模拟乘法器实验

合集下载

模拟乘法器调幅(AM、DSB、SSB)实验报告

模拟乘法器调幅(AM、DSB、SSB)实验报告

模拟乘法器调幅(AM、DSB、SSB)实验报告实验十二模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅。

抑止载波双边带调幅和单边带调幅的方法。

2.研究已调波与调制信号以及载波信号的关系。

3.掌握调幅系数的测量与计算方法。

4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。

5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。

二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

4.实现单边带调幅。

三、实验原理幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。

本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。

所以目前无线通信、广播电视等方面应用较多。

集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。

(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。

MC1496是四象限模拟乘法器。

其内部电路图和引脚图如图12-1所示。

其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可图12-1 MC1496的内部电路及引脚图正可负,以此实现了四象限工作。

V7、V8为差分放大器V5与V6的恒流源。

(2)静态工作点的设定1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。

模拟乘法器实验报告

模拟乘法器实验报告

模拟乘法器实验报告模拟乘法器实验报告引言:模拟乘法器是电子电路领域中非常重要的一种电路设计,它能够实现数字信号的乘法运算。

在本次实验中,我们将学习并实现一种基于模拟电路的乘法器设计,并对其性能进行评估。

一、实验目的本次实验的主要目的是通过设计和实现模拟乘法器电路,加深对模拟电路设计原理的理解,并通过实际测量和分析,评估乘法器的性能。

二、实验原理模拟乘法器是通过电压的乘法运算来实现的。

在本次实验中,我们采用了一种基于差分放大器和电流镜电路的乘法器设计。

其基本原理是利用差分放大器的非线性特性,将输入信号进行放大和非线性变换,从而实现乘法运算。

三、实验步骤1. 设计乘法器电路的基本框架,包括差分放大器、电流镜等电路元件的选择和连接。

2. 根据设计要求,选择适当的电阻和电容值,并进行电路元件的布局和连线。

3. 使用示波器和信号发生器,分别输入模拟的乘数和被乘数信号,并观察输出信号。

4. 调整输入信号的幅值和频率,记录输出信号的变化情况,并进行分析和比较。

5. 对乘法器电路进行性能评估,包括增益、非线性失真、带宽等方面的指标。

四、实验结果与分析通过实验测量和分析,我们得到了乘法器电路的性能数据。

首先,我们观察到输出信号的幅值与输入信号的幅值成正比关系,表明乘法器电路的放大倍数与输入信号的幅值相关。

其次,我们发现输出信号的频率与输入信号的频率一致,说明乘法器电路能够正确地传递输入信号的频率特性。

此外,我们还对乘法器电路的非线性失真进行了评估,发现在输入信号较大的情况下,输出信号存在一定的非线性畸变,这可能是由于差分放大器的非线性特性引起的。

五、实验总结通过本次实验,我们深入学习了模拟乘法器的原理和设计方法,并通过实际测量和分析,对乘法器的性能进行了评估。

实验结果表明,所设计的乘法器电路能够较好地实现乘法运算,并具有一定的线性范围。

然而,在实际应用中,我们还需要考虑乘法器电路的稳定性、功耗等因素,并进一步优化电路设计,以满足不同应用场景的需求。

模拟乘法器调幅(AM、DSB、SSB)实验报告

模拟乘法器调幅(AM、DSB、SSB)实验报告

实验十二模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅。

抑止载波双边带调幅和单边带调幅的方法。

2.研究已调波与调制信号以及载波信号的关系。

3.掌握调幅系数的测量与计算方法。

4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。

5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。

二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

4.实现单边带调幅。

三、实验原理幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。

本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。

所以目前无线通信、广播电视等方面应用较多。

集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。

(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。

MC1496是四象限模拟乘法器。

其内部电路图和引脚图如图12-1所示。

其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可图12-1 MC1496的内部电路及引脚图正可负,以此实现了四象限工作。

V7、V8为差分放大器V5与V6的恒流源。

(2)静态工作点的设定1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。

实验十-模拟乘法器调幅-(1)

实验十-模拟乘法器调幅-(1)

实验十模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑制载波双边带调幅和音频信号单边带调幅的方法。

2.研究已调波与调制信号以及载波信号的关系。

3.掌握调幅系数的测量与计算方法。

4.通过实验对比全载波调幅、抑制载波双边带调幅和单边带调幅的波形。

5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。

二、实验内容1、实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

2、实现抑制载波的双边带调幅波。

3、实现单边带调幅。

三、实验仪器1、信号源模块1块2、频率计模块1块3、4 号板1块4、双踪示波器1台5、万用表1块四、实验原理及实验电路说明幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。

本实验中载波是由高频信号源产生的465KHz高频信号,1KHz的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

a)集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。

所以目前无线通信、广播电视等方面应用较多。

集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。

MC1496是四象限模拟乘法器,其内部电路图和引脚图如图10-1所示。

其中V 1、V 2与V 3、V 4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V 5与V 6又组成一对差分电路,因此恒流源的控制电压可正可负,以此实现了四象限工作。

V 7、V 8为差分放大器V 5与V6的恒流源。

图10-1 MC1496的内部电路及引脚图2)静态工作点的设定(1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。

模拟乘法器应用实验

模拟乘法器应用实验

二、综合设计实验说明
本次综合设计实验,由大家独自依据所学的有关高频电子 线路中频率变换技术的相关理论知识,以模拟乘法器为核心器 件,设计出实现普通调幅、平衡调制、混频、倍频和同步检波 等功能的实际电路。并完成对所设计的各种功能电路的仿真调 试。
三、实验任务与要求
一、实验任务:
用模拟乘法器实现振幅调制(含AM与DSB)、同步检波、混频、倍频等频 率变换电路的设计。 已知:模拟乘法器为1496,采用双电源供电,Vcc=12V Vee=-8V.
② 同步检波器电路设计与仿真
实现对DSB信号的解调。 基本条件;载波信号UX:f=1MHZ /50-100mV 调制信号Uy: f=2KHz/200mV,并按信号流程记录各级信号波形。
三、实验任务与要求
二、实验要求:
③ 混频器电路设计与仿真 实现对信号的混频。 基本条件:AM信号条件:(载波信号UX:f=1MHZ /50mV ,调制信号Uy: f=2KHz/200mV,M=30%)中频信号:465KHZ,本地载波:按接收机制式自定。 记录各级信号波形。 ④ 倍频器电路设计与仿真 实现对信号的倍频。 基本条件:Ux=Uy(载波信号UX:f=1MHZ /50mV )完成电路设计与仿真, 并记录各级信号波形。推证输入、输出信号的关系。
U 0 (t )
1 KU sU 0 cos( 0 s )t 2
0 s i
为所需要的中频频率,可见
用模拟乘法器实现混频,就是在 U x 端和 U y 端分别加上两个不同频率的信号,两信号 相差一中频,再经过带通滤波器取出中频信号。
四、实验原理说明及设计思路提示
5.模拟乘法器实现混频
U 0 t 1 m Ucm cos c t cos c t 2 m Ucm cos c t cost

《模电实验》模拟乘法器

《模电实验》模拟乘法器

模拟乘法器幅度调制实验姓名:学号:模拟乘法器幅度调制实验模拟乘法器是利用三极管的非线性特性,经过电路的巧妙设计,在输出中仅保留两路输入信号的乘积项,从而获得良好的乘积特性的集成器件。

模拟乘法器其可用于各种频率变化,如平衡调制、混频、同步检波、鉴波、检波、自动增益控制等电路。

本实验利用模拟乘法器MC1496实现幅度调制电路。

一、实验目的1、了解模拟乘法器的工作原理;2、学会利用模拟乘法器搭建振幅调制电路,掌握其工作原理及特点。

3、了解调制系数Ma的测量方法,了解Ma<1、Ma=1、Ma>1时调幅波的波形特点。

二、复习要求1、复习幅度调制器的有关知识;2、分析实验电路中用MC1496乘法器调制的工作原理,并分析计算各引脚的直流电压;3、了解调制系数M的意义及测量方法;4、分析全载波调幅信号的特点;5、了解实验电路各元件的作用。

三、实验电路原理实验电路如下图所示。

该电路可用来实现幅度调制,混频。

倍频,同步检波等功能。

图中R8和R9为负载电阻,R10为偏置电阻,R7为负载反馈电阻。

R1、R2和Rp组成平衡调节电路,调节Rp可以调节1、4两管脚的电位差。

当电位器为0时,电路满足平衡调幅。

当电位差不为零时,输入包含调制信号和直流分量两部分,则可实现普通调幅。

四、实验步骤1、按照电路图焊接电路。

2、实现普通单音调幅:a、在Ux上加入振幅Vx=50mV、频率f=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,调节电位器Rp,使电路工作在不平衡状态,用示波器观察输出波形。

b、保持Ux不变,改变Uy的幅值,当Uy的幅度为50mV、100mV、150mV、200mV、250mV时,用示波器观察输出信号的变化,并作出Ma—Uy曲线。

c、保持Ux不变,fx由小变大,观察输出波形的变化。

3、实现平衡调幅a、将Uy接地,在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,调节电位器Rp使输出Uo=0.b、在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,微调调节电位器Rp,得到抑制波的双边带信号。

通信电子线路实验:实验六 模拟乘法器

通信电子线路实验:实验六 模拟乘法器

5PT3
结论
同步检波器也可用于解调普通的Am波。 与二极管包络检波器比较,同步检波器电路较复杂。当 与已调波的载波不同频不同相,将会产生解调信号失真。
(5) 1°将接于5PT2的示波器探头接于5PT3,调节低频信号 发生器输出,增大ma=100%,记录ma=100%的调幅波 波形与抑制载波波形作比较,指出其区别。
(3)1°观察记录二极管包络检波器的输出波形(7PT) 2°观察记录二极管包络检波器的解调输出波形与已调 波(5PT3)包络的关系。 3°将接5PT3的示波器探头改接5PT2,观察记录包络检 波器的解调输出波形与原调制信号的差异。
7PT3 7PT3
5PT2 5PT3
结论:二极管包络检波器可解调ma<1的普通调幅波
对3°,4°实验结果进行分析 写出结论。
(2) 抑制载波调幅波的解调。
1°同集成模拟乘法器构成的同步解调器进行解调将5K3连通 2-3端,示波器一通道接5PT2,另一通道6PT1,观察,记 录解调输出(6PT1)波形与原解调制信号(5PT2)波形 的异同。将接5PT2的示波器输出探头改接5PT3,观察记 录解调输出波形与已调波包迹的关系。图如下:
3 普通调幅波的产生及其解调
(4)1°将5K3连通2-3端,示波器一通道探头接6PT1另一 通道探头接5PT2,观察记录同步检波器解调输出波 形与原调制信号波形的异同。
2°将接5PT的示波器探头改接5PT3,观察记录同步检 波器解调输出波形与原调制信号包络的关系。
6PT1
6PT1
结论 (下页) 5PT2
VΩ vAM VDSB
1°普通AM波的包络函数 αVΩ(t)VDSB波的 包络函数α∣ VΩ(t)∣
2° VΩ=0 普通AM波的振幅为原载波

模拟乘法器1496实验报告综述

模拟乘法器1496实验报告综述

实验课程名称:_高频电子线路五.实验原理与电路设计仿真1、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。

所以目前在无线通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

下面介绍MC1496集成模拟乘法器。

(1)MC1496的内部结构MC1496 是目前常用的平衡调制/解调器。

它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。

MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。

(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。

一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。

为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。

引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。

各引脚功能如下:1:SIG+ 信号输入正端 2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)Multisim建立MC1496电路模块启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。

实验三模拟乘法器调幅及解调实验

实验三模拟乘法器调幅及解调实验

实验三模拟乘法器调幅(AM、DSB、SSB)及解调实验(包络检波及同步检波实验)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。

2.研究已调波与调制信号以及载波信号的关系。

3.掌握调幅系数的测量与计算方法。

4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。

5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。

6.进一步了解调幅波的原理,掌握调幅波的解调方法。

7.掌握二极管峰值包络检波的原理。

8.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。

9. 掌握用集成电路实现同步检波的方法。

二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

4.实现单边带调幅。

5.完成普通调幅波的解调。

6.观察抑制载波的双边带调幅波的解调。

7.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。

三、实验原理及实验电路说明1、调幅部分幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。

本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。

振幅调制器即为产生调幅信号的装置。

1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。

所以目前无线通信、广播电视等方面应用较多。

集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。

模拟乘法器实验报告

模拟乘法器实验报告

模拟乘法器实验报告
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
实验课程名称:_高频电子线路
图1-1 1496构成的振幅调制电路电原理图图中载波信号经高频耦合电容C1输入到Uc⑩端,C3为高频旁路电容,使⑧交流接地。

调制信号经高频耦合电容C2输入到
为高频旁路电容,使①交流接地。

调制信号UAM从⑿脚单端输出。

电路
供电,所以⑤脚接
此,改变
的大小,即:
VEE=-8V,I5=1mA时,可算得:<MC1496器件的静态电流一
=1mA左右)
R5={<8-0.75)/<1X10-3)}-500=6.75KΩ取标称
,,
所以取:R1=R2=1K R3=51Ω R4=R5=750Ω,R6=R7=1K
引脚⑧⑩①④⑥12 ②③⑤⑦14 电压<V
)。

实验测得信号波形如图1-3
时,过零点为一条直线。

1-4 图1-5
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

06实验六 2DPSK实验(模拟乘法器法)

06实验六 2DPSK实验(模拟乘法器法)

实验六 2DPSK 实验(模拟乘法器法)一、实验目的1、 学习2DPSK中频调制器原理2、 了解二相差分编译码原理和作用3、 正交调幅法2DPSK中频调制器硬件实现方法4、 数字中频调制方式与频带利用率二、实验仪器1、 计算机 一台2、 通信基础实验箱 一台3、 100MHz 示波器 一台4、 频谱分析仪 一台5、 螺丝刀 一把三、实验原理数字通信最简单的调制器是2PSK调制器,也称二相相移键控,这种调制器把数字信息“1”和“0”分别用载波的相位0和π这两个离散值来表示。

其表达式为:)](cos[)(t t A t S c θω+=式中取值0或π是由数字信息比特取“1”或“0”决定。

在实际应用中,2PSK调制器分为绝对调相和相对调相两种。

1、 BPSK调制(绝对调相)利用载波相位的绝对数值来传送数字信息叫做绝对相移键控,也称BPSK调制。

例如输入一串二进制数字序列 ,其值是“1”或“0”随机变化,经过BPSK调相后,其相角按如下式变化:⎪⎩⎪⎨⎧===0,1,0)(k k b b t πθ因此:BPSK信号可表示为:⎩⎨⎧==+=−=+=1,cos )0cos(0,cos )cos()(k c c k c c b t A t A b t A t A t S ωωωπω令:⎪⎩⎪⎨⎧=+=−=0,1)(1,1k k b t D b则BPSK信号可表示为:t A t D t S c ωcos )()(=根据BPSK信号的表达式,模拟乘法器实现2DPSK调制器的原理框图如图6-1所示。

BPSK调制器波形如图6-2所示。

c(t)=COS W ct图6-1 模拟乘法器法实现2DPSK调制原理框图图6-2 BPSK调制器波形图2、 2DPSK 调制(相对调相)为了克服BPSK 移相键控中的相位模糊问题,实际应用中常采用相对调相,或叫做差分移相键控,记作DPSK 。

它的调制规律与BPSK 的区别在于:以每个数字比特的载波相位为基准来取值。

模拟乘法器调幅实验报告

模拟乘法器调幅实验报告

模拟乘法器调幅实验报告模拟乘法器调幅实验报告引言:调幅(Amplitude Modulation, AM)是一种常用的调制技术,广泛应用于无线通信、广播电视等领域。

在调幅技术中,模拟乘法器是一个关键的组件,它能够实现信号的调幅处理。

本实验旨在通过搭建模拟乘法器电路,深入了解调幅原理,并通过实验验证其效果。

一、实验目的通过搭建模拟乘法器电路,掌握调幅原理,并验证其调幅效果。

二、实验原理调幅是通过将调制信号与载波信号相乘,实现信号的幅度调制。

模拟乘法器是实现这一功能的关键元件。

在本实验中,我们采用二极管作为模拟乘法器的核心元件。

当二极管正向偏置时,其电流与输入电压成正比。

将调制信号与载波信号输入到二极管的正向偏置端,通过电流与电压的乘积,实现信号的幅度调制。

三、实验器材和仪器1. 信号发生器:提供调制信号和载波信号。

2. 二极管:作为模拟乘法器的核心元件。

3. 示波器:用于观察输出信号的波形。

四、实验步骤1. 搭建电路:将信号发生器的调制信号输出与载波信号输出分别连接到二极管的正向偏置端,将二极管的反向端接地。

将二极管的输出端连接到示波器,观察输出信号的波形。

2. 调节信号发生器:分别调节调制信号和载波信号的频率、幅度和相位,观察输出信号的变化。

3. 记录实验数据:记录不同调制信号和载波信号参数下的输出信号波形和幅度。

五、实验结果与分析在实验中,我们通过调节信号发生器的调制信号和载波信号的频率、幅度和相位,观察了输出信号的变化。

实验结果显示,当调制信号的频率与载波信号的频率相等时,输出信号呈现出明显的幅度调制效果。

当调制信号的幅度增大时,输出信号的幅度也相应增大。

当调制信号的相位与载波信号的相位相差90度时,输出信号的幅度最大,表现出最明显的幅度调制效果。

通过实验结果的分析,我们可以得出以下结论:1. 调制信号的频率与载波信号的频率相等时,能够实现明显的幅度调制效果。

2. 调制信号的幅度与输出信号的幅度成正比,调制信号的幅度增大时,输出信号的幅度也相应增大。

模拟乘法器实验

模拟乘法器实验

模拟乘法器实验模拟乘法器的应用——低电平调幅姓名: 学号: 实验台号:一、实验目的1、掌握集成模拟乘法器的工作原理及其特点2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法二、实验仪器低频信号发生器高频信号发生器频率计稳压电源万用表示波器三、实验原理1、MC1496/1596 集成模拟相乘器集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB乘法检波器、AM调制解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。

MC1496的内部电路继引脚排列如图所示MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz以下的频率。

双差分对模拟乘法器MC1496/1596的差值输出电流为,,,2121iiithth,,,()()()56 VRV22TyTMC1595是差值输出电流为式中,错误~未找到引用源。

为乘法器的乘法系数。

MC1496/1596使用时,VT 至VT的基极均需外加偏置电压。

162.乘法器振幅调制原理X通道两输入端8和10脚直流电位均为6V,可作为载波输入通道;Y通道两输入端1和4脚之间有外接调零电路;输出端6和12脚外可接调谐于载频的带通滤波器;2和3脚之间外接Y通道负反馈电阻R。

若实现普通调幅,可通过调节10kΩ电位器RP使1脚电位81比4脚高错误~未找到引用源。

,调制信号错误~未找到引用源。

与直流电压错误~未找到引用源。

叠加后输入Y通道,调节电位器可改变错误~未找到引用源。

的大小,即改变调制指数M;若实现DSB调制,通过调节10kΩ电位器RP使1、4脚之间直流a1等电位,即Y通道输入信号仅为交流调制信号。

为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻的阻值,比如各增大10Ω。

3.实验三模拟乘法器

3.实验三模拟乘法器

2.混频后与滤波后信号波形与频谱的测量 a)用示波器CH1通道测量 7号板 的TP5 ,用CH2通道测量7号板 TP6
V
V
t

t
0
0
《TP5混频信号波形》
《TP6滤波信号波形》
《TP5信号频谱波形》幻灯片 9
《TP6信号频谱波形》
c)画出 TP5 和 TP6 频谱波形:幻灯片 8
相 对 振 幅
0
高频电子线路实验
实验实训中心——高频电子线路实验室
实验三 模拟乘法混频器
一、实验目的
1、了解模拟乘法混频器的工作原理。 2、会用示波器测量模拟乘法混频器混频输出与滤波后中频输出的信号波 形与频谱。
注:本次抄写2、7、8、10、11、12页
本次实验需要实验模块: 1号板、6号板、6号板、7号板
《TP5信号频谱波形》
相 对 振 幅
0
《TP6信号频谱波形》
3、本振信号电压幅值改变对混频输出中频信号幅值影响的测量
注:示波器CH1接7号板TP7,CH2接7号板TP6
表1:
7号板TP7
本振信号VPP(mV )
200
300
400
500
600
700
7号板TP6
中频信号
VPP(V )
六、实验总结
根据步骤2观察到的信号波形,说明信号的混频、滤波输出中频信号的过程


拟 TP5 瓷



乘法器 输出



P6
TP6 差频输出
频率计 RFIN (频6率号计板)
A通道
示波器 C示H波2接器TP6 负极接GND
五、实验内容

实验四 模拟乘法器的应用(振幅调制器)

实验四     模拟乘法器的应用(振幅调制器)

实验四模拟乘法器的应用(振幅调制器)一.实验目的1.掌握用集成模拟乘法器F1496实现普通调幅和抑制载波的双边带调幅的方法与过程;2.研究输出已调波信号与输入载波信号、调制信号的关系。

3.掌握调幅系数的测量方法。

二.实验原理集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。

高频电子线路中的振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调过程,均可视为两个信号相乘的过程。

F1496是双平衡四象限模拟乘法器,电路如图4-1所示。

引脚⑧与⑩接输入电压U x,①与④接另一输入电压U y,输出电压U o从引脚⑥与⑿输出。

引脚②与③外接电阻为电流负反馈电阻,可调节乘法器的信号增益,并扩展输入电压U y的线性动态范围。

引脚⒁为负电源(双电源供电时)或接地端(单电源供电时)。

本实验将完成普通调幅和抑制载波调幅的内容。

三.实验设备1. 示波器SS7802A 1台2. 信号源EE1643 1台3. 数字万用表1块4. 高频电路实验板G31块四.实验内容与步骤实验电路如图4-1所示,按图接好电路。

1.载波输入端平衡调节在调制信号输入端IN2输入调制信号UΩ(t),UΩ(t)为f=1KHz幅度为100mV(V P-P)的正弦信号。

将示波器接至OUT处,调节电位器R P2,使示波器上输出的波形幅度最小。

(然后去掉输入信号UΩ)。

2.抑制载波调幅(在载波输入端平衡的状态下进行)1)输入端IN1输入载波信号U C(t),U C(t)为f=465KHz,幅度U C(p-p)=30mv的正弦信号,将示波器接至OUT处。

调节R P1,使输出电压Vo最小。

2)入端IN2输入调制信号UΩ(t),其频率为1KHz,幅度由零逐渐增大,当UΩ(p—p)为几百毫伏时,将出现如图4-2所示的抑制载波的调幅信号。

由于器件内部参数不可能完全对称,致使输出波形出现漏载信号。

可通过调节电位器R P2来改善波形的对称性。

记录波形并测出V O(p-p)值。

模拟乘法器应用实验实验报告

模拟乘法器应用实验实验报告

模拟乘法器应用实验实验报告姓名:王攀学号:04085037实验目的:(1)了解模拟乘法器的工作原理(2)学会利用模拟乘法器完成平衡调制、混频、倍频、同步检波、鉴相及鉴频等功能。

实验仪器:高频信号发生器QF1055A 一台;超高频毫伏表DA22A 一台;频率特性测试仪BT-3C 一台;直流稳压电源HY1711-2 一台;数字示波器TDS210 一台.实验原理:实验电路如图1所示。

该电路可用来实现普通调幅、平衡调制、混频、倍频、同步检波等功能。

图中R L为负载电阻,R B是偏置电阻,R E是负载反馈电阻,R W和R1、R2组成平衡调节电路,调节R W,可使1、4两脚的直流电位差为零,从而满足平衡调幅的需要,若1、4脚直流电位差不为零,则1、4输入包括调制信号和直流分量两部分,此时可实现普通调幅波,电感L1和C1、C2组成BPF以混频输出所需的465KHz 中频信号,同步检波可用前边的限幅器(未给处)和模拟乘法器及低通滤波器(L2 C3 C4)构成。

图1.模拟乘法器应用电路一:振幅调制、混频等实验内容:1.实验前,所有实验先进行计算机仿真,研究载波、调制信号大小及频率变化,直流分量大小对已调信号的影响。

2.用模拟乘法器MC1596实现正弦调幅。

分别加入f x=500KHz,U x=100mV,f y=10KHz,U y=0.2V的信号时调电位器R W工作在不平衡状态时便可产生含载波的正弦调幅信号。

a:保持U x(t)不变,改变U y值:50mV、100mV、150mV、200mV、250mV时,观察U o(t)的变化,并作出m~U y(t)关系曲线(*m指以调信号的调幅系数测试时可用公式m=(A-B)/(A+B))b:保持U y(t)不变,f y由小到大变化时,输出波形又如何变化?3.用模拟乘法器MC1596实现平衡调幅波。

a:调平衡:将乘法器y输入端接地,即U y(t)=0,x输入端加入f x=500KHz,U x=50mV的输入信号,调电位器R W 使U o(t)=0。

实验七 模拟乘法器电路

实验七 模拟乘法器电路

实验七 模拟乘法器电路一、实验目的和要求1.掌握模拟乘法器的基本概念与特性,NI multisim 10模拟乘法器。

2.掌握模拟乘法器组成的乘法与平方运算电路、除法与开平方运算电路、函数发生电路电路与计算机仿真设计与分析方法。

模拟乘法器是构成应用电路的基础,注意模拟乘法器与运算放大器的结合,以及将模拟乘法器连接在运算放大器的输入回路和负反馈回路上对电路功能的影响。

二、实践内容或原理1.通用模拟乘法器(P162)2.NI multisim 10模拟乘法器模拟乘法器能实现两个互不相关的模拟信号间的相乘功能,是一种普遍应用的非线性模拟集成电路。

在NI multisim 10模拟乘法器模型中,输出电压U out =K [X K (U X +X off )·Y K (U X +X off )]+O ff式中,U out 为在Z (K*XY )端的输出电压;U X 为在X 端的输入电压;U Y 为在Y 端的输入电压;K 为输出增益,默认值1V/V ;O ff 为输出补偿,默认值0V ;Y off 为Y 补偿,默认值0V ;X off 为X 补偿,默认值0V ;Y K 为Y 增益,默认值1V/V ;X K 为X 增益,默认值1V/V 。

单击Sources→CONTROL -FUNCTION→ MULTIPLLER ,即可取出一个乘法器放置在电路工作区中,双击乘法器图标,即可弹出乘法器属性对话框,可以在对应的窗口中对乘法器的参数值、标识符等进行修改。

3.反相输入除法运算电路一个二象限反相输入除法运算电路如图7.1所示,它由运放3554AM 和接于负反馈支路的乘法器A1构成。

根据运放线性应用时的特点及乘法器的特性,不难推理出输出电压U o 与输入信号U i (V2)、U r (V1)的关系。

因为,211211i A A i U R R V R V R U -=⇒-=又因为,1o r A V KV V =所以,21i o r U R R V KV =故 ri o U U R R K U 121-=当取R 1=R 2时,U o 为ri d r i o U U K U U K U -=-=1 (7.1) 式中相除增益K d 为乘法器相乘增益K 的倒数。

实验二 模拟乘法器调幅

实验二 模拟乘法器调幅

实验二模拟乘法器调幅实验二模拟乘法器调幅实验二模拟乘法器调幅(dsb,am)一.实验目的1.掌握集成模拟乘法器实现普通调幅(am)、双边带调幅(dsb)的方法。

2.研究已调波与调制信号以及载波信号的关系。

3.掌握调幅系数的测量和计算方法。

4.通过实验对照普通调幅(am),双边拎调幅(dsb)的波形。

5.介绍演示乘法器(mc1496)的工作原理。

二.实验内容:1.演示相加调幅器的输出失调电压调节、直流调制特性测量。

2.实现拟止载波的双边带调幅波(dsb)。

3.同时实现全系列载波调幅(普通条幅am),发生改变调幅度,观测波形变化并排序调幅度。

4.自学用调制度测试仪测量am波的调制度ma三.实验原理及实验电路说明:幅度调制就是载波的振幅(正弦)随其调制信号的参数变化而变化。

本实验中载波就是由高频信号源产生的465khz的高频信号,低频信号源产生的1khz的低频信号为调制信号。

振幅调制器即为为产生调幅信号的装置。

1.集成模拟乘法器(mc1496)的内部结构及原理内置演示乘法器就是顺利完成两个模拟量(电压或电流)相加的电子元件,在高频电子线路中,振幅调制,同步检波,混频,鉴频等,均可视作两个信号相加的过程。

使用内置演示乘法器同时实现上述功能比使用拆分器件例如二极管和三极管必须直观的多,而且性能优越。

所以目前无线通信,广播电视等方面应用领域较多。

内置演示乘法器常用产品存有bg314,f1595,f1596,mc1495,mc1496,lm1595,lm1596等。

mc1496的内部结构及原理请参阅课本p129-131页。

2.实验电路表明:用mc1496集成电路构成的调幅器电路图如图2-1所示。

1图2-1mc1496组成的调幅器实验电路图中w1用以调节带出脚1、4之间的均衡,w2用以调节⑻、⑽端的之间的均衡。

器件使用双电源方式供电(12v,-8v),所以5脚偏置电阻r9中剧。

电阻r1、r2、r3、r10、w2为器件提供更多静态偏置电压,确保器件内部的各个晶体管工作在压缩状态。

模拟乘法器混频实验报告

模拟乘法器混频实验报告

模拟乘法器混频实验报告一、引言模拟乘法器混频实验是电子工程领域中一项重要的实验。

通过该实验,我们可以了解模拟乘法器的工作原理以及混频技术的应用。

本实验报告将详细介绍实验的目的、所用仪器设备、实验步骤、实验结果以及分析和讨论。

二、实验目的本实验的目的是通过搭建模拟乘法器混频电路,观察并分析乘法器的工作原理以及混频效果。

具体目标如下:1. 理解模拟乘法器的基本原理;2. 掌握模拟乘法器混频电路的搭建方法;3. 分析乘法器的非线性特性对混频效果的影响;4. 通过实验结果验证理论分析的正确性。

三、仪器设备本实验所用的仪器设备如下:1. 函数信号发生器:用于产生输入信号;2. 模拟乘法器:用于实现模拟乘法运算;3. 混频器:用于实现信号的混频;4. 示波器:用于观测信号的波形和频谱。

四、实验步骤1. 连接仪器设备:将函数信号发生器的输出信号连接到模拟乘法器的一个输入端,将另一个输入端连接到混频器的输出端,再将混频器的输出端连接到示波器的输入端。

2. 设置参数:设置函数信号发生器的输出信号频率和幅值,选择合适的参数。

3. 观察波形:打开示波器,观察模拟乘法器输出端的波形,并记录波形的特点。

4. 分析频谱:通过示波器的频谱分析功能,观察信号的频谱特性,并记录分析结果。

5. 调整参数:根据实验结果,适当调整函数信号发生器的输出频率和混频器的参数,再次观察波形和频谱。

6. 分析和讨论:根据实验结果,分析模拟乘法器的工作原理和混频效果,并进行讨论。

五、实验结果经过实验观察和分析,得到以下结果:1. 模拟乘法器输出波形呈现非线性特性,波形的形状与输入信号频率和幅值有关;2. 混频器能将两个频率不同的信号进行混合,产生新的频率组合,并且频谱特性能够反映出混频效果;3. 调整函数信号发生器的频率和混频器的参数,可以改变输出波形和频谱的特征。

六、分析和讨论通过实验结果的观察和分析,我们可以得出以下结论:1. 模拟乘法器的工作原理是利用非线性特性,将两个输入信号相乘,产生新的输出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟乘法器的应用——低电平调幅姓名: 学号: 实验台号:一、 实验目的1、掌握集成模拟乘法器的工作原理及其特点2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法二、实验仪器低频信号发生器 高频信号发生器频率计 稳压电源 万用表 示波器三、实验原理1、MC1496/1596 集成模拟相乘器集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB 乘法检波器、AM 调制解调器、FM 解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。

MC1496的内部电路继引脚排列如图所示MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz 以下的频率。

双差分对模拟乘法器MC1496/1596的差值输出电流为121562()()()22TyTi i i th th V R V υυυ=-≈MC1595是差值输出电流为式中,错误!未找到引用源。

为乘法器的乘法系数。

MC1496/1596使用时,VT1至VT6的基极均需外加偏置电压。

2.乘法器振幅调制原理X通道两输入端8和10脚直流电位均为6V,可作为载波输入通道;Y通道两输入端1和4脚之间有外接调零电路;输出端6和12脚外可接调谐于载频的带通滤波器;2和3脚之间外接Y通道负反馈电阻R8。

若实现普通调幅,可通过调节10kΩ电位器RP1使1脚电位比4脚高错误!未找到引用源。

,调制信号错误!未找到引用源。

与直流电压错误!未找到引用源。

叠加后输入Y通道,调节电位器可改变错误!未找到引用源。

的大小,即改变调制指数Ma ;若实现DSB调制,通过调节10kΩ电位器RP1使1、4脚之间直流等电位,即Y通道输入信号仅为交流调制信号。

为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻的阻值,比如各增大10Ω。

MC1496线性区好饱和区的临界点在15-20mV左右,仅当输入信号电压均小于26mV时,器件才有良好的相乘作用,否则输出电压中会出现较大的非线性误差。

显然,输入线性动态范围的上限值太小,不适应实际需要。

为此,可在发射极引出端2脚和3脚之间根据需要接入反馈电阻R8=1kΩ,从而扩大调制信号的输入线性动态范围,该反馈电阻同时也影响调制器增益。

增大反馈电阻,会使器件增益下降,但能改善调制信号输入的动态范围。

MC1496可采用单电源,也可采用双电源供电,其直流偏置由外接元器件来实现。

1脚和4脚所接对地电阻R5、R6决定于温度性能的设计要求。

若要在较大的温度变化范围内得到较好的载波抑制效果(如全温度范围-55至+125),R5、R6一般不超过51Ω;当工作环境温度变化范围较小时,可以使用稍大的电阻。

R 1-R4及RP1为调零电路。

在实现双边带调制时,R1和R2接入,以使载漏减小;在实现普通调幅时,将R1及R2短路(关闭开关S1、S2),以获得足够大的直流补偿电压调节范围,由于直流补偿电压与调制信号相加后作用到乘法器上,故输出端产生的将是普通调幅波,并且可以利用RP1来调节调制系数的大小。

5脚电阻R7决定于偏置电流I5的设计。

I5的最大额定值为10mA,通常取1mA。

由图可看出,当取I5=1mA,双电源(+12V,-8V)供电时,R7可近似取6.8kΩ。

输出负载为R15,亦可用L2与C7组成的并联谐振回路作负载,其谐振频率等于载频,用于抑制由于非线性失真所产生的无用频率分量。

VT所组成的射随器用于减少负载变化和1测量带来的影响。

乘法器实现同步检波的原理同步检波分为乘积型和叠加型两种方式,它们都需要接收端恢复载波的支持,本实验采用乘积型同步检波。

乘积型同步检波是直接把本地恢复载波与调幅信号相乘,用低通滤波器滤除无用的高频分量,提取有用的低频信号,它要求恢复载波与发射端的载波同频同相,否则将使恢复出来的调制信号产生失真。

实验中,用MC1496/1596构成的振幅调制电路产生调幅信号,然后采用实验电路实现信号的解调。

本实验电路的输出电流中,除了解调所需要的低频分量外,其余所有分量都属于高频范围,很容易滤除,因此不需要载波调零电路,而且可采用单电源供电。

本电路可解调DSB 或SSB信号,亦可解调AM信号。

MC1496/1596的10脚输入载波信号,可用大信号输入,一般为100-500mV;1脚输入已调信号,信号电平应使放大器保持在线性工作区内,一般在100mV 以下。

3.实验电路四、实验步骤1.、普通振幅调制在LC 振荡器上1K 接2,2K 接2,调节1DW 和5C 使得()MHz 4c f =,mv V cm 50<将其输出用电缆连接到乘法器的AIN 输入端作为载波信号, 在RC 振荡器采用泛音模块3K1↔,调节2DW 使得mv V MHz F m 400,1≤=Ω,将其用输出电缆输出链接到乘法器的BIN 端作为调制信号,在乘法器上闭合开关21K K ,12K 3↔,在D 点用示波器观察并记录此时的输出波形1) 调节电位器1DW 的大小,观察输出波形的变化并记录过调失真时的波形。

2) 改变调制信号m V Ω的大小(即在RC 振荡器上调节2DW 的大小,保持其他参数不变用示波器在RC 振荡器A 点检测),观察输出波形的变化并将结果填入表中,并计算调制系数的大小a M 与m V Ω的关系m V Ω0.1 0.15 0.2 0.25 0.3 0.35 0.4maxVmin Va Mmin maxminmaxa M V VV V +-=3) 改变调制信号的幅度m V Ω,保持其他参数不变,观察并记录过调制时的波形。

(2)用乘法模拟器实现平衡调制1、 断开开关21K K 调节1DW 使得电位器①④脚的直流电位相等,即Y 通道的输入信号仅为交流调制信号2、在LC 振荡器上1K 接2,2K 接2,调节1DW 和5C 使得()MHz 4c f =,mv V cm 50<将其输出用电缆连接到乘法器的AIN 输入端作为载波信号2、 在RC 振荡器采用泛音模块3K1↔,调节2DW 使得mv V MHz F m 400,1≤=Ω,将其用输出电缆输出链接到乘法器的BIN 端作为调制信号。

观察并记录此时的输出波形特别注意调制信号过零点时的载波倒相现象(3)乘积型同步检波器保持振幅调制电路。

将CIN 端接振幅调制电路的AIN 端(载波),将振幅调制电路的OUT 端接SIN 端。

完成下列操作:1、输入载波信号f c =4MHz,V cm =80mV ,调制信号F=1kHz,mV V m 50<Ω,观察并画出振幅调制电路的输出信号、检波器的载波信号和输出信号的波形,比较检波器的输出波形和原调制信号的波形,观察二者是否一致。

2、保持调制信号不变,使载波信号的载波频率为f c =4MHz,改变载波幅度Vcm 的大小,观察并记录对V 0幅值的影响,记入表格中。

3、保持载波信号不变(f c =4MHz,V cm =80mV ),调制信号幅度仍为mV V m 50<Ω,改变调制信号频率F 的大小,观察并记录对V 0幅值的影响,并记入表格中。

4) 保持载波信号不变(f c =4MHz,V cm =80mV ),调制信号频率仍为F=1kHz ,改变调制信号幅度m V Ω的大小,观察并记录对V 0幅值的影响,记入表格中,并画出其关系曲线。

二极管峰值包络检波器实验报告一:实验目的1、进一步理解调幅信号的解调原理和实现方法2、掌握包络检波器的基本电路及低通滤波器RC 参数对检波器输出的影响3、进一步理解包络检波器中产生失真的机理及预防措施二、实验仪器双踪示波器 数字频率计 直流稳压电源 字万用表三、实验原理与实验电路二极管包络检波器分为峰值包络检波和平均包络检波。

二极管峰值包络检波需要输入信号电压幅度大于0.5V ,检波器输出、输入之间是线性关系,故又称为线性检波。

输入回路提供调幅信号源。

检波二极管通常选用导通电压小、导通电阻和结电容小的点接触型锗管。

RC 电路有两个作用:一是作为检波器的负载,在两端产生解调输出的原调制信号电压;二是滤除检波电流中的高频分量。

为此,RC 网络必须满足R Cc <<ω1且R C>>Ω1。

式中,c ω为载波角频率,Ω为调制角频率。

检波过程实质上是信号源通过二级管向负载电容C 充电和负载电容C 对负载电阻R 放电的过程,充电时间常数为R d C ,R d 为二极管正向导通电阻。

放电时间常数为RC ,通常R>R d ,因此对C 而言充电快、放电慢。

经过若干个周期后,检波器的输出电压V 0在充放电过程中逐步建立起来,该电压对二极管VD 形成一个大的负电压,从而使二极管在输入电压的峰值附近才导通,导通时间很短,电流导通角很小。

当C 的充放电达到动态平衡后,V 0按高频周期作锯齿状波动,其平均值是稳定的,且变化规律与输入调幅信号的包络变化规律相同,从而实现了AM 信号的解调。

实验电路四、实验步骤按照电路图搭建实验电路,检查无误后接通电源,完成如下操作:1、改变低通滤波器的滤波电容C L 的大小(分别为0.02μF 、0.2μF 、2μF ),用示波器观察输出信号的波形并记录。

2、改变低通滤波器的负载电阻R L 的大小(分别为4k Ω、40k Ω、400k Ω),用示波器观察输出信号的波形并记录。

3.改变输出耦合电容C C 的大小(分别为0.1μF 、10μF 、100μF ),用示波器观察输出信号的波形并记录。

相关文档
最新文档