初三数学复习_数与式(知识点讲解)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学复习 数与式
第一课时 实数的有关概念
【知识要点】
(一)实数的有关概念
(1)实数的分类
当然还可以分为:正实数、零、负实数。
有理数还可以分为:正有理数,零,负有理数
(2)数轴:
数轴是研究实数的重要工具,是在数与式的学习中,实现数形结合的载体,数轴的三要素:原点、正方向和单位长度,实数与数轴上的点是一一对应的,我们还可以利用这种一、一对应关系来比较两个实数的大小。
(3)绝对值
绝对值的代数意义:||()()()a a a a a a =>=-<⎧⎨⎪⎩
⎪0000 绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
(4)相反数、倒数 实数的相反数记为-,非零实数的倒数记为,零没有倒数。a a a 1a
若a 、b 两个数为互为相反数,则a+b=0。
若m 、n 两个数互为倒数,则m ·n=1。
(5)三种非负数: ||()a a a a ,,都表示非负数。20≥
“几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简,求值。
(6)平方根、算术平方根、立方根的概念。
如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有 一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作 .一个正数a 的正的平方根,叫做a 的算术平方根.a(a≥0)的算术平方根记作 .
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧—无限不循环小数
—无理数负分数正分数分数负整数零正整数整数有理数实数
(7)科学计数法、有效数字和近似值的概念。
1.近似数: 一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.
2.有效数字: 一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.
3.科学记数法: 把一个数用 (1≤ <10,n 为整数)的形式记数的方法叫科学记数法.
【典型例题:】
P2例1、(2012贵州六盘水,5,3分)13,πcos 45︒,0.32 中无理数的个数是( ▲ ) A .1 B .2 C .3 D .4
点评:此题主要考查了无理数的定义,其中:
(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.
(2)无理数是无限不循环小数,其中有开方开不尽的数.
(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数.
P2例4、(2012·湖北省恩施市,题号16 分值 4)观察下表:
根据表中数的排列规律,B+D=_________.
例题补充、(2012河北省17,3分)17、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111
,第2位同学报⎪⎭
⎫ ⎝⎛+121,…
这样得到的20个数的积为_________________.
第二课时:实数的运算及比较大小
【知识要点】
一、实数的运算
1.加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.
2.减法:减去一个数等于加上这个数的相反数.
3.乘法:几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.
4.除法:除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.
5.乘方与开方
(1)a n所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.
(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.
(3)零指数与负指数
二、实数大小的比较
1.对于数轴上的任意两个点,靠右边的点所表示的数较大.
2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.
3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.
4.对于实数a,b,c,若a>b,b>c,则a>c.
5.无理数的比较大小:
利用平方转化为有理数:如果a>b>0,a2>b2 则a>b ;
或利用倒数转化:如比较与.
三、实数运算顺序
加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如
果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.
四、实数的运算律
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
【典型例题:】
P3例3(2012山东省聊城,10,3分)如右图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是( )
A. 1+3
B. 2+3
C. 23-1
D. 23+1
P4例 4(2012广东汕头,21,7分)观察下列等式:
第1个等式:a 1==×(1﹣); 第2个等式:a 2==×(﹣); 第3个等式:a 3==×(﹣); 第4个等式:a 4==×(﹣);
…
请解答下列问题:
(1)按以上规律列出第5个等式:a 5= = ;
(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);
(3)求a 1+a 2+a 3+a 4+…+a 100的值.