最新人教版七年级数学下册 第九章 《不等式与不等式组》教案

合集下载

人教版数学七年级下册第9章不等式与不等式组教学设计

人教版数学七年级下册第9章不等式与不等式组教学设计
人教版数学七年级下册第9章不等式与不等式组教学设计
一、教学目标
(一)知识与技能
1.理解不等式的定义,掌握不等式的性质,能够运用不等式解决实际问题。
2.学会解一元一次不等式,包括移项、合并同类项、系数化等方法,并能够解决实际问题。
3.理解不等式组的定义,掌握解不等式组的方法,能够解决实际问题。
4.能够运用数轴表示不等式的解集,理解区间表示方法。
(3)采用讲练结合法,让学生在练习中掌握解不等式的方法,提高解题能力。
(4)小组合作学习,培养学生协作解决问题的能力,提高课堂互动性。
2.教学过程:
(1)导入:以实际情境导入,提出问题,引导学生思考,激发学习兴趣。
(2)新知:讲解不等式的性质,引导学生通过实例发现性质,加强理解。
(3)例题:讲解一元一次不等式的解法,通过典型例题,让学生掌握解题方法。
5.引导学生运用数轴表示不等式的解集,培养学生直观想象能力。
(三)情感态度与价值观
1.培养学生对待数学学习的积极态度,增强学生对数学学科的兴趣和信心。
2.引导学生认识到不等式在生活中的广泛应用,激发学生学习数学的积极性。
3.培养学生勇于探索、克服困难的精神,让学生在解决不等式问题的过程中,体验到成功的喜悦。
5.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感需求,鼓励学生积极参与课堂,增强自信心。
在教学过程中,教师应充分了解学生的实际情况,针对不同层次的学生进行差异化教学,关注学生的个体发展,激发学生的学习兴趣,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握不等式的性质,能够熟练运用性质解决实际问题。
3.拓展题:针对不等式组的内容,设计2-3道拓展题,要求学生运用所学知识解决问题,培养学生的综合应用能力。

人教版数学七年级下册第9章不等与不等式组9.2:一元一次不等式(教案)

人教版数学七年级下册第9章不等与不等式组9.2:一元一次不等式(教案)
-难点四:对于含有多个不等式的复杂不等式组,如x > 1, x < 3和x > 2,指导学生通过图示法或集合运算得出解集为2 < x < 3,理解并集和交集的概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一元一次不等式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要比较两个数的大小关系的情况?”(如购物时比较价格)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次不等式的奥秘。
人教版数学七年级下册第9章不等与不等式组9.2:一元一次不等式(教不等式组9.2:一元一次不等式。本节课我们将学习以下内容:
1.一元一次不等式的定义与性质;
2.一元一次不等式的解法,包括移项、合并同类项、系数化为1等基本步骤;
3.应用一元一次不等式解决实际问题;
-能够将实际问题抽象为一元一次不等式,并解决实际问题。
举例解释:
-重点一:通过实例让学生理解不等式的方向性,即当两边同乘以(或除以)同一个正数时,不等号的方向不变;当同乘以(或除以)同一个负数时,不等号的方向改变。
-重点二:通过具体例子,如2x - 3 > 7,演示如何通过移项、合并同类项、系数化为1等步骤求解不等式的解集。
五、教学反思
在今天的教学过程中,我发现学生们对于一元一次不等式的概念和性质的理解存在一些困难。在讲解理论部分时,我意识到需要更多的实际例证来帮助学生直观地理解不等式的性质。例如,通过比较物品的价格,学生们能够更清楚地看到不等号的方向是如何随着乘除操作而改变的。
在案例分析环节,我发现学生们对于将实际问题转化为数学模型的步骤感到困惑。我意识到,我需要提供更多的引导,比如通过提问的方式,帮助学生逐步建立起问题与数学表达式之间的联系。此外,我也注意到,通过小组讨论和实验操作,学生们的参与度有所提高,他们能够更积极地参与到学习过程中。

(完整版)人教版七年级数学(下册)第九章-不等式和不等式组教案

(完整版)人教版七年级数学(下册)第九章-不等式和不等式组教案

第九章《不等式与不等式组》章节计划教材分析:第一本章主要内容包括:不等式的有关概念,不等式的性质,一元一次不等式(组)的相关概念及其解法,利用一元一次不等式(组)分析与解决实际问题。

其中,以一元一次不等式(组)为工具分析解决实际问题是全章的重点,同时也是难点。

第二本章的编写思路第8章“二元一次方程组有大致相同。

类似于方程是解决具有相等关系的实际问题的数学模型一样,不等式(组)是解决具有不等关系的实际问题的数学模型。

本章也都是从丰富的实际问题出发,在分析解决实际问题的过程中,认识不等式(组)(主要是一元一次不等式(组)),学习解一元一次不等式(组)的方法。

这样的一种编排,就将利用一元一次不等式(组)分析解决实际问题贯穿于全章始终,突出重点,强调不等式(组)是解决实际问题的一种有效的数学模型。

第三本章首先从一个行程问题出发,通过分析问题中的不等关系列出不等式,由此引出不等式的概念,然后通过讨论满足不等式成立的x的取值,给出不等式的解集以及一元一次不等式的概念;接下去采用与等式的性质相类比的方式讨论了不等式的3条性质,这就为求出一元一次不等式的解集提供了依据;为了更好地体现不等式是解决实际问题的有效工具。

第四教课书安排了一节“实际问题与一元一次不等式”,探讨了商场购物、空气质量、知识竞赛等情景中的一些具有不等关系的问题,利用一元一次不等式解决这些实际问题,这里列出的不等式比以前见过的复杂,有需要去括号的,有需要去分母的等,这样就结合实际问题,在分析解决实际问题的过程中进一步学习一元一次不等式(组)的解法,最后类比一元一次方程的解法,归纳出求一元一次不等式解集的基本过程。

这样就将有关一元一次不等式的概念和解法融入到分析解决实际问题的过程中。

二元一次不等式组也是采用了这种方式进行编排。

第五本章内容主要是不等式的概念和一元一次不等式的解法,教学重点是不等式(组)的解法和用一元一次不等式解决实际问题。

通过本章学习,不仅使学生学会解一元一次不等式(组)的方法,更使学生体会不等式是解决实际问题的有效的数学模型不等式与不等式组课程标准(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。

新人教版七年级数学第九章不等式与不等式组教案文档

新人教版七年级数学第九章不等式与不等式组教案文档

第九章不等式与不等式组单元总体分析一、教学内容:不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容.数量之间除了有相等关系外,还有大小不等的关系.正如方程与方程组是讨论等量关系的有力数学工具一样,不等式与不等式组是讨论不等关系的有力数学工具.应用不等式的基本性质解一元一次不等式,是一项基本技能,也是学生以后学习一元二次方程、函数以及进一步学习不等式知识的基础。

教材注重了一元一次不等式(组)的解法与一元一次不等式(组)在实际问题中的应用的有机结合,让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。

二、教学目标1、知识与技能:①了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.②通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.③了解解一元一次不等式的基本目标(使不等式逐步转化为的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴涵的化归思想.④了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.2、过程与方法:使学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

3、情感、态度与价值观:(1)体会数学与现实生活的联系,增强克服勇气和信心;(2)会应用数学知识解决一些简单的实际问题,增强应用意识;(3)使学生进一步形成数学来源于实践,又服务于实践的辩证唯物主义观点。

三、重点难点重点:了解一元一次不等式及其相关概念;掌握一元一次不等式的解法,并能在数轴上表示出解集;了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.难点:列出不等式或不等式组表示问题中的不等关系。

人教版初中七年级下册数学教案 第九章 不等式与不等式组 9.1 不等式 9.1.2 不等式的性质

人教版初中七年级下册数学教案 第九章 不等式与不等式组 9.1 不等式 9.1.2 不等式的性质

9.1.2不等式的性质【回顾引入】对于某些简单的不等式,我们可以直接得出它们的解集,例如不等式x+3>6的解集是x>3,不等式2x <8的解集是x<4.但是对于比较复杂的不等式,例如5x+1 6−2>x−54,直接得出解集就比较困难.因此,还要讨论怎样解不等式.与解方程需要依据等式的性质一样,解不等式需要依据不等式的性质.回想一下,等式有哪些性质?分别用文字语言和符号语言表示出来.等式有上述性质,那不等式是否也应该同样具备类似的性质呢?(3)形如a≥b或a≤b的式子,也具有不等式的三个性质,即:若a≥b,则a±c≥b±c,ac≥bc或ac ≥bc(其中c>0),ac≤bc或ac ≤abc(其中c<0).(4)用数轴表示不等式的解集时,实心圆点和空心圆圈有什么区别?不等式的解集中含“≥”“≤”时在数轴上如何表示?答:实心圆点表示取值范围内包含这个数,而空心圆圈则表示不包含这个数.不等式的解集中含“≥”“≤”时在数轴上的表示如下:(5)用不等式的性质解下列不等式,并在数轴上表示解集:①[教材P117例1(3)]23x>50;②[教材P117例1(4)]-4x>3;③-3x +2≤8;④x 4≤x 4-17.解:①根据不等式的性质2,不等式两边乘32,不等号的方向不变,所以32×23x >32×50,x >75.解集在数轴上的表示如图①所示.②根据不等式的性质3,不等式两边除以-4,不等号的方向改变,所以−4x −4-<3−4,x <-34.解集在数轴上的表示如图②所示.③根据不等式的性质1,不等式两边减2,不等号的方向不变,所以-3x+2-2≤8-2,-3x ≤6.根据不等式的性质3,不等式两边除以-3,不等号的方向改变,所以−3x −3-3≥6−3,x ≥-2.解集在数轴上的表示如图③所示.④根据不等式的性质1,不等式两边减x6,不等号的方向不变,所以x 4-x 6≤x 6-17-x 6,x 12≤-17.根据不等式的性质2,不等式两边乘12,不等号的方向不变,所以12×x12≤12×(−17),x ≤-127.解集在数轴上的表示如图④所示. 【对应训练】1~2.教材P119练习第1~2题.探究点3利用不等式的性质解决实际问题(教材P119例2)如图,某长方体形状的容器长5cm,宽3cm,高10cm.容器内原有水的高度为3cm,现准备向它继续注水.用V(单位:cm3)表示新注入水的体积.(1)新注入水的体积V与原有水的体积的和(2)与容器的容积有什么关系?答:新注入水的体积V与原有水的体积的和不能超过容器的容积.(2)新注入水的体积V可以是负数吗?不能.(3)你能写出V的取值范围吗?答:由(1)知V+3×5×3≤3×5×10,即V≤105.由(2)知V≥0,所以V的取值范围是V≥0并且V≤105.(4)试将V的取值范围在数轴上表示出来.你认为在数轴上表示需要注意什么?在数轴上表示V的取值范围如图所示.需要注意:这是一个包含两端点的区间(闭区间).【教学建【对应训练】用炸药爆破时,如果导火索燃烧的速度是0.8cm/s,人跑开的速度是4m/s,为了让点导火索的战士在爆破时能够跑到100m以外(不含100m)的安全区域,这个导火索的长度应大于多少厘米?请将解集在数轴上表示出来.解:设导火索的长度是xcm.根据题意,得x0.8×4>100,解得.在数轴上表示x的取值范围如图所示. 议】此类实际问题容易引起学生关注,激发他们参与学习的热情.教学中让学生体会到生活中蕴含着数学知识,反过来数学知识又帮助我们解决生活中的许多实际问题,从而感受到知识的应用价值.活动三:重点突破,提升探例若不等式2x<4的解都能使关于x的不等式3x<a+5成立,求a的取值范围.【教学建议】一些简单的实际问题吗?【知识结构】【作业布置】1.教材P120习题9.1第4~9题.2.《创优作业》主体本部分相应课时训练.不等式的其他性质:(1)若a>b,则b<a;(2)若a>b,b>c,则a>c;(3)若a>b,c>d,则a+c>b+d.例1实数a,b,c在数轴上的对应点如图所示,则下列式子中正确的是(C)A.-a-c>-b-cB.ac>bcC.|a-b|=a-bD.a<-b<-c解析:由图知:a>b,那么-a<-b,-a-c<-b-c,故A选项错误,不符合题意;由图知:a>b,c<0,那么ac<bc,故B选项错误,不符合题意;由图知:a>b,那么a-b>0,|a-b|=a-b,故C选项正确,符合题意;由图知:|a|>|b|,|a|>|c|,a>0,c<b<0,那么a>-c>-b,故D选项错误,不符合题意.故选C.例2根据等式和不等式的性质,我们可以得到比较两数大小的方法:(1)①如果a-b<0,那么a<b;②如果a-b=0,那么a=b;③如果a-b >0,那么a>b.(2)(1)中这种比较大小的方法称为“求差法比较大小”,请运用这种方法尝试解决下面的问题:①比较4+3a2-2b+b2与3a2-2b+1的大小;②若2a+2b-1>3a+b,比较a,b的大小.解:(2)①因为4+3a2-2b+b2-(3a2-2b+1)=b2+3>0,所以4+3a2-2b+b2>3a2-2b+1.②因为2a+2b-1>3a+b,所以2a+2b-3a-b>1,即b-a>1.因为1>0,所以b-a>0.所以a<b.例3用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C 的含量及购买这两种原料的价格如下表:(1)现配制9kg这种饮料,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(单位:kg)应满足的不等式;(2)在(1)的条件下,如果还要求甲、乙两种原料的费用不超过70元,试写出x(单位:kg)应满足的另一个不等式.解:(1)由题意,得500x+80(9-x)≥4000.(2)由题意,得16x+4(9-x)≤70.。

七年级数学下册第九章不等式与不等式组教案(7套)(新版)新人教版

七年级数学下册第九章不等式与不等式组教案(7套)(新版)新人教版

第九章不等式与不等式组9.1不等式9.1.1不等式及其解集【教学目标】知识与技能1.能感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式和意义;2.会寻找不等式的解,会在数轴上正确地表示出不等式的解集;3.能够根据题意准确迅速地列出相应的不等式。

过程与方法通过汽车行驶过A地这一实例的研究,使学生体会到数学来源于生活,又服务于生活,培养学生“学数学、用数学”的意识;情感、态度与价值观培养学生类比的思想方法、数形结合的思想。

【教学重难点】重点:1.不等式、一元一次不等式、不等式解与解集的意义;2.在数轴上正确地表示出不等式的解集;难点:不等式解集的意义,根据题意列出相应的不等式。

【导学过程】【情境引入】引例:一辆匀速行驶的汽车在11:20距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?设车速是x千米/小时,(1)从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到小时,即<①(2) 从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶小时的路程要超过50千米,即x>50 ②【新知探究】探究一、不等式、一元一次不等式的概念1.不等式请同学们观察上面的两个式子,式子左右两边的大小关系是怎样的? 左右两边相等吗?不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式用“>”或“<”号表示大小关系的式子叫做不等式;2.练习判断下列式子中哪些是不等式,是不等式的请在题后的括号内划“√”,不是的请划“×”(1)3> 2 ( )(2)2a+1>0 ( )(3)a +b=b+a ()(4)x<2x+1 ()(5)x=2x-5 ()(6)2x+4x<3x+1 ()(7)15≠7+9 ()上面的不等式中,有些不含未知数,有些含有未知数,大家把(2)、(4)、(6)式与(5)式类比,(5)式是一个一元一次方程,能不能给(2)、(4)、(6)式也起个名字呢?3. 一元一次不等式不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式。

第九章不等式与不等式组教案(人教版初一下)

第九章不等式与不等式组教案(人教版初一下)

第九章不等式与不等式组教案(人教版初一下)第一节、知识梳理一、学习目标1. 把握不等式及其解〔解集〕的概念,明白得不等式的意义.2. 明白得不等式的性质并会用不等式差不多性质解简单的不等式.3. 会用数轴表示出不等式的解集.二、知识概要1. 不等式:一样地,用不等号”〉"、”v"表示不等关系的式子叫做不等式2. 不等式的解:一样地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解3. 不等式的解集:一个不等式的所有解,组成那个不等式的解的集合,称之为此不等式的解集.4. 一元一次不等式:只含有一个未知数,且未知数的次数是 1 的不等式,叫做一元一次不等式.5. 不等式的性质:性质一:不等式的两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变.性质二:不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变.性质三:不等式的两边都乘以〔或除以〕同一个负数,不等号方向改变.6. 三角形中任意两边之差小于第三边.三、重点难点重点是不等式的差不多性质及其应用,难点是不等式和不等式解集的明白得.四、知识链接本周知识由往常学过的比较大小拓展而来,又为解决实际咨询题提供了一个解题的工具,并为以后学的不等式组打下基础.五、中考视点不等式也是经常考到的内容,经常显现在选择题、填空题中,以解不等式为主. 有时在一些解答题中也要用到不等式,利用不等关系求范畴等.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意义是:〔1〕”工"读作”不等于",它讲明两个量是不相等的,但不能明确哪个大哪个小〔2〕”>"读作”大于'’,表示其左边的量比右边的量大〔3〕”v"读作”小于'’,表示其左边的量比右边的量小〔4〕”》"读作”大于或等于",即”不小于",表示左边的量不小于右边的量〔5〕y"读作”小于或等于",即”不大于'’,表示左边的量不大于右边的量2. 如何恰当地列不等式表示不等关系?〔1〕找准题中不等关系的两个量,并用代数式表示〔2〕正确明白得题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义〔3〕选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来依照以下关系列不等式:a的2倍与b的亍的和不大于3.前者用代数式表示是2a+丁 b. ”不大于"确实是”小于或等于".列不等式为:2a+〒b w 3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向•假设边界点在范畴内那么用实心点表示,假设边界点不在范畴内,那么用空心圆圈表示;方向是关于边界点而言,大于向右画,而小于那么向左画在同一个数轴上表示以下两个不等式:x>-3 ; x w 2.V J 」O L 2 3第三节、错题剖析一、去括号时,错用乘法分配律【例1】解不等式3x+2〔2-4x〕<19.错解:去括号,得3x+4-4x<19,解得x>-15.诊断:错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解:去括号,得3x+4-8x<19 ,-5x<15,因此x>-3.二、去括号时,忽视括号前的负号5x-3 〔2x-1〕>-6.错解:去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是”-〃时,去掉括号和前面的”-〃,括号内的各项都要改变符号•错解在去括号时,没有将括号内的项全改变符号•正解:去括号,得5x-6x+3>-6 ,因此-x>-9,因此x<9.三、移项时,不改变符号【例3】解不等式4x-5<2x-9.错解:移项,得4x+2x<-9-5 ,即6x<-14,因此弓诊断:一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解:移项,得4x-2x<-9+5 ,解得2x<-4,因此x<-2.四、去分母时,忽视分数线的括号作用【例4】解不等式错解:去分母,得6x-2x-5>14,解得4诊断:去分母时,假如分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时, 忽视了分数线的括号作用.正解:去分母,得6x- 〔2x-5〕>14,去括号,得6x-2x+5>14,解得儿【例5】解不等式3x —6 v 1+7x.错解:移项,得3x —7x v 1+6,即一4x v 7,因此诊断:将不等式一4x v 7的系数化为1时,不等式两边同除以一4后,依照不等式的差不多性质: 不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解正解:移项,得3x—7x<1+6,即—4x V 7,因此x > ■'【例6】x2与a的和不是正数用不等式表示.错解及分析:x 2+a<0.对”不是正数"明白得不清.x2与a的和是0或负数.正解:x2+a w 0.【例7】求不等式2 的非负整数解.—错解及分析:整理得,3x w 16,因此3故其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对”非负整数'‘的明白得正解:整理得,3x< 16,因此故其非负整数解是0,1,2,3,4,5.【例8】解不等式3-5〔=x-2〕-4〔-1+5x〕<0.错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,因此4此题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把那个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0,即-21x<-17,因此21【例9】解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6 ,即11x<-15,因此LL '一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号正解:移项,得7x-4x<-9+6 ,即3x<-3,因此x<-1.错解及分析:去分母,得3+2〔2-3x〕w 5〔1+x〕即11x>2,因此_'I |错误的缘故是在去分母时漏乘了不含分母的一项”3".正解:去分母,得30+2〔2-3x〕w 5〔1+x〕.即11x> 29,因此M【例11】解不等式6x-6W 1+7x.错解及分析:移项,得6x-7x w 1+6.即-x< 7,因此x<-7.将不等式-X W7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解正解:移项,得6x-7x<1+6.即-x< 7,因此x>-7.【例12】解关于x的不等式m〔x-2〕>x-2.错解:化简,得〔m-1〕x>2〔m-1〕,因此x>2.诊断:错解默认为m-1>0,实际上m-1还可能小于或等于0.正解:化简,得〔m-1〕x>2〔m-1〕,①当m-1>0 时,x>2;②当m-1<0 时,x<2;③当m-1=0时,无解.【例13】解不等式〔a —1〕x > 3.3错解:系数化为1,得X>4l .诊断:此题的未知数系数含有字母,不能直截了当在不等式两边同时除以那个系数,应该分类讨论正解:①当a— 1 > 0时,x > :I ;②当a= 1时,O X x> 3,不等式无解;③当a—1v 0 时,x v 口-1 .J【例14】不等式组12工-1<0的解集为错解:两个不等式相加,得x-1 v 0,因此x v 1.求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分确实是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得 2 .在同一条数轴上表示出它们的解集,如图,因此不等式组的解集为:[例15】解不等式组1儀+2心-£错解:因为5x-3 > 4x+2,且4x+2 > 3x-2 ,因此5x-3 > 3x-2.移项,得5x-3x > -2+3.解得x >L I.诊断:上面的解法套用了解方程组的方法,是否正确,我们能够在x>T的条件下,任取一个x的值,看是否满足不等式组•如取x = 1,将它代入5x-3 > 4x+2,得2 > 6〔不成立〕.可知x>—不是原方程组的解集,其造成错误的缘故是由原不等式组变形为一个新的不等式时,改变了不等式的解集正解:由5x-3 >4x+2,得x> 5.由4x+2> 3x-2,得x>— 4.综合x>5和x>—4,得原不等式组的解集为x>5.【例16】解不等式组5—49错解:由不等式2x+ 3<7可得x<2.由不等式5x-6>9可得x>3.因此原不等式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x+ 3<7可得x<2.由不等式5x-6>9可得x>3.因此原不等式组无解.错解:去分母,得 3 —4x —1>9x.移项,得—4x —9x> 1 —3合并,得—13x>—2系数化为1,得.诊断:此题忽视了分数线的双重作用,去分母时,假设分子为多项式,应对其加上括号•正解:去分母,得3-〔4x —1〕> 9x去括号,得3 —4x+1 > 9x.移项,得一4x —9x>-1 —3合并,得—13x >—4系数化为1,得I」【例18】假设不等式组^ 的解集为x>2,那么a的取值范畴是〔〕.A. a<2B. a <2C. a>2D. a >2s错解及分析:原不等式组可分为爼=6得a<2,应选A.x>2 f当a=2时,原不等式组变为厶解集也为x>2.正解:应为a< 2 ,应选B.2T<7+X ■)①【例19】解不等式组殳C.②错解:②—①,得不等式组的解集为x<-13.诊断:错解中把方程组的解法套用到不等式组中正解:由不等式2x<7+x得到x<7.由不等式3x<x-6得到x<-3.因此原不等式组的解集为x<-3.第四节、思维点拨一、巧用乘法【例1】解不等式0.125x V 3.【摸索与分析】此不等式是一元一次不等式的一样形式,只需不等式两边同时除以0.125,就能够化系数为” T,然而较繁.不如利用不等式的性质2两边同乘以8要比两边同除以0.125解得简捷.解:两边同乘以8,得x v 24.、巧去分母【例2】解不等式【摸索与分析】常规方法是先去分母,但认真观看就会发觉,可先进行移项【例2】解不等式移项,合并同类项,得6x w -6两边同时除以6得 x < -1.三、依照条件取专门值° -4-3-2-1 0 1合并同类项,得x > -1.2?t+l _喑-2小0.25fl 25 J【摸索与分析】 常规方法是去分母,两边同乘以分母的最小公倍数•但我们会注意到” 0.25 X 4 = 1, 0.5 X 2= 1”,那么利用分数的性质,对左边第一项分子、分母同乘以 4,第二项分子、分母同乘以2,如此就能够化去分母同时系数为整数解:利用分数的性质〔即左边第一项分子、分母同乘以4,第二项分子、分母同乘以2〕,得 8X+4-2〔x — 2〕W 2,去括号,得 8x+4-2x+4W 2, ■号,【例4】 设a 、b 是不相等的任意正数,,那么x 、y 这两个数- —定是都不大于2 都不小于2 至少有一个大于2 至少有一个小于 2【摸索与分析】 不妨取a = 1,b = 3,得x = 10, y = J从而排除 A 、B ,再取 a = 3, b = 4,得,从而排除D,应选C.答案:C.【反思】用专门值法解选择题时,假如所取的专门值使部分选项取得相同的结果,那么应另选专门值再验,直至选出答案.四、依照数轴取专门值【例5】不等式组的解集在数轴上表示出来是如以下图中的〔解:移项,得 23-- ― -- >【例3】解不等式【摸索与分析】此题的常规方法是先解不等式组,然后再对比各选项选出正确答案,由于如此做要解不等式组,比较苦恼•认真观看各选项中的数轴,有两个专门数2,-1,不妨先取x = 2,代入临-I魯知常-I冶烁T之时T “2 2 不成立,故可排除A B.再取x = 0,代入丁~ 不成立,又可排除C,从而选D,如此做不仅节约了时刻,而且又减少了出错的机会.答案:D.【反思】用专门值法解选择题时,要综合运用验证法,排除法等技巧,快速选出正确答案.比较两个数或两个代数式的大小,能够运用求差法:假如a—b>0,那么a>b;假如a —b<0,那么a<b.运用求差法比较大小的一样步骤是:〔1〕作差;〔2〕判定差的符号;〔3〕确定大小.【例6】设x>y,试比较代数式-〔8-10x丨与—〔8-10y〕的大小,假如较大的代数式为正数,那么其中最小的正整数x或y的值是多少?【摸索与分析】依照求差法的步骤我们先求出两个式子的差,然后再依照条件x>y,来判定那个差的符号,从而比较两个代数式的大小解:由两式作差得-〔8-10x 丨一[—〔8-10y 丨]=-8+10x+8-10y = 10x-10y.因为x>y,因此10x>10y,即10x-10y>0.因此-〔8-10x〕>—〔8-10y〕.又由题意得-〔8-10x〕>0,即x>3",因此x最小的正整数值为1.【例7】有一个三口之家预备在假期出外旅行,咨询时了解到东方旅行社规定:假设父母各买一张全票那么小孩能够按全票的七折购票;而光明旅行社那么规定:三人均可按团体票计价,即按全票的80% 收费.假设两家旅行社的票价相同,那么实际哪家收费较低呢?【摸索与分析】要比较哪家旅行社的收费低,我们能够先用含有未知数的式子表示出两家旅行社需要的费用,然后依照求差法的步骤,求出两个式子的差,再依照条件判定那个差的符号即可比较出哪个旅行社的费用低.解:设这两家旅行社全票的价格为a元,依题意东方旅行社的收费为2a+ 70%a= 2.7a ,光明旅行社的收费为3a x 80%= 2.4a.因为 2.7a — 2.4a = 0.3a>0 ,因此实际上光明旅行社的收费较低.【反思】在解题时我们什么缘故设这两家旅行社全票的价格为a元呢?因为假如不设的话,我们即使明白用求差法比较大小,也无从下手五、巧去括号【例8】【摸索与分析】观看题目中的括号及数字的特点可先考虑去中括号,再去小括号,如此会使运算简便解:去中括号,得'去分母,得3x+60 v 28+8x,移项,合并同类项,得-5x V -32 ,化系数为I「得怎碍【例2】解不筹式:2呼讥討一圭山訴一【摸索与分析】观看题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便解:去小括号,得鬲二討丄]耳4,即3 3 5 4再去中括号「得去分曰•得&0x+24^ I 5% F移项「合并同类项「得血A24一北济数为1「得心-菩□J六、巧用”整体思想〃【例9】解不等式:2x-l-[3(2x-l)-b3]<|-.【摸索与分析】观看题目中括号内外可知都有相同的项:2x-1,我们把2x —1视为整体,再去中括号和分母,那么可使运算简捷.解:3〔2x-1〕-9〔2x-1〕-9 v 5.合并同类项得-6X〔2x-1〕V 14.反思:我们在解带有括号的一元一次不等式时,我们要善于观看题目的特点,巧去括号可使运算简便•【例10】在欧洲足球锦标赛中,共有16支队伍参加竞赛,争夺象征欧洲足球最高荣誉的”德劳内杯" .16支队伍被分成4个小组,进行单循环赛〔即每个队需同其他三个队各赛一场〕,胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线?【摸索与分析】依照题意,只有小组赛中的积分的前两名才能出线,我们能够分几种情形来讨论出线积分的多少.〔1〕假设某一队三战全胜积9分,那么同组的另一小队需保证小组第二才有出线的期望,在剩下的两场竞赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分•〔三场竞赛,确信有一场负〕因此,在这种情形中,至少积6分才能确保出线;〔2〕假设某一队三战两胜一平积7分,那么小组第二至少要两胜积6分才能出线;〔3〕假设某一队三战两胜一负积6分,那么其他两个队也可能三战两胜一负积6分,如此三队同积6分,不能确保小组出线•由以上摸索讨论可知,在小组赛中,积分可能显现三个队积分相同,为了确保出线,至少需积7分,才能保证以小组第二的身份出线.解:需7分.【小结】通过解题过程我们明白做这类题的时候要注意:在足球竞赛中,一样按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球竞赛的咨询题时,不能单纯的利用不等关系判定,还要注意到相互之间的胜负关系第五节、竞赛数学【例1】满足:「' 的x的值中,绝对值不超过11的那些整数之和等于.【摸索与分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式.解:原不等式去分母,得3〔2 + x〕》2〔2x —1〕,去括号,移项,合并同类项,得—x>—8, 即卩x w8.满足x<8且绝对值不超过11的整数有0, 土 1 ,± 2,± 3,± 4,± 5,± 6,± 7,± 8,—9,—10, —11.这些整数的和为〔一9〕+〔一10〕+〔一11〕= —30.【例2】假如关于x的一元一次方程3〔x+ 4〕= 2a+ 5的解大于关于x的方程—5 》—的解,那么〔〕•A. €>2艮心<2匚* 18【摸索与分析】这道题把方程咨询题转化为解不等式咨询题,利用了转化的数学思想.由于第个方程的解大于第二个方程的解, 只要先分不解出关于 x 的两个方程的解〔两个解差不多上关于 a 的式子〕, 再令第一个方程的解大于第二个方程的解,就能够求出咨询题的答案_勿-7解:关于x 的方程3〔x + 4〕= 2a + 5的解为”:丄^2【例3】 假如爭 7肛,2+c>2,那么〔答案.因此a<0.由2+c>2,得c>0,那么有一c<c. 两边都加上a ,得a-c<a+c ,排除A ;由 a<0, c>0,得 ac<0, - ac>0,从而 ac<-ac ,排除 C ; 由a<0,两边都加上 2a ,得3a<2a ,排除D.答案应该选B,事实上,由a<0,得—a>0,从而—a>a ,两边同时加上 c ,可得c — a>c + a.5【例4】 四个连续整数的和为 S , S 满足不等式,这四个数中最大数与最小数的平方差等于 __________________________ .【摸索与分析】 由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就能够求出•解: 设四个连续整数为 m-1, m m+1, m+2它们的和为 S = 4m + 2.解得7<m<9.由于m 为整数,因此 m= 8,那么四个连续整数为7 , 8 , 9 ,10 ,因此最大数与最小数的平方的差2 2为 10 — 7 = 51.从数轴上看,一个数的绝对值确实是表示那个数的点离开原点的距离•但除零以外,绝对值差不多上 表示两个数的绝对值,即一个数与它相反数的绝对值是一样的.由于那个性质,含有绝对值号的不等式的 求解过程显现了一些C. ac>-acD. 3a>2a【摸索与分析】两个不等式分不是关于 a 和c 的不等式,求得它们的解集后,便能够找到正确的A. a-c>a+cB. c-a>c+a产旳得心警<19 ,新特点.A. 1 , 2B.1 , 2, 3C. 1 , 2, 0D. 1 , 2 , 3 , 0一个实数a 的绝对值记作I a I,指的是由a 所惟一确定的非负实数:当时;1^1= C r 当 50 时;-Or 当Q 如时. 含绝对值的不等式的性质: 〔1〕 I a I>I b I —b w |a| 或 b > -|a| ,I a IwI b I 一• I b Iw a wI b I ;〔2〕 I a I - I b IwI a+b IwII a I + I b I; 〔3〕 I a I- I b IwI a-b IwI a I + I b I .由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算•通常的手法是按照绝对值符号内 的代数式取值的正、负情形,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号 的不等式的求解,常用分类讨论法•在进行分类讨论时,要注意所划分的类不之间应该不重、不漏•下面 结合例题予以分析.【例5】解不等式丨x-5 | - | 2x+3 |< 1.【分析】关键是去掉绝对值符号前后的变号.分三个区间讨论: 2 ' 2解:〔1〕当当x w 2时,原不等式化为-〔x-5丨-:-〔2x+3〕< 1,ra解得x<-7,结合x w ■,故x<-7是原不等式的解; 〔2〕当I 匕<x w5时,原不等式化为 -〔x-5〕-〔 2x+3〕< 1,条冷-r 结合◎理行故£炊理5解得 3丄3是原不等式的解;〔3〕当x > 5时,原不等式化为: x-5-〔 2x+3〕< 1,解得x >-9,结合x > 5,故x > 5是原不等式的解.年叱一7动I 富A --~综合〔1〕,〔2〕,〔3〕可知, 3是原不等式的解.第六节、本章训练基础训练题1.不等式x + 3< 6的非负整数解为〔 〕2. 三个连续奇数的和不超过27且大于10,如此的数组共有〔A. 1个B. 2 个C. 3个D. 4个3. 的值不小于一2,那么a的取值范畴是〔〕.yB. 心}°^4_L 旦4. 假设I + 2x的值不大于8 —」的值,那么x的正整数解是_____________________________________ .5. 小明预备用26元钞票买火腿肠和方便面,一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还能够买多少根火腿肠?6. 小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5厘米,这0.5厘米是他估量的,并不准确,假设设他所测量的书的长为x厘米,那么x应该满足的不等式是什么?答案1. C2. B3. C4. 1 ,2,5. 解:设还能够买x根火腿肠.由题意我们可列不等式5X 3+ 2x w 26,解得因为x必须为正整数,因此x= 1 , 2, 3,4,5.答:小明还能够买火腿肠的数目不超过6. 解:17V X V 18.提高训练题2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值范畴3. 小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数许多于5件,路上交> 5通费为10元,小强预备钞票时有以下几种选择:预备 400元,预备500元,预备510元,预备610元.请你讲明哪种方案可行?4. 某商城以单价260元购进一批DVD 机,出售时标价398元,由于销售不行,商场预备降价出售,但要 保证利润不低于10% .小明讲: ”可降价 100元.” 小英讲: ”可降价 150元.” 小华讲: ”降价不能超过 112元.” 你同意他们谁的讲法?5. 巧解以下不等式:〔1〕0.375x- 2W 0.5xI! 42 〔2〕7 33 72 <2 % ! 13〔4〕91 [ 9 1[6. 解以下不等式: 〔1〕9-2 〔 x — 2〕》6 〔2〕 12-3x v 8-2x答案1M ;将原不等式裂顷早字一亠一字―丄4 4 8b PR,约分得冷++” 移项峙■+ 合并得S &2. 解:由题意得我们可列不等式7百十92林3>85,解得 x >87.3. 解:设小明预备了 x 元钞票.5E-IOToo -7.我们由题意可列不等式勺3c —5解得x > 510.因此预备510元或预备610元都能够.4. 解:设降价x元.5. 〔1〕x>-16〔提示:不等式两边同乘8〕;(2).提示原不筠式勰项再合那卩■U可消去令母);(3)g-K提示同<5x2-1 闪」2S«H Th(4)应寻(提氐原不等武先移项再合并即可消去分母).2.{I)兀丘壬;⑵;r>4.玄榊豳惫可知辛亠竽朋导込¥我们能够由题意列不等式398-x —260》260X 10% .解得x< 112.因此小明和小华的讲法是正确的.强化训练题a丰2 片2a+11. 假设实数a > 1,那么实数M= a, 一3的大小关系是〔〕.A . P > N> M B. M> N> PC . N > P> M D. M> P> N2. 假设0v a v 1,那么以下四个不等式中正确的选项是〔〕.A. c<l<—B T a<—<la aC. ■--I D- L U-a a3. a、b、c在数轴上的对应点的位置如下图,以下式子正确的有〔丨.£占心■_ ------- 1—«_■ -1_*_i ---- -- -2-10123① b+c > 0 :② a+b > a+c;③ be > ac;④ ab >ac.A . 1 个B. 2 个C . 3 个D. 4 个.4. 我市某初中举行”八荣八耻〃知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答竞赛,只抢答了其中的20道题,要使最后得分许多于50分,咨询小军至少要答对几道题?5. 前年物价涨幅〔即前年物价比上一年,也确实是大前年物价增加的百分比〕为 15%,估量今年物价涨幅降低 5个百分点,为了使明年物价比大前年物价涨幅不高出必须比今年物价涨幅至少再降低 x 个百分点〔x 为整数〕那么x =〔 〕6.某商场打算投入一笔资金,采购紧销商品 .经调查发觉,如月初出售,可获利投资其他商品,那么月末又可获利 10% ;如等到月末出售可获利 30%,但需要支付仓储费用 700元.请咨询依照商场资金多少,如何购销获利较多? 7. 小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分不为2元和32元,经了解明白这两种灯的照明成效和使用寿命差不多上一样的 .小王家所在地的电价为每度0.5元,请咨询当这两种灯的使用寿命超过多长时刻时,小王选择节能灯才合算。

七年级数学下册不等式与不等式组教案人教新课标版

七年级数学下册不等式与不等式组教案人教新课标版

一、教学目标1. 知识与技能:学生能够理解不等式的基本概念。

学生能够解一元一次不等式。

2. 过程与方法:学生通过实例感知不等式的实际应用。

学生通过合作交流,掌握解不等式的方法。

3. 情感态度价值观:学生培养对数学的兴趣,感知数学与生活的联系。

二、教学重点与难点1. 重点:不等式的概念与性质。

不等式的解法。

2. 难点:不等式组的解法与解的意义。

三、教学方法与手段教学方法:采用问题驱动法、案例分析法、合作交流法。

教学手段:多媒体教学、板书、教学软件。

四、教学内容1. 第一课时:不等式的概念与性质导入:通过生活实例引入不等式概念。

新课:讲解不等式的基本性质。

练习:解简单的不等式。

2. 第二课时:不等式的解法导入:回顾一元一次方程的解法。

新课:引导学生掌握不等式的解法。

练习:解不同类型的不等式。

3. 第三课时:不等式组的解法导入:通过实例引入不等式组的概念。

新课:讲解不等式组的解法。

练习:解复杂的不等式组。

4. 第四课时:不等式应用题导入:通过实际问题引入不等式应用。

新课:讲解不等式在实际问题中的应用。

练习:解决实际问题的不等式应用题。

5. 第五课时:复习与拓展复习:总结不等式与不等式组的主要知识点。

拓展:引导学生思考不等式在生活中的广泛应用。

五、教学反思课后收集学生反馈,评估教学效果。

根据学生掌握情况,调整后续教学计划。

反思教学方法,确保学生能够有效理解和运用不等式知识。

六、教学评价通过课堂练习和课后作业评估学生的掌握情况。

关注学生在解决问题时的思维过程和方法。

结合学生的课堂表现和作业完成情况,全面评价学生的学习效果。

七、教学拓展引导学生将不等式知识应用到其他学科中,如科学实验中的数据比较。

通过数学故事或历史,让学生了解不等式在数学发展中的地位和作用。

鼓励学生参与数学竞赛或研究项目,提高解决复杂问题的能力。

八、教学资源利用互联网资源,如教育平台和数学论坛,获取最新的教学内容和方法。

结合学校图书馆的资源,推荐相关的数学读物,拓宽学生的知识视野。

初中数学人教七年级下册第九章 不等式与不等式组不等式及其解集教案

初中数学人教七年级下册第九章 不等式与不等式组不等式及其解集教案

不等式及其解集[教学目标】1.知识与技能:理解不等式及其解集的有关概念;2.过程与方法:会检验一组数中哪些是不等式的解,会在数轴上表示不等式的解集。

3.情感态度价值观:经历由具体实例建立不等模型的过程;经历学习不等式解与解集的不同意义的过程,渗透数形结合思想,体会学习数学的乐趣。

【教学重点】理解不等式的解集及解不等式的意义。

【教学难点】把不等式的解集正确的表示在数轴上,体会数形结合的思想。

【教学过程】一、情景引入“不相等”处处可见。

请用数学式子表示下列图片的含义身高:2.12m 身高:2.26m2.26>2.12 2.12 <2.2请用数学式子表示下列图片的含义x + 15 < 40 40 > x + 15⑤ x + 15 ≠ 40二、探究新知一:一:不等式概念:观察: 2.26>2.12 2.12 < 2.2x + 15 < 40 40 > x + 15 x + 15 ≠ 40像这些用不等号表示不等关系的式子叫不等式.常见的不等号<、> 、 ≠ 、 ≥ 读作大于或等于、≤ 读作小于或等于 不大于、不超过、至多、最多:≤不小于、不低于、至少、最少:≥ 20 20x 15x 1> 4 常见的不等关系有:1、a 是正数 2、a 是负数3、a 是非正数4、a 是非负数三、例题解析:例1、下列式子中哪些是不等式?① a+b=b+a ② -3>5 ③ x≠1x+3>6 ⑤ 2m≤n ⑥ 2x -3⑦ ⑧ ⑨ y +3≥3例2、 用不等式表示下列关系:(1)m 与3的和是负数 (2)x 与12的差是正数(3)a 与b 的乘积是非负数 (4)a 与2的商是非正数(5)x 与y 的和不小于2m (6)x 与y 的差不高于4探究新知二、 当x 取什么数值时不等式x≥2成立不等式的解定义: 能够使不等式成立的未知数的值叫做不等式的解.你还能找出其他解吗?这个不等式有多少个解?在数轴上表示不等式x≥2的解 一般地,一个含有未知数的不等式的所有解组成这个不等式的解集3250 x2求不等式解集的过程叫做解不等式.例3、在数轴上表示下列不等式的解集:(1)x>2 (2)x≥3 (3)x<2 (4)x≤-1归纳总结:大于向右画,小于向左画有等号时画实心圆点,无等号时画空心圆圈探究新知三、不等式的解与不等式的解集的区别与联系例4下列说法正确的是( )A.x=3是2x>1的解B. x=3是2x>1的唯一解B.C. x=3不是2x>1的解 D. x=3是2x>1的解集四课堂小结:这节课我学到了什么?。

七年级数学下册不等式与不等式组教案人教新课标版

七年级数学下册不等式与不等式组教案人教新课标版

七年级数学下册不等式与不等式组教案人教新课标版一、教学目标:知识与技能:使学生掌握不等式的概念、性质和基本运算;学会解一元一次不等式及不等式组。

过程与方法:通过观察、实验、探究等活动,培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观:激发学生学习数学的兴趣,培养学生克服困难、自主学习的品质。

二、教学内容:第一课时:不等式的概念与性质1. 不等式的定义2. 不等式的性质第二课时:不等式的基本运算1. 不等式的加减法2. 不等式的乘除法第三课时:解一元一次不等式1. 一元一次不等式的解法2. 解不等式组的策略第四课时:不等式应用举例1. 应用不等式解决实际问题2. 不等式组在实际问题中的应用第五课时:复习与拓展1. 复习不等式、不等式组的解法及应用2. 拓展练习三、教学重点与难点:重点:不等式的概念、性质,解一元一次不等式及不等式组的方法。

难点:不等式的性质,解一元一次不等式,不等式组在实际问题中的应用。

四、教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。

五、教学过程:第一课时:1. 导入新课:通过生活中的实例引入不等式概念。

2. 讲解不等式的性质。

3. 练习不等式的基本运算。

第二课时:1. 讲解不等式的加减法运算。

2. 讲解不等式的乘除法运算。

3. 练习不等式的基本运算。

第三课时:1. 讲解一元一次不等式的解法。

2. 讲解解不等式组的策略。

3. 练习解一元一次不等式及不等式组。

第四课时:1. 举例讲解应用不等式解决实际问题。

2. 举例讲解不等式组在实际问题中的应用。

3. 练习不等式及不等式组在实际问题中的应用。

第五课时:1. 复习不等式、不等式组的解法及应用。

2. 拓展练习。

六、教学评价:采用课堂练习、课后作业、小组讨论、个人总结等方式进行教学评价。

重点关注学生对不等式及不等式组的掌握程度,以及在实际问题中的应用能力。

七、教学策略:1. 采用多媒体课件辅助教学,直观展示不等式的性质和运算过程。

最新版人教版七年级数学下册第九章不等式与不等式组 教案教学设计

最新版人教版七年级数学下册第九章不等式与不等式组 教案教学设计

第九章不等式与不等式组9.1 不等式 (1)9.1.1 不等式及其解集 (1)9.1.2 不等式的性质 (3)9.2 一元一次不等式 (6)课时1 一元一次不等式及其解法 (6)课时2 一元一次不等式的应用 (10)9.3 一元一次不等式组 (14)课时1 一元一次不等式组及其解法 (14)课时2 一元一次不等式组的应用 (17)9.1 不等式9.1.1 不等式及其解集【教学目标】【知识与技能】了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生白发地寻找不等式的解,会把不等式的解集正确地表示到数轴上【过程与方法】经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;【情感态度与价值观】通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;【教学重点】正确理解不等式及不等式解与解集的意义,把不等式的解集正确地表示到数轴上.【教学难点】正确理解不等式解集的意义。

【新课导入】一、情境导入有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?【教学过程】二、合作探究探究点一:不等式的概念下列各式中:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.不等式的个数有( )A.5个 B.4个 C.3个 D.1个解析:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B.方法总结:本题考查不等式的判定,一般用不等号表示不相等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.探究点二:列简单不等式根据下列数量关系,列出不等式:(1)x与2的和是负数;(2)m与1的相反数的和是非负数;(3)a与-2的差不大于它的3倍;(4)a,b两数的平方和不小于它们的积的两倍.解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.解:(1)x+2<0;(2)m-1≥0;(3)a+2≤3a;(4)a2+b2≥2ab.探究点三:不等式的解与解集【类型一】对不等式解的理解下列不是不等式5x-3<6的一个解的是( )A.1 B.2 C.-1 D.-2解析:分别把四个选项中的值代入不等式,能使不等式成立的数分别为5×1-3=2<6,5×(-1)-3=-8<6,5×(-2)-3=-13<6,而5×2-3=7>6不能使不等式成立,故选B.方法总结:判断某个数值是否为不等式的解的方法:可直接将数值代入不等式的左右两边看不等式是否成立.如果成立,则是不等式的解;反之,则不是.【类型二】对不等式解集的理解下列说法中,正确的是( )A.x=2是不等式x+3<4的解B.x=3是不等式3x<7的解C.不等式3x<7的解集是x=2D.x=3是不等式3x>8的解解析:A不正确,因为当x=2时,x+3<4不成立;B不正确,因为不等式3x<7的解集是x<73,当x=3时,不等式3x<7不成立;C不正确,因为不等式3x<7有无数多个解,而x=2只是其中一个解,因此只能说x=2是3x<7的解,而不能说不等式3x<7的解集是x=2;D正确,因为当x=3时,不等式3x>8成立.故选D.方法总结:不等式的解可以有无数个,一般是某个范围内的所有数.未知数取解集中任何一个值时,不等式都成立;未知数取解集外任何一个值时,不等式都不成立.【教学反思】本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过等,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方9.1.2 不等式的性质【教学目标】【知识与技能】1.掌握不等式的两条基本性质,并能熟练的应用不等式的性质进行不等式的变形;2.理解不等式的基本性质与等式的基本性质之间的区别.【过程与方法】在积极参与探索、发现的过程中,体会不等式的两条基本性质的作用和意义,培养学生探索数学问题的能力;【情感态度与价值观】1.通过学生的自主讨论培养学生的观察力和归纳的能力;2.通过学生的讨论使学生进一步体会集体的作用,培养其集体合作的精神【教学重点】掌握不等式的两条基本性质,尤其是不等式的基本性质2;【教学难点】正确应用不等式的两条基本性质进行不等式的变形.【新课导入】一、情境导入小刚的爸爸今年32岁,小刚今年9岁,小刚说:“再过24年,我就比爸爸年龄大了.”小刚的说法对吗?为什么?【教学过程】探究点一:不等式的性质【类型一】比较代数式的大小已知-x<-y,用“<”或“>”填空:(1)-2x________-2y;(2)2x________2y;(3)23x________23y.解析:(1)根据不等式的性质2,不等式两边同乘以2,不等号方向不变,故填<;(2)根据不等式的性质3,不等式两边同乘以-2,不等号方向改变,故填>;(3)根据不等式的性质3,不等式两边同乘以-23,不等号方向改变,故填>.方法总结:利用不等式的性质2、3把不等式进行变形时,首先必须弄清两边同时乘(或除以)的数的符号,如果这个数是正数,不等号的方向不变;如果是负数,不等号的方向改变.【类型二】判断变形是否正确根据不等式的性质,下列变形正确的是( )A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由-12a>2得a<2D.由2x+1>x得x<-1解析:A中a>b,c=0时,ac2=bc2,故A错误;B中不等式的两边都乘(或除以)同一个正数,不等号的符号不改变,故B正确;C中不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边也应乘以-2,故C错误;D中不等式的两边都加或减同一个整式,不等号的方向不变,故D错误.故选B.方法总结:本题考查了不等式的性质,注意不等式的两边都乘(或除以)同一个负数,不等号的方向改变.【类型三】根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.探究点二:利用不等式的性质解简单的不等式利用不等式的性质解下列不等式:(1)2x-2<0;(2)3x-9<6x;(3)12x-2>32x-5.解析:根据不等式的性质,把含未知数的项放到不等式的左边,常数项放到不等式的右边,然后把系数化为1.解:(1)根据不等式的性质1,两边都加上2得2x<2.根据不等式的性质2,两边除以2得x<1;(2)根据不等式的性质1,两边都加上9-6x得-3x<9.根据不等式的性质3,两边都除以-3得x>-3;(3)根据不等式的性质1,两边都加上2-32x得-x>-3.根据不等式的性质3,两边都除以-1得x<3.方法总结:运用不等式的性质进行变形时,可以先在不等式两边同时加上一个适当的代数式,使含未知数的项在不等式的左边,常数项在不等式的右边,然后把未知数的系数化为 1.要注意的是:如果两边都乘(或除以)同一个正数,不等号的方向不变;如果两边都乘(或除以)同一个负数,不等号的方向改变.【教学反思】在学习不等式的性质时,可与等式的性质进行类比学习.在课堂中,让学生大胆质疑,同时通过易错例题加深学生对不等式的性质3的理解和认识.通过学习,还需要学生能独立把不等式的三条性质用数学符号表示出来9.2 一元一次不等式课时1 一元一次不等式及其解法【教学目标】【知识与技能】1、通过自主与合作学习,会解简单一元一次不等式,并能在数轴上表示出解集。

人教版七年级数学下册第九章《不等式与不等式组》同步教学设计

人教版七年级数学下册第九章《不等式与不等式组》同步教学设计
2.培养学生勇于探索、善于合作的精神,使他们学会与他人分享知识和经验。
3.培养学生严谨、细致的学习态度,让他们明白在解题过程中每一步的重要性。
4.培养学生具备解决问题的能力,使他们认识到数学知识在实际生活中的应用价值。
5.引导学生树立正确的价值观,将所学知识运用到实际生活中,为社会发展做出贡献。
二、学情分析
2.对于难点的突破:
(1)设计互动环节,让学生在小组讨论中探究不等式符号的变号规则,通过同伴互助加深理解;
(2)利用图表和数轴,帮助学生形象化地理解乘除以负数时符号的变化;
(3)通过案例分析和角色扮演,让学生在实际情境中练习将问题抽象为不等式或不等式组;
(4)利用可视化工具,如数轴上的区间标记,帮助学生理解和判断不等式组的解集。
3.情境创设:通过一个与不等式相关的实际问题,激发学生探究新知的欲望。例如:“小华和小明同时从同一地点出发,小华的速度是每分钟80米,小明的速度是每分钟100米。5分钟后,他们之间的距离是多少?”
(二)讲授新知
在导入新课之后,我将正式开始讲授不等式的相关知识。
1.不等式的概念:介绍不等式的定义,如大于、小于、大于等于、小于等于等符号,并举例说明。
1.分组:将学生分成若干小组,每个小组负责讨论一个不等式的性质或解法。
2.交流:各小组汇报自己的讨论成果,分享不等式性质和解法的理解。
3.互动:鼓励学生提问,解答其他小组的疑惑,共同探讨解决不等式问题的方法。
4.总结:在各小组讨论的基础上,引导学生总结不等式的性质和解法,形成系统的知识体系。
(四)课堂练习
4.思考与拓展:
(1)请思考:不等式与方程有何区别和联系?
(2)了解不等式的其他性质,如乘除以负数时,不等号方向的变化。

数学七年级下册第九章《不等式与不等式组》教学设计

数学七年级下册第九章《不等式与不等式组》教学设计

数学七年级下册第九章《不等式与不等式组》教学设计一. 教材分析《数学七年级下册》第九章《不等式与不等式组》是初中学段非常重要的一部分内容。

本章主要介绍不等式的概念、性质以及不等式组的解法。

学生通过学习本章内容,能够理解不等式的含义,掌握不等式的基本性质,并能够运用不等式组的知识解决实际问题。

教材内容主要包括不等式的定义、不等式的性质、不等式的解法、不等式组的解法等。

二. 学情分析学生在学习本章内容之前,已经学习了有理数、方程等基础知识,对数学符号、运算有一定的了解。

但是,学生对不等式的概念和性质可能比较陌生,需要通过具体例子和实际操作来理解和掌握。

同时,学生可能对不等式组的解法有一定的困难,需要通过大量的练习和指导来提高解题能力。

三. 教学目标1.知识与技能:学生能够理解不等式的概念,掌握不等式的基本性质,并能够运用不等式组的知识解决实际问题。

2.过程与方法:学生能够通过具体例子和实际操作,理解和掌握不等式的概念和性质,并能够运用不等式组的知识解决实际问题。

3.情感态度价值观:学生能够培养对数学的兴趣和自信心,培养合作和探究的精神,培养解决问题的能力。

四. 教学重难点1.教学重点:学生能够理解不等式的概念,掌握不等式的基本性质,并能够运用不等式组的知识解决实际问题。

2.教学难点:学生能够理解和掌握不等式组的解法,并能够灵活运用解法解决实际问题。

五. 教学方法1.情境教学法:通过具体例子和实际操作,引导学生理解和掌握不等式的概念和性质。

2.探究教学法:引导学生通过合作和探究,发现不等式组的解法,并能够灵活运用解法解决实际问题。

3.激励评价法:鼓励学生积极参与课堂活动,给予及时的反馈和激励,提高学生的学习兴趣和自信心。

六. 教学准备1.教学PPT:制作教学PPT,包括教材内容、例题、练习等。

2.教学素材:准备一些具体例子和实际问题,用于引导学生理解和掌握不等式的概念和性质。

3.练习题:准备一些练习题,用于巩固学生对不等式组解法的掌握。

最新人教版七年级数学初一下册第九章不等式单元教案设计

最新人教版七年级数学初一下册第九章不等式单元教案设计

第九章不等式与不等式组9.1 不等式9.1.2 不等式的性质课前安排教学过程设计9.2 实际问题与一元一次不等式教学过程设计一、创设问题情境,类比解一元一次方程的步骤,探究解一元一次不等式的一般步骤 解方程:31222-=+x x 步骤如下(教师演示) 解:去分母,得 3(2+x )=2(2x -1).去括号,得.移项,得.合并同类项,得.化系数为1,得x =8.活动1:根据解一元一次方程的步骤,你如何解不等式31222->+x x ? 学生活动设计:学生独立思考,解不等式,有分母同样可以考虑去分母,得3(2+x )>2(2x -1).去括号,得6+3x >4x -2.移项,得3x -4x >-2-6.合并,得-x >-8.化系数为1,得x <8.教师活动设计:(1)通过对比一元一次不等式与一元一次方程的解题步骤,一方面加深学生对相同点的认识,另一方面强化学生对不同点的理解、认识和记忆;(2)教学时,教师要注意强调不等式性质3的应用、方程变形中常见的错误. 活动2 你能总结解一元一次不等式的一般步骤吗? 教师活动设计:本问题主要培养学生的类比能力以及归纳总结能力,鼓励所有学生要大胆表述,勇于发表自己的见解.学生归纳:解一元一次不等式的步骤:去分母-去括号-移项-合并-系数化为1.引导学生对比解一元一次不等式和解一元一次方程步骤中相同点和不同点,特别是去分母和系数化为1中不等式涉及不等号的方向问题.活动3:教材 练习1设计意图:进一步巩固解一元一次不等式的步骤,加深对不等式解法的理解. 二、合作交流、问题探究,培养学生的探索精神以及思维的灵活性探究1:在“科学与艺术”知识竞赛的预选赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛.育才中学25名学生通过了预选赛,他们可能答对多少题?学生活动设计:学生独立思考,发挥自己的主体性,寻找问题的解决方法.经过思考,发现问题中有一个不等关系,即:总得分不少于80分,于是可以设未知数列出不等式,比如可以设可能答对了x 道题,则答错或不答的有(20-x )道题,于是有10x -5(20-x )≥80,再解这个不等式即可. 教师活动设计:鼓励学生对问题进行独立研究,自行解决,实在有困难可以由教师进行适当引导,比如这个实际问题需要列不等式来解决,而学生习惯的想法是列方程.解:设可能答对x 道题.10x -5(20-x )≥80.x ≥12.答:他们可能答对12~20道题.探究2:用炸药爆破时,如果导火索燃烧的速度是0.8 cm/s ,人跑开的速度是每秒4 m ,为了使点导火索的战士在爆破时能够跑到100 m 以外的安全区域,这个导火索的长度应大于多少厘米?学生活动设计:学生独立思考,发挥自己的主体性,寻找问题的解决方法.经过思考发现问题中的不等关系:在导火索点燃的过程中人跑开的路程应不小于100 m ,若设导火索的长度是x cm ,则导火索燃烧的时间是8.0x 秒,在这个时间内,人跑的路程是8.0x ×4,根据要求有 8.0x×4≥100. 教师活动设计:鼓励学生对问题进行独立研究,自行解决,实在有困难可以由教师进行适当引导. 〔解答〕略.(答案:20 cm .)探究3:甲、乙两个商店,以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按9折收费;在乙店累计购买50元商品后,再购买的商品按9.5折收费.顾客怎样选择商店购物能获得更大的优惠?学生活动设计:这个问题比较复杂,学生首先独立思考,然后在思考基础上进行讨论,可能会发现下列问题:(1) 如果累计购物不超过50元,则在两家商店花费有区别吗?(2) 若累计购物超过50元但不超过100元,则在两家商店花费有区别吗?为什么? (3) 若累计购物超过100元,则在两家商店花费有区别吗? (1)、(2)学生独立自行解决,容易得到(1)没有区别;(2)中在乙店花费少--因为在甲店不打折而在乙店打折.对于(3),学生可以进行讨论,交流解决.考虑设累计购物x 元(x >100),如果在甲店花费小,则必须满足50+0.95(x -50)>100+0.9(x -100);若在乙店花费少,则应满足50+0.95(x -50)<100+0.9(x -100).教师活动设计:引导学生找到问题的切入点,比如可以先考虑什么时候都不打折,什么时候一个打折另一个不打折,再考虑什么时候都打折,在都打折的情况下何时甲店花费少(含有不等关系)何时乙店花费少,如此等等.在这个过程中教师应重点关注:(1)学生考虑问题是否全面;(2)学生能否根据问题抽象出数学问题;(3)学生能否积极参与讨论;(4)学生经过讨论能否得到正确的结果.〔解答〕情况一:当累计购物不超过50元时,两店花费相同;情况二:当累计购物超过50元不超过100元时,在乙店花费少;情况三:设累计购物x元(x>100),(1)如果在甲店花费小,则必须满足50+0.95(x-50)>100+0.9(x-100).解得x>150.(2)若在乙店花费少,则应满足50+0.95(x-50)<100+0.9(x-100).解得x<150.即,累计购物超过150元时,在甲店花费少.探究4:通过以上3个问题的探究,你能获得什么启发?学生活动设计:学生小组合作、分组讨论,然后交流,可以在教师的引导下进行归纳:(1)解一元一次方程是把方程化为x=a的形式,而解一元一次不等式是把不等式化为x>a或x<a的形式;(2)由实际问题中的不等关系,可以设未知数列不等式,从而把实际问题转化为数学问题.教师活动设计:引导学生归纳,解一元一次方程和解一元一次不等式的目的,体会如何把实际问题转化为数学问题,从而进行求解.三、归纳小结、布置作业小结:本节你解决了什么问题?用了什么方法?作业:习题9.2.9.3 一元一次不等式组教学过程设计一、创设情境,探究不等式组的含义,引出本节内容.活动1问题某校今年冬季烧煤取暖时间为4个月.如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨.该校计划每月烧煤多少吨?学生活动设计:学生根据已有的不等式的知识进行独立思考.已知条件有:取暖时间为4个月,未知量是计划每月烧煤的数量(x).当每月比原计划多烧5吨煤时,每月实际烧煤(x+5)吨,这时总量4(x+5)>100;当每月比原计划少烧5吨煤时,实际每月烧(x-5)吨煤,有4(x-5)<68.进而归纳不等式组的概念.教师活动设计:这是一个实际问题,请学生先理解题意,搞清已知条件和未知元素,从而确定用哪一个知识点来解决问题,即把实际问题转换为数学模型,从而求解.此时引导学生发现x 的值要同时满足上述两个不等式,进而引导学生归纳一元一次不等式组的概念.把两个不等式合起来,就组成了一元一次不等式组(此时可以与方程组类比理解).活动2 类比方程组的解,如何确定不等式⎩⎨⎧<->+68)5(4100)5(4x x 的解集.学生活动设计:学生独立思考,容易分别解出两个不等式组,得到⎩⎨⎧<>2220x x ,在解出后进行讨论,然后交流如何确定这个不等式组的解集,经过分析发现x 的值必须同时满足x >20,x <22两个不等式,于是可以发现x 的取值范围应该是20<x <22;或者运用数轴,如图1,从数轴上容易观察,同时满足上述两个不等式的x 的值应是,两个不等式解集的公共部分,因此解集为20<x <22.图1教师活动设计:组织学生进行分析、讨论,引导学生发现不等式组中两个不等式解集的公共部分,就是不等式组的解集.在学生寻找解集的过程中,特别引导学生利用数轴来确定不等式的解集,同时让学生讨论归纳用数轴确定解集的方法:先分别画出解集,然后观察解集的公共部分,最后写出解集.在这个过程中,教师应注重让学生体会不等式组的解集在数轴上的体现.学生完成对活动1的解决过程.解:设该校计划每月烧煤x 吨,根据题意,得⎩⎨⎧<->+)2(68)5(4)1(100)5(4x x . 由(1)得x >20. 由(2)得x <22.所以不等式组的解集是20<x <22. 即该校计划每月烧煤20到22吨.最后师生共同归纳不等式组的解集以及解不等式组:一般地,几个不等式的解集的公共部分,就是这个不等式组的解集. 求不等式组的解集的过程,就是解不等式组. 二、 知识应用、巩固提高,使学生进一步理解不等式组的概念以及解不等式组的方法. 活动3 解下列不等式组,并利用数轴确定其解集.(1)⎩⎨⎧-<++>-148112x x x x (2)⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x (3)⎪⎪⎩⎪⎪⎨⎧+>+<+33222)6(21x x x学生活动设计:学生独立思考,自主解决问题,可以找三位同学进行板演,然后进行交流.(1)⎩⎨⎧-<++>-148112x x x x解不等式①,得x >2.解不等式②,得x >3.在同一条数轴上表示不等式①、②的解集如图2:图2因此,原不等式组的解集是x >3.(2)⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x解不等式①,得x ≤1.解不等式②,得x <4.在同一条数轴上表示不等式①、②的解集如图3:图3所以,原不等式组的解集为x ≤1.(3)⎪⎪⎩⎪⎪⎨⎧+>+<+33222)6(21x x x解:解不等式①,得x <-2.解不等式②,得① ② ① ② ① ②x >0.在同一条数轴上表示不等式①、②的解集,如图4:所以,原不等式组无解.教师活动设计:鼓励学生自己解决问题,在交流的过程中,注重学生主体性的发挥,让学生充分表达自己的看法,特别是如何确定不等式的解集的.三、 拓展创新、应用提高,培养学生的创新能力与应用意识.活动4:3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?学生活动设计:学生小组合作,在独立思考的基础上讨论交流,寻找解决问题的办法.从问题中可以发现有两个关键性的描述:(1)按原来的生产速度,不能完成任务;(2)按现在的生产速度可以提前完成任务.这两句话要注意理解,可以通过讨论来达成共识.教师活动设计:鼓励学生首先进行独立思考,然后讨论.引导学生发现上述两个关键性的描述并进行理解:不能完成任务的意思是按原来的生产速度产量小于500,可以提前完成任务的含义是按现在的生产速度产量大于500,进而设出未知数,列出不等式组〔解答〕设每个小组原来每天生产x 件产品,则有⎩⎨⎧>+⨯<⨯500)1(103500103x x 由不等式①得 3216<x . 由②得3215>x . 于是32163215<<x . 又x 为整数,所以x =16,即每个小组原来每天生产16件产品.四、归纳总结、布置作业.小结:本节课你获得了什么知识?解决了什么问题?解决问题的过程中用了什么方法?作业:习题9.3.9.4 利用不等关系分析比赛 学习目标 1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等① ②式解决问题的基本过程;3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;4、感受数学的应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会.学习重点与难点重点:利用不等关系分析预测比赛结果难点:在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的过程中发展学生用数学眼光看世界的主动性学习过程一、课前预习部分多媒体展示有关雅典奥运会射击比赛的场景,进而引出问题1:某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?引出话题后,由于问题本身并不复杂,在同学解决此问题后,教师适当予以表扬后应及时将问题变维发散,在探究中将思维引向深人.(1)如果第7次射击成绩为8环,最后三次射击中要有几次命中10环才能破纪录?(2)如果第7次射击成绩为10坏,最后三次射击中是否必须至少有一次命中10环才能破纪录?二、课堂探究部分(先独立完成,再小组讨论完善答案)媒体展示多种场景,除了射击比赛,在竞技场上还有许许多多扣人心弦、精彩纷呈的比赛,同学们有兴趣对他们也进行一些分析吗?问题2:有A,B,C,D,E五个队分同一小组进行单循环赛足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,A队的积分为9分.你认为A队能出线吗?请说明理由.学生充分发表意见,在辩论中发现此问题不能一概而论,需要考虑其他队的情况,于是形成问题假设:(1)如果小组中有一个队的战绩为全胜,A队能否出线?(2)如果小组中有一个队的积分为10分,A队能否出线?(3)如果小组中积分最高的队积9分,A队能否出线?在讨论交流中形成问题、解决问题,在解决问题中自然涉及足球比赛的相关规则.三、自我检测反馈部分(独立完成亲自动手做一做)1、必做题:.必做题:(1)足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分一个队打14场比赛负5场共得19分.那么这个队胜了几场?(2)甲、乙、丙三位同学进行立定跳远比赛,每人跳一次称为一轮,每轮按名次高低分别得3,2,1分(没有并列名次).他们进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是()A. 8分B. 9分C. 10分D. 11分(3)教科书157页复习题9第11题.四、小结与反思:本节课我学会了:;我的困惑是:.第二课时复习引入在上节课中,我们曾利用不等关系对一些体育比赛的结果进行分析,初步感触了分析解决此类问题的思想方法。

人教版七年级数学下册第九章不等式与不等式组数学活动教学设计

人教版七年级数学下册第九章不等式与不等式组数学活动教学设计
(二)讲授新知
在讲授新知的环节,我会按照以下步骤进行:
1.介绍不等式的定义和符号表示,强调不等式与等式的区别。
2.讲解不等式的性质,如加法、减法、乘法、除法的性质,并通过实例进行解释。
3.示范解一元一次不等式的步骤,包括移项、合并同类项、化简等,让学生跟随我的讲解进行板书。
4.引导学生通过数轴来形象地表示不等式的解集,加深对解集概念的理解。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用一个与学生生活密切相关的情境来引起学生的兴趣和好奇心。例如,我可以提出这样一个问题:“同学们,假设我们班要组织一次郊游活动,预算是每人不超过100元。如果我们要购买一些零食和饮料,如何确保我们的总花费不超过预算呢?”通过这个问题,让学生感受到不等式在解决实际问题中的应用。接着,我会引导学生回顾之前学过的等式知识,并对比不等式的特点,从而引出今天的新课——不等式与不等式组。
2.学生在解不等式过程中可能出现的错误,如符号弄反、移项错误等,教师需针对这些常见错误进行有针对性的指导。
3.学生的逻辑思维能力有待提高,需要通过典型例题和练习题,引导学生运用不等式性质进行分析、推导和证明。
4.部分学生对数学学习缺乏兴趣,教师应结合生活实例,激发学生学习兴趣,增强他们对数学实用性的认识。
讨论主题可能包括:
1.两个学生分别从A、B两地出发,相向而行,问他们何时相遇?
2.某商店进行打折促销,如何计算打折后的价格,使得顾客购买的商品总价不超过预算?
(四)课堂练习
在课堂练习环节,我会设计一些具有代表性的题目,让学生独立完成。题目难度分为基础、提高和拓展三个层次,以满足不同学生的学习需求。
练习题目可能包括:
3.培养学生的合作意识和团队精神,通过小组讨论、互助互学,提高学生的交流表达能力。

人教版初中数学七年级下册《第九章不等式与不等式组》全章教学设计

人教版初中数学七年级下册《第九章不等式与不等式组》全章教学设计

第九章不等式与不等式组教材内容本章的主要内容包括一元一次不等式组及其相关概念不等式的性质一元一次不等式组的解法及解集的几何表示利用一元一次不等式分析解决实际问题教材以实际问题为例引出不等式及其解集的概念然后类比一元一次方程引出一元一次不等式的概念为进一步讨论不等式的解法接着讨论了不等式的性质并运用它们解简单的不等式在此基础上教材从一个选择购物商店问题入手对列解一元一次不等式作了进一步的讨论并归纳一元一次不等式与一元一次方程的异同及应注意的问题最后结合三角形三条边的大小关系引进了一元一次不等式组及其解集并讨论了一元一次不等式组的解法教学目标〔知识与技能〕1了解一元一次不等式组及其相关概念2理解不等式的性质3掌握一元一次不等式组的解法并会在数轴上表示解集4学会应用一元一次不等式组解决有关的实际问题〔过程与方法〕1通过观察对比和归纳探索不等式的性质在利用它解一元一次不等式组的过程中体会其中蕴涵的化归思想2经历把实际问题抽象为一元一次不等式的过程体会一元一次不等式组是刻画现实世界中不等关糸的一种有效的数学模型〔情感态度与价值观〕1通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法树立辩证唯物主义的思想方法2在利用一元一次不等式组解决问题的过程中感受数学的应用价值提高分析问题解决问题的能力一元一次不等式组的解法及应用是重点一元一次不等式组的解集和应用一元一次不等式组解决实际问题是难点课时分配91不等式 4课时92实际问题与一元一次不等式 3课时93一元一次不等式组 2课时本章小结 2课时911不等式及其解集[教学目标]1知识与技能感知生活中的不等式关系了解不等式的意义初步体会不等式是研究量与量之间关系的重要模型之一理解不等式的解与解集的意义了解不等式解集的数轴表示2过程与方法经历由具体实例建立不等式模型的过程进一步发展学生的符号感与数学化能力通过闲事情境学会建模感受同类之间的大小比较方法在问题解决中发展学生归纳猜想的能力3情感态度与价值观进一步培养学生的数学思维和参与数学活动的自信心合作交流意识培养学生对问题实质的认识与理解以及感知事物变化规律的重要模型和最优化思想[重点难点] 不等式一元一次不等式不等式的解解集的概念是重点不等式解集的理解与表示是难点[教学方法] 本节课采用生动探索引导发现讲评点拨的教学方法[教学准备]投影仪刻度尺一情景导入[投影1]一辆匀速行驶的汽车在1120时距离A地50千米要在1200以前驶过A地车速应该具备什么条件题目中有等量关系吗没有那是什么关系呢从时间上看汽车要在1200之前驶过A地则以这个速度行驶50千米所用的时间不到23小时即汽车驶过A地的时间小于23小时从路程上看汽车要在1200之前驶过A地则以这个速度行驶23小时的路程要超过50千米即汽车23小时走的路程大于50千米这些是不等关系二不等式的概念若设车速为每小时x千米你能用一个式子表示上面的关系吗50x<23 ①或23x>5 ②像①②这样用或号表示大小关系的式子是不等式我们还见过像a2≠a这样用≠号表示的式子也是不等式≠叫做不等号不等号也可以写成≤≥的形式总之用不等号连接起来的式子叫做不等式思考1下列式子中哪些是不等式[投影2]1a+b ba 2-3>-5 3x≠l4x十3 6 5 2m n 62x-3我们看到有些不等式不含未知数有些不等式含有未知数类似于一元一次方程含有一个未知数并且未知数的次数是1的不等式叫做一元一次不等式注意像①中分母含有未知数的不等式不是一元一次不等式这一点与一元一次方程类似三不等式的解和解集思考2[投影3]判断下列数中哪些能使不等式23x 50成立7673798074 9751906076 7980 75190能使不等式23x 50成立我们把能使不等式成立的未知数的值叫不等式的解我们看到不等式的解不是一个你还能找出这个不等式的其他解吗它的解到底有多少个如7781101等等所有大于75的数都是这个不等式的解它的解有无数个一般地一个含有未知数的不等式的所有的解组成这个不等式的解集如所有大于75的数组成不等式23x 50的解集写作x 7 5这个解集可以用数轴来表示求不等式的解集的过程叫做解不等式.四例题例[投影4]在数轴上表示下列不等式的解集1 x -12 x≥-13 x -14 x≤-1解注意1实心点表示包括这个点空心点表示不包括这个点 2步骤画数轴定界点走方向五课堂练习课本123面123题六课堂小结1什么是不等式什么是一元一次不等式2什么是不等式的解什么是不等式的解集3怎样表示不等式的解集七作业课本128面1238912不等式的性质1[教学目标]1知识与技能理解不等式的性质2过程与方法通过类比等式的性质探索不等的性质体会不等式与等式的异同初步掌握类比的思想方法3情感态度与价值观认识通过观察实验类比可以获得数学结论体验数学活动充满着探索性和创造性[重点难点] 不等式的性质是重点运用不等式的性质进行判断是难点[教学方法] 本节课采用类比实验交流的教学方法让学生在充分讨论交流中掌握不等式的性质[教学准备]投影仪[教学过程]一问题导入对于比较简单的不等式我们可以直接想出它们的解集但是对于比较复杂的不等式要直接想出解集来就困难了因些有必要讨论怎样解不等式和学习一元一次方程先讨论等式的性质一样我们先来探索不等式有什么性质二不等式的性质做一做用填空[投影1] 请1 5 3 52 32 5-2 3-22 -13 -12 32 -1-3 3-33 6 2 6×5 2×5 6× -5 2× -54 -2 3 -2 ×6 3×6 -2 × -6 3× -6观察12类比等式的性质你发现了什么规律性质1 不等式两边加或减同一个数或式子不等号的方向不变即如果a>b那么a±c>b±c观察3类比等式的性质你发现了什么规律性质2 不等式两边乘或除以同一个正数不等号的方向不变即如果a>bc>0那么ac>bc 或ac>bc观察4类比等式的性质你发现了什么规律性质3 不等式两边乘或除以同一个负数不等号的方向改变即如果a>bc<0那么ac<bc 或ac<bc思考①比较上面的性质2与性质3看看它们有什么区别性质2的两边乘或除的是一个正数不等号的方向没有变而性质3的两边乘或除的是一个负数不等号的方向改变了②比较等式的性质与不等式的性质它们有什么异同等式的性质与不等式的性质12除了一个说等式仍然成立一个说不等号方向不变的说法不同外其余都一样而不等式的性质3说不等号方向改变这与等式的性质说法不同三例题例1 [投影2]利用不等式的性质填1 若a b则2a 2b2 若-2y 10则y -53 若a bc 0则ac-1 bc-14 若a bc 0则ac1 bc1分析不等式的两边发生了怎样的变化填或的依据是什么解1 2 3 4课堂练习1判断正误[投影3]1∵a b ∴ a-b b-b2∵a b ∴a3<b33∵a b ∴-2a -2b4∵-2a 0 ∴ a < 02根据下列已知条件说出a与b的不等关系并说明依据不等式哪一条性质[投影4]1a-3 b-3 2a3<b33-4a -4b 41-12a<1-12b3填空[投影5]1∵ 2a 3a ∴ a是数2∵a3<a2 ∴ a是数3∵ax 1 ∴ a是数五课堂小结不等式的三个基本性质是什么如何用数学式子表示六作业课本128面457912 不等式的性质二[教学目标]1知识与技能会解简单的一元一次不等式并能在数轴上表示出解集2过程与方法在类比中得到一元一次不等式的解法充分应用数轴这个直观工具来理解一元一次不等式的解集3情感态度与价值观培养学生的数感渗透数形结合的思想[重点难点] 一元一次不等式的解法是重点不等式性质3在解不等式中的运用是难点[教学方法] 本节课采用活动探究交流建够的教学方法[教学准备]投影仪刻度尺[教学过程]一复习导入[投影1]不等式的性质有哪些不等式的性质与等式的性质有什么不同和利用等式的性质可以解方程一样利用不等式的性质可以解不等式二不等式的解法例1 解下列不等式并在数轴上表示解集[投影2]1 x-7>26 23x 2x+1323x ≥ 50 4 -4x≤3分析解不等式最终要变成什么形式呢就是要使不等式逐步化为x>a或x a的形式解 1 x-7>26根据等式的性质1得x-77>267∴x>3323x 2x+1根据等式的性质1得3x-2x 2x+1-2x∴x 1323x ≥ 50根据等式的性质2得x ≥ 50×32∴x ≥7 54 -4x≤3根据等式的性质3得 x≤-34注意运用不等式的性质1实际上是方程中的移项例2 解不等式12x-1≤23 2x1 [投影3]分析我们知道解不等式的依据是不等式的性质而不等式的性质与等式的性质类似因此解一元一次不等式的步骤与解一元一次方程的步骤基本相同解去分母得 3x-6≤4 2x1去括号得 3x-6≤8x4移项得 3x-8x≤46合并得-5x≤10系数化为1得 x≥-2归纳解一元一次不等式的步骤1去分母2去括号3移项4合并同类项5糸数化为1四课堂练习课本127面练习1题134面练习1题五课堂小结提问1本节课你的收获是什么2怎样解不等式六作业课本134面1题912 不等式的性质三[教学目标]1知识与技能运用不等式解决有关的问题初步认识一元一次不等式的应用价值2过程与方法经历由具体实例建立不等式模型的过程进一步发展学生的符号感与数学能力3情感态度与价值观开展研究性学习使学生初步体会学习不等式基本性质的价值发展学生分析解决问题的能力[重点难点] 不等式的运用是重点寻找不等关系是难点[教学方法] 本节课采用师生互动生生互动的教学方法[教学准备]投影仪刻度尺[教学过程]一复习新课上节课我们学习了不等式的解法请问解不等式的依据是什么解不等式的步骤是什么有很多问题与不等式相联系需要运用不等式来解决二不等式的初步应用例1[投影1]三角形任意两边之差与第三边有着怎样的大小关系分析三角形任意两边之和与第三边有着怎样的大小关系解设 abc为任意一个三角形的三条边的长则ab>c bc>a ca>b移项得a>c-b b>a-c c>b-a上面的式子说明了什么三角形中任意两边之差小于第三边归纳三角形任意两边之和大于第三边任意两边之差小于第三边例2 [投影2] 已知x 3-2a是不等式15 x-3 <x-35的解求a的取值范围分析由不等式解的意义你能知道什么解依题意得15[ 3-2a -3]< 3-2a -3515·-2a<125-2a-2a<12-10a8a<12∴a<32例3[投影3] 某长方体形状的容器长5 cm宽3 cm高10 cm容器内原有水的高度为3 cm现准备继续向它注水.用V单位 cm3表示新注入水的体积写出V的取值范围分析新注入水的体积应满足什么条件新注入水的体积与原有水的体积的和不能超过容器的体积解依题意得V3×5×3≤3×5×10∴V≤105思考这是问题的答案吗为什么不是因为新注入水的体积不能是负数所以V≥0∴ 0≤V≤105在数轴上表示为注意解答实际问题时一定要考虑问题的实际意义三课堂练习1课本127面练习22补充题[投影4]小华准备用21元钱买笔和笔记本已知每支笔3元每本笔记本22元她买了2本笔记本请问她最多还能买几支笔四作业课本134面23128面9129面1092 实际问题与一元一次不等式一[教学目标]1知识与技能学会从实际问题中抽象出不等式模型会用一元一次不等式解决实际问题2过程与方法经历建立不等式模型的过程之后同样关注其求解过程解的准确性合理性3情感态度与价值观鼓励学生自主探索与合作交流关注学生多角度的思考发展思维策略体会不等式在实际生活中的应用价值[重点难点] 用一元一次不等式解决实际问题是重点找不等关系是难点[教学方法] 本节课采用师生交流共同探讨的教学方法[教学准备]投影仪[教学过程]一导入新课我们知道在生产和生活中存在大量的等量关系与此同时我们也看到在生产和生活中存在着大量的不等关系解决这些问题用不等式比较方便二例题例1[投影1] 某次知识竞赛共有20道题每一题答对得10分答错或不答都扣5分小明得分要超过90分他至少要答对多少道题分析超过90分是什么意思本题的不等关系是什么超过90分就是大于90分不等关系是答对的得分-答错或不答的扣分>90 解设小明答对x道题则他答错或不答的题数为20-x根据他的得分要超过90得10x-5 20-x >9010x-1005x >9015x >90∴x >383思考这是本题的答案吗为什么这不是本题的答案因为x是正整数且不能大于20所以小明至少要答对13题例2[投影2] 20XX年北京空气质量良好二级以上的天数与全年天数之比达到55如果到20XX年这样的比值要超过70那么20XX年空气质量良好的天数要比20XX年至少增加多少分析20XX年北京空气质量良好的天数是多少用x表示20XX年增加的空气质量良好的天数则20XX年北京空气质量良好的天数是多少本题的不等关系是什么20XX年北京空气质量良好的天数是365×5520XX年北京空气质量良好的天数是x365×55不等关系是20XX年北京空气质量良好的天数÷366 >70 解设20XX年北京空气质量良好的天数比20XX年增加x天依题意得x365×55366 >70去分母得x2005 >2562移项合并同类项得 x>5545思考这是本题的答案吗为什么本题的答案是什么不是因为x为正整数∴x≥56答20XX年北京空气质量良好的天数至少比20XX年增加56天注意用不等式解应用问题时要考虑问题的实际意义例1与例2中的未知数都应是正整数三课堂练习课本134练习23四课堂小结用一元一次不等式解决实际问题与用一元一次方程解决实际问题一样要将实际问题通过列一元一次不等式转化为数学问题然后通过解决数学问题来解决实际问题五作业课本134面313129面12135面57题92 实际问题与一元一次不等式二[教学目标] 1知识与技能会从实际问题中抽象出不等式模型进一步学会用一元一次不等式解决实际问题2过程与方法经历建立不等式模型的过程之后同样关注其求解过程解的准确性合理性3情感态度与价值观关注学生在建立不等式模型过程中的表现体会利用建立不等式的实质不等式模型的实际价值[重点难点] 用一元一次不等式解决实际问题是重点找不等关系是难点[教学方法] 本节课采用师生交流共同探讨的教学方法[教学准备] 投影仪[教学过程]一导入新课上节课我们讨论了用不等式解决实际问题这节课我们继续讨论这个问题二例题例[投影1] 甲乙两个商场以同样的价格出售同样的商品同时又各自推出不同的优惠措施.甲商场的优惠措施是累计购买100元商品后再买的商品按原价的90%收费乙商场则是累计购买50元商品后再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠分析由于甲商场优惠措施的起点为购物100元乙商场优惠措施的起点为购物50元起点数额不同因此必须分别考虑.你认为应分哪几种情况考虑分三种情况考虑①累计购物不超过50元②累计购物超过50元但不超过100元③累计购物超过100元1如果累计购物不超过50元则在两店购物花费有区别吗为什么没有区别因为两家商店都没有优惠2如果累计购物超过50元但不超过100元则在哪家商店购物花费小为什么在乙商店购物花费小因为乙商店有优惠而甲商店没有优惠3如果累计购物超过100元那么在哪家商店购物花费小因为两家商店都有优惠所以要分三种情况考虑设累计购物x元 x>100 则在甲商店购物花费多少元在乙商店购物花费多少元在甲商店购物花费10009 x-100 元在乙商店购物花费50095 x-50若在甲商场购物花费小则50095 x-50 >10009 x-100解之得 x>150若在乙商场购物花费小则50095 x-50 <10009 x-100解之得 x<150③若在两家商场购物花费相同50095 x-50 10009 x-100解之得 x 150答如果累计购物不超过50元则在两店购物花费一样多如果累计购物超过50元但不超过100元则在乙商店购物花费小若累计购物多于150元在甲商场购物花费小若累计购物等于150元在两商场购物花费一样多若累计购物多于100元少于150元在乙商场购物花费小注意问题比较复杂时要考虑分类解答分类要做到不重不漏三课堂练习[投影2]某校两名教师拟带若干名学生去旅游联系了两家标价相同的旅游公司.经洽谈甲公司的优惠条件是一名教师全额收费其余师生按7 5折收费乙公司的优惠条件是全体师生都按8折收费.若设标价为a元那么哪个公司更优惠四课堂小结1 列不等式解应用题与列方程解应用题的步骤相同所不同的是前者是不等关系列出的是不等式后者相等关系列出的是方程2列不等式解应用题的关键是找出不等关系找不等关系要抓住像大于不小于超过不足至少等等表示不等关系的词语作业课本134面324135面689题93 一元一次不等式组一[教学目标]1知识与技能了解一元一次不等式组的概念理解一元一次不等式组解集的意义掌握一元一次不等式组的解法2过程与方法经历通过具体问题抽象出不等式组的过程感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法3情感态度与价值观能参与数学活动提高合作交流的意识建立思考认识知识发展的价值[重点难点] 一元一次不等式组的解法是重点一元一次不等式组的解集的表示是难点[教学方法]学生活动与探究为主教师点拨[教学准备]投影仪刻度尺[教学过程]一情景导入看下面的问题[投影1]现有两根木条a和ba长10 cmb长3 cm如果再找一根木条c用这三根木条钉成一个三角形木框那么对木条c的长度有什么要求根据三角形两边之和大于第三边两边之差小于第三边可知c>10-3且c<103这就是说第三边c要满足两个不等关系那么c的长度究竟在什么范围呢今天我们就来解决这个问题二一元一次不等式组的概念和解集把几个一元一次不等式合起来组成一个一元一次不等式组记作类比方程组的解我们把几个不等式组的解集的公共部分叫做不等式组的解集解不等式就是求它的解集我们可以利用数轴确定不等式组的解集1234上面的表示可以用口诀来概括大大取大小小取小大小小大中间找大大小小不用找前面不等式组的解集是7<x<13注意如果不等号中带有等号空心圆就要变成实心圆三解不等式组例解下列不等式组[投影2]1 2分析你认为解不等式组应该分哪些步骤①求出各个不等式的解集②找出各个不等式的解集的公共部分利用数轴即解集.解1由1得x>2由2得x>3∴x>32由1得x>8由2得2x5-3<6-3xx<45∴原不等式无解四课堂练习课本140面练习1五课堂小结1一元一次不等式组的概念和解集2不等式解集的表示3解不等式组六作业课本141面1293 一元一次不等式组二〔教学目标〕1知识与技能进一步熟练一元一次不等式组的解法会用一元一次不等式组解决有关的实际问题2过程与方法使学生经历利用不等式组解实际问题的建模过程掌握分析问题和解决问题的方法3情感态度与价值观能积极主动地参与讨论在建模中感受数学知识在现实世界中的应用价值〔重点难点〕用一元一次不等式组解决有关的实际问题是重点正确分析实际问题中的不等关系是难点[教学方法] 本节课采用师生互动合作交流的教学方法[教学准备] 投影仪〔教学过程〕一导入新课前面我们用一元一次不等式解决了一些满足一个不等关系的实际问题事实上有很多问题满足两个不等关系这就要用到一元一次不等式组下面我们就利用一元一次不等式组解决有关的实际问题二例题例1[投影1] 3 个小组计划在10天内生产500件产品每天产量相同按原先的生产速度不能完成任务如果每个小组每天比原先多生产1件产品就能提前完成任务每个小组原先每天生产多少件产品分析不能完成任务的数量含义是什么提前完成任务的数量含义是什么解设每个小组原先每天生产件x产品依题意得由1得x<由2得x>不等式的解集为思考到此你能知道每个小组原先每天生产多少件产品吗为什么每个小组原先每天生产16件产品因为产品的数量是整数所以x=16答每个小组原先每天生产16件产品例2[投影2] 将若干只鸡放入若干个笼若每4个放一笼则有1只鸡无笼可放若每5个放一笼则有1笼无鸡可放那么至少有多少只鸡多少个笼分析鸡的数量怎么求4×笼的数量+1你怎样理解有一笼无鸡可放除去无鸡可放的一笼剩下的最后一笼可能不足5只鸡也可能恰好有5只鸡由此可以得到不等关系5×笼的数量-2 <4×笼的数量+1≤5×笼的数量-1解设有y个笼根据题意得5 y-2 4y1≤5 y-1即解之得 6≤y 11思考笼的个数y应满足什么条件y是整数且取范围内的最小值∴y=64y+1=4×6+=25答至少有25只鸡6个笼三课堂练习课本140面2题四课堂小结1列一元一次不等式组解应用题与列一元一次不等式解应用题的思想和步骤是一样的不同的是前者列出的是两个不等式而后者列出的是一个不等式2列不等式组解应用题的关键是找出不等关系有时题目中含有大于不小于超过不足至少等等表示不等关系的词语有时却没有这样的词语这时我们就要抓住具有不等意义的句子加以分析上面的两例就是这样要细心地体会作业课本142面8141面45第九章小结一知识结构二回顾与思考1什么是不等式什么是一元一次不等式什么是一元一次不等式组2一元一次不等式的解法与一元一次方程的解法有什么异同什么是一元一次不等式的解集3什么是一元一次不等式组的解集怎样解一元一次不等式组4运用不等式解决实际问题与运用一元一次方程解决实际问题有什么异同三例题导引例1 若不等式组无解求a的取值范围例2 已知方程组的解是正数求m的取值范围例3 某校准备组织290名学生进行野外考察活动行李共有100件学校计划租用甲乙两种型号的汽车共8辆经了解甲种汽车每辆最多能载40人和10件行李乙种汽车每辆最多能载30人和20件行李1设租用甲种汽车x辆请你帮助学校设计所有可能的租车方案2如果甲乙两种汽车每辆的租车费用分别为2000元1800元请你选择最省钱的一种方案四练习提高课本148面复习题91-57810题第九章复习二92-93一双基回顾1一元一次不等式组几个一元一次不等式组成了一个一元一次不等式组2一元一次不等式组的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本章复习整体设计教材分析本章所学知识是在学生学习了一元一次方程和二元一次方程组的基础上研究简单的不等关系.首先通过具体实例建立不等式,探索不等式的性质,了解一般不等式的解、解集以及解不等式的概念;然后具体研究一元一次不等式、一元一次不等式组的解、解集、解集在数轴上的表示、一元一次不等式和一元一次不等式组的解法及其简单应用.通过探究这些问题,可以进一步提高学生的类比能力,逐步渗透数学建模思想,初步体会方程与不等式的内在联系与区别.本章重点、难点是一元一次不等式及一元一次不等式组的解法.在本章的复习中,主要从两方面进行:一是帮助学生理清本章知识结构,通过引导师生共同梳理知识,建构知识框架;二是掌握一元一次不等式组的解法以及解决实际问题的数学建模训练.课时分配1课时教学目标1.归纳本章学过的知识,使学生系统地理解本章有关概念;正确掌握不等式的性质;熟练地解一元一次不等式和一元一次不等式组及它们的应用;2.通过回顾与总结,培养并提高学生归纳、对比及分析问题和解决问题的能力.教学重难点教学重点:不等式的性质及解一元一次不等式(组).教学难点:本章知识结构与框架的建立.教学方法设计典型例题,利用问题展开探索、交流.在学生掌握基本内容的基础上,教师引导学生进一步提炼、构建知识体系,科学地进行小结与归纳.在此基础上,通过学生尝试解决问题,以及师生之间、生生之间的讨论交流,使学生对数学思想方法的认识更深刻,对解决问题的策略把握得更灵活.教学过程一、熟悉知识体系设计说明通过引领学生回忆本章的知识要点,形成知识框架,让学生对本章知识有一个整体的把握,同时了解各知识之间的内在联系.二、知识要点回顾(一)基础知识设计说明以填空的形式引导学生回忆全章的有关知识,使学生掌握的知识更加深刻、系统.1.不等式、不等式的解、不等式的解集、解不等式用符号“<”或“>”表示大小关系的式子叫做不等式;用“≠”“≥”“≤”表示不等关系的式子也是不等式;使不等式成立的__________叫做不等式的解;一般地,一个含有未知数的不等式的__________,组成这个不等式的解集;求__________的过程叫做解不等式.2.不等式的性质性质1:不等式两边加(或减)__________,不等号的方向__________;性质2:不等式两边乘(或除以)__________,不等号的方向__________;性质3:不等式两边乘(或除以)__________,不等号的方向__________.3.一元一次不等式只含有__________,并且未知数的最高次数是__________,这样的不等式叫做一元一次不等式.4.解一元一次不等式的步骤与解一元一次方程相类似,基本步骤是:____________________,特别注意:当系数化为1时,不等式两边同乘(或除以)同一个负数,不等号的方向__________.5.不等式解法与方程解法的对比从形式上看,一元一次不等式与一元一次方程是类似的.在学习一元一次方程时利用等式的两个基本性质求得一元一次方程的解,按“类比”思想考虑问题自然会推断出,若用不等式的三条性质,采用与解一元一次方程相类似的步骤去解一元一次不等式,可求得一元一次不等式的解集.例如:解下列方程和不等式:2+x 2=2x -13+1; 2+x 2≥2x -13+1. 解:3(2+x )=2(2x -1)+6 1.去分母: 解:3(2+x )≥2(2x -1)+6,6+3x =4x -2+6 2.去括号: 6+3x ≥4x -2+6 3x -4x =-2+6-6 3.移项: 3x -4x ≥-2+6-6-x =-2 4.合并同类项: -x ≥-2x =2 5.系数化为1: x ≤2∴x =2是原方程的解. ∴x ≤2是原不等式的解集. 方程的解在数轴上的表示 不等式的解集在数轴上的表示点评:解一元一次不等式与解一元一次方程的步骤虽然完全相同,但是要注意步骤1和5,如果乘数或除数是负数时,解不等式时要改变不等号的方向.6.一元一次不等式组的解集一元一次不等式组的解集:一元一次不等式组中各不等式的解集的__________叫做这个不等式组的解集.7.解一元一次不等式组的步骤(1)求出不等式组中每个不等式的解集;(2)借助数轴找出各解集的公共部分;(3)写出不等式组的解集.求公共部分的规律:大大取大,小小取小,大小小大取中间,大大小小无解.例 解不等式组⎩⎪⎨⎪⎧ 2x -1>x +1, ①x +8<4x -1. ②解:解不等式①,得x >2,解不等式②,得x >3.在数轴上表示不等式①②的解集所以这个不等式组的解集是x >3.8.列一元一次不等式组解实际问题的一般步骤(1)审题;(2)__________;(3)根据不等关系列不等式组;(4)__________;(5)检验并作答.以上填空题答案省略.教学说明在教学过程中,借助前面的知识框架,以提问的方式引导学生回顾以上知识点,有些知识点要借助具体问题帮助学生回忆,如一元一次不等式的解法、一元一次不等式组的解法等.由于学生有的知识遗忘了,有的知识不能很好地用数学语言表达,教师应有充分的耐心听学生说完,并注意及时规范学生的不准确的表述.通过以上复习,使学生把全章知识串起来,使全章知识系统化、条理化、全面化.(二)例题精讲例1 解不等式:x +3(x +1)8>1-x -52. 思考:(1)不等式的性质3你知道吗?(2)解一元一次不等式通常有哪几个步骤?(3)在去分母时,通常应注意哪两点?解:去分母,得8x +3(x +1)>8-4(x -5),去括号,得8x +3x +3>8-4x +20,移项,得8x +3x +4x >8+20-3,合并同类项,得15x >25,系数化为1,得x >53. 在解不等式的过程中,去分母时,不能漏乘每一项,并且要注意添括号、去括号及移项的过程中,要注意符号的变化,尤其系数化为1时,系数若为负数,一定要注意不等号方向的变化.只要抓住这几点,解一元一次不等式的知识便可掌握.例2 当x 为何值时,代数式2x +13-1的值不小于3+5x 4的值? 思考:(1)“不小于”怎样用数学符号表示?“不大于”呢?(2)解此类问题首先应干什么?解:依题意,得2x +13-1≥3+5x 4, ∴4(2x +1)-12≥3(3+5x ).8x -15x ≥9+12-4,-7x ≥17,∴x ≤-177. ∴当x ≤-177时,代数式2x +13-1的值不小于3+5x 4的值. 例3 x 取哪些正整数时,代数式3-x -14的值不小于代数式3(x +2)8的值? 解:依题意,得3-x -14≥3(x +2)8. 去分母,得24-2(x -1)≥3(x +2),去括号,得24-2x +2≥3x +6,移项,得-2x -3x ≥6-24-2,合并同类项,得-5x ≥-20,系数化为1,得x ≤4,x ≤4的正整数解为x =1,2,3,4.答:当x 取1,2,3,4时,代数式3-x -14的值不小于代数式3(x +2)8的值. 点评:此题是带有附加条件的不等式,这时应先求不等式的解集,再在解集中,找出满足附加条件的解.例4 已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =3的解.求代数式4a -14a的值.思路分析:本例是一道不等式、方程、求代数式的值交融于一体的综合题,必须各个击破,一个问题一个问题的解决,便可攻破,这也是解综合题的常用方法.解:5(x -2)+8<6(x -1)+7,5x -10+8<6x -6+7,5x -6x <-6+7+10-8,-x <3,∴x >-3.∴此不等式的最小整数解为x =-2.∵x =-2为方程2x -ax =3的解,∴2×(-2)-a ·(-2)=3.∴a =72. 当a =72时,4a -14a =4×72-1472=14-4=10. 例5 解不等式组⎩⎪⎨⎪⎧ x -32+3≥x +1,①1-3(x -1)<8-x ,②并写出该不等式组的整数解.解:解不等式①,得x ≤1,解不等式②,得x >-2,所以不等式组的解集为-2<x ≤1.因为x 取整数,所以x =-1,0,1.所以不等式组的整数解为-1,0,1.例6 工程队原计划6天内完成300土方的工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?思考:(1)列一元一次方程解应用题有哪些步骤?(2)如何依题意找相等关系?(3)如何根据题意找不等关系来解决一元一次不等式应用题?解:设后几天每天平均完成x 土方,根据题意,得60+(6-1-2)x ≥300,解之,得x ≥80.答:每天平均至少要完成80土方.例7 一堆玩具分给若干个小朋友,若每人分2件,则剩余3件;若前面每人分3件,则最后一人能分到玩具,但分到的玩具数不足2件.求小朋友的人数与玩具数.分析:由于最后一人能分到玩具,但分到的玩具数不足2件,所以该问题应该是建立不等式模型来解决.解:若设有x 个小朋友,则玩具有(2x +3)件,分到3件玩具的小朋友有(x -1)个,另一个小朋友分到玩具,但分到的玩具数不足2件,这样我们就可以得到不等式组⎩⎪⎨⎪⎧ (2x +3)-3(x -1)>0,(2x +3)-3(x -1)<2,解不等式,得4<x <6, 因为x 取整数,所以x =5.所以玩具有2×5+3=13(件).三、巩固训练,熟练技能1.不等式-x >-2的解集是( ).A .x >2B .x >-2C .x <2D .x <-22.不等式2x -7<5-2x 的正整数解有( ).A .1个B .2个C .3个D .4个3.不等式组⎩⎪⎨⎪⎧ x -2<0,x ≥1的解集为( ). A .1≤x <2 B .x ≥1 C .x <2 D .无解4.不等式组⎩⎪⎨⎪⎧3x ≤6,x +1>0的整数解是__________.5.解不等式组⎩⎪⎨⎪⎧ x -3(x -1)≤7,1-2-5x 3<x .6.m 取何值时,关于x 的方程x 6-6m -13=x -5m -12的解大于1? 7.某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校求出所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2 000元、1 800元,请你选择最省钱的一种租车方案.答案:1.C 2.B 3.A 4.0,1,2 5.-2≤x <-12. 6.解关于x 的方程,得x =3m -15,由于方程的解大于1,所以3m -15>1. 解得m >2.7.解:(1)设租用甲种汽车x 辆,则租用乙种汽车(8-x )辆.由题意,得⎩⎪⎨⎪⎧40x +30(8-x )≥290,10x +20(8-x )≥100,解得5≤x ≤6. 即共有两种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为5×2 000+3×1 800=15 400(元);第二种租车方案的费用为6×2 000+2×1 800=15 600(元).所以第一种租车方案更省钱.教学说明这一环节是为了评价本节课的教学效果,检验教学目标的达成情况,教师可根据学生反馈的具体情况作适当的评价与弥补,从而达到巩固提高的目的.四、总结反思,情意发展设计说明围绕下面四个问题,师生共同总结本节课的学习收获.1.哪些本已遗忘的知识得到巩固?2.哪些知识有新的认识?3.本章主要蕴涵了哪种数学思想?4.结合你自己的复习情况,谈谈你还有什么疑问?教学说明通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中会不断进步,同时促使学生形成良好的反思习惯.五、课堂小结1.本节重点复习归纳了本章的基础知识,提高了学生各知识点的综合应用能力.2.用到的主要思想方法是数形结合思想、类比思想、模型化思想.通过一元一次不等式解法的学习,领会转化的数学思想;通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想;通过实际问题的应用,进一步领会模型化思想.3.注意的问题:复习时将平时易错的知识点、感到疑难的问题做重点处理,不留尾巴.六、布置作业课本复习题9 第7,8题.七、拓展练习1.关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( ).A .0B .-3C .-2D .-12.已知一元一次不等式组⎩⎪⎨⎪⎧ x <a ,x <b (a ≠b )的解集为x <a ,则( ). A .a >b B .a <b C .a >b >0 D .a <b <03.一元一次不等式组⎩⎪⎨⎪⎧x >a ,x >b 的解集是x >a ,则a 与b 的关系为( ). A .a ≥b B .a ≤b C .a ≥b >0 D .a ≤b <04.不等式-0.5y +1≥0的正整数解有( ).A .1个B .2个C .3个D .无数个 5.不等式⎩⎪⎨⎪⎧ 2x >-3,x -1≤8-2x 的最小整数解为( ).A .-1B .0C .2D .36.不等式组⎩⎪⎨⎪⎧ 2x +4≤0,12x +2>0的整数解为__________.7.已知关于x 的不等式组⎩⎪⎨⎪⎧ x -a ≥0,3-2x >-1的整数解有5个,求a 的取值范围.8.某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1 500元;乙公司提出:每册收材料费8元,不收设计费.(1)请写出制作纪念册的册数与甲公司的收费的关系式;(2)请写出制作纪念册的册数与乙公司的收费的关系式;(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?答案:1.D 2.B 3.A 4.B 5.A 6.-3,-27.解:不等式组⎩⎪⎨⎪⎧ x -a ≥0,3-2x >-1可化为⎩⎪⎨⎪⎧x ≥a ,x <2, 由于它有解集,所以解集为a ≤x <2,它的解集中包含五个整数,这五个整数依次为1,0,-1,-2,-3,反映在数轴上,a 只需-4<a ≤-3.点评:要求不等式组的解集符合一些条件,先找到这个解集,然后把它描述在数轴上,结合条件得到结论.8.解:设学校准备制作x 册纪念册,则甲公司收费y 甲元,乙公司收费y 乙元,则(1)y 甲=5x +1 500;(2)y 乙=8x .(3)若两家收费相同时,5x +1 500=8x ,解得x =500;若甲家收费较少时,即5x +1 500<8x ,解得x >500;若乙家收费较少时,即5x +1 500>8x ,解得x <500.所以,当x =500时,选择甲、乙两家都一样;当x >500时,选择甲公司;当x <500时,选择乙公司.评价与反思 本节复习是以“问题串”的形式引导学生回顾梳理主要知识点,构建知识体系——通过典型例题探究加深对主要思想方法的理解,掌握常用的解题方法.在教学中,关注学生是否认真思考,相互交流与合作,以及学生对问题的理解情况,使学生在反思和交流的基础上构建合理的知识体系.借助典型例题重点强化利用一元一次不等式(组)进行计算,训练学生解不等式(组)及利用不等式(组)解决问题的技能,从而提高他们运用所学知识去分析问题和解决问题的能力.。

相关文档
最新文档