设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的缩小本领各为多少?解:由显微镜的缩小本领公式:其最大缩小本领: 其最小缩小本领:6、一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm .不雅察者看到的像在无穷远处.试求物体到物镜的距离和显微镜的缩小本领.解:由透镜物像公式:111s s f -=''解得:0.51s cm =- 显微镜的缩小本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7、(略)8、已知望远镜物镜的边沿即为有效光阑,试计算并作图求入光瞳和出射光瞳的位置. 9、 10、*13、焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到明亮的圆斑.求不计透镜中光的吸收时,圆斑的中心照度.解:230S d Id Iφ=Ω= (S 为透镜的面积)P 点的像点P '的发光强度I '为:14、一长为5mm 的线状物体放在一照相机镜头前50cm 处,在底片上形成的像长为1mm .若底片后移1cm ,则像的弥散斑宽度为1mm .试求照相机镜头的F 数. 解:由y s y s''= 1550s '= 得10s cm '= 由透镜物像公式:111s s f -=''由图可见,100.11d =1d cm = F 数:508.336f d '== 15、某种玻璃在靠近钠光的黄色双谱线(其波长辨别为589nm 和589.6nm )邻近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分mm辩钠光双谱线的三棱镜,底边宽度应小于多少? 解:由色分辩本领:dnP d λδλλ==∆ 16、设计一块光栅,要求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辩其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级.求出其缝宽、缝数、光栅常数和总宽度.用这块光栅总共能看到600nm 的几条谱线? 解:由sin d j θλ= 由第三级缺级 由 P jN λλ==∆ 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯= 由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17、若要求显微镜能分辩相距0.000375mm 的两点,用波长为550nm 的可见光照明.试求:⑴此显微镜物镜的数值孔径;⑵若要求此两点缩小后的视角为2',则显微镜的缩小本领是多少?解:⑴由显微镜物镜的分辩极限定义⑵ 3.1418060387.70.000375250M ⨯==18、夜间自远处驶来汽车的两前灯相距1.5m .如将眼睛的瞳孔看成产生衍射的圆孔,试估量视力正常的人在多远处才干分辩出光源是两个灯.设眼睛瞳孔的直径为3mm ,设光源收回的光的波长λ为550nm .解: 1.5U L=当0.610U Rλθ==才干分辩出19、用孔径辨别为20cm 和160cm 的两种望远镜能否分辩清月球上直径为500m 的环形山?(月球与地面的距离为地球半径的60倍,面地球半径约为6370km .)设光源收回的光的波长λ为550nm . 解:63500 1.31060637010U rad -==⨯⨯⨯ 孔径20cm 望远镜:孔径160cm 望远镜:1U θ'<,即用孔径20cm 望远镜不克不及分辩清 1U θ''>,即用孔径160cm 望远镜能分辩清20、电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辩距离.若人眼能分辩在明视距离处相距26.710mm -⨯的两点,则此显微镜的缩小倍数是多少? 解: 3.144sin sin 4180o n u u u ⨯====第五章 光的偏振1、试确定下面两列光波 的偏振态.解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:222110x y E E A +=阐发()(),0000,2x y x y E At kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:222110x y E E A +=阐发()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为(左旋)圆偏振光2、为了比较两个被自然光照射的概略的亮度,对其中一个概略直接进行不雅察,另一个概略通过两块偏振片来不雅察.两偏振片的透振标的目的的夹角为060.若不雅察到两概略的亮度相同.则两概略实际的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的0010.解:由于被光照射的概略的亮度与其反射的光的光强成正比.设直接不雅察的概略对应的光强为1o I ,通过两偏振片不雅察的概略的光强为2o I通过第一块偏振片的光强为:通过第二块偏振片的光强为: 由1220.1o o I I I == 则:120.1ooI I = 3、两个尼科耳N1和N2的夹角为060,在它们之间放置另一个尼科耳N3,让平行的自然光通过这个系统.假设各尼科耳对很是光均无吸收,试问N3和N1的透振标的目的的夹角为何值时,通过系统的光强最大?设入射光强为0I ,求此时所能通过的最大光强. 解:令:20dI d α=得:()tan tan 60αα=- 4、在两个正义的理想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播标的目的旋转(见题5.4图),若入射的自然光强为0I ,试证明透射光强为()011cos 416I I t ω=- 证明:5、线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角.求由分界面上反射的光强占入射光1N23N60强的百分比. 解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行份量为:1cos 30o P A A = 入射光垂直份量为:1sin 30o S A A = 由:21sin603sin i =得:230o i = 由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ 6、一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角.两束折射光通过在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动标的目的成050角.计算两束透射光的相对强度.解:当光振动面与N 主截面在晶体主截面同侧: 当光振动面与N 主截面在晶体主截面两侧:7、线偏振光垂直入射到一块光轴平行于概略的方解石波片上,光的振动面和波片的主截面成030角.求:⑴透射出来的寻常光和很是光的相对强度为多少?⑵用钠光入时如要产生090的相位差,波片的厚度应为多少?(589nm λ=) 解:⑴1sin 302o o A A A ==214o I A = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-8、有一块平行石英片是沿平行于光轴标的目的切成一块黄光的14波片,问这块石英片应切成多厚?石英的01.552, 1.543,589e n n nm λ===.解:()2o e n n d πϕλ∆=-9、⑴线偏振光垂直入射到一个概略和光轴平行的波片,透射出来后,原来在波片中的寻常光及很是光产生了大小为π的相位差,问波片的厚度为多少?0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应怎样放置才干使透射出来的光是线偏振光,并且它的振动面和入射光的振动面成090的角? 解:⑴()()221o e n n d k πϕπλ∆=-=+⑵振动标的目的与晶体主截面成45o 角10、线偏振光垂直入射到一块概略平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的寻常光和很是光透射出来后的相对强度如何? 解:cos 25o e A A =11、在两正交尼科耳棱镜N1和N2之间垂直拔出一块波片,发明N2后面有光射出,但当N2绕入射光向顺时针转过020后, N2的视场全暗,此时,把波片也绕入射光顺时针转过020,N2的视场又亮了,问:⑴这是什么性质的波片;⑵N2要转过多大角度才干使N2的视场以变成全暗.解:⑴由题意,当2N 绕入射光向顺时针转动20o 后,2N 后的视场全暗,说明A '与1N 夹角为20o .只有当波片为半波片时,才干使入射线偏振光出射后仍为线偏振光.⑵把波片也绕入射光顺时针转过020,2N 要转过040才干使2N 后的视场又变成全暗12、一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状态;⑵垂直入射到1/8波片上,求透射光的偏振状态.解:在xy 平面上,圆偏振光的电矢量为:()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射概略上为 ⑴波片为14波片时,2πϕ∆=即透射光为振动标的目的与晶片主截面成45o 角的线偏振光⑵波片为18波片时,4πϕ∆=即透射光为椭圆偏振光.13、试证明一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光. 解:左旋圆偏振光 右旋圆偏振光 即E 为线偏振光14、设一方解石波片沿平行光轴标的目的切出,其厚度为0.0343mm,放在两个正交的尼科耳棱镜间,平行光束经过第一尼科耳棱镜后,垂直地射到波片上,对于钠光(589.3nm )而言,晶体的折射率为1.658, 1.486o e n n ==.问通过第二尼科耳棱镜后,光束产生的干与是加强还是减弱?如果两个尼科耳棱镜的主截面是互相平行的,结果又如何? 解:①1N 与2N 正交时,即通过第二个尼科耳棱镜后,光束的干与是减弱的. ②1N 与2N 互相平行时,即通过第二个尼科耳棱镜后,光束的干与是加强的. 15、单色光通过一尼科耳镜N1,然后射到杨氏干与实验装置的两个细缝上,问:⑴尼科耳镜N1的主截面与图面应成怎样的角度才干使光屏上的干与图样中的暗条纹为最暗?⑵在上述情况下,在一个细缝前放置一半波片,并将这半波片绕着光线标的目的继续旋转,问在光屏上的干与图样有何改动?解:⑴尼科耳镜N1的主截面与图面应成90的角度时,光屏。

光的偏振5.2[光学教程]第四版姚启钧高等教育出版社

光的偏振5.2[光学教程]第四版姚启钧高等教育出版社
(2)若入射光为部分偏振光,则透射光强会发 生变化,且出现两次最大和两次最小,但无消 光位置;
(3)若入射光为自然光,转动检偏器透射的光 强无变化。
8
例题5.2 P217 通过偏振片观察一束部分偏振光。当偏振片由对 应透射光强最大的位置转过60º时,其光强减为一 半,试求这束部分偏振光中的自然光和线偏振光 的强度之比以及光束的偏振度。 解:部分偏振光相当于自然光和线偏振光的叠加。 设自然光的强度为In, 线偏振光的强度为Ip,则部 分偏振光的强度为In+Ip。
通过的很少。 这种特性称为二向色性
1
在天然的晶体中,电气石晶体具有最强的二向色性, 1mm厚的电气石可以把垂直光轴的光矢量全部吸收 掉,使透射光成为振动方向与其光轴平行的线偏振 光。
一般晶体的二向色性还与光波波长有关,因此,当 振动方向相互垂直的两束线偏振白光,通过晶体后 会呈现出不同的颜色,这也是二向色性这个名称的 由来。
则反射光为部分偏振光。
由此可见,当入射角为0或90时,入射自然光,反 射光仍然为自然光。入射角为其它角度时(全反射 时除外),反射光则为部分偏振光。
15
由菲涅耳公式:
rp

A' p1 Ap1

tg(i1 i2 ) , tg(i1 i2 )
当 i1 i2 900 时,
由于Ap1 0,则必有
(
3 2

1 2
)In
2
11
5.2.2 反射光的偏振态
当一束自然光在两种介质的界面上反射和折射 时,反射光和折射光的传播方向由反射和折射 定律决定。而反射光和折射光的振幅则由菲涅 耳公式决定。
rp

A' p1 Ap1

tg(i1 i2 ) , tg(i1 i2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 光的偏振
1. 试确定下面两列光波 E1=A0[excos(wt-kz)+eycos(wt-kz-π/2)]
E2=A0[exsin(wt-kz)+eysin(wt-kz-π/2)]
的偏振态。 解 :E1 =A0[excos(wt-kz)+eycos(wt-kz-π/2)]
=A0[excos(wt-kz)+eysin(wt-kz)] 为左旋圆偏振光 E2 =A0[exsin(wt-kz)+eysin(wt-kz-π/2)]
I = 16 I0(1-cos4ωt).
1
1
1 1-cos4t
解: I = 2 I0 cos2ωt cos2( 2 -ωt) = 2 I0cos2ωtsin2 ωt = 8 I0
2
= I0(1-cos4ωt) `5. 线偏振光入射到折射率为 1.732 的玻璃片上,入射角是 60°,入射光的电失量与入射面成 30°角。求由分界面上反射的光强占入射光强的百分比。 解:由电矢量在入射面的投影为 An = I0 cos230° A⊥ = A0sin30° 即 In = I0 cos230°= 3/4I0 Is1 = I0 cos260°= 1/4I0
线偏振光经过 1/2 波片后仍为线偏振光,只是振动方向转过了 2 角
2 2 200 400
1
1
12 一束圆偏振光,(1)垂直入射到 4 波片上,求透射光的偏振状态;(2)垂直入射到 8
波片上,求透射光的偏振状态。
解:1)圆偏振光可以看成相互垂直的两条线偏振光的合成,两者之间位相差为 π/2 再经 λ/4
I0 8
= [cosθ+ cos(2α-θ)] 2
N2
N3
θα
N1 题 5.3 图
由 cos(2α-θ)= 1 推出 2α-θ = 0 即 α = θ/2 = 30°
1
1
9
∴I2max = 2 I0 cos2αcos2(θ-α) = 2 I0 cos230°cos230° = 32 I0
N1
N2
4. 在两个理想的偏振片之间有一个偏振片以匀角速度 ω 绕光的传播方向旋转(见题 5.4 图), 若入射的自然光强为 I0,试证明透射光强为
波长为 550nm 试计算从晶体出射的两束线偏振光相位差为 π 时,所需加在晶体上的纵向电 压(叫做半波电压)。 解:线偏振光的相位差公式:
=930nm =860nm =716.9nm =614.3nm =537.5nm =477.8nm =430nm =390nm
18. 把一块切成长方体的 KDP 晶体放在两个正交的偏振片之间组成一个普克尔斯效应的装
m 置。已知电光常数 γ=1.06*10-11 v ,寻常光在该晶体中的折射率,n o = 1.51,若入射光 0 的
I2e
Ie1 sin2 100
3 4
I1
sin
2
100
3 tan2 100
0.093
I2o
Io1 cos2 100
1 4
I1
cos2
100
②当入射光振动面与尼科耳主截面分居晶体主截面两侧时
I e1
I1
cos2
300
3 4
I1
Io2
I1
cos2
600
1 4
I1
I2e
I1e
cos2 (500
300 )
n2 理论证明 is = Ib = arctan n1 = arctan1.732 = 600 为布儒斯特角
∴反射光为只有垂直分量的线偏振光(相对入射面来说)
A's1 sin(i1 i2 ) 依据菲涅耳公式 As1 sin(i1 i2 )
i1 600 , i2 900 600 300
证明:左、右旋圆偏振光的振动表达式分别为:
E1=A0[excos(wt-k1z)+eycos(wt-k1z)]
E2=A0[exsin(wt-k2z)+eysin(wt-k2z)]
E E1 E2 2A0[(Ex Ey ) cos(t )] k2 k1
2
这说明光路上任一点振动的 x 分量和 y 分量对时间有相同的依赖关系,它们都决定于
束光的迭加不满足振动方向接近一致的相干条件。
P
•C
S1
•B
•A S
S2
题 5.16 图
17. 厚度为 0.025mm 的方解石波片,其表面平行与光轴,放在两个交的尼科耳棱镜之间, 光轴与两个尼科耳各成 450,如果射入第一个尼科耳的光是波长为 400nm-700nm 可见光,问
透过第二个尼科耳的光中,少了那些波长的光? 解:由题意知凡是未通过第二个尼科耳棱镜的光都是与第二个尼科耳垂直的光
即 I2 0 ∵ρ1⊥ρ2 α-θ = π/2 I 2 I 0 1 cos I2 0 说明 1 cos 0 cos 1
又因为
2
n0
ne
d
2k
(n0 ne )d
所以
k 的光未透过第二个尼科耳棱镜
因此在可见光范围内少了以下波长的光:
当k 1时 当k 5时 当k 6时 当k 7时 当k 8时 当k 9时 当k 10时 当k 11时
I
' s1
I s1
( A's1 )2 As1
[
sin(600 sin(600
300 300
) )
]2
1 4
I
' s1
1 4
I s1
1
6.25%
I0 4Is1 16
6.一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成 30°角。两束折射光通过
在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动方向成 500 角。计算两束透射光
①当两个尼科耳棱镜垂直时,透射光强度是: I I0 1 cos

2
n0
ned
可得
20
代入上式可得
I
0
因此是减弱
②当两个尼科耳棱镜平行时,透射光强度是: I I0 1 cos
同理可得: I 2I2 因此光强加强。
16 单色平行自然光垂直入射在杨氏双缝上,屏幕上出现一组干涉条纹。已知屏上 A、C 两 点分别对应零级亮纹和零级暗纹,B 是 AC 的中点,如题 5.16 图所示,试问:(1)若在双
I0
I1 sin2
300
1 4
I1
Ie
I1
cos2
300
3 4I1Fra bibliotekI01 4
I1
1
Ie
3 4
I1
3

λ = 589nm 时,ΔΨ = 900
Δδ =
2λ(n0
-ne)d=
2
(2k
1)
当 k=0 时为厚度最小值
(2k 1)λ d ∴ 4(n0 ne ) 代入数值得 d = 8.56 10-7m
1 8. 有一块平行石英片是沿平行于光轴方向切出的。要把它切成一块黄光的 4 波片,问这块
石英片应切成多厚?石英的 n e = 1.552, n o = 1.543, λ = 589.3nm
d n0
ne 2k
1
4
d
2k 1
4
n0 ne
2k 11.64 103 cm
9. (1) 线偏振光垂直入射到一个表面和光轴平行的波片,透射出来后,原来在波片中的寻常
光及非常光产生了大小为 π 的相位差,问波片的厚度为多少?已知 n e = 1.5533, n o = 1.5442, λ
解: ①因为 N1 垂直于 N2 Δδ = 2(n0 -ne)d= (2k 1) (k=1,2,3…)

Δδ
(n0
=
-ne)d=
2
(2k
1)
时出现亮条纹,所以垂直插入的为
1/2
波片
②设波片顺时针方向转过 200 后,N2 要转过 α 才能使 N2 的视场恢复原始的暗场
因为 N1 输出为线偏振光, N1 N2 N2 视场本为暗场,垂直插入 1/2 波片后 N2 视场为亮场,
缝后放一理想偏振片 P,屏上干涉条纹的位置、宽度会有如何变化?(2)在一条缝的偏振 片后放一片光轴与偏振片透光方向成 450 的半波片,屏上有无干涉条纹?A、B、C 各点的 情况如何? 解:①若在双缝后放一理想偏振片不会影响 S1 与 S2 之间的原有光程差, 所以原有干涉条纹的位置和宽度都不变,由于自然光经过偏振片后光强减半,所以 A 减光
2 90
即:
4
10. 线偏振光垂直入射到一块表面平行于光轴的双折射波片,光的振动面和波片光轴成 250 角,问波片中的寻常光透射出来的相对强度如何? 解:将入射的线偏振光分别向 x,y 方向投影
得:
I0 Ie
I sin2 250 I cos2 250
tan2
250
11 在两个正交尼科耳棱镜 N1 和 N2 之间垂直插入一块波片,发现 N2 后面有光射出,但当 N2 绕入射光向顺时针转过 200 后,N2 的视场全暗,此时,把波片也绕入射光顺时针转过 200, N2 的视场又亮了。问(1)这是什么性质的波片;(2)N2 要转过多大的角度才能使 N2 的视 场又变为全暗。
= 500nm;(2)问这块波片应怎样放置才能使透射出来的光是线偏振光,而且它的振动面 和入射光的振动面成 900 角?
解:①
d n0
ne
2
2k 1
2k 1
d
n0
4
ne
2k 1 2.75103 cm
② 由①可知该波片为 1/2 波片,要透过 1/2 波片的线偏振光的振动面和入射光的振动面垂 直
=A0[exsin(wt-kz)+eycos(wt-kz)] 为右旋圆偏振光
相关文档
最新文档